
E-NOTES / CS & BCA

1 BCS 41/ BCA 41 - Database Management System

THIRUVALLUVAR UNIVERSITY

E-NOTES

BCS 41/ BCA 41

DATABASE MANAGEMENT SYSTEMS
(4th Semester B.Sc. CS / B.C.A.)

STEERED BY
Dr. S. Thamarai Selvi, M.E., Ph.D.,

Vice Chancellor, Thiruvalluvar University, Serkkadu, Vellore

PREPARED BY
1. Dr. A.PRIYA, M.Sc., M.Phil., Ph.D.,

Assistant Professor & Head, PG Department of Computer Science,

Thiruvalluvar University College of Arts and Science, Tirupattur.

2. Mrs. A.POORNIMA, M.Sc., M. Phil., (SET), M.B.A.

Assistant Professor, Department of Computer Science,

Marudhar Kesari Jain College for Women, Vaniyambadi.

3. Mrs. G. SASIREKHA M.Sc., M. Phil., B.Ed.,

Assistant Professor, Department of Computer Science,

Marudhar Kesari Jain College for Women, Vaniyambadi.

4. Mr. A.ANTONY PAUL RAJ, M.Sc., M.Phil., B.Ed., (Ph.D.)

Assistant Professor, Department of Computer Science,

BWDA Arts and Science College, Villupuram.

5. Dr. S.LAVANYA, M.Sc., M.Phil., Ph.D.,

Assistant Professor & Head, Department of Computer Applications,

Auxilium College (Autonomous), Vellore.

6. Ms. D.KAVITHA, M.Sc., M.Phil.,

Assistant Professor & Head-In-Charge,

Department of Computer Applications,

M.M.E.S. Women's Arts and Science College, Melvisharam

E-NOTES / CS & BCA

2 BCS 41/ BCA 41 - Database Management System

ACKNOWLEDGEMENT

Writing an e-content is harder than we thought and more

rewarding than we could have ever imagined. None of this would

have been possible without our honourable Vice Chancellor –

Professor Dr. S. Thamarai Selvi. Her dynamism, vision,

sincerity, guidance and motivation have deeply inspired us. She

worked her magic on every page in this e-content, reorganised

content wherever necessary, bringing value added words in every line. She has taught

us the way to present the content to the students in a best possible way to have clear

and crisp understanding. She was able to tune into the task and identify the ones that

diverted our team focus and energy keeping us from getting our things done. It was a

great privilege and honour to work under her guidance. We are extremely grateful for

what she has offered us.

 Dr. A. PRIYA Mrs. A.POORNIMA Mrs. G. SASIREKHA

Mr. A.ANTONY PAUL RAJ Dr. S. LAVANYA Ms. D.KAVITHA

E-NOTES / CS & BCA

3 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

SYLLABUS

Objective: To incorporate a strong knowledge on databases to students

UNIT – I: Database Basics:

Introduction: Flat File – Database System – Database – Actionable for DBA. The

Entity – Relationship Model: Introduction – The Entity Relationship Model. Data

Models: Introduction – Relational Approach – The Hierarchical Approach – The

Network Approach.

UNIT – II: Relational Algebra:

Structure of Relational Databases – Fundamental Relational Algebra Operations –

Additional Relational Algebra Operations - Extended Relational Algebra Operations

- Null Values - Modification of the Database - The Tuple Relational Calculus – The

Domain Relational Calculus.

 UNIT – III: Normalization:

Normalization: Introduction - Normalization – Definition of Functional Dependence

(FD) – Normal Forms: 1NF, 2NF, 3NF and BCNF.

UNIT – IV: Structured Query Language:

Structured Query Language: Features of SQL – Select SQL Operations – Grouping

the Output of the Query – Querying from Multiple Tables – Retrieval Using Set

operators – Nested Queries. T-SQL – Triggers and Dynamic Execution: Transact-

SQL.

 UNIT – V: Procedural Language:

Procedural Language- SQL: PL/SQL Block Structure – PL/SQL Tables. Cursor

Management and Advanced PL/SQL: Opening and Closing a Cursor – Processing

Explicit Cursor – Implicit Cursor – Exception Handlers – Sub Programs in PL/SQL

E-NOTES / CS & BCA

4 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

– Functions – Precaution While Using PL/SQL Functions – Stored Procedure –

Object Oriented Technology.

Text Book:

1. Rajesh Narang, “Database Management Systems”, PHI Learning Private

Limited, New Delhi, Sixth Printing, 2010.

Reference Books:

1. S.K. Singh, “Database Systems – Concepts, Design and Applications”,

Dorling Kindersley (India) Pvt. Ltd., Second Impression, 2008

2. Abraham Silberchatz, Henry F Korth, S.Sudarshan, “Database System

Concepts”, Tata McGraw-Hill - 5th Edition - 2006.

3. Raghu Ramakrishnan and Johannes Gehrke, “Database Management

Systems”, Tata McGraw-Hill Publishing Company, 2003.

4. Ramez Elmasri and Shamkant B. Navathe, “Fundamental Database

Systems”, Pearson Education, Third Edition, 2003.

5. Hector Garcia–Molina, Jeffrey D.Ullmanand Jennifer Widom, “Database

System Implementation”, Pearson Education - 2000.

6. S.K .Singh, “Database systems: Concepts, Design &Applications”, Pearson

Education.

7. Gerald V. Post, “DBMS – Designing and Business Applications”, Tata

McGraw Hill Publication.

8. Micheal Abbey And Micheal.J.Corey, “Oracle A Beginners guide”, Tata

McGraw-Hill Publication.

