
TVU E- Recourse Centre

Subject:         MATHEMATICS                                               Paper:  Algebra   

Topic/Module:  Group theory  -  I

Faculty Name:  Dr. G. KALAIMURUGAN

Faculty Address:   Assistant Professor,   

      Department of Mathematics,  

       Thiruvalluvar University, Vellore.



Contents

0.1 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 Introduction to Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.3 Dihedral Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.4 Subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.5 Centralizers and Normalizer, Stabilizers and Kernels . . . . . . . . . . . . . 7
0.6 Cyclic Groups and Cyclic Subgroups of a Group . . . . . . . . . . . . . . . 8
0.7 Subgroups Generated by Subsets of a Group . . . . . . . . . . . . . . . . . 10
0.8 Homomorphisms and Isomorphisms . . . . . . . . . . . . . . . . . . . . . . 11
0.9 Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
0.10 More on Cosets and Lagrange’s Theorem . . . . . . . . . . . . . . . . . . . 16
0.11 The Isomorphism Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . 19

0.1 Set Theory

Definition 0.1.1. A set is a collection of objects, which are called elements . The order
of the elements does not matter, and each element may occur no more than once.

Note 0.1.2. For example, {1, 2, 5} denotes a set with three elements: 1, 2, and 5. {2, 5, 1}
is the same set, since the order of the elements does not matter. {2, 2, 2} is not a valid
set, because the element 2 occurs more than once. Note that the elements of a set do not
have to be numbers; they could be any sort of object, like people, types of cheese, triangles,
binary operations, or even other sets.

Notations

set notation As seen above, one way to describe a set is to literally list its elements
and place them in curly braces, like this: {1, 3, 69}.

special sets: ∅, N, Z, Q, R, C There are also some important sets which have special
notation. Here are a few:

• ∅ denotes the empty set—the unique set which contains no elements. Sometimes it
is also written {}.

• N stands for the set of all natural numbers, that is, N = {0, 1, 2, 3, . . . }.

• Z stands for the set of all integers, that is, Z = {. . . ,−2,−1, 0, 1, 2, . . . }.
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• Q, R, and C stand for the set of all rational numbers, all real numbers, and all
complex numbers, respectively.

0.2 Introduction to Groups

Modern algebra is largely concerned with the study of abstract set with one or more
binary operations.In this section the basic algebraic structure are introduced and some
example are given.

Definition 0.2.1. 1. A binary operation ⋆ on a set G is a function ⋆ : G×G −→ G.
For any a, b ∈ G we shall write a ⋆ b for ⋆(a, b)

2. A binary operation ⋆ on a set G is associative if for all a, b, c ∈ G we have a⋆(b⋆c) =
(a ⋆ b) ⋆ c.

3. If ⋆ is a binary operation on a set G we say elements a and b of G commute if
a ⋆ b = b ⋆ a. We say ⋆(orG) is commutative if for all a, b ∈ G, a ⋆ b = b ⋆ a.

Example 0.2.2. • Usual addition (+) and Usual multiplication (X) are commutative
binary operation on Z,Q,R and C.

• Usual subration (−) is non commutative binary operation on Z but not on Z+,Q+

and R+.

Definition 0.2.3. 1. A group is an ordered pair (G, ⋆) where G is a set and ⋆ is a
binary operation on G satisfying the following axioms:

• (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c), for all a, b, c ∈ G, i.e., ⋆ is associative,

• there exists an element e in G, called an identity of G, such that for all a ∈ G
we have a ⋆ e = e ⋆ a = a,

• for each a ∈ G there is an element a−1 of G, called an inverse of a, such that
a ⋆ a−1 = a−1 ⋆ a = e

2. The group (G, ⋆) i s called abelian (or commutative ) if a ⋆ b = b ⋆ a for all a, b ∈ G.

Example 0.2.4. • Z,Q,R and C are abelian group under usual addition.

• Q− 0,R− 0,C− 0,Q+,R+ are group under usual multiplication.

• The set of all 2X2 matrices entries from R are group under matrix addition.

• N is not a group under usual addition.

• Q+ is a group under usual multiplication.

• Z is not a group under usual multiplication.

• G = {1, i,−1,−i} is a group under usual multiplication.
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• The set of all nth root of unity are form a group under usual multiplication.

• (Zn,
⊕

) is a group.

Proposition 0.2.5. If G is a group under the operation ⋆ , then

1. the identity of G is unique

2. for each a ∈ G, a−1 is uniquely determined

3. (a−1)−1 = a for all a ∈ G

4. (a ⋆ b)−1 = (b−1) ⋆ (a−1)

5. for any a1, a2, . . . , an ∈ G the value of a1 ⋆ a2 ⋆ . . . ⋆ an is independent of how the
expression is bracketed (this is called the generalized associative law).

Theorem 0.2.6. Let G be a group and a, b ∈ G Then the equation ax = b and ya = b
have unique solution for x and y in G.

Theorem 0.2.7. Reversal law Let G be a group. a, b ∈ G then (ab−1) = b − 1a−1.

Problem 0.2.8. Let G be a group. a ∈ G with a2 = a iff a = e.

Solution. Let a = e to prove that a2 = a. a2 = aa = ee = e = a.
Conversely, Let a2 = a Then aa = ae. Hence by cancelation law a = e. �

Problem 0.2.9. Let G be a group with a2 = e for all a ∈ G. Then G is abelian.

Problem 0.2.10. Let G be a group with (ab)m = ambm for three consecutive integer and
for all a, b ∈ G. Then G is abelian.

0.3 Dihedral Group

Dihedral groups are apparent throughout art and nature. For example, dihedral groups
are often the basis of decorative designs on floor tilings, buildings, and artwork. Chemists
and mineralogists study dihedral groups to classify the structure of molecules and crys-
tals, respectively. These symmetry groups are even used in advertising for many of the
world’s largest companies.

For each n ∈ Z+, n ≥ 3 let D2n be the set of symmetries of a regular n-gon, where a
symmetry is any rigid motion of the n-gon which can be effected by taking a copy of the
n-gon, moving this copy in any fashion in 3-space and then placing the copy back on the
original n-gon so it exactly covers it. A presentation for the dihedral group D2n (using
the generators and relations ) is then D2n = 〈r, s | rn = s2 = 1, rs = sr−1〉 .

Remark 0.3.1. • 1, r, r2, . . . , rn−1 are all distinct and rn = 1, so |r| = n
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• |s| = 2.

• s 6= ri for any i

• sri 6= srj , for all 0 ≤ i, j ≤ n− 1 with i 6= j , so
D2n = {1, r, r2, . . . , rn−1, s, sr, . . . , srn−1}

• ris = sr−i , for all 0 ≤ i ≤ n.

Problem 0.3.2. Compute the order of each of the elements in the following groups: (a)
D6 (b) D8 (c) D10.

