

B. Sc. PHYSICS

SYLLABUS

FROM THE ACADEMIC YEAR 2023 - 2024

THIRUVALLUVAR UNIVERSITY SERKKADU, VELLORE-632115

First Year

Semester-I

Part	List of Courses	Credit	No. of Hours	CIA	Univ Exam
Part-I	Language	3	6	25	75
Part-II	English	3	6	25	75
_	Core Theory 1 – Properties of Matter and Acoustics	5	5	25	75
Part- III	Core Practical 1 – Physics Practical 1	5	5	25	75
111	Allied Theory 1 – Allied Mathematics 1	3	4	25	75
Part-	Skill Enhancement Courses SEC1 PHYSICS FOR EVERYDAY LIFE	2	2	25	75
IV	Foundation Course INTRODUCTORY PHYSICS	2	2	25	75
	Total	23	30	175	525

COURSE	FIRST SEMESTER -CORE THEORY 1			
COURSETITLE	PROPERTIES OF MATTER AND ACOUSTICS			
COURSE	Study of the properties of matter leads to information which is of			
OBJECTIVES	practical value to both the physicist and the engineers. It gives u			
	information about the internal forces which act between the constituent parts of the substance. Students who undergo this course are successfully bound to get a better insight and understanding of the subject.			

UNITS	COURSEDETAILS
	ELASTICITY: Hooke's law – stress-strain diagram – elastic
	constants –Poisson's ratio – relation between elastic constants and
UNIT-I	Poisson's ratio – work done in stretching and twisting a wire –
	twisting couple on a cylinder – rigidity modulus by static torsion–
	torsional pendulum (with and without masses).
	BENDING OF BEAMS: Cantilever– expression for Bending
	moment – expression for depression at the loaded end of the
	cantilever— oscillations of a cantilever— expression for time period—
UNIT-II	experiment to find Young's modulus – non-uniform bending–
	experiment to determine Young's modulus by Koenig's method –
	uniform bending – expression for elevation – experiment to
	determine Young's modulus using microscope
	FLUID DYNAMICS: Surface tension: definition – molecular
	forces— excess pressure over curved surface – application to
	spherical and cylindrical drops and bubbles – determination of
	surface tension by Jaegar's method-variation of surface tension with
UNIT-III	temperature
	<i>Viscosity</i> : definition – streamline and turbulent flow – rate of flow of
	liquid in a capillary tube – Poiseuille's formula –corrections –
	terminal velocity and Stoke's formula-variation of viscosity with
	temperature
	WAVES AND OSCILLATIONS: Simple Harmonic Motion
	(SHM) – differential equation of SHM - free, damped, forced
UNIT-IV	vibrations –resonance and Sharpness of resonance.
01111-11	Laws of transverse vibration in strings –sonometer – determination
	of AC frequency using sonometer–determination of frequency using
	Melde's string apparatus
	ACOUSTICS OF BUILDINGS AND ULTRASONICS:
	Intensity of sound – decibel – loudness of sound –reverberation –
	Sabine's reverberation formula – acoustic intensity – factors
UNIT-V	affecting the acoustics of buildings.
OTVII-V	Ultrasonic waves: production of ultrasonic waves – Piezoelectric
	crystal method –magnetostriction effect – application of ultrasonic
	waves: –ultrasonoimaging- ultrasonics in advantages of noninvasive
	surgery.
PROFESSIONAL	Expert lectures – seminars — webinars – industry inputs – social
COMPONENTS	accountability – patriotism
201112 31111110	

	1 7 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1
	1. D.S.Mathur, 2010, Elements of Properties of Matter,
	S.Chand and Co.
	2. BrijLaland N. Subrahmanyam, 2003, Properties of Matter,
	S.Chand and Co
TEXT BOOKS	3. D.R.Khanna and R.S.Bedi, 1969, Textbook of Sound,
1211 2 3 3 123	AtmaRamand sons
	4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound,
	Second revised edition, Vikas Publishing House.
	5. R.Murugesan, 2012, <u>Properties of Matter</u> , S.Chandand Co.
	1. C.J. Smith, 1960, General Properties of Matter, Orient Longman
	Publishers
REFERENCE	2. H.R. Gulati, 1977, Fundamental of General Properties of Matter,
BOOKS	Fifth edition,R. Chand and Co.
	3. A.P French, 1973, Vibration and Waves, MIT Introductory
	Physics, Arnold-Heinmann India.
	1. https://www.biolinscientific.com/blog/what-are-surfactants-and-
	how-do-they-work
	2. http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html
	3. https://www.youtube.com/watch?v=gT8Nth9NWPM
	4. https://www.youtube.com/watch?v=m4u-SuaSu1sandt=3s
WEB	5. https://www.biolinscientific.com/blog/what-are-surfactants-and-
RESOURCES	how-do-they-work
	6. https://learningtechnologyofficial.com/category/fluid-mechanics-
	lab/
	7. http://www.sound-physics.com/
	8. http://nptel.ac.in/courses/112104026/