E-NOTES / CS & BCA

5 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

INDEX

CHAPTER

NO.
CONTENT

PAGE

NO

 Chapter 1: Database Basics 12

1.1. Introduction 12

1.2. Flat File 12

1.3. Database System 13

1.3.1. Data 13

1.3.2. Software 14

1.3.3. Hardware 14

1.3.4. Users 14

1.4. Database 16

1.4.1. Types of Databases 17

1.5. Database Languages 19

1.5.1. Data Definition Language (DDL) 19

1.5.2. Data Manipulation Language (DML) 20

1.6. Actionable For DBA 21

 Review Questions 23

 Objective Type Questions 24

 Chapter – 2: The Entity – Relationship Model 32

2.1. Introduction 32

2.2. The Entity Relationship Model 33

2.2.1. Components of an E-R Diagram 34

E-NOTES / CS & BCA

6 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

2.2.2. Various Terms Related To Relationships 36

2.3. Keys 38

2.3.1. Types of Key 38

 Review Questions 40

 Objective Type Questions 40

 Chapter – 3 : Data Models 43

3.1. Introduction 43

3.2. Types Of Data Models 43

 Review Questions 48

 Objective Type Questions 50

 Chapter 4: Relational Algebra 52

4.1. Introduction 52

4.2. Structure of Relational Databases 53

4.2.1. Select Operation 53

4.2.2. Project Operation 54

4.2.3. Union Operation 56

4.2.4. Set Intersection 58

4.2.5. Set Difference 58

4.2.6. Cartesian Product 59

4.2.7. Rename Operation 60

4.3. Fundamental Relational Algebra Operations 60

4.3.1. Join Operations 60

4.3.2. Types Of Join Operations 62

E-NOTES / CS & BCA

7 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

4.4. Additional Relational Algebra Operations 67

4.4.1. Set-Intersection 67

4.4.2. Theta Join 67

4.5. Extended Relational Algebra Operations 68

4.5.1. Generalized Projection 68

4.6. Null Values 68

4.7. Modification Of The Database 69

4.7.1. Deletion 69

4.7.2. Insertion 69

4.7.3. Updation 69

4.8. Tuple Relational Calculus 70

4.9. Domain Relational Calculus 72

 Review Questions 74

 Objective Type Questions 82

 Chapter 5: Normalization 85

5.1. Introduction 85

5.2. What Is Normalization? 85

5.3. Functional Dependency 88

5.3.1. Full Functional Dependency 89

5.3.2. Partial Dependency 91

5.3.3. Transitive Dependency 91

5.3.4. Multi-Valued Dependency 92

5.3.5. Join Dependency 92

E-NOTES / CS & BCA

8 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

5.4. Normal Forms 92

5.4.1. First Normal Form (1 NF) 92

5.4.2. Second Normal Form (2 NF) 94

5.4.3. Third Normal Form (3 NF) 96

5.4.4. Boyce- Code Normal Form (BCNF) 98

5.4.5. Forth Normal Form (4NF) 100

5.4.6. Join Dependencies And Fifth Normal Form (5NF) 102

5.4.7. Domain Key Normal Form (DKNF) 105

 Review Questions 106

 Objective Type Questions 107

 Chapter 6: Structured Query Language 109

6.1. Introduction 109

6.2. Structured Query Language 109

6.2.1. Need for SQL 110

6.2.2. Types of SQL Statements 110

6.3. Features of SQL 111

6.4. Select SQL Operations 112

6.5. Grouping The Output Of The Query 114

6.5.1. SQL Group Functions 114

6.5.2. SQL Group By Clause 115

6.5.3. SQL Having Clause 116

6.6. Querying From Multiple Tables 117

6.6.1. SQL Subquery 117

E-NOTES / CS & BCA

9 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

6.6.2. Correlated Subquery 121

6.7. Retrieval Using Set Operators 122

6.7.1. Union Operation 122

6.7.2. Union All 123

6.7.3. Intersect 124

6.7.4. Minus 125

 Review Questions 126

 Objective Type Questions 135

 Chapter 7: T-SQL – Triggers And Dynamic

Execution
138

7.1. Introduction 138

7.2. T-SQL (Transact-SQL) 138

7.2.1. T-SQL Functions 139

7.2.2. Transact-SQL 141

 Review Questions 141

 Chapter 8: Procedural Language 142

8.1. Introduction 142

8.2. PL/ SQL Block Structure 143

8.2.1 PL/SQL Block Syntax 146

8.2.2. Types of PL/SQL Block 146

8.2.3. Fundamentals Of PL/SQL 149

8.3. PL/SQL - Data Types 151

8.3.1. Scalar Data Types 152

8.3.2. PL/SQL Composite Data Types 154

E-NOTES / CS & BCA

10 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

8.3.3. Reference Data Types 164

8.3.4. Large Object Datatypes (LOB Types) 166

8.3.5. Unknown Column Types 167

8.3.6. User-Defined Subtypes 167

8.4. PL/SQL - Variables 168

8.5. PL/SQL - Operators 172

8.5.1. Arithmetic Operators 172

8.5.2. Relational Operators 173

8.5.3. Comparison Operators 173

8.5.4. Logical Operators 174

8.5.5. PL/SQL Operator Precedence 175

8.6. PL/SQL - Conditions 176

8.7. PL/SQL - Loops 178

8.8. PL/SQL – Strings 181

8.8.1. Declaring String Variables 182

8.8.2. PL/SQL String Functions And Operators 183

8.9. PL/SQL – Arrays 184

8.10. PL/SQL Tables And Records 190

8.10.1. Tables 191

8.10.2. Records 194

8.11. PL/SQL Cursor 199

8.11.1. PL/SQL Implicit Cursors 199

8.11.2. PL/SQL Explicit Cursors 202

E-NOTES / CS & BCA

11 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

8.12. PL/SQL Exception Handling 206

8.12.1. PL/SQL System-Defined Exceptions 206

8.12.2. PL/SQL User-Defined Exceptions 212

8.13. PL/SQL Sub Programs 213

8.13.1. PL/SQL Functions 213

8.13.2. PL/SQL Procedure 217

 Review Questions 225

 Objective Type Questions 226

 Chapter 9: Object Oriented Technology 230

9.1. Introduction 230

9.2. Object Oriented Features 232

9.3. Components 233

9.3.1. Messages 233

9.3.2. Methods 233

9.3.3. Variables 233

9.4. Object Classes 234

 Review Questions 235

 Objective Type Questions 235

 Appendix A: ODBC CONNECTIVITY 236

 Appendix B: JDBC CONNECTIVITY 251

 Appendix C: SAMPLE PROGRAMS / APPLICATIONS 284

1. Table Creation And Simple Queries 284

2. Queries Using Aggregate Function And Set Operations 292

E-NOTES / CS & BCA

12 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

3. Table Creation With Various Joins 297

4. Nested Sub Queries And Correlated Sub Queries 299

5. View Creation And Manipulation 300

6. PL/SQL Program For Cursor 302

7. PL/SQL Program For Packages 304

8. PL/SQL Program For Triggers And Its Type 305

9. PL/SQL Program For Procedures And Functions

307

E-NOTES / CS & BCA

13 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

UNIT – I

CHAPTER 1: DATABASE BASICS

1.1. INTRODUCTION

DATA: Facts and statistics collected together for reference or analysis.

For example: 5, “Ravi”, 234.32

DATABASE: A database is a collection of information that is organized so that it can be easily

accessed, managed and updated. Computer databases typically contain aggregations of data

records or files, containing information about any transactions or interactions.

For example:

Register Number Student Name Department Age

35518U18001 Ashwin CS 19

35518U09023 Murugan BCA 18

35518U18032 Pavithra CS 20

35518U09040 Shreenath BCA 18

35518U18050 Varshi CS 17

DBMS: A database-management system (DBMS) is a collection of interrelated data and a set of

programs to access those data. Software such as DBASE IV or V, Microsoft ACCESS, or EXCEL

GOAL OF DBMS: The primary goal of a DBMS is to provide a way to store and retrieve database

information that is both convenient and efficient.

1.2. FLAT FILE

A flat file database is a type of database that stores data in a single table. This is unlike a relational

database, which makes use of multiple tables and relations. Flat file databases are generally in

plain-text form, where each line holds only one record. The fields in the record are separated using

delimiters such as tabs and commas.

E-NOTES / CS & BCA

14 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Flat file database tables can be set in various application types, including HTML documents,

simple word processors or worksheets in spreadsheet applications. The tables within a flat file

database can be sorted based on column values. These tables serve as a solution for simple database

tasks.

In spite of the limitations associated with flat files, flat file databases are used internally by various

computer applications to store data related to configuration. Most of the applications permit users

to store and retrieve information from flat files based on a predefined set of fields.

Flat files include data types common to other databases. A few features of the data in flat file

databases include:

 Database Management System: The text data represent an intermediate style of data before

being loaded into the database.

 Separated Columns: Flat file databases are based on fixed-width data formatting. Columns

are separated using delimiter characters.

 Data Types: Columns in the database tables are restricted to a particular data type and are

not indicated, unless the data is passed on to a relational database.

 Relational Algebra: Records in flat file database tables meet tuple definitions under

relational algebra.

1.3. DATABASE SYSTEM

A Database System involves four components,

1. Data

2. Software

3. Hardware and,

4. Users

1.3.1. DATA

Data are sub-divided into one or more databases. Each database is a respiratory or storage of the

data. The database is integrated and shared, which means that the database is a unification of

several different data files and redundancy among the files is eliminated to the maximum extent.

E-NOTES / CS & BCA

15 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

The term “shared” means the individual data items to database can be shared among several

different users. This sharing is possible because the database is integrated. A data item is not just

shared by users sequentially but also concurrently. i.e. at th same time. A database system

supporting this form of sharing is called multiuser system.

1.3.2. SOFTWARE

Database Management System (DBMS) lies between the physical database and users of the

system. Access requests coming from users are handled by DBMS. The database users from

hardware-level details and supports user operation by retrieving data.

1.3.3. HARDWARE

It consists of secondary storage volumes – disks, on which the database resides.

1.3.4. USERS

This differentiation is made according to the interaction of users to the database. Database system

is made to store information and provide an environment for retrieving information.

There are three types of users:

(i) An Application Programmers

(ii) End – User and

(iii) Database Administrator.

I. APPLICATION PROGRAMMERS

As its name shows, application programmers are the one who writes application programs that

uses the database. These application programs are written in programming languages like COBOL

or PL (Programming Language 1), Java and fourth generation language. These programs meet the

user requirement and made according to user requirements. Retrieving information, creating new

information and changing existing information is done by these application programs.

E-NOTES / CS & BCA

16 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

They interact with DBMS through DML (Data manipulation language) calls. And all these

functions are performed by generating a request to the DBMS. If application programmers are not

there then there will be no creativity in the whole team of Database.

II. END USERS

End users are those who access the database from the terminal end. They use the developed

applications and they don’t have any knowledge about the design and working of database. These

are the second class of users and their main motto is just to get their task done.

There are basically two types of end users that are discussed below.

a. Casual User

b. Naive User

 Casual User: These users have great knowledge of query language. Casual users access

data by entering different queries from the terminal end. They do not write programs but

they can interact with the system by writing queries.

 Naïve: Any user who does not have any knowledge about database can be in this category.

Their task is to just use the developed application and get the desired results.

III. DBA (DATABASE ADMINISTRATOR)

DBA can be a single person or it can be a group of person. Database Administrator is responsible

for everything that is related to database. He makes the policies, strategies and provides technical

supports.

One of the main reasons for using DBMSs is to have central control of both the data and the

programs that access those data. A person who has such central control over the system is called a

database administrator (DBA). The functions of a DBA include:

a. SCHEMA DEFINITION

The DBA creates the original database schema by executing a set of data definition statements in

the DDL. Storage structure and access-method definition.

E-NOTES / CS & BCA

17 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

b. SCHEMA AND PHYSICAL-ORGANIZATION MODIFICATION.

The DBA carries out changes to the schema and physical organization to reflect the changing needs

of the organization, or to alter the physical organization to improve performance.

c. GRANTING OF AUTHORIZATION FOR DATA ACCESS.

By granting different types of authorization, the database administrator can regulate which parts

of the database various users can access. The authorization information is kept in a special system

structure that the database system consults whenever someone attempts to access the data in the

system.

d. ROUTINE MAINTENANCE.

Examples of the database administrator’s routine maintenance activities are: Periodically backing

up the database, either onto tapes or onto remote servers, to prevent loss of data in case of disasters

such as flooding. Ensuring that enough free disk space is available for normal operations, and

upgrading disk space as required. Monitoring jobs running on the database and ensuring that

performance is not degraded by very expensive tasks submitted by some users.

1.4. DATABASE

A database is a data structure that stores organized information. Most databases contain multiple

tables, which may each include several different fields. For example, a company database may

include tables for products, employees, and financial records. Each of these tables would have

different fields that are relevant to the information stored in the table.

A database is a collection of information that is organized so that it can be easily accessed,

managed and updated. Computer databases typically contain aggregations of data records or files,

containing information about sales transactions or interactions with specific customers.

In a relational database, digital information about a specific customer is organized into rows,

columns and tables which are indexed to make it easier to find relevant information

through SQL or NoSQL queries.

E-NOTES / CS & BCA

18 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Typically, the database manager provides users with the ability to control read/write access,

specify report generation and analyze usage. Some databases offer ACID (atomicity, consistency,

isolation and durability) compliance to guarantee that data is consistent and that transactions are

complete.

1.4.1. TYPES OF DATABASES

Databases have evolved since their inception in the 1960s, beginning with hierarchical and

network databases, through the 1980s with object-oriented databases, and today with SQL and

NoSQL databases and cloud databases.

I. RELATIONAL DATABASE

A relational database, invented by E.F. Codd at IBM in 1970, is a tabular database in which data

is defined so that it can be reorganized and accessed in a number of different ways.

Relational databases are made up of a set of tables with data that fits into a predefined category.

Each table has at least one data category in a column, and each row has a certain data instance for

the categories which are defined in the columns.

The Structured Query Language (SQL) is the standard user and application program interface for

a relational database. Relational databases are easy to extend, and a new data category can be

added after the original database creation without requiring that you modify all the existing

applications.

II. DISTRIBUTED DATABASE

A distributed database is a database in which portions of the database are stored in multiple

physical locations, and in which processing is dispersed or replicated among different points in a

network.

https://searchsqlserver.techtarget.com/definition/ACID

E-NOTES / CS & BCA

19 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Distributed databases can be homogeneous or heterogeneous. All the physical locations in a

homogeneous distributed database system have the same underlying hardware and run the same

operating systems and database applications. The hardware, operating systems or database

applications in a heterogeneous distributed database may be different at each of the locations.

III. CLOUD DATABASE

A cloud database is a database that has been optimized or built for a virtualized environment, either

in a hybrid cloud, public cloud or private cloud. Cloud databases provide benefits such as the

ability to pay for storage capacity and bandwidth on a per-use basis, and they provide scalability

on demand, along with high availability.

A cloud database also gives enterprises the opportunity to support business applications in

a software-as-a-service deployment.

IV. OBJECT-ORIENTED DATABASE

Items created using object-oriented programming languages are often stored in relational

databases, but object-oriented databases are well-suited for those items.