Solution. Recall that every element of D2n can be represented uniquely as sirj for some
i = 0, 1 and 0 ≤ j < n. Moreover, ris = sr−i for all 0 ≤ i ≤ n. From this we deduce that
(sri)(sri) = ssr−iri = 1, so that sri has order 2 for 0 ≤ i ≤ n (a) D6 = {1, r, r2, s, sr, sr2},
Let the order of an element α is denoted by |α|. Then |1| = 1, |r| = 3, |r2| = 3, |s| = |sr| =
|sr2| = 2. (b)In D8, |1| = 1, |r| = 4, |r2| = 2, |r3| = 4, |s| = |sr| = |sr2| = |sr3| = 2. (c) In
D10, |1| = 1, |r| = |r2| = |r3| = |r4| = 5, |s| = |sr| = |sr2| = |sr3| = |sr4| = 2. �

Problem 0.3.3. Use the generators and relations above to show that if x is any element
of D2n which is not a power of r, then rx = xr−1.

Solution. Every element x ∈ D2n is of the form x = sirj where i = 0, 1 and 0 ≤ j < n.
If i = 0 we have that x is a power of r; thus x = srj for some 0 ≤ j < n. Hence
rx = rsrj = sr−1rj = srjr−1 = xr−1. �

Problem 0.3.4. Let x and y be elements of order 2 in any group G. Prove that if t = xy
then tx = xt−1 (so that if n = |xy| < ∞ then x, t satisfy the same relations in G as s, r
do in D2n).

Solution. We have xt−1 = x(xy)−1 = xy−1x−1 = xyx = tx since x and y have order 2.
�

Problem 0.3.5. Find the order of the cyclic subgroup of D2n generated by r.

Solution. We know that |r| = n. Thus, the elements of subgroup A are precisely
1, r, r2, . . . , rn−1; thus |A| = n �

0.4 Subgroup

A non empty sub setH of a Group is a subgroup of G, if it satisfies the following conditions

• a, b ∈ H ⇒ ab ∈ H

• a ∈ H ⇒ a−1 ∈ H

• e ∈ H
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Note 0.4.1. The identity element of a subgroup is same as the identity element of a
Group.

Note 0.4.2. The identity element and whole group are two improper subgroup of the
group.

Example 0.4.3. Let Z is a group then 2Z is subgroup of Z.

Example 0.4.4. 1. Z ≤ Q and Q ≤ R with the operation of addition.

2. Any group G has two subgroups: H = G and H = {1}; the latter is called the
trivial subgroup and will henceforth be denoted by 1 .

3. If G = D2n is the dihedral group of order 2n, let H be {1, r, r2, ..., rn−1}, the set of
all rotations in G. Since the product of two rotations is again a rotation and the
inverse of a rotation is also a rotation it follows that H is a subgroup of D2n of order
n.

Theorem 0.4.5. (The Subgroup Criterion) Show that the non-empty subset H of a group
G is a subgroup of G if and only if a, b ∈ H ⇒ ab−1 ∈ H.

Proof. ⇒ Let H be a subgroup of G. Then clearly H satisfies the condition a, b ∈ H ⇒
ab−1 ∈ H. ⇐ Let H be a non-empty subset of G satisfying the given condition, To prove
that H is a subgroup.
By given condition,

• a, a ∈ H ⇒ a, a−1 ∈ H ⇒ aa−1 = e ∈ H.

• e, a ∈ H ⇒ e, a−1 ∈ H ⇒ a−1 ∈ H.

• a, b ∈ H ⇒ a, b−1 ∈ H ⇒ a(b−1)−1 ∈ H ⇒ ab ∈ H.

Hence H is subgroup of G. �

Problem 0.4.6. Show that the following subsets of the dihedral group D8 are actually
subgroups: (a) {1, r2, s, sr2}, (b) {1, r2, sr, sr3}

Solution. (a) We have r2r2 = 1, r2s = sr2, r2sr2 = s, sr2 = sr2, ss = 1, ssr2 =
r2, sr2r2 = s, sr2s = r2, and sr2sr2 = 1, so that this set is closed under multiplica-
tion. Moreover, (r2)−1 = r2, s−1 = s, and (sr2)−1 = sr2, so this set is closed under
inversion. Thus it is a subgroup.
(b) We have r2r2 = 1, r2sr = sr3, r2sr3 = sr, srr2 = sr3, srsr = 1, srsr3 = r2, sr3r2 =
sr, sr3sr = r2, and sr3sr3 = 1, so that this set is closed under multiplication. Moreover,
(r2)−1 = r2, (sr)−1 = sr, and (sr3)−1 = sr3, so this set is closed under inversion. Thus it
is a subgroup. �

Problem 0.4.7. Prove that G cannot have a subgroup H with |H| = n − 1, where
n = |G| > 2.
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Solution. Under these conditions, there exists a nonidentity element x ∈ H and an
element y /∈ H. Consider the product xy. If xy ∈ H, then since x−1 ∈ H and H is a
subgroup, y ∈ H, a contradiction. If xy /∈ H, then we have xy = y. Thus x = 1, a
contradiction. Thus no such subgroup exists. �

Problem 0.4.8. Let H and K be subgroups of G. Prove that H ∪ K is a subgroup if
and only if either H ⊆ K or K ⊆ H.

Solution. The (⇐) direction is clear. To see (⇒), suppose that H ∪ K is a subgroup
of G and that H 6⊆ KandK 6⊆ H; that is, there exist x ∈ H with x /∈ K and y ∈ K
with y /∈ H. Now we have xy ∈ H ∪ K, so that either xy ∈ H or xy ∈ K. If xy ∈ H,
then we have x−1xy = y ∈ H, a contradiction. Similarly, if xy ∈ K, we have x ∈ K, a
contradiction. Then it must be the case that either H ⊆ K or K ⊆ H. �

Problem 0.4.9. Let G be a group. (a) Prove that if H and K are subgroups of G, then
so is H ∩K.
(b) Prove that if {Hi}i∈I is a family of subgroups of G then so is

⋂
i∈I Hi.(or)Prove that

the intersection of an arbitrary nonempty collection of subgroups of G is again a subgroup
of G (do not assume the collection is countable)

Solution. (a) Note that H∩K is not empty since 1 ∈ H∩K. Now suppose x, y ∈ H∩K.
Then since H and K are subgroups, we have xy−1 ∈ H and xy−1 ∈ K by the subgroup
criterion; thus xy−1 ∈ H ∩K. By the subgroup criterion, H ∩K is a subgroup of G.
(b) Note that

⋂
i∈I Hi is not empty since 1 ∈ Hi for each i ∈ I. Now let x, y ∈

⋂
i∈I Hi.

Then x, y ∈ Hi for each i ∈ I, and by the subgroup criterion, xy−1 ∈ Hi for each i ∈ I.
Thus xy−1 ∈

⋂
i∈I Hi. By the subgroup criterion,

⋂
i∈I Hi is a subgroup of G. �

Note 0.4.10. • Intersection of Two subgroups is subgroup.

• Union of two subgroups is need not be a subgroup.

Theorem 0.4.11. Let H,K be any two subgroup of a group G. Show that HK is a
subgroup of G if and only if HK = KH.