COURSE OUTCOMES:

At the end of the course, the student will be able to:

	CO1	Relate elastic behavior in terms of three modulii of elasticity				
		and working of torsion pendulum.				
	CO2	Able to appreciate concept of bending of beams and analyze				
		the expression, quantify and understand nature of materials.				
	CO ₃	Explain the surface tension and viscosity of fluid and suppor				
		the interesting phenomena associated with liquid surface, soap				
		films provide an analogue solution to many engineering				
COURSEOUT		problems.				
COMES	CO4	Analyze simple harmonic motions mathematically and apply				
COMES		them. Understand the concept of resonance and use it to				
		evaluate the frequency of vibration. Set up experiment to				
		evaluate frequency of ac mains				
	CO ₅	Understand the concept of acoustics, importance of				
		constructing buildings with good acoustics.				
		Able to apply their knowledge of ultrasonics in real life,				
		especially in medical field and assimilate different methods of				
		production of ultrasonic waves				

MAPPING WITH PROGRAM OUT COMES:

 $\label{lem:mapping} Map course outcomes \textbf{(CO)} for each course with program outcomes \textbf{(PO)} in the 3-point scale of STRONG \textbf{(S)}, MEDIUM \textbf{(M)} and LOW \textbf{(L)}.$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	M	M	S	M	S
CO2	M	S	S	S	M	M	S	M	S	S
CO3	S	M	S	M	S	S	M	S	S	S
CO4	S	S	S	S	S	M	S	M	M	M
CO5	M	M	S	S	M	S	S	S	S	M

COURSE	FIRST SEMESTER -CORE PRACTICAL 1
COURSETITLE	PRACTICAL 1
COURSE	Apply various physics concepts to understand Properties of Matter,
OBJECTIVES	set up experimentation to verify theories, quantify and analyse, able
	to do error analysis and correlate results

Properties of Matter

Minimum of Eight Experiments from the list:

- 1. Determination of rigidity modulus without mass using Torsional pendulum.
- 2. Determination of rigidity modulus with masses using Torsional pendulum.
- 3. Determination of moment of inertia of an irregular body.
- 4. Verification of parallel axes theorem on moment of inertia.
- 5. Verification of perpendicular axes theorem on moment of inertia.
- 6. Determination of moment of inertia and g using Bifilar pendulum.
- 7. Determination of Young's modulus by stretching of wire with known masses.
- 8. Verification of Hook's law by stretching of wire method.
- 9. Determination of Young's modulus by uniform bending load depression graph.
- 10. Determination of Young's modulus by non-uniform bending scale and telescope.
- 11. Determination of Young's modulusby cantilever load depression graph.
- 12. Determination of Young's modulus by cantilever oscillation method
- 13. Determination of Young's modulus by Koenig's method (or unknown load)
- 14. Determination of rigidity modulus by static torsion.
- 15. Determination of Y, n and K by Searle's double bar method.
- 16. Determination of surface tension and interfacial surface tension by drop weight method.
- 17. Determination of co-efficient of viscosity by Stokes' method terminal velocity.
- 18. Determination of critical pressure for streamline flow.
- 19. Determination of Poisson's ratio of rubber tube.
- 20. Determination of viscosity by Poiseullie's flow method.
- 21. Determination radius of capillary tube by mercury pellet method.
- 22. Determination of g using compound pendulum.