An object-oriented database is organized around objects rather than actions, and data rather than

logic. For example, a multimedia record in a relational database can be a definable data object, as

opposed to an alphanumeric value.

V. GRAPH DATABASE

A graph-oriented database, or graph database, is a type of NoSQL database that uses graph

theory to store, map and query relationships. Graph databases are basically collections of nodes

and edges, where each node represents an entity, and each edge represents a connection between

nodes.

E-NOTES / CS & BCA

20 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Graph databases are growing in popularity for analyzing interconnections. For example,

companies might use a graph database to mine data about customers from social media.

1.5. DATABASE LANGUAGES

A database system provides three different types of languages:

1. Data Definition Language (DDL)

2. Data Manipulation Language (DML)

3. Transaction Control Language (TCL)

1.5.1. DATA DEFINITION LANGUAGE (DDL)

Data-Definition Language is used to specify a database schema by a set of definitions expressed

by a special language called a data-definition language (DDL).

For instance, the following statement in the SQL language defines the account table: create table

account (account-number char(10), balance integer) Execution of the above DDL statement creates

the account table.

In addition, it updates a special set of tables called the data dictionary or data directory. A data

dictionary contains metadata—that is, data about data. The schema of a table is an example of

metadata. A database system consults the data dictionary before reading or modifying actual data.

We specify the storage structure and access methods used by the database system by a set of

statements in a special type of DDL called a data storage and definition language. These statements

define the implementation details of the database schemas, which are usually hidden from the

users.

 The data values stored in the database must satisfy certain consistency constraints. For example,

suppose the balance on an account should not fall below $100. The DDL provides facilities to

specify such constraints. The database systems check these constraints every time the database is

updated.

https://searchsqlserver.techtarget.com/definition/data-mining
https://whatis.techtarget.com/definition/social-media

E-NOTES / CS & BCA

21 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

1.5.2. DATA MANIPULATION LANGUAGE (DML)

Data manipulation is the retrieval of information stored in the database.

 The insertion of new information into the database

 The deletion of information from the database

 The modification of information stored in the database

 The selection of information stored in the database

A data-manipulation language (DML) is a language that enables users to access or manipulate data

as organized by the appropriate data model.

There are basically two types:

i. Procedural DMLs require a user to specify what data are needed and how to get those data.

ii. Declarative DMLs (also referred to as nonprocedural DMLs) require a user to specify what

data are needed without specifying how to get those data. Declarative DMLs are usually

easier to learn and use than are procedural DMLs. However, since a user does not have to

specify how to get the data, the database system has to figure out an efficient means of

accessing data. The DML component of the SQL language is nonprocedural.

A query is a statement requesting the retrieval of information. The portion of a DML that involves

information retrieval is called a query language. Although technically incorrect, it is common

practice to use the terms query language and data manipulation language synonymously.

This query in the SQL language finds the name of the customer whose customer-id is 192-83-

7465:

The query specifies that those rows from the table customer where the customer-id is 192-83-7465

must be retrieved, and the customer-name attribute of these rows must be displayed. Queries may

involve information from more than one table.

For instance, the following query finds the balance of all accounts owned by the customer with

customerid 192-837465.

select customer.customer-name from customer where customer.customer-id = 192-83-

7465;

select account.balance from depositor, account where depositor.customer-id = 192-83-

7465 and depositor.account-number = account.account-number;

E-NOTES / CS & BCA

22 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

There are a number of database query languages in use, either commercially or experimentally.

The levels of abstraction apply not only to defining or structuring data, but also to manipulating

data. At the physical level, we must define algorithms that allow efficient access to data. At higher

levels of abstraction, we emphasize ease of use.

The goal is to allow humans to interact efficiently with the system. The query processor component

of the database system translates DML queries into sequences of actions at the physical level of

the database system.

1.6. ACTIONABLE FOR DBA

A Database Administrator, Database Analyst or Database Developer is the

person responsible for managing the information within an organization.

The DBA has many different responsibilities, but the overall goal of the DBA is to keep the server

up at all times and to provide users with access to the required information when they need it.

The DBA makes sure that the database is protected and that any chance of data loss is

minimized.

A DBA can be a programmer who, by default or by volunteering, took over the responsibility

of maintaining a SQL Server during project development and enjoyed the job so much that he

switched.

A DBA can be a system administrator who was given the added responsibility of maintaining a

SQL Server. DBAs can even come from unrelated fields, such as accounting or the help desk, and

switch to Information Systems to become DBAs.

DBA RESPONSIBILITIES

The following are the responsibilities of the database administrator:

I. INSTALLING AND UPGRADING AN SQL SERVER

E-NOTES / CS & BCA

23 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

The DBA is responsible for installing SQL Server or upgrading an existing SQL Server. In the

case of upgrading SQL Server, the DBA is responsible for ensuring that if the upgrade is not

successful, the SQL Server can be rolled back to an earlier release until the upgrade issues can be

resolved.

II. USING STORAGE PROPERLY

SQL Server 2000 enables you to automatically grow the size of your databases and transaction

logs, or you can choose to select a fixed size for the database and transaction log. Either way,

maintaining the proper use of storage means monitoring space requirements and adding new

storage space (disk drives) when required.

III. PERFORMING BACKUP AND RECOVERY DUTIES

Backup and recovery are the DBA's most critical tasks; they include the following aspects:

 Establishing standards and schedules for database backups

 Developing recovery procedures for each database

 Making sure that the backup schedules meet the recovery requirements

IV. MANAGING DATABASE USERS AND SECURITY

With SQL Server 2000, the DBA works tightly with the Windows NT administrator to add user

NT logins to the database. The DBA is also responsible for assigning users to databases and

determining the proper security level for each user. Within each database, the DBA is responsible

for assigning permissions to the various database objects such as tables, views, and stored

procedures.

V. TRANSFERRING DATA

The DBA is responsible for importing and exporting data to and from the SQL Server.

VI. REPLICATING DATA

Managing and setting up replication topologies is a big undertaking for a DBA because of the

complexities involved with properly setting up and maintaining replication.

The DBA should possess the following skills

1. A good knowledge of the operating system(s)

2. A good knowledge of physical database design

E-NOTES / CS & BCA

24 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

3. Ability to perform both Oracle and also operating system performance monitoring and the

necessary adjustments.

4. Be able to provide a strategic database direction for the organization.

5. Excellent knowledge of Oracle backup and recovery scenarios.

6. Good skills in all Oracle tools.

7. A good knowledge of Oracle security management.

8. A good knowledge of how Oracle acquires and manages resources.

9. Sound knowledge of the applications at your site.

10. Experience and knowledge in migrating code, database changes, data and

11. Menus through the various stages of the development life cycle.

12. A good knowledge of the way Oracle enforces data integrity.

13. A sound knowledge of both database and program code performance tuning.

14. A DBA should possess a sound understanding of the business.

15. A DBA should have sound communication skills with management, development teams,

vendors, systems administrators and other related service providers.

REVIEW QUESTIONS

1. Define Database Management Systems.

2. Why we need integrity constraints?

3. Illustrate transaction properties.

4. Differentiate volatile and non-volatile storage.

5. What is Data Base Administrator? Discuss the functions of DBA.

6. Explain DBMS applications.

7. What is the instance of a relation?

8. Discuss abstract view of data with diagram.

9. List various types of database users. Explain.

10. Explain briefly the languages supported by database systems.

E-NOTES / CS & BCA

25 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

11. Give examples of systems in which it may make sense to use traditional file processing instead

of a database approach.

12. Discuss the role of a high-level data model in the database design process.

OBJECTIVE TYPE QUESTIONS

1. A Database Management System (DBMS) is

a) Collection of interrelated data

b) Collection of programs to access data

c) Collection of data describing one particular enterprise

d) All of the above

2. A database management software (DBMS) includes

a) Automated tools (CASE) used to design databases and application programs

b) A software application that is used to define, create, maintain and provide controlled

access to user databases

c) Application programs that are used to provide information to users

d) Database that contains occurrences of logically organised data or information

 3. Making a change to the conceptual schema of a database but not affecting the existing

external schemas is an example of

(a) Physical data independence

(b) Concurrency Control

(c)Logical data independence

(d) Functional dependency

4. Which of the following is not a level of data abstraction?

a) Physical Level

b) Critical Level

c) Logical Level

d) View Level

5. Disadvantages of File systems to store data is:

a) Data redundancy and inconsistency

b) Difficulty in accessing data

c) Data isolation

d) All of the above

E-NOTES / CS & BCA

26 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

6. In an Entity-Relationship Diagram Rectangles represents

a) Entity sets

b) Attributes

c) Database

d) Tables

7. Which of the following is not a Storage Manager Component?

a) Transaction Manager

b) Logical Manager

c) Buffer Manager

d) File Manager

8. Data Manipulation Language enables users to

a) Retrieval of information stored in database

b) Insertion of new information into the database

c) Deletion of information from the database

d) All of the above

9. Which of the following is not an Schema?

a) Database Schema

b) Physical Schema

c) Critical Schema

d) Logical Schema

10. Which of the following is Database Language?

a) Data Definition Language

b) Data Manipulation Language

c) Query Language

d) All of the above

11. Which of the following in not a function of DBA?

a) Network Maintenance

b) Routine Maintenance

c) Schema Definition

d) Authorization for data access

12. Snapshot of the data in the database at a given instant of time is called

a) Database Schema

E-NOTES / CS & BCA

27 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

b) Database Instance

c) Database Snapshot

d) All of the above

13. Data Manipulation Language (DML) is not to

a) Create information table in the Database

b) Insertion of new information into the Database

c) Deletion of information in the Database

d) Modification of information in the Database

14. Which of the following is an unary operation?

a) Selection operation

b) Generalized selection

c) Primitive operation

d) Projection operation

15. Which of the following is the structure of the Database?

a) Table

b) Schema

c) Relation

d) None of these

16. The DBMS language component which can be embedded in a program is

a) The data definition language (DDL).

b) The data manipulation language (DML).

c) The database administrator (DBA).

d) A query language.

17. A data dictionary is a special file that contains:

a) The name of all fields in all files.

b) The width of all fields in all files.

c) The data type of all fields in all files.

d) All of the above.

18. A relational database developer refers to a record as

a) A Criteria.

b) A Relation.

c) A Tuple.

d) An Attribute.

E-NOTES / CS & BCA

28 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

19. Transaction processing is associated with everything below except

a) Producing detail, summary, or exception reports.

b) Recording a business activity.

c) Confirming an action or triggering a response.

d) Maintaining data.