Proof. Let as assume that HK is a subgroup of G. We have to show that HK = KH.
Consider x ∈ HK ⇒ x−1 ∈ HK. Let x−1 = hk where h ∈ H and k ∈ K

(x−1)−1 = (hk)−1

= k−1h−1

x ∈ KH

i.e, HK ⊆ KH. Similarly we show that KH ⊆ HK. Hence HK = KH.
Conversely, Let as assume that HK = KH. We prove that HK is subgroup of G. Let
x, y ∈ HK ⇒ x = hk, y = h′k′ where h, h′ ∈ H and k, k′ ∈ K

xy−1 = hk(h′k′)−1

= hk(k′−1h′−1)

= h(kk′−1)h′−1

= hk′′h′−1
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where, kk′−1 = k′′ Let k′′h′−1 = h′′k′′′ since by our assumption.

xy−1 = hh′′k′′′

= h′′′k′′′

xy−1 ∈ HK

Hence HK is subgroup of G. �

0.5 Centralizers and Normalizer, Stabilizers and Ker-

nels

We now introduce some important families of subgroups of an arbitrary group G which
in particular provide many examples of subgroups. Let A be any nonempty subset of G.

Definition 0.5.1. Define CG(A) = {g ∈ G|gag−1 = a for all a ∈ A}. This subset of G is
called the centralizer of A in G. Since gag−1 = a if and only if ga = ag, CG(A) is the set
of elements of G which commute with every element of A.

Definition 0.5.2. Define Z(G) = {g ∈ G|gx = xg for all x ∈ G}, the set of elements
commuting with all the elements of G . This subset of G is called the center of G .

Definition 0.5.3. Define gAg−1 = {gag−1|a ∈ A}. Define the normalizer of A in G to
be the set NG(A) = {g ∈ G|gAg−1 = A}.

Example 0.5.4. If G is abelian then all the elements of G commute, so Z(G) = G.
Similarly, CG(A) = NG(A) = G for any subset A of G since gag−1 = gg−1a = a for every
g ∈ G and every a ∈ A.

Definition 0.5.5. if G is a group acting on a set S and s is some fixed element of S, the
stabilizer of s in G is the set Gs = {g ∈ G|g · s = s}.

Problem 0.5.6. Prove that CG(A) = {g ∈ G|g−1ag = a for all a ∈ A}.

Solution. By definition, CG(A) = {g ∈ G | gag−1 = a for all a ∈ A}.
(⊆) If g ∈ CG(A), then gag−1 = a for all a ∈ A. Left multiplying by g−1 and right

multiplying by g, we have that a = g−1ag for all a ∈ A.
(⊇) If g ∈ G such that g−1ag = a for all a ∈ A, then left multiplying by g and right

multiplying by g−1 we have that a = gag−1 for all a ∈ A. �

Problem 0.5.7. Prove that CG(Z(G)) = G and deduce that NG(Z(G)) = G

Solution. First we show that CG(Z(G)) = G.
(⊆) is clear. (⊇) Suppose g ∈ G. Then by definition, for all a ∈ Z(G), we have

ga = ag. That is, for all a ∈ Z(G), we have a = gag−1. Thus g ∈ CG(Z(G)).
Since CG(Z(G)) ≤ NG(Z(G)), we have NG(Z(G)) = G �
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Problem 0.5.8. Prove that if A and B are subsets of G with A ⊆ B then CG(B) is a
subgroup of CG(A).

Solution. Let x ∈ CG(B). Then for all b ∈ B, xbx−1 = b. Since A ⊆ B, for all a ∈ A we
have xax−1 = a, so that x ∈ CG(A). Thus CG(B) ⊆ CG(A), and hence CG(B) ≤ CG(A)
�

Problem 0.5.9. Let H be a subgroup of order 2 in G . Show that NG(H) = CG(H).
Deduce that if NG(H) = G, then H ≤ Z(G).

Solution. Say H = {1, h}.
We already know that CG(H) ⊆ NG(H). Now suppose x ∈ NG(H); then {x1x−1,

xhx−1} = {1, h}. Clearly, then, we have xhx−1 = h. Thus x ∈ CG(H). Hence NG(H) =
CG(H).

If NG(H) = G, we have CG(H) = G. Then ghg−1 = h for all h ∈ H, so that gh = hg
for all h ∈ H, and thus H ≤ Z(G). �

Problem 0.5.10. Prove that Z(G) ≤ NG(A) for any subset A of G.

Solution. If A = ∅, the statement is vacuously true since NG(A) = G. If A is not empty,
let x ∈ Z(G). Then xax−1 = a for all a ∈ A, so that xAx−1 = A. Hence x ∈ NG(A). �

0.6 Cyclic Groups and Cyclic Subgroups of a Group

Definition 0.6.1. A group H is cyclic if H can be generated by a single element, i.e. ,
there is some element x ∈ H such that H = {xn|n ∈ Z} (where as usual the operation is
multiplication).

Remark 0.6.2. In additive notation H is cyclic if H = {nx|n ∈ Z}. In both cases we
shall write H = 〈x〉 and say H is generated by x (and x is a generator of H). A cyclic
group may have more than one generator. For example, if H = 〈x〉, then also H = 〈x−1〉.

Proposition 0.6.3. IfH = 〈x〉, then |H| = |x|(where if one side of this equality is infinite,
so is the other). More specifically (1) if |H| = n < ∞, then xn = 1 and 1, x, x2, . . . , xn−1

are all the distinct elements of H, and (2) if |H| = ∞, then xn 6= 1 for all n 6= 0 and
xa 6= xb for all a 6= b in Z.

Proposition 0.6.4. Let G be an arbitrary group, x ∈ G and let m,n ∈ Z. If xn = 1 and
xm = 1 , then xd = 1, where d = (m,n). In particular, if xm = 1 for some m ∈ Z, then
|x| divides m .

Theorem 0.6.5. Let H = 〈x〉 be a cyclic group. Then every subgroup H is cyclic. More
precisely, if K ≤ H, then either K = {1} or K = 〈xd〉 , where d is the smallest positive
integer such that xd ∈ K .

Problem 0.6.6. Find all cyclic subgroups of D8 . Find a proper subgroup of D8 which
is not cyclic.

8



Solution. We have the following.
(1) 〈1〉 = {1} (2)〈r〉 = {1, r, r2, r3} (3)〈r2〉 = {1, r2} (4)〈r3〉 = {1, r, r2, r3} (5)〈s〉 =

{1, s} (6)〈sr〉 = {1, sr} (7)〈sr2〉 = {1, sr2} (8)〈sr3〉 = {1, sr3}.We know that {1, r2, s, r2s}
is a subgroup of D8, but is not on the above list, hence is not cyclic. �

Problem 0.6.7. Let p be a prime and let n be a positive integer. Show that if x is an
element of the group G such that xP

n
= 1 then |x| = pm for some m ≤ n.