PHYSICS FOR EVERYDAY LIFE						
	ive: To know where all physics principles have been put to use in daily					
life and appreciate	e the concepts with a better understanding also to know about Indian					
scientists who have	ve made significant contributions to Physics					
UNITS	COURSE DETAILS					
IINIT I	MECHANICAL OBJECTS: spring scales – bouncing balls –roller					
UNIT-I	coasters – bicycles –rockets and space travel.					
	OPTICAL INSTRUMENTS AND LASER: vision corrective lenses					
UNIT-II	– polaroid glasses – UV protective glass – polaroid camera – colour					
	photography – holography and laser.					
	PHYSICS OF HOME APPLIANCES: bulb – fan – hair drier –					
UNIT-III	television – air conditioners – microwave ovens – vacuum cleaners					
	SOLAR ENERGY: Solar constant – General applications of solar					
UNIT-IV	energy – Solar water heaters – Solar Photo – voltaic cells – General					
	applications of solar cells.					
	INDIAN PHYSICIST AND THEIR CONTRIBUTIONS:					
UNIT-V	C.V.Raman, HomiJehangirBhabha, Vikram Sarabhai, Subrahmanyan					
UNII-V	Chandrasekhar, Venkatraman Ramakrishnan, Dr. APJ Abdul Kalam					
	and their contribution to science and technology.					
	1. The Physics in our Daily Lives, UmmeAmmara,					
TEXT BOOKS	GugucoolPublishing, Hyderabad, 2019.					
	2. For the love of physics, Walter Lawin, Free Press, New York, 2011.					

METHOD OF EVALUATION:

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	FIRST SEMESTER – FOUNDATION COURSE
COURSE TITLE	INTRODUCTORY PHYSICS
COURSE	To help students get an overview of Physics before learning their
OBJECTIVES	core courses. To serve as a bridge between the school curriculum
	and the degree programme.

UNITS	COURSE DETAILS
UNIT-I	Vectors, scalars –examples for scalars and vectors from physical quantities – addition, subtraction of vectors – resolution and resultant of vectors – units and dimensions– standard physics constants.
UNIT-II	Different types of forces—gravitational, electrostatic, magnetic, electromagnetic, nuclear —mechanical forces like, centripetal, centrifugal, friction, tension, cohesive, adhesive forces.
UNIT-III	Various forms of energy– conservation laws of momentum, energy – types of collisions –angular momentum– alternate energy sources– Solar energy: Photovoltaic cell- Wind energy: Wind mill.
UNIT-IV	Types of motion—linear, projectile, circular, angular, simple harmonic motions—banking of a curved roads—stream line and turbulent flow—wave motion—comparison of light and sound waves—free, forced, damped oscillations.
UNIT-V	Surface tension – shape of liquid drop – angle of contact – viscosity –lubricants – capillary flow – diffusion – real life examples– properties and types of materials in daily use- conductors, insulators – thermal and electric.
PROFESSIONAL COMPONENTS	Expert lectures –seminars – webinars – industry inputs – social accountability – patriotism.
TEXT BOOKS	 D.S. Mathur, 2010, Elements of Properties of Matter, S.Chand and Co BrijLaland N. Subrahmanyam, 2003, Properties of Matter, S.Chand and Co.
REFERENCE BOOKS	1. H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, S.Chand and Co.
WEB RESOURCES	 http://hyperphysics.phy- astr.gsu.edu/hbase/permot2.htmlhttps://science.nasa.gov/ems/ https://eesc.columbia.edu/courses/ees/climate/lectures/radiation_h ays/

METHOD OF EVALUATION:

Continuous InternalAssessment	End SemesterExamination	Total	Grade
25	75	100	

COURSEOUTCOMES:

Attheendofthecourse, the studentwill beableto:

	CO1	Apply concept of vectors to understand concepts of Physics and solve problems
	CO2	Appreciate different forces present in Nature while learning about phenomena related to these different forces.
COURSEOU TCOMES	CO3	Quantify energy in different process and relate momentum, velocity and energy
	CO4	Differentiate different types of motions they would encounter in various courses and understand their basis
	CO5	Relate various properties of matter with their behaviour and connect them with different physical parameters involved.

MAPPINGWITHPROGRAMOUTCOMES:

 $\label{lem:mapping} Map course outcomes \textbf{(CO)} for each course with program outcomes \textbf{(PO)} in the 3-point scale of STRONG \textbf{(3)}, MEDIUM \textbf{(2)} and LOW \textbf{(1)}.$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	2	3	3	2	2	2
CO3	3	3	3	2	3	3	3	2	3	2
CO4	3	3	3	3	3	3	3	2	2	2
CO5	3	2	3	3	3	3	3	2	2	3