20. It is possible to define a schema completely using

a) VDL and DDL.

b) DDL and DML.

c) SDL and DDL.

d) VDL and DML.

21. The method of access which uses key transformation is known as

a) Direct.

b) Hash.

c) Random.

d) Sequential.

22. Data independence means

a) Data is defined separately and not included in programs.

b) Programs are not dependent on the physical attributes of data.

c) Programs are not dependent on the logical attributes of data.

d) Both (B) and (C).

23. The statement in SQL which allows to change the definition of a table is

a) Alter.

b) Update.

c) Create.

d) select

24. ___ is a classical approach to database design?

a) Left – Right approach

b) Right – Left approach

c) Top – Down approach

d) Bottom – Up approach

25. refers to the correctness and completeness of the data in a database?

a) Data security

b) Data integrity

c) Data constraint

E-NOTES / CS & BCA

29 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

d) Data independence

26. A table that displays data redundancies yields ____________anomalies.

a) Insertion

b) Deletion

c) Update

d) All of the above

27. The database schema is written in

a) HLL

b) DML

c) DDL

d) DCL

28. In the architecture of a database system external level is the

a) Physical level.

b) Logical level.

c) Conceptual level

d) View level.

29. A collection of conceptual tools for describing data, relationships, semantics and

 constraints is referred to as ________________

a) Data Model

b) E-R Model

c) DBMS

d) All of the above

30. Dr.E.F. Codd represented rules that a database must obey if it has to be considered

 truly relational.

a) 10

b) 15

c) 14

d) 12

31. The language used in application programs to request data from the DBMS is referred

 to as the ____________

a) DML

b) DDL

c) VDL

d) SDL

E-NOTES / CS & BCA

30 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

32. A logical schema

a) is the entire database.

b) is a standard way of organizing information into accessible parts.

c) describes how data is actually stored on disk.

d) both (A) and (C)

33. Related fields in a database are grouped to form a

a) data file.

b) data record.

c) Menu. (d) bank.

34. The database environment has all of the following components except:

a) users.

b) separate files.

c) database.

d) database administrator.

35. The language which has recently become the defacto standard for interfacing application

programs with relational database system is

a) Oracle.

b) SQL.

c) DBase.

d) 4GL

36. The way a particular application views the data from the database that the application

uses is a

a) module.

b) relational model.

c) schema.

d) sub schema.

37. Which of the following is not correct?

a) Each entity must include some descriptive information

b) If an object only requires an identifier, it should be classified as an attribute

c) Each multivalued attribute should be classified as an entity even if it does not have any

descriptive information

d) The procedure of identifying entities and attaching attributes always leads to a unique

solution

38. In the relational modes, cardinality is termed as:

a) Number of tuples.

b) Number of attributes.

c) Number of tables.

E-NOTES / CS & BCA

31 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

d) Number of constraints.

39. Relational calculus is a

a) Procedural language.

b) Non- Procedural language.

c) Data definition language.

d) High level language.

40. The view of total database content is

a) Conceptual view.

b) Internal view.

c) External view.

d) Physical View.

41. Which one of the following statements is false?

a) The data dictionary is normally maintained by the database administrator.

b) Data elements in the database can be modified by changing the data dictionary.

c) The data dictionary contains the name and description of each data element.

d) The data dictionary is a tool used exclusively by the database administrator.

42 An advantage of the database management approach is

a) Data is dependent on programs.

b) Data redundancy increases.

c) Data is integrated and can be accessed by multiple programs.

d) None of the above.

43. A DBMS query language is designed to

a) Support end users who use English-like commands.

b) Support in the development of complex applications software.

c) Specify the structure of a database.

d) All of the above.

44. A relationship between the instances of a single entity type is called a relationship.

a) Ternary

b) Primary

c) Binary

d) Unary.

45. The users who use easy-to-use menu are called

a) Sophisticated end users.

b) Naïve users.

c) Stand-alone users.

d) Casual end users.

E-NOTES / CS & BCA

32 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

KEYS

1-a, 2-b, 3-c, 4-b, 5-d, 6-a, 7-b, 8-d, 9-c, 10-d, 11-a, 12-b, 13-a,

14-b, 15-b, 16-b, 17-d, 18-c, 19-c, 20-b, 21-b, 22-d, 23-a, 24-c, 25-b, 26-d,

27-c, 28-d, 29-a, 30-d, 31-a, 32-a, 33-b, 34-a, 35-b, 36-d, 37-d, 38-a, 39-b,

40-a, 41-b, 42-c, 43-d, 44-d, 45-b.

E-NOTES / CS & BCA

33 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

CHAPTER – 2: THE ENTITY – RELATIONSHIP MODEL

2.1. INTRODUCTION

An entity is any object, place or activity about which an enterprise keeps data. It is an object which

can have instances or occurrences. Each instance should be capable of being uniquely identified.

Entity type and entity instance are two important terms related to entities. An entity type is a set

of objects which share common properties. An entity type could be employee or student or teacher.

The Database Design consists of three components:

i. Conceptual Design

ii. Data Modeling (Entity-Relationship Diagrams and Normalization)

iii. Physical Design and Implementation.

The scope of E-R model includes:

 Entity and entity sets and reducing E-R diagram to tables

 Relationship and relationship sets

 Attributes

 Mapping Constraints

 Keys

 Primary keys for relationship sets

 Entity relationship diagrams

 Representation of strong entity sets

 Representation of weak entity sets

 Representation of relationship sets

 Generalization

 Aggregation

E-NOTES / CS & BCA

34 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

2.2. THE ENTITY RELATIONSHIP MODEL

E-R diagram is the short form of “Entity-Relationship” diagram. An E-R diagram efficiently shows

the relationships between various entities stored in a database. E-R diagrams are used to model

real-world objects like a person, a car, a company etc. and the relation between these real-world

objects.

An E-R diagram has following features:

 E-R diagrams are used to represent E-R model in a database, which makes them easy to be

converted into relations (tables).

 E-R diagrams provide the purpose of real-world modeling of objects which makes them

intently useful.

 E-R diagrams require no technical knowledge & no hardware support.

 These diagrams are very easy to understand and easy to create even by a naive user.

 It gives a standard solution of visualizing the data logically.

E-NOTES / CS & BCA

35 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

2.2.1. COMPONENTS OF AN E-R DIAGRAM

An E-R diagram constitutes of following Components

A. Entity:- Any real-world object can be represented as an entity about which data can be stored

in a database. All the real world objects like a book, an organization, a product, a car, a person are

the examples of an entity.

Any living or non-living objects can be represented by an entity. An entity is symbolically

represented by a rectangle enclosing its name.

Entities can be characterized into two types:

 Strong entity: A strong entity has a primary key attribute which uniquely identifies each entity.

Symbol of strong entity is same as an entity.

 Weak entity: A weak entity does not have a primary key attribute and

depends on other entity via a foreign key attribute.

B. Attribute:- Each entity has a set of properties. These properties of each entity are termed as

attributes. For example, a car entity would be described by attributes such as price, registration

number, model number, color etc. Attributes are indicated by ovals in an E-R diagram. A primary

key attribute is depicted by an underline in the E-R diagram.

An attribute can be characterized into following types:

Student

Project Allotted Student

car

Model

Number

Registration

Number

Price Color

E-NOTES / CS & BCA

36 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 Simple attribute:- An attribute is classified as a simple attribute if it cannot be partitioned into

smaller components. For example, age and sex of a person. A simple attribute is represented

by an oval.

 Composite attribute:- A composite attribute can be subdivided into smaller components which

further form attributes. For example, ‘name’ attribute of an entity “person” can be broken down

into first name and last name which further form attributes. Grouping of these related attributes

forms a composite attribute. ‘name is the composite attribute in this example.

 Single valued attribute:- If an attribute of a particular entity represents single value for each

instance, then it is called a single-valued attribute. For example, Ramesh, Kamal and Suraj are

the instances of entity ‘student’ and each of them is issued a separate roll number. A single

oval is used to represent this attribute.

 Multi valued attribute:– An attribute which can hold more than one value, it is then termed as

multi-valued attribute. For example, phone number of a person. Symbol of multi-valued

attribute is shown below,

 Derived attribute: A derived attribute calculate its value from another attribute. For example,

‘age’ is a derived attribute if it calculates its value from ‘current date’ & ‘birth date’ attributes.

A derived attribute is represented by a dashed oval.

Sex

First Name

Name

Last Name

Name

Phone

Number

Age

E-NOTES / CS & BCA

37 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

C. Relationships:- A relationship is defined as bond or attachment between 2 or more entities.

Normally, a verb in a sentence signifies a relationship.

For example,

 An employee assigned a project.

 Teacher teaches a student.

 Author writes a book.

A diamond is used to symbolically represent a relationship in the e-r diagram.

2.2.2. VARIOUS TERMS RELATED TO RELATIONSHIPS

a). Degree of relationship:- It signifies the number of entities involved in a relationship. Degree

of a relationship can be classified into following types:

 Unary relationship:- If only single entity is involved in a relationship then it is a unary

relationship. For example, An employee(manager) supervises another employee.

 Binary relationships:- when two entities are associated to form a relation, then it is known

as a binary relationship. For example, A person works in a company. Most of the times we

use only binary relationship in an e-r diagram. The teacher-student example shown above

signifies a binary relationship.

Other types of relationships are ternary and quaternary. As the name signifies, a ternary

relationship is associated with three entities and a quaternary relationship is associated with four

entities.

Teacher Student Teaches

Employee

Supervises

E-NOTES / CS & BCA

38 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

b.) Connectivity of a relationship:- Connectivity of a relationship describes, how many instances

of one entity type are linked to how many instances of another entity type.

Various categories of connectivity of a relationship are:

 One to One (1:1) – “Student allotted a project” signifies a one-to-one relationship because

only one instance of an entity is related with exactly one instance of another entity type.

 One to Many (1:M) – “A department recruits faculty” is a one-to-many relationship

because a department can recruit more than one faculty, but a faculty member is related to

only one department.

 Many to One (M:1) – “Many houses are owned by a person” is a many-to-one relationship

because a person can own many houses but a particular house is owned only a person.

 Many to Many (M:N) – “Author writes books” is a many-to-many relationship because an

author can write many books and a book can be written by many authors.

c) Weak Entity Type and Identifying Relationship:

An entity type has a key attribute which uniquely identifies each entity in the entity set. But there

exists some entity type for which key attribute can’t be defined. These are called Weak Entity

type.