Solution. We prove a lemma.
Lemma: Let G be a group and x ∈ G an element of finite order, say, |x| = n. If

xm = 1, then n divides m. Proof: Suppose to the contrary that n does not divide m;
then by the Division Algorithm there exist integers q and r such that 0 < r < |n| and
m = qn + r. Then we have 1 = xm = xqn+r = (xn)q + xr = xr. But recall that by
definition n is the least positive integer with this property, so we have a contradiction.
Thus n divides m. �

Problem 0.6.8. Let G be a finite group and let x ∈ G.
(1) Prove that if g ∈ NG(〈x〉) then gxg

−1 = xa for some integer a.
(2) Show conversely that if gxg−1 = xa for some integer a, then g ∈ NG(〈x〉). [Hint:
Show first that gxkg−1 = (gkg−1)k = xak for any integer k, so that g〈x〉g−1 ≤ 〈x〉. If x
has order n, show that the elements gxig−1 are distinct for i ∈ {0, 1, . . . , n − 1}, so that
|g〈x〉g−1| = |〈x〉| = n and conclude that g〈x〉g−1 = 〈x〉.]

Solution. (1) Let g ∈ NG(〈x〉). By definition, we have gxg−1 ∈ 〈x〉, so that gxg−1 = xa

for some integer a.

(2) We prove some lemmas. Lemma 1: Let G be a group and let x, g ∈ G. Then
for all integers k, gxkg−1 = (gxg−1)k. Proof: First we prove the conclusion for nonneg-
ative k by induction on k. If k = 0, we have gx0g−1 = gg−1 = 1 = (gxg−1)0. Now
suppose the conclusion holds for some k ≥ 0; then gxk+1g−1 = gxxkg−1 = gxg−1gxkg−1 =
gxg−1(gxg−1)k = (gxg−1)k+1. By induction, the conclusion holds for all nonnegative k.
Now suppose k < 0; then gxkg−1 = (gx−kg−1)−1 = (gxg−1)−k−1

= (gxg−1)k. Thus the
conclusion holds for all integers k. �

Lemma 2: Let G be a group and let x, g ∈ G such that gxg−1 = xa for some in-
teger a. Then g〈x〉g−1 is a subgroup of 〈x〉. Proof: Let gxkg−1 ∈ g〈x〉g−1; by Lemma
1 we have gxkg−1 = (gxg−1)k = xak, so that gxg−1 ∈ 〈x〉. Thus g〈x〉g−1 ⊆ 〈x〉. Now
let gxbg−1, gxcg−1 ∈ g〈x〉g−1. Then gxbg−1(gxcg−1)−1 = gxbg−1gx−cg−1 = gxb−cg−1 ∈
g〈x〉g−1. By the Subgroup Criterion, then, g〈x〉g−1 ≤ 〈x〉. �

Lemma 3: Let G be a group and let x, g ∈ G such that gxg−1 = xa for some integer
a and such that |x| = n, n ∈ Z. Then gxig−1aredistinctfori ∈ {0, 1, . . . , n − 1}. Proof:

Choose distinct i, j ∈ {0, 1, . . . , n−1}. By a previous exercise, xi 6= xj. Suppose now that
gxig−1 = gxjg−1; by cancellation we have xi = xj, a contradiction. Thus the gxig−1 are
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distinct. �

Now to the main result; suppose gxg−1 = xa for some integer a. Since G has finite
order, |x| = n for some n. By Lemma 2, g〈x〉g−1 ≤ 〈x〉, and by Lemma 3 we have
|g〈x〉g−1| = |〈x〉|. Since G is finite, then, we have g〈x〉g−1 = 〈x〉. Thus g ∈ NG(〈x〉).

�

0.7 Subgroups Generated by Subsets of a Group

Proposition 0.7.1. If A is any nonempty collection of subgroups of G, then the inter-
section of all members of A is also a subgroup of G.

Proof. This is an easy application of the subgroup criterion (see [?] ). Let K = ∩H∈AH.
Since each H ∈ A is a subgroup, 1 ∈ H , so 1 ∈ K, that is, K 6= ∅. If a, b ∈ K, then
a, b ∈ H, for all H ∈ A. Since each H is a group, ab−1 ∈ H, for all H, hence ab−1 ∈ K .
Then K ≤ G. �

Definition 0.7.2. If A is any subset of the group G define 〈A〉 = ∩A⊆H,H≤G. This is
called the subgroup of G generated by A.

Problem 0.7.3. Let G be a group. Prove that if H ≤ G is a subgroup then 〈H〉 = H.

Solution. That H ⊆ 〈H〉 is clear. Now suppose x ∈ 〈H〉. We can write x as a finite
product h1h2 · · ·hn of elements of H; since H is a subgroup, then, x ∈ H. �

Problem 0.7.4. Let G be a group, with A ⊆ B ⊆ G. Prove that 〈A〉 ≤ 〈B〉. Give an
example where A ⊆ B with A 6= B but 〈A〉 = 〈B〉.

Solution. Let A = {H ≤ G | A ⊆ H} and B = {H ≤ G | B ⊆ H}. Since A ⊆ B,
we have A ⊆ H whenever B ⊆ H; thus B ⊆ A. By definition, we have 〈A〉 = ∩A and
〈B〉 = ∩B. We know from set theory that ∩A ⊆ ∩B, so that 〈A〉 ⊆ 〈B〉.

Now since 〈A〉 is itself a subgroup of G, we have 〈A〉 ≤ 〈B〉.
Now suppose G = 〈x〉 is cyclic. Then {x} ( G, but we have 〈x〉 = 〈G〉. �

Problem 0.7.5. Let G be a group and let H ≤ G be an abelian subgroup. Show that
〈H,Z(G)〉 is abelian. Give an explicit example of an abelian subgroup H of a group G
such that 〈H,CG(H)〉 is not abelian

Solution. We begin with a lemma.
Lemma: Let G be a group, H ≤ G an abelian subgroup. Then every element of

〈H,Z(G)〉 is of the form hz for some h ∈ H and z ∈ Z(G). Proof: Recall that every
element of 〈H,Z(G)〉 can be written as a (finite) word a1a2 · · · ak for some integer k and
ai ∈ H ∪ Z(G). We proceed by induction on k, the length of a word in H ∪ Z(G). If
k = 1, we have x = a1; if a1 ∈ H we have x = a1 · 1, and if a1 ∈ Z(G) we have x = 1 · a1.
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Now suppose all words of length k can be written in the form hz, and let x = a1a2 · · · ak+1

be a word of length k+1. By the induction hypothesis we have a2 · · · ak+1 = hz for some
h ∈ H and z ∈ Z(G). Now if a1 ∈ H, we have x = (a1h) · z, and if a1 ∈ Z(G), then
x = h · (a1z). By induction, every element of 〈H,Z(G)〉 is of the form hz for some h ∈ H
and z ∈ Z(G).�

Now let x, y ∈ 〈H,Z(G)〉. By the lemma we have x = h1z1 and y = h2z2 for some
h1, h2 ∈ H and z1, z2 ∈ Z(G). Then xy = h1z1h2z2 = z1h1z2h2 = z1z2h1h2 = z2z1h2h1 =
z2h2z1h1 = yx. Hence 〈H,Z(G)〉 is abelian.