Student Project Allotted

Department Faculty Recruits

Houses Person Owned

Author Books Writes

E-NOTES / CS & BCA

39 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

For example, A company may store the information of dependants (Parents, Children, Spouse) of

an Employee. But the dependents don’t have existence without the employee. So Dependent will

be weak entity type and Employee will be Identifying Entity type for Dependant.

A weak entity type is represented by a double rectangle. The participation of weak entity type is

always total. The relationship between weak entity type and its identifying strong entity type is

called identifying relationship and it is represented by double diamond.

2.3 KEYS

 Keys play an important role in the relational database.

 It is used to uniquely identify any record or row of data from the table. It is also used to

establish and identify relationships between tables.

For example: In Student table, ID is used as a key because it is unique for each student. In

PERSON table, passport_number, license_number, SSN are keys since they are unique for each

person.

2.3.1. TYPES OF KEY

1. Primary key

o It is the first key which is used to identify one and only one instance of an entity uniquely.

An entity can contain multiple keys as we saw in PERSON table. The key which is most

suitable from those lists become a primary key.

o In the EMPLOYEE table, ID can be primary key since it is unique for each employee. In

the EMPLOYEE table, we can even select License_Number and Passport_Number as

primary key since they are also unique.

o For each entity, selection of the primary key is based on requirement and developers.

Author
Books

E-NOTES / CS & BCA

40 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

2. Candidate key

 A candidate key is an attribute or set of an attribute which can uniquely identify a tuple.

 The remaining attributes except for primary key are considered as a candidate key. The

candidate keys are as strong as the primary key.

For example: In the EMPLOYEE table, id is best suited for the primary key. Rest of the attributes

like SSN, Passport_Number, and License_Number, etc. are considered as a candidate key.

3. Super Key

Super key is a set of an attribute which can uniquely identify a tuple. Super key is a superset of a

candidate key.

For example: In the above EMPLOYEE table, for(EMPLOEE_ID, EMPLOYEE_NAME) the

name of two employees can be the same, but their EMPLYEE_ID can't be the same. Hence, this

combination can also be a key.

The super key would be EMPLOYEE-ID, (EMPLOYEE_ID, EMPLOYEE-NAME), etc.

4. Foreign key

 Foreign keys are the column of the table which is used to point to the primary key of

another table.

 In a company, every employee works in a specific department, and employee and

department are two different entities. So we can't store the information of the

department in the employee table. That's why we link these two tables through the

primary key of one table.

 We add the primary key of the DEPARTMENT table, Department_Id as a new attribute

in the EMPLOYEE table.

 Now in the EMPLOYEE table, Department_Id is the foreign key, and both the tables

are related.

E-NOTES / CS & BCA

41 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

REVIEW QUESTIONS

1. What are the major components used in E-R diagram design?

2. How do we represent null values? Discuss the importance of handling null values.

3. How to maintain class hierarchies in ER-Diagrams? Explain with employee database.

4. Explain the following terms:

(i) Entity and entity set.

(ii) Attribute and attribute sets.

(iii)Relationship and relationship sets.

5. Differentiate between primary key and a candidate key.

6. Why foreign key constraints are important? Explain with employee database.

7. What is the difference between a key and a super key?

8. Why do we designate one of the candidate keys of a relation to be the primary key?

9. Discuss the characteristics of relations that make them different from ordinary tables and files.

10. Discuss the various reasons that lead to the occurrence of NULL values in relations.

11. Discuss the entity integrity and referential integrity constraints. Why each is considered

important?

12. Define foreign key. What is this concept used for?

13. How can the key and foreign key constraints be enforced by the DBMS? Is the enforcement

technique you suggest difficult to implement? Can the constraint checks be executed

efficiently when updates are applied to the database?

OBJECTIVE TYPE QUESTIONS

1. The minimal set of super key is called

a) Primary key

b) Secondary key

c) Candidate key

d) Foreign key

2. An entity set that does not have sufficient attributes to form a primary key is a

a) Strong entity set.

b) Weak entity set.

c) Simple entity set.

d) Primary entity set.

3. Minimal Super keys are called

a) Schema keys

b) Candidate keys

c) Domain keys

d) Attribute keys

E-NOTES / CS & BCA

42 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

4. The Primary key must be

a) Non Null

b) Unique

c) Option A or B

d) Option A and B

5. The attribute that can be divided into other attributes is called

a) Simple Attribute

b) Composite Attribute

c) Multi-valued Attribute

d) Derived Attribute

6. In an Entity-Relationship Diagram “Ellipses” represents

a) Attributes

b) Weak entity set

c) Relationship sets

d) Multi-valued attributes

7. In an Entity-Relationship Diagram “Diamonds” represents

a) Attributes

b) Multi-valued attributes

c) Weak entity set

d) Relationship sets

8. Which of the following in true regarding Referential Integrity?

a) Every primary-key value must match a primary-key value in an associated table

b) Every primary-key value must match a foreign-key value in an associated table

c) Every foreign-key value must match a primary-key value in an associated table

d) Every foreign-key value must match a foreign-key value in an associated table

9. How many types of keys in Database Design?

a) Candidate key

b) Primary key

c) Foreign key

d) All of these

10. An entity type whose existence depends on another entity type is called a entity.

a) Strong

b) Weak

c) Codependent

d) Independent

11. Key to represent relationship between tables is called

a) Primary key

b) Secondary

c) Foreign Key

d) None of these

12. When converting one (1) to many (N) binary relationship into tables, the recommended

solution is usually

a) One big table with all attributes from both entities included

b) Foreign key added on the Child (many side) referencing the parent

c) Foreign key added on the Parent (one side) referencing the child

d) Foreign key added on both sides (both tables)

E-NOTES / CS & BCA

43 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

13. The relational model feature is that there

a) Is no need for primary key data.

b) Is much more data independence than some other database models.

c) Are explicit relationships among records.

d) Are tables with many dimensions.

14. Conceptual design

a) Is a documentation technique.

b) Needs data volume and processing frequencies to determine the size of the database.

c) Involves modelling independent of the DBMS.

d) Is designing the relational model.

15. The method in which records are physically stored in a specified order according to a

key field in each record is

a) Hash.

b) Direct.

c) Sequential.

d) All of the above

16. A subschema expresses

a) the logical view.

b) the physical view.

c) the external view.

d) all of the above.

KEYS

 1-c, 2-b, 3-b, 4-d, 5-b, 6-a, 7-d, 8-c, 9-d, 10-b, 11-c, 12-b, 13-b, 14-c, 15-a, 16-c.

E-NOTES / CS & BCA

44 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

CHAPTER – 3 : DATA MODELS

3.1. INTRODUCTION

A Database model defines the logical design and structure of a database and defines how data will

be stored, accessed and updated in a database management system. While the Relational Model is

the most widely used database model, there are other models too:

3.2. TYPES OF DATA MODELS

i. Relational Model

ii. Entity-relationship Model

iii. Hierarchical Model

iv. Network Model

i. RELATIONAL MODEL

In this model, data is organised in two-dimensional tables and the relationship is maintained by

storing a common field. This model was introduced by E.F Codd in 1970, and since then it has

E-NOTES / CS & BCA

45 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

been the most widely used database model, infact, we can say the only database model used around

the world.

The basic structure of data in the relational model is tables. All the information related to a

particular type is stored in rows of that table. Hence, tables are also known as relations in

relational model.

CODD’S 12 RULES FOR RELAIONAL DATABASE

Dr Edgar F. Codd, after his extensive research on the Relational Model of database systems, came

up with twelve rules of his own, which according to him, a database must obey in order to be

regarded as a true relational database.

These rules can be applied on any database system that manages stored data using only its

relational capabilities. This is a foundation rule, which acts as a base for all the other rules.

RULE 1: INFORMATION RULE

The data stored in a database, may it be user data or metadata, must be a value of some table cell.

Everything in a database must be stored in a table format.

RULE 2: GUARANTEED ACCESS RULE

Every single data element (value) is guaranteed to be accessible logically with a combination of

table-name, primary-key (row value), and attribute-name (column value). No other means, such

as pointers, can be used to access data.

RULE 3: SYSTEMATIC TREATMENT OF NULL VALUES

The NULL values in a database must be given a systematic and uniform treatment. This is a very

important rule because a NULL can be interpreted as one the following − data is missing, data is

not known, or data is not applicable.

E-NOTES / CS & BCA

46 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

RULE 4: ACTIVE ONLINE CATALOG

The structure description of the entire database must be stored in an online catalog, known as data

dictionary, which can be accessed by authorized users. Users can use the same query language

to access the catalog which they use to access the database itself.

RULE 5: COMPREHENSIVE DATA SUB-LANGUAGE RULE

A database can only be accessed using a language having linear syntax that supports data

definition, data manipulation, and transaction management operations. This language can be used

directly or by means of some application. If the database allows access to data without any help

of this language, then it is considered as a violation.

RULE 6: VIEW UPDATING RULE

All the views of a database, which can theoretically be updated, must also be updatable by the

system.

RULE 7: HIGH-LEVEL INSERT, UPDATE, AND DELETE RULE

A database must support high-level insertion, updation, and deletion. This must not be limited to

a single row, that is, it must also support union, intersection and minus operations to yield sets of

data records.

RULE 8: PHYSICAL DATA INDEPENDENCE

The data stored in a database must be independent of the applications that access the database.

Any change in the physical structure of a database must not have any impact on how the data is

being accessed by external applications.

RULE 9: LOGICAL DATA INDEPENDENCE

The logical data in a database must be independent of its user’s view (application). Any change

in logical data must not affect the applications using it. For example, if two tables are merged or

E-NOTES / CS & BCA

47 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

one is split into two different tables, there should be no impact or change on the user application.

This is one of the most difficult rule to apply.

RULE 10: INTEGRITY INDEPENDENCE

A database must be independent of the application that uses it. All its integrity constraints can be

independently modified without the need of any change in the application. This rule makes a

database independent of the front-end application and its interface.

RULE 11: DISTRIBUTION INDEPENDENCE

The end-user must not be able to see that the data is distributed over various locations. Users

should always get the impression that the data is located at one site only. This rule has been

regarded as the foundation of distributed database systems.

RULE 12: NON-SUBVERSION RULE

If a system has an interface that provides access to low-level records, then the interface must not

be able to subvert the system and bypass security and integrity constraints

ii.ENTITY-RELATIONSHIP MODEL

In this database model, relationships are created by dividing object of interest into entity and its

characteristics into attributes. Different Entities are related using relationships. E-R Models are

defined to represent the relationships into pictorial form to make it easier for different stakeholders

to understand.

E-NOTES / CS & BCA

48 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

This model is good to design a database, which can then be turned into tables in relational

model(explained below). Let's take an example, If we have to design a School Database,

then Student will be an entity with attributes name, age, address etc. As Address is generally

complex, it can be another entity with attributes street name, pincode, city etc, and there will be

a relationship between them.

iii.HIERARCHICAL MODEL

This database model organizes data into a tree-like-structure, with a single root, to which

all the other data is linked. The hierarchy starts from the Root data, and expands like a tree,

adding child nodes to the parent nodes. In this model, a child node will only have a single

parent node. This model efficiently describes many real-world relationships like index of

a book, recipes etc.

In hierarchical model, data is organized into tree-like structure with one one-to-many relationship

between two different types of data, for example, one department can have many courses, many

professors and of-course many students.

E-NOTES / CS & BCA

49 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

iv.NETWORK MODEL

This is an extension of the Hierarchical model. In this model data is organised more like a graph,

and are allowed to have more than one parent node.

In this database model data is more related as more relationships are established in this database

model. Also, as the data is more related, hence accessing the data is also easier and fast. This

database model was used to map many-to-many data relationships.

This was the most widely used database model, before Relational Model was introduced.

REVIEW QUESTIONS

1. What is Data modeling? Explain relational model.

2. Explain about Entity-Relationship model with an example.

3. Consider the following set of requirements for a UNIVERSITY database that is used to keep

track of students’ transcripts. This is similar but not identical to the database shown in

Figure 1:

a. The university keeps track of each student’s name, student number, Social Security

number, current address and phone number, permanent address and phone number,

birth date, sex, class (freshman, sophomore, ..., graduate), major department, minor

department (if any), and degree program (B.A., B.S., ..., Ph.D.). Some user applications

need to refer to the city, state, and ZIP Code of the student’s permanent address and to

the student’s last name. Both Social Security number and student number have unique

values for each student.

E-NOTES / CS & BCA

50 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Figure 1:

E-NOTES / CS & BCA

51 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

b. Each department is described by a name, department code, office number, office phone

number, and college. Both name and code have unique values for each department.

c. Each course has a course name, description, course number, number of semester hours,

level, and offering department. The value of the course number is unique for each

course.

d. Each section has an instructor, semester, year, course, and section number. The section

number distinguishes sections of the same course that are taught during the same

semester/year; its values are 1, 2, 3, ..., up to the number of sections taught during each

semester.

e. A grade report has a student, section, letter grade, and numeric grade (0, 1, 2, 3, or 4).

Design an ER schema for this application, and draw an ER diagram for the schema. Specify

key attributes of each entity type, and structural constraints on each relationship type. Note any

unspecified requirements, and make appropriate assumptions to make the specification

complete.

4. A database is being constructed to keep track of the teams and games of a sports league. A

team has a number of players, not all of whom participate in each game. It is desired to keep

track of the players participating in each game for each team, the positions they played in that

game, and the result of the game. Design an ER schema diagram for this application, stating

any assumptions you make. Choose your favorite sport (e.g., soccer, baseball, football).

OBJECTIVE TYPE QUESTIONS

1. Which of the following is a Data Model?

a) Entity-Relationship model b) Relational data model

c) Object-Based data model d) All of the above

2. Who proposed the relational model?

a) Bill Gates

b) E.F. Codd

c) Herman Hollerith

d) Charles Babbage

E-NOTES / CS & BCA

52 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

3. In an E-R diagram attributes are represented by

a) Rectangle.

b) Square.

c) Ellipse.

d) Triangle.

4. E-R model uses this symbol to represent weak entity set ?

a) Dotted rectangle.

b) Diamond

c) Doubly outlined rectangle

d) None of these

5. SET concept is used in :

a) Network Model

b) Hierarchical Model

c) Relational Model

d) None of these

6. Which of the following is record based logical model?

a) Network Model

b) Object oriented model

c) E-R Model

d) None of these

KEYS

1-d, 2-b, 3-c, 4-c, 5-a, 6-a.

E-NOTES / CS & BCA

53 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

UNIT – II

CHAPTER 4: RELATIONAL ALGEBRA

4.1. INTRODUCTION

Relational algebra is a procedural query language. It gives a step by step process to obtain the

result of the query. It uses operators to perform queries. It collects instances of relations as input

and gives occurrences of relations as output. It uses various operations to perform this action.

Relational algebra operations are performed recursively on a relation. The output of these

operations is a new relation, which might be formed from one or more input

 A relational database consists of a collection of tables, each having a

unique name.A row in a table represents a relationship among a set of values.Thus a table

represents a collection of relationships.

 There is a direct correspondence between the concept of a table and the mathematical

concept of a relation. A substantial theory has been developed for relational databases.

 Procedural language

 Six basic operators

1. select:

2. project:

3. union:

4. set difference: –

5. Cartesian product: x

6. rename:

The operators take one or two relations as inputs and produce a new relation as a result

E-NOTES / CS & BCA

54 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

4.2. STRUCTURE OF RELATIONAL DATABASES

 4.2.1. SELECT OPERATION

The SELECT operation is used for selecting a subset of the tuples according to a given selection

condition. Sigma(σ)Symbol denotes it. It is used as an expression to choose tuples which meet the

selection condition. Select operation selects tuples that satisfy a given predicate.

Notation: σ p(r)

Where:

σ is used for selection prediction.

r is used for relation.

p is used as a propositional logic formula which may use connectors like: AND OR and

NOT. These relational can use as relational operators like =, ≠, ≥, <, >, ≤.

For example: LOAN Relation

BRANCH_NAME LOAN_NO AMOUNT

Trichy L-17 1000

Salem L-23 2000

Vellore L-15 1500

Trichy L-14 1500

Erode L-13 500

E-NOTES / CS & BCA

55 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Madurai L-11 900

Vellore L-16 1300

QUERY:σ BRANCH_NAME="Vellore" (LOAN)

OUTPUT:

BRANCH_NAME LOAN_NO AMOUNT

Vellore L-15 1500

Vellore L-16 1300

4.2.2. PROJECT OPERATION

The projection eliminates all attributes of the input relation but those mentioned in the projection

list. The projection method defines a relation that contains a vertical subset of Relation.

This helps to extract the values of specified attributes to eliminate duplicate values. (Pi) The

symbol used to choose attributes from a relation. This operation helps you to keep specific columns

from a relation and discards the other columns.

 This operation shows the list of those attributes that we wish to appear in the result. Rest

of the Project Operation: attributes are eliminated from the table.

 It is denoted by ∏.

Notation: ∏ A1, A2, An (r)

Where

A1, A2, A3 is used as an attribute name of relation r.

Example: CUSTOMER RELATION

NAME STREET CITY

Selvam Main Chennai

Kumar North Harur

E-NOTES / CS & BCA

56 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Hari Main Chennai

Kavin North Harur

Jothi Alma Coimbatore

Balaji Senator Coimbatore

QUERY:∏ NAME, CITY (CUSTOMER)

OUTPUT:

4.2.3. UNION OPERATION

Union operation in relational algebra is same as union operation in set theory, only constraint is

for union of two relation both relation must have same set of Attributes.

 Suppose there are two tuples R and S. The union operation contains all the tuples that are

either in R or S or both in R & S.

 It eliminates the duplicate tuples. It is denoted by ∪.

Notation: R ∪ S

A union operation must hold the following condition:

 R and S must have the attribute of the same number.

 Duplicate tuples are eliminated automatically.

NAME CITY

Selvam Chennai

Kumar Harur

Hari Chennai

Kavin Harur

Jothi Coimbatore

Balaji Coimbatore

E-NOTES / CS & BCA

57 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Example:DEPOSITOR RELATION

CUSTOMER_NAME ACCOUNT_NO

Jothi A-101

Kumar A-121

Hari A-321

Tamil A-176

Jothi A-273

Selvam A-472

Arun A-284

BORROW RELATION

CUSTOMER_NAME LOAN_NO

Selvam L-17

Kumar L-23

Hari L-15

Jeni L-14

Kavin L-93

Kumar L-11

Suman L-17

QUERY:∏ CUSTOMER_NAME (BORROW) ∪ ∏ CUSTOMER_NAME (DEPOSITOR)

E-NOTES / CS & BCA

58 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

OUTPUT:

CUSTOMER_NAME

Jothi

Kumar

Hari

Tamil

Selvam

Lindsay

Jeni

Kavin

Suman

Mayes

4.2.4. SET INTERSECTION

 Suppose there are two tuples R and S. The set intersection operation contains all tuples that

are in both R & S.

 It is denoted by intersection ∩.

Notation: R ∩ S

Example: Using the above DEPOSITOR table and BORROW table

QUERY:∏ CUSTOMER_NAME (BORROW) ∩ ∏ CUSTOMER_NAME (DEPOSITOR)

OUTPUT:

CUSTOMER_NAME

Kumar

Selvam

4.2.5. SET DIFFERENCE

 Suppose there are two tuples R and S. The set intersection operation contains all tuples that

are in R but not in S.

E-NOTES / CS & BCA

59 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 It is denoted by intersection minus (-).

Notation: R - S

Example: Using the above DEPOSITOR table and BORROW table

QUERY:∏ CUSTOMER_NAME (BORROW) - ∏ CUSTOMER_NAME (DEPOSITOR)

OUTPUT:

CUSTOMER_NAME

Jeni

Hari

Suman

Kavin

4.2.6. CARTESIAN PRODUCT

 The Cartesian product is used to combine each row in one table with each row in the other

table. It is also known as a cross product.

 It is denoted by X.

Notation: E X D

Example:EMPLOYEE RELATION DEPARTMENT RELATION

QUERY:EMPLOYEE X DEPARTMENT

OUTPUT:

EMP_ID EMP_NAME EMP_DEPT

1 Kumar A

2 Hari C

3 John B

DEPT_NO DEPT_NAME

A Marketing

B Sales

C Legal

E-NOTES / CS & BCA

60 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

EMP_ID EMP_NAME EMP_DEPT DEPT_NO DEPT_NAME

1 Kumar A A Marketing

1 Kumar A B Sales

1 Kumar A C Legal

2 Hari C A Marketing

2 Hari C B Sales

2 Hari C C Legal

3 John B A Marketing

3 John B B Sales

3 John B C Legal

4.2.7. RENAME OPERATION

The rename operation is used to rename the output relation. It is denoted by rho (ρ).