Now to the counterexample; for any group G,Z(G) is an abelian subgroup. By a
previous exercise, we know also that CG(Z(G)) = G. Thus if G is any nonabelian group,
〈Z(G), CG(Z(G))〉 = G is not abelian. �

Problem 0.7.6. Let G be a group and H ≤ G. Show that H = 〈H \ {1}〉.

Solution. We have H \ {1} ⊆ 〈H \ {1}〉. If H = 1, then 〈H \ {1}〉 = 〈∅〉 = 1 = H. If
H 6= 1, there exists some nonidentity h ∈ H. So h ∈ H \{1}, so that hh−1 = 1 ∈ 〈H \{1}〉.
Thus H ⊆ 〈H \ {1}〉.

Now if x ∈ 〈H \ {1}〉, we can write x = a1a2 · · · an for some integer n and group
elements ai ∈ H \ {1}; since H is a subgroup, then, x ∈ H. �

0.8 Homomorphisms and Isomorphisms

Definition 0.8.1. Let (G, ⋆) and (H, ⋄) be groups. A map φ : G → H such that
φ(x ⋆ y) = φ(x) ⋄ φ(y) for all x, y ∈ G, is called a homomorphism.

Definition 0.8.2. The map ϕ : G → H is called an isomorphism and G and H are said
to be isomorphic or of the same isomorphism type, written G ∼= H, if

1. ϕ is a homomorphism (i.e.,ϕ(xy) = ϕ(x)ϕ(y)), and

2. ϕ is a bijection.

Let G and H be groups. Solve the following problems.

Problem 0.8.3. Let ϕ : G→ H be a homomorphism. (a) Prove that ϕ(xn) = ϕ(x)n for
all n ∈ Z+. (b) Do part (a) for n = −1 and deduce that ϕ(xn) = ϕ(x)n for all n ∈ Z.

Solution. (a) We proceed by induction on n. For the base case, ϕ(x1) = ϕ(x) = ϕ(x)1.
Suppose the statement holds for some n ∈ Z+; then ϕ(xn+1) = ϕ(xnx) = ϕ(xn)ϕ(x) =
ϕ(x)nϕ(x) = ϕ(x)n+1, so the statement holds for n+1. By induction, ϕ(xn) = ϕ(x)nforalln ∈
Z+.
(b)First, note that ϕ(x) = ϕ(1G · x) = ϕ(1G) · ϕ(x). By right cancellation, we have
ϕ(1G) = 1H . Thus ϕ(x

0) = ϕ(x)0. Moreover, ϕ(x)ϕ(x−1) = ϕ(xx−1) = ϕ(1) = 1; thus
by the uniqueness of inverses, ϕ(x−1) = ϕ(x)−1. Now suppose n is a negative integer.
Then ϕ(xn) = ϕ((x−n)−1) = ϕ(x−n)−1 = (ϕ(x)−n)−1 = ϕ(x)n. Thus ϕ(xn) = ϕ(x)n for all
x ∈ G and n ∈ Z.

�

11



Problem 0.8.4. If ϕ : G → H is an isomorphism, prove that G is abelian if and only if
H is abelian.

Solution. Let ϕ : G→ H be a group isomorphism.
(⇒) Suppose G is abelian, and let h1, h2 ∈ H. Since ϕ is surjective, there exist g1, g2 ∈

G such that ϕ(g1) = h1 and ϕ(g2) = h2. Now we have h1h2 = ϕ(g1)ϕ(g2) = ϕ(g1g2) =
ϕ(g2g1) = ϕ(g2)ϕ(g1) = h2h1. Thus h1 and h2 commute; since h1, h2 ∈ H were arbitrary,
H is abelian.

(⇐) Suppose H is abelian, and let g1, g2 ∈ G. Then we have ϕ(g1g2) = ϕ(g1)ϕ(g2) =
ϕ(g2)ϕ(g1) = ϕ(g2g1). Since ϕ is injective, we have g1g2 = g2g1. Since g1, g2 ∈ G were
arbitrary, G is abelian. �

Problem 0.8.5. Prove that the additive groups R and Q are not isomorphic.

Solution. We know that no bijection Q → R exists, so no such isomorphism exists. �

Problem 0.8.6. Define a map π : R2 → R by π((x, y)) = x. Prove that π is a homomor-
phism and find the kernel of π.

Solution. To show that π is a homomorphism, let (x1, y1), (x2, y2) ∈ R2. Then π((x1, y1)·
(x2, y2)) = π((x1x2, y1y2)) = x1x2 = π((x1, y1)) · π((x2, y2)).

Now we claim that ker π = 0×R.(⊆)If(x, y) ∈ ker π then we have x = π((x, y)) = 0.
Thus (x, y) ∈ 0 × R.(⊇) If (x, y) ∈ 0 × R, we have x = 0 and thus π((x, y)) = 0. Hence
(x, y) ∈ ker π. �

Problem 0.8.7. Let G be any group. Prove that the map from G to itself defined by
g 7→ g−1 is a homomorphism if and only if G is abelian.

Solution. (⇒) Suppose G is abelian. Then ϕ(ab) = (ab)−1 = b−1a−1 = a−1b−1 =
ϕ(a)ϕ(b), so that ϕ is a homomorphism.

(⇐) Suppose ϕ is a homomorphism, and let a, b ∈ G. Then ab = (b−1a−1)−1 =
ϕ(b−1a−1) = ϕ(b−1)ϕ(a−1) = (b−1)−1(a−1)−1 = ba, so that G is abelian. �

Problem 0.8.8. Let G be any group. Prove that the map from G to itself defined by
g 7→ g2 is a homomorphism if and only if G is abelian.

Solution. (⇐) Suppose G is abelian. Then ϕ(ab) = abab = a2b2 = ϕ(a)ϕ(b), so that ϕ
is a homomorphism.

(⇒) Suppose ϕ is a homomorphism. Then we have abab = ϕ(ab) = ϕ(a)ϕ(b) = aabb,
so that abab = aabb. Left multiplying by a−1 and right multiplying byb−1, we see that
ab = ba. Thus G is abelian. �

Theorem 0.8.9. Let ϕ : G→ H be a homomorphism. prove that

1. ϕ(e) = e′ where e′ is identity element of H.

2. ϕ(x−1) = ϕ(x)−1
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Definition 0.8.10. If ϕ is a homomorphism ϕ : G → H, the kernel of ϕ is the set
{g ∈ G|ϕ(g) = l} and will be denoted by kerϕ (here 1 is the identity of H).

Proposition 0.8.11. Let G and H be groups and let ϕ : G→ H be a homomorphism.

1. ϕ(1G) = 1H , where 1G and 1H are the identities of G and H,respectively.

2. ϕ(g−1) = (ϕ(g))−1 for all g ∈ G.