Example: We can use the rename operator to rename STUDENT relation to STUDENT1.

ρ(STUDENT1, STUDENT)

4.3. FUNDAMENTAL RELATIONAL ALGEBRA OPERATIONS

4.3.1. JOIN OPERATIONS

A Join operation combines related tuples from different relations, if and only if a given join

condition is satisfied. It is denoted by ⋈.

Example:EMPLOYEE RELATION

E-NOTES / CS & BCA

61 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

EMP_CODE EMP_NAME

101 Kumar

102 Jeni

103 Hari

SALARY RELATION

EMP_CODE SALARY

101 50000

102 30000

103 25000

QUERY: (EMPLOYEE ⋈ SALARY)

OUTPUT:

EMP_CODE EMP_NAME SALARY

101 Kumar 50000

102 Jeni 30000

103 Hari 25000

E-NOTES / CS & BCA

62 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

4.3.2. TYPES OF JOIN OPERATIONS

(A) NATURAL JOIN

 A natural join is the set of tuples of all combinations in R and S that are equal on their

common attribute names.

 It is denoted by ⋈.

Example: Let's use the above EMPLOYEE table and SALARY table:

QUERY: ∏EMP_NAME, SALARY (EMPLOYEE ⋈ SALARY)

OUTPUT:

EMP_NAME SALARY

Kumar 50000

Jeni 30000

Hari 25000

(B) OUTER JOIN

The outer join operation is an extension of the join operation. It is used to deal with missing

information. An extension of the join operation that avoids loss of information.

E-NOTES / CS & BCA

63 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Computes the join and then adds tuples form one relation that does not match tuples in the

other relation to the result of the join.

Uses null values:

 null signifies that the value is unknown or does not exist

 All comparisons involving null are (roughly speaking) false by definition.

 We shall study precise meaning of comparisons with nulls later

Example:EMPLOYEE

EMP_NAME STREET CITY

Ram Civil line Mumbai

Shyam Park street Kolkata

Ravi M.G. Street Delhi

Hari Nehru nagar Hyderabad

FACT_WORKERS

EMP_NAME BRANCH SALARY

Ram Infosys 10000

Shyam Wipro 20000

Kuber HCL 30000

Hari TCS 50000

QUERY:(EMPLOYEE ⋈ FACT_WORKERS)

OUTPUT:

EMP_NAME STREET CITY BRANCH SALARY

E-NOTES / CS & BCA

64 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Ram Civil line Mumbai Infosys 10000

Shyam Park street Kolkata Wipro 20000

Hari Nehru nagar Hyderabad TCS 50000

An outer join is basically of three types:

a. Left outer join

b. Right outer join

c. Full outer join

a. Left outer join:

 Left outer join contains the set of tuples of all combinations in R and S that are equal on

their common attribute names.

 In the left outer join, tuples in R have no matching tuples in S.

 It is denoted by ⟕.

Example: Using the above EMPLOYEE table and FACT_WORKERS table

QUERY:EMPLOYEE ⟕ FACT_WORKERS

OUTPUT:

EMP_NAME STREET CITY BRANCH SALARY

Ram Civil line Mumbai Infosys 10000

Shyam Park street Kolkata Wipro 20000

Hari Nehru street Hyderabad TCS 50000

Ravi M.G. Street Delhi NULL NULL

E-NOTES / CS & BCA

65 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

b. Right outer join:

 Right outer join contains the set of tuples of all combinations in R and S that are equal on

their common attribute names.

 In right outer join, tuples in S have no matching tuples in R.

 It is denoted by ⟖.

Example: Using the above EMPLOYEE table and FACT_WORKERS Relation

QUERY:EMPLOYEE ⟖ FACT_WORKERS

OUTPUT:

EMP_NAME BRANCH SALARY STREET CITY

Ram Infosys 10000 Civil line Mumbai

Shyam Wipro 20000 Park street Kolkata

Hari TCS 50000 Nehru street Hyderabad

Kuber HCL 30000 NULL NULL

c. Full outer join:

 Full outer join is like a left or right join except that it contains all rows from both tables.

 In full outer join, tuples in R that have no matching tuples in S and tuples in S that have no

matching tuples in R in their common attribute name.

 It is denoted by ⟗.

Example: Using the above EMPLOYEE table and FACT_WORKERS table

QUERY:EMPLOYEE ⟗ FACT_WORKERS

E-NOTES / CS & BCA

66 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

OUTPUT:

EMP_NAME STREET CITY BRANCH SALARY

Ram Civil line Mumbai Infosys 10000

Shyam Park street Kolkata Wipro 20000

Hari Nehru street Hyderabad TCS 50000

Ravi M.G. Street Delhi NULL NULL

Kuber NULL NULL HCL 30000

(C) Equi join:

It is also known as an inner join. It is the most common join. It is based on matched data as per the

equality condition. The equi join uses the comparison operator(=).

Example:CUSTOMER RELATION

CLASS_ID NAME

1 John

2 Hari

3 Jeni

PRODUCT

PRODUCT_ID CITY

1 Delhi

2 Mumbai

3 Noida

QUERY:CUSTOMER ⋈ PRODUCT

E-NOTES / CS & BCA

67 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

OUTPUT:

CLASS_ID NAME PRODUCT_ID CITY

1 John 1 Delhi

2 Hari 2 Mumbai

3 Hari 3 Noida

4.4. ADDITIONAL RELATIONAL ALGEBRA OPERATIONS

 “Additional operations” refer to relational algebra operations that can be expressed in

terms of the fundamentals — select, project, union, set-difference, cartesian-product, and

rename.

 The compositions of these operations are so lengthy, yet so common, that we define new

operations for them, based on the fundamentals.

4.4.1. SET-INTERSECTION

The set-intersection operation is a binary operation on relations r and s that is denoted by

the traditional intersection symbol, ∩. r ∩ s results in all tuples t such that (t ∈ r) ∧ (t ∈ s).

Set-intersection is defined in terms of set-difference:

r ∩ s = r − (r − s)

Thus, set-intersection must follow the same compatibility rules as set-difference: same

arity, corresponding domains.

4.4.2. THETA JOIN

 One can generalize the natural-join operation into a theta join, so named because

instead of the specific “attribute-matching” condition involved in natural-join, we allow θ

to be any predicate on the attributes in R ∪ S for r(R) and s(S).

Thus, we have r ./θ s, defined as

E-NOTES / CS & BCA

68 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

r ./θ s = σθ(r × s)

4.5. EXTENDED RELATIONAL ALGEBRA OPERATIONS

While they are technically “extensions” to the algebra, they still follow the mathematical

rigor and precision that allow us to draw sweeping and powerful conclusions from simpler

concepts.

4.5.1. GENERALIZED PROJECTION

The generalized-projection operation extends the fundamental projection operation by

allowing arithmetic (or, in the most general case, overall transformative) functions in the

projection’s attribute list. It is still denoted with Π, but now the straight-up attribute list A

has changed into an expression list F1, F2, . . . ,Fn

ΠF1,F2,... ,Fn (E)

E is any relational algebra expression, which is of course a relation. Fk may be any

expression involving constant values and the attributes of E’s resultant relation schema.

4.6. NULL VALUES

The outer-join operations bring the notion of null values into the relational algebra.

n reality, there are a lot of plausible approaches for handling null. If we stick to the

definition of null as an unknown or non-existent value, we can establish the following:

Any arithmetic operations involving null must return null.

Comparing anything to null really doesn’t have much meaning, so we create a new

“boolean value” in this case — unknown, meaning that we really can’t say whether a

comparison to null is true or false.

E-NOTES / CS & BCA

69 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

By defining the new boolean value unknown, we need to determine how unknown interacts

with the other boolean values, true and false, in terms of the Boolean operations ∧, ∨, and

¬.

4.7. MODIFICATION OF THE DATABASE

So far, all of the operations that we have discussed “derive” new relations from others, but

don’t actually modify or alter the original relations. How does one specify operations that

change relations “in place?”

The general guideline is to use the assignment operator, but to make assignments to existing

relations instead of designating new temporary variables.

4.7.1. DELETION

 Deletion of tuples is effectively a set-difference operation that is “permanent.” Thus, we

can write deletion as:

 r ← r – E

 E in this case is any relational algebra expression that determines the tuples that are to

be removed from r.

4.7.2. INSERTION

Similarly to deletion, insertion of tuples can be viewed as a union operation that is made

permanent. Thus, insertion is:

r ← r ∪ E

E once more is a relational algebra expression that determines the tuples to be setunioned

with (thus “inserted into”) r.

4.7.3. UPDATION

An update modification changes one or more values within a tuple. Once more, we find

that updating is just a persistent version of another relational operation, this time

generalized projection: r ← ΠF1,F2, ... ,Fn (r).

E-NOTES / CS & BCA

70 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

4.8. TUPLE RELATIONAL CALCULUS

 Tuple Relational Calculus is a non-procedural query language unlike relational algebra.

Tuple Calculus provides only the description of the query but it does not provide the

methods to solve it. Thus, it explains what to do but not how to do.

In Tuple Calculus, a query is expressed as

{t| P(t)}

where t = resulting tuples,

P(t) = known as Predicate and these are the conditions that are used to fetch t

Thus, it generates set of all tuples t, such that Predicate P(t) is true for t.

P(t) may have various conditions logically combined with OR (∨), AND (∧), NOT(¬).

It also uses quantifiers:

∃ t ∈ r (Q(t)) = ”there exists” a tuple in t in relation r such that predicate Q(t) is true.

∀ t ∈ r (Q(t)) = Q(t) is true “for all” tuples in relation r.

Example:

Table-1: Customer

CUSTOMER NAME STREET CITY

Ram
Gandhi

Street
Vellore

Vijay New Street Chennai

Chitra
Gandhi

Street
Chennai

Ravi Bazar Street Bangalore

E-NOTES / CS & BCA

71 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Table-2: Branch

BRANCH NAME BRANCH CITY

Main Bangalore

Bazar Vellore

Market Chennai

Table-3: Account

ACCOUNT NUMBER BRANCH NAME BALANCE

1111 Main 50000

1112 Bazar 10000

1113 Market 9000

1114 Main 7000

Table-4: Loan

LOAN NUMBER BRANCH NAME AMOUNT

L33 Main 10000

L35 Bazar 15000

L49 Market 9000

L98 Main 65000

E-NOTES / CS & BCA

72 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Find the loan number, branch, amount of loans of greater than or equal to 10000 amount.