3. ϕ(gn) = (ϕ(g))n for all n ∈ Z.

4. kerϕ is a subgroup of G.

5. imϕ, the image of G under ϕ, is a subgroup of H

.

Proof. (1) Since ϕ(1G) = ϕ(1G1G) = ϕ(1G)ϕ(1G), the cancellation laws show that (1)
holds.
(2) ϕ(1G) = ϕ(gg−1) = ϕ(g)ϕ(g−1) and, by part (1), ϕ(1G) = 1H , hence 1H = ϕ(g)ϕ(g−1)
. Multiplying both sides on the left by ϕ(g)−1 and simplifying gives (2).
(3) This is an easy exercise in induction for n ∈ Z . By part (2), conclusion (3) holds for
negative values of n as well.
(4) Since 1 ∈ kerϕ, the kernel of ϕ is not empty. Let x, y ∈ kerϕ, that is ϕ(x) = ϕ(y) =
1H . Then ϕ(xy

−1) = ϕ(x)ϕ(y−1) = ϕ(x)ϕ(y)−1 = 1H1
−1

H that is, xy−1 ∈ kerϕ . By the
subgroup criterion, kerϕ ≤ G .
(5)Since ϕ(1G) = 1H , the identity of H lies in the image of ϕ, so im(ϕ) is nonempty.
If x and y are in im(ϕ), say x = ϕ(a), y = ϕ(b), then y−1 = ϕ(b−1) by (2) so that
xy−1 = ϕ(a)ϕ(b−1) = ϕ(ab−1) since ϕ is a homomorphism. Hence also xy−1 is in the
image of ϕ, so im(ϕ) is a subgroup of H by the subgroup criterion �

0.9 Cosets

Definition 0.9.1. For any N ≤ G and any g ∈ G let gN = {gn|n ∈ N} and Ng =
{ng|n ∈ N} called respectively a left coset and a right coset of N in G. Any element of
a coset is called a representative for the coset.

Definition 0.9.2. Let G and H be groups and Let ϕ : G→ H be a homomorphism with
kernel K . The quotient group or factor group, G/K (read G modulo K or simply G mod
K) is defined by G/K = {gK|g ∈ G},

Proposition 0.9.3. Let ϕ : G → H be a homomorphism of groups with kernel K. Let
X ∈ G/K be the fiber above a, i.e., X = ϕ−1(a). Then
(1) For any u ∈ X,X = {uk|k ∈ K}
(2) For any u ∈ X,X = {ku|kEK}.
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Proof. We prove (1) and leave the proof of (2) as an exercise.
Let u ∈ X so, by definition of X,ϕ(u) = a. Let uK = {uk|k ∈ K} . We first prove
uK ⊆ X. For any k ∈ K,ϕ(uk) = ϕ(u)ϕ(k) = ϕ(u)l = a, (since ϕ is a homomorphism)
(since k ∈ kerϕ) that is, uk ∈ X. This proves uK ⊆ X.
To establish the reverse inclusion suppose g ∈ X and let k = u−1g. Then ϕ(k) =
ϕ(u−1)ϕ(g) = ϕ(u)−1ϕ(g) = a−1a = 1. Thus k ∈ kerϕ. Since k = u−1g, g = uk ∈ uK,
establishing the inclusion X ⊆ uK . This proves (1). �

Example 0.9.4. The homomorphism ϕ from Z to Zn, where nZ is the kernel. Z/nZ is
the quotient and the elements of the form a+ nZ

Proposition 0.9.5. Let N be any subgroup of the group G. The set of left cosets of N in
G form a partition of G. Furthermore, for all u, v ∈ G, uN = vN if and only if v−1u ∈ N
and in particular, uN = vN if and only if u and v are representatives of the same coset.

Proof. First of all note that since N is a subgroup of G, 1 ∈ N . Thus g = g · 1 ∈ gN
for all g ∈ G, i.e., G = ∪g∈G.
To show that distinct left cosets have empty intersection, suppose uN ∩vN 6= ∅. We show
uN = vN. Let x ∈ uN ∩ vN.
Write x = un = vm, for some n,m ∈ N. In the latter equality multiply both sides on the
right by n−1 to get u = vmn−1 = vm1 where m1 = mn−1 ∈ N. Now for any element ut
of uN(t ∈ N), ut = (vm1)t = v(m1t) ∈ vN. This proves uN ⊆ vN . By interchanging the
roles of u and v one obtains similarly that vN ⊆ uN. Thus two cosets with nonempty
intersection coincide.
By the first part of the proposition, uN = vN if and only if u ∈ vN if and only if u = vn,
for some n ∈ N if and only if v−1u ∈ N, as claimed.
Finally, v ∈ uN is equivalent to saying v is a representative for uN, hence uN = vN if
and only if u and v are representatives for the same coset (namely the coset uN = vN).
�

Definition 0.9.6. The element gng−1 is called the conjugate of n ∈ N by g. The set
gNg−1 = {gng−1|n ∈ N} is called the conjugate of N by g. The element g is said to
normalize N if gNg−1 = N. A subgroup N of a group G is called normal if every element
of G normalizes N, i.e., if gNg−1 = N for all g ∈ G. If N is a normal subgroup of G we
shall write N EG.

Theorem 0.9.7. Let N be a subgroup of the group G. The following are equivalent:
(1) N EG
(2) NG(N) = G (recall NG(N) is the normalizer in G of N)
(3)gN = Ng for all g ∈ G
(4) gNg−1 ⊆ N for allg ∈ G.

Proposition 0.9.8. A subgroup N of the group G is normal if and only if it is the kernel
of some homomorphism
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Definition 0.9.9. Let N EG. The homomorphism π : G→ G/N defined by π(g) = gN
is called the natural projection of G onto G/N . If H̄ ≤ G/N is a subgroup of G/N ,
the complete preimage of H̄ in G is the preimage of H̄ under the natural projection
homomorphism.

Example 0.9.10. Let G be a group.
(1) The subgroups 1 and G are always normal in G;G/1 ∼= G and G/G ∼= 1.
(2) If G is an abelian group, any subgroup N of G is normal because for all g ∈ G and
all n ∈ N, gng−1 = gg−1n = n ∈ N. Note that it is important that G be abelian, not just
that N be abelian.

Problem 0.9.11. Let G be a group and N a normal subgroup of G. Show that for all
g ∈ G and k ∈ Z, (gN)k = (gk)N

Solution. First we show that the conclusion holds for nonnegative k by induction.
Note that (gN)0 = N = (g0)N. Now suppose the conclusion holds for k ≥ 0; then
(gN)k+1 = (gN)(gN)k = (gN)(gkN) = (gk+1)N. So the conclusion holds for nonnegative
k by induction.

Now suppose k < 0. Then (gN)k = ((gN)−k)−1 = (g−kN)−1 = (gk)N. Thus the
conclusion holds for all integers k. �

Problem 0.9.12. Define π : R2 → R by π(x, y) = x + y. Prove that π is a surjective
homomorphism and describe the fibers of π geometrically.

Solution. π is a homomorphism since π((x1, y1) + (x2, y2)) = π((x1 + x2, y1 + y2)) =
x1 + x2 + y1 + y2 = x1 + y1 + x2 + y2 = π(x1, y1) + π(x2, y2).π is surjective since for all
c ∈ R, π(c, 0) = c. Clearly the fiber of c ∈ R is {(x, y) | x + y = c}; that is, the line
x+ y = c in R2. �

Problem 0.9.13. Let G be a group. Let H and K are normal subgroups G. Prove that
H ∩N E G is normal.

Problem 0.9.14. Let G be a group, and let N E G be normal. Prove that if H E G,
then N ∩H E H is normal.

Problem 0.9.15. Let G be a group and let N ≤ G. Prove that N is normal in G if and
only if gNg−1 ⊆ N for all g ∈ G.

Solution. Suppose first that N is normal. Then NG(N) = G; thus, for all g ∈ G, we
have gNg−1 = N. In particular, for all g ∈ G, gNg−1 ⊆ N. conversely suppose gNg−1 ⊆ N
for all g ∈ G. Then for all g ∈ G, we have N = gg−1Ngg−1 ⊆ gNg−1, so that gNg−1 = N .
Hence NG(N) = G. �

Problem 0.9.16. Let G be a group and N a finite subgroup of G. Show that gNg−1 ⊆ N
if and only if gNg−1. Deduce that NG(N) = {g ∈ G | gNg−1 ⊆ N}.
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Solution. It suffices to show that for all g ∈ G, gNg−1 ⊆ N implies gNg−1 = N. Let
g ∈ G. The mapping n 7→ gng−1 is a bijection N → gNg−1, so that |gNg−1| = |N |. Since
N is finite, gNg−1 = N .

The last statement follows trivially. �

Problem 0.9.17. Let G be a group, g ∈ G, and N ≤ G. Prove that gN = Ng if and
only if g ∈ NG(N).

Solution. (⇒) Suppose gN = Ng. Right multiplying by g−1, we have gNg−1 = Ngg−1 =
N, so that g ∈ NG(N). (⇐) Suppose g ∈ NG(N). Then gNg−1 = N, and right multiplying
by g we have gN = Ng. �

Problem 0.9.18. Let G be a group. Prove that if G/Z(G) is cyclic then G is abelian

Solution. Let G be a group and suppose G/Z(G) = 〈xZ(G)〉 is cyclic.
Note that for all g ∈ G, we have g ∈ gZ(G) = xkZ(G) for some integer k. In particular,
g = xkz for some integer k and some z ∈ Z(G).

Now let g, h ∈ G, where g = xaz and h = xbw and z, w ∈ Z(G). We have gh =
xazxbw = xa+bzw = xb+awz = xbwxaz = hg. Thus G is abelian. �

Problem 0.9.19. Let G be a group and let H,K ≤ G be normal subgroups. Prove that
if H ∩K = 1 then hk = kh for all h ∈ H and k ∈ K.

Solution. Lemma: Let G be a group and let H,K ≤ G be normal subgroups. Then
for all h ∈ H and k ∈ K we have [h, k] ∈ H ∩K.
Proof: Note that h−1k−1h = (h−1)k−1(h−1)−1 ∈ K sinceK is normal, so that h−1k−1hk ∈
K. Similarly, h−1k−1hk ∈ H.�

Now if H ∩K = 1, we have [h, k] = 1 for all h ∈ H and k ∈ K. Thus h−1k−1hk = 1,
or hk = kh. �

0.10 More on Cosets and Lagrange’s Theorem

Theorem 0.10.1. (Lagrange’s Theorem) If G is a finite group and H is a subgroup of G,
then the order of H divides the order of G (i.e., |H| | |G|) and the number of left cosets .

|G| of H in G equals |G|
|H|

.

Definition 0.10.2. If G is a group (possibly infinite) and H ≤ G , the number of left
cosets of H in G is called the index of H in G and is denoted by |G : H|. In the case of

finite groups the index of H in G is |G|
|H|

. For G an infinite group the quotient |G| does
not make sense.

Corollary 0.10.3. If G is a finite group and x ∈ G, then the order of x divides the order
of G. In particular x|G| = 1 for all x in G.

Corollary 0.10.4. If G is a group of prime order p, then G is cyclic, hence G ∼= Zp.
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Definition 0.10.5. Let H and K be subgroups of a group and define HK = {hk|h ∈
H, k ∈ K}.

Proposition 0.10.6. If H and K are finite subgroups of a group then |HK| = |H||K|
|H∩K|

.

Proof. Notice that HK is a union of left cosets of K, namely,HK =
⋃

h∈H hK.
Since each coset of K has K elements it suffices to find the number of distinct left cosets
of the form hK, h ∈ H.
But h1K = h2K for h1, h2 ∈ H if and only if h−1

2 h1 ∈ K. Thus
h1K = h2K ⇔ h−1

2 h1 ∈ H ∩K ⇔ h1(H ∩K) = h2(H ∩K).
Thus the number of distinct cosets of the form hK, for h ∈ H is the number of distinct
cosets h(H ∩K), for h ∈ H. The latter number, by Lagrange’s Theorem, equals |H|

|H∩K|
.

Thus HK consists of |H|
|H∩K|

distinct cosets of K (each of which has |K| elements) which
gives the formula above. �

Problem 0.10.7. Let G be a group and let H,K ≤ G be finite subgroups of relatively
prime order. Prove that H ∩K = 1.

Solution. Let |H| = p and |K| = q. We saw in a previous exercise that H ∩ K is a
subgroup of both H and K; by Lagrange Theorem, then, |H ∩K| divides p and q. Since
gcd(p, q) = 1, then, |H ∩K| = 1. Thus H ∩K = 1. �

Problem 0.10.8. Let G be a group and let H,K ≤ G be subgroups of finite index; say
[G : H] = m and [G : K] = n. Prove that lcm(m,n) ≤ [G : H ∩K] ≤ mn. Deduce that if
m and n are relatively prime, then [G : H ∩K] = [G : H] · [G : K].

Solution. Lemma 1: Let A and B be sets, ϕ : A → B a map, and Φ an equivalence
relation on A. Suppose that if a1 Φ a2 then ϕ(a1) = ϕ(a2) for all a1, a2 ∈ A. Then
ψ : A/Φ → B given by [a]Φ 7→ ϕ(a) is a function. Moreover, if ϕ is surjective, then ψ is
surjective, and if ϕ(a1) = ϕ(a2) implies a1 Φ a2 for all a1, a2 ∈ A, then ψ is injective.
Proof: ψ is clearly well defined. If ϕ is surjective, then for every b ∈ B there exists a ∈ A
such that ϕ(a) = b. Then ψ([a]Φ) = b, so that ψ is surjective. If ψ([a1]) = ψ([a2]), then
ϕ(a1) = ϕ(a2), so that a1 Φ a2, and we have [a1] = [a2].�

First we prove the second inequality.
Lemma 2: Let G be a group and let H,K ≤ G be subgroups. Then there exists an

injective map ψ : G/(H ∩K) → G/H ×G/K.
Proof: Define ϕ : G → G/H × G/K by ϕ(g) = (gH, gK). Now if g−1

2 g1 ∈ H ∩K, then
we have g−1

2 g1 ∈ H, so that g1H = g2H, and g−1

2 g1 ∈ K, so that g1K = g2K. Thus
ϕ(g1) = ϕ(g2). Moreover, if (g1H, g2K) = (g1H, g2K) then we have g−1

2 g1 ∈ H ∩ K,
so that g1(H ∩ K) = g2(H ∩ K). By Lemma 1, there exists an injective mapping
ψ : G/(H ∩K) → G/H ×G/K given by ψ(g(H ∩K)) = (gH, gK).�

As a consequence, if [G : H] and [G : K] are finite, [G : H ∩K] ≤ [G : H] · [G : K].
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Now to the first inequality.

Lemma 3: Let G be a group and K ≤ H ≤ G. Let S be a set of coset representatives
of G/H. Then the mapping ψ : S ×H/K → G/K given by ψ(g, hK) = ghK is bijective.
Proof: (Well defined) Suppose h−1

2 h1 ∈ K. Then h1K = h2K, so that gh1K = gh2K,
and we have ψ(g, h1K) = ψ(g, h2K).
(Surjective) Let gK ∈ G/K. Now g ∈ gH for some g ∈ S; say g = gh. Then ψ(g, hK) =
gK, so that ψ is surjective. (Injective) Suppose ψ(g1, h1K) = ψ(g2, h2K). Then g1h1K =
g2h2K; in particular, g1h1 ∈ g2h2K ⊆ g2H, so that g1 ∈ g2H and hence g−1

2 g1 ∈ H. So
g1H = g2H, and in fact g2 = g1. Thus h1K = h2K, and ψ is injective. �

As a consequence, we have [G : H] · [H : K] = [G : K].

Now in this case we have H ∩K ≤ H ≤ G. Thus m divides [G : H ∩K] and n divides
[G : H ∩ K], so that lcm(m,n) divides [G : H ∩ K]. In particular, since all numbers
involved are natural, lcm(m,n) ≤ [G : H ∩K].

Finally, if m and n are relatively prime, then lcm(m,n) = mn, and we have [G :
H ∩K] = mn. �

Problem 0.10.9. Let G be a group and let H,N ≤ G with N normal in G. Prove that
if |H| and [G : N ] are relatively prime then H ≤ N .

Solution. First we prove a lemma.
Lemma: Let G be a group, H ≤ G, and x ∈ G an element of finite order n. If k is

the least positive integer such that xk ∈ H, then k|n.
Proof: If k does not divide n, we have n = qk + r for some 0 < r < k by the division
algorithm. Now 1 = xn = xqkxr ∈ H, and xqk = (xk)q ∈ H. Thus xr ∈ H, which
contradicts the minimality of k. Thus k|n.�

Now to the main result.
Suppose x ∈ H, and let k be the least positive integer such that xk ∈ N . (k exists

since H is finite.) By a previous exercise, as an element of G/N, |xN | = k, so that k
divides [G : N ]. Moreover, we have |x| divides |H| by Lagrange, so that (by the lemma)
k divides |x| and thus divides |H|. Because |H| and [G : N ] are relatively prime, then,
k = 1. But then |xN | = 1, so xN = N , and we have x ∈ N . So H ⊆ N . By a previous
exercise H ≤ N . �

Problem 0.10.10. Let G be a group and A,B ≤ G be subgroups such that A is abelian
and normal in G. Prove that A ∩B is normal in AB.

Solution. First we prove a lemma.
Lemma: Let G be a group, let H,K,N ≤ G be subgroups, and suppose N ⊳ H.

Then N ∩K ⊳ H ∩K.

18



Proof: Let a ∈ H ∩K. Then a(N ∩K) = aN ∩ aK = Na ∩Ka = (N ∩K)a.�

Now A ∩ B ⊳ A because A is abelian and A ∩ B ⊳ B by the lemma. Now if
x ∈ AB, x = ab for some a ∈ A and b ∈ B. Thus x(A ∩ B) = ab(A ∩ B) = a(A ∩ B)b =
(A ∩B)ab = (A ∩ B)x. �

0.11 The Isomorphism Theorems

Theorem 0.11.1. (The First Isomorphism Theorem) If ϕ : G → H is a homomorphism
of groups, then kerϕ E G and G/kerϕ ∼= ϕ(G).

Corollary 0.11.2. Let ϕ : G→ H be a homomorphism of groups.
(1) ϕ is injective if and only if kerϕ = 1.
(2) |G : kerϕ| = |ϕ(G)|.

Theorem 0.11.3. (The Second or Diamond Isomorphism Theorem) Let G be a group,
let A and B be subgroups of G and assume A ≤ NG(B). Then AB is a subgroup of
G,B E AB,A ∩B E A and AB/B ∼= A/A ∩ B.

Theorem 0.11.4. (The Third Isomorphism Theorem) Let G be a group and let H and K
be normal subgroups of G with H ≤ K. Then K/H EG/H and (G/H)/(K/H) ∼= G/K.
If we denote the quotient by H with a bar, this can be written Ḡ/K̄ ∼= G/K.

Problem 0.11.5. Let G be a group, N ≤ G a normal subgroup of prime index p, and
K ≤ G a subgroup. Prove that either K ≤ N or G = NK and [K : K ∩N ] = p.

Solution. Suppose K \N 6= ∅; say k ∈ K \N . Now G/N ∼= Z/(p) is cyclic, and more-
over is generated by any nonidentity- in particular by k.

Now KN ≤ G since N is normal. Let g ∈ G. We have gN = kaN for some integer a.
In particular, g = kan for some n ∈ N , hence g ∈ KN . We have [K : K ∩N ] = p by the
Second Isomorphism Theorem. �

Problem 0.11.6. Let p be a prime and let G be a finite group of order pam, where p
does not divide m. Let P ≤ G be a subgroup of order pa and N ≤ G a normal subgroup
of order pbn where p does not divide n. Prove that |P ∩N | = pb and that |PN/N | = pa−b.

Solution. By the Second Isomorphism Theorem, we have PN ≤ G,N ≤ PN normal,
P ∩ N ≤ P normal, and P/(P ∩ N) ∼= PN/N . Now |PN | divides |G| by Lagrange, so
that |PN | = pkℓ for some k where p does not divide ℓ; then ℓ|m. Because P ≤ PN, we
have k = a, and because N ≤ PN, n|ℓ. Thus |PN/N | = pa−bq, where p does not divide
q. Note that |P/(P ∩N)| = pk for some k, and we have pk = pa−bq. Thus q = 1 and we
have |PN/N | = pa−b. Finally, we have |P |/|P ∩N | = pa/pb, so that |P ∩N | = pb. �
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