{t| t ∈ loan ∧ t[amount]>=10000}

OUTPUT:

LOAN NUMBER BRANCH NAME AMOUNT

L33 Main 10000

L35 Bazar 15000

L98 Main 65000

4.9. DOMAIN RELATIONAL CALCULUS

 Domain Relational Calculus is a non-procedural query language equivalent in power

to Tuple Relational Calculus. Domain Relational Calculus provides only the description of

the query but it does not provide the methods to solve it. In Domain Relational Calculus, a

query is expressed as,

{ < x1, x2, x3, ..., xn > | P (x1, x2, x3, ..., xn) }

where, < x1, x2, x3, …, xn > represents resulting domains variables and P (x1, x2, x3, …, xn)

represents the condition or formula equivalent to the Predicate calculus.

Predicate Calculus Formula:

1. Set of all comparison operators

2. Set of connectives like and, or, not

3. Set of quantifiers

Example:

E-NOTES / CS & BCA

73 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Table-1: Customer

CUSTOMER NAME STREET CITY

Ram Gandhi Street Vellore

Vijay New Street Chennai

Chitra Gandhi Street Chennai

Ravi Bazar Street Bangalore

Table-2: Loan

LOAN NUMBER BRANCH NAME AMOUNT

L33 Main 10000

L35 Bazar 15000

L49 Market 9000

L98 Main 65000

Table-3: Borrower

CUSTOMER NAME LOAN NUMBER

Ramu L01

Divya L08

Sowmya L03

 Find the loan number, branch, amount of loans of greater than or equal to 100 amount.

{≺l, b, a≻ | ≺l, b, a≻ ∈ loan ∧ (a > 100)}

E-NOTES / CS & BCA

74 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

OUTPUT

LOAN NUMBER BRANCH NAME

L01 Main

L03 Main

L10 Sub

REVIEW QUESTIONS

1. Discuss the various types of inner join operations. Why is theta join required?

2. What role does the concept of foreign key play when specifying the most common types of

meaningful join operations?

3. What is a join? Discuss different types of joins.

4. In what sense does relational calculus differ from relational algebra, and in what sense are they

similar?

5. Why are tuples in a relation not ordered?

6. Why are duplicate tuples not allowed in a relation?

7. How does tuple relational calculus differ from domain relational calculus?

8. Discuss the meanings of the existential quantifier (∃) and the universal quantifier (∀).

9. Define the following terms with respect to the tuple calculus: tuple variable, range relation,

atom, formula, and expression.

10. Define the following terms with respect to the domain calculus: domain variable, range

relation, atom, formula, and expression.

11. What is meant by a safe expression in relational calculus?

12. When a query language is called relationally complete?

E-NOTES / CS & BCA

75 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

13. Consider the AIRLINE relational database schema shown in Figure 2. Specify the following

queries in relational algebra:

a. For each flight, list the flight number, the departure airport for the first leg of the flight, and

the arrival airport for the last leg of the flight.

Figure 2:

E-NOTES / CS & BCA

76 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

b. List the flight numbers and weekdays of all flights or flight legs that depart from Houston

Intercontinental Airport (airport code ‘IAH’) and arrive in Los Angeles International Airport

(airport code ‘LAX’).

c. List the flight number, departure airport code, scheduled departure time, arrival airport code,

scheduled arrival time, and weekdays of all flights or flight legs that depart from some airport

in the city of Houston and arrive at some airport in the city of Los Angeles.

d. List all fare information for flight number ‘CO197’.

b. Retrieve the number of available seats for flight number ‘CO197’ on ‘2009-10-09’.

Figure 3:

E-NOTES / CS & BCA

77 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

14. Consider the LIBRARY relational database schema shown in Figure 3. which is used to keep

track of books, borrowers, and book loans. Referential integrity constraints are shown as

directed arcs in Figure 3. Write down relational expressions for the following queries:

a. How many copies of the book titled The Lost Tribe are owned by the library branch whose

name is ‘Sharpstown’?

b. How many copies of the book titled The Lost Tribe are owned by each library branch?

c. Retrieve the names of all borrowers who do not have any books checked out.

d. For each book that is loaned out from the Sharpstown branch and whose Due_date is today,

retrieve the book title, the borrower’s name, and the borrower’s address.

e. For each library branch, retrieve the branch name and the total number of books loaned out

from that branch. A relational database schema for a LIBRARY database.

f. Retrieve the names, addresses, and number of books checked out for all borrowers who

have more than five books checked out.

g. For each book authored (or coauthored) by Stephen King, retrieve the title and the number

of copies owned by the library branch whose name is Central.

15. Suppose that each of the following Update operations is applied directly to the database

state shown in Figure 3. Discuss all integrity constraints violated by each operation, if any,

and the different ways of enforcing these constraints.

a. Insert <‘Robert’, ‘F’, ‘Scott’, ‘943775543’, ‘1972-06-21’, ‘2365 Newcastle Rd,

Bellaire, TX’, M, 58000, ‘888665555’, 1> into EMPLOYEE.

b. Insert <‘ProductA’, 4, ‘Bellaire’, 2> into PROJECT.

c. Insert <‘Production’, 4, ‘943775543’, ‘2007-10-01’> into DEPARTMENT.

d. Insert <‘677678989’, NULL, ‘40.0’> into WORKS_ON.

e. Insert <‘453453453’, ‘John’, ‘M’, ‘1990-12-12’, ‘spouse’> into DEPENDENT.

f. Delete the WORKS_ON tuples with Essn = ‘333445555’.

g. Delete the EMPLOYEE tuple with Ssn = ‘987654321’.

h. Delete the PROJECT tuple with Pname = ‘ProductX’.

E-NOTES / CS & BCA

78 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

i. Modify the Mgr_ssn and Mgr_start_date of the DEPARTMENT tuple with Dnumber

= 5 to ‘123456789’ and ‘2007-10-01’, respectively.

j. Modify the Super_ssn attribute of the EMPLOYEE tuple with Ssn = ‘999887777’ to

“943775543’.

k. Modify the Hours attribute of the WORKS_ON tuple with Essn = ‘999887777’ and

Pno = 10 to ‘5.0’.

16. Consider the AIRLINE relational database schema shown in Figure 2, which describes a

database for airline flight information. Each FLIGHT is identified by a Flight_number, and

consists of one or more FLIGHT_LEGs with Leg_numbers 1, 2, 3, and so on. Each

FLIGHT_LEG has scheduled arrival and departure times, airports, and one or more

LEG_INSTANCEs—one for each Date on which the flight travels. FAREs are kept for each

FLIGHT.

For each FLIGHT_LEG instance, SEAT_RESERVATIONs are kept, as are the AIRPLANE

used on the leg and the actual arrival and departure times and airports. An AIRPLANE is

identified by an Airplane_id and is of a particular AIRPLANE_TYPE. CAN_LAND relates

AIRPLANE_TYPEs to the AIRPORTs at which they can land.

An AIRPORT is identified by an Airport_code. Consider an update for the AIRLINE database

to enter a reservation on a particular flight or flight leg on a given date.

a. Give the operations for this update.

b. What types of constraints would you expect to check?

c. Which of these constraints are key, entity integrity, and referential integrity constraints,

and which are not?

d. Specify all the referential integrity constraints that hold on the schema shown in Figure 2.

17. Consider the relation CLASS(Course#, Univ_Section#, Instructor_name, Semester,

Building_code, Room#, Time_period, Weekdays, Credit_hours). This represents classes

taught in a university, with unique Univ_section#s. Identify what you think should be various

candidate keys, and write in your own words the conditions or assumptions under which each

candidate key would be valid.

E-NOTES / CS & BCA

79 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

18. Consider the following six relations for an order-processing database application in a company:

CUSTOMER(Cust#, Cname, City)

ORDER(Order#, Odate, Cust#, Ord_amt)

ORDER_ITEM(Order#, Item#, Qty)

ITEM(Item#, Unit_price)

SHIPMENT(Order#, Warehouse#, Ship_date)

WAREHOUSE(Warehouse#, City)

Here, Ord_amt refers to total dollar amount of an order; Odate is the date the order was placed;

and Ship_date is the date an order (or part of an order) is shipped from the warehouse. Assume

that an order can be shipped from several warehouses. Specify the foreign keys for this schema,

stating any assumptions you make. What other constraints can you think of for this database?

19. Consider the following relations for a database that keeps track of business trips of salespersons

in a sales office:

SALESPERSON(Ssn, Name, Start_year, Dept_no)

TRIP(Ssn, From_city, To_city, Departure_date, Return_date, Trip_id)

EXPENSE(Trip_id, Account#, Amount)

A trip can be charged to one or more accounts. Specify the foreign keys for this schema, stating

any assumptions you make.

20. Consider the following relations for a database that keeps track of student enrollment in courses

and the books adopted for each course:

STUDENT(Ssn, Name, Major, Bdate)

COURSE(Course#, Cname, Dept)

ENROLL(Ssn, Course#, Quarter, Grade)

BOOK_ADOPTION(Course#, Quarter, Book_isbn)

E-NOTES / CS & BCA

80 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

TEXT(Book_isbn, Book_title, Publisher, Author)

Specify the foreign keys for this schema, stating any assumptions you make.

21. Consider the following relations for a database that keeps track of automobile sales in a car

dealership (OPTION refers to some optional equipment installed on an automobile):

CAR(Serial_no, Model, Manufacturer, Price)

OPTION(Serial_no, Option_name, Price)

SALE(Salesperson_id, Serial_no, Date, Sale_price)

SALESPERSON(Salesperson_id, Name, Phone)

First, specify the foreign keys for this schema, stating any assumptions you make.Next,

populate the relations with a few sample tuples, and then give an example of an insertion in

the SALE and SALESPERSON relations that violates the referential integrity constraints and

of another insertion that does not.

22. Database design often involves decisions about the storage of attributes. For example, a Social

Security number can be stored as one attribute or split into three attributes (one for each of the

three hyphen-delineated groups of numbers in a Social Security number—XXX-XX-XXXX).

However, Social Security numbers are usually represented as just one attribute. The decision

is based on how the database will be used. This exercise asks you to think about specific

situations where dividing the SSN is useful.

23. Consider a STUDENT relation in a UNIVERSITY database with the following attributes

(Name, Ssn, Local_phone, Address, Cell_phone, Age, Gpa). Note that the cell phone may be

from a different city and state (or province) from the local phone. A possible tuple of the

relation is shown below:

Name Ssn Local_phone Address Cell_phone Age Gpa

George Shaw 123-45-6789 555-1234 123 Main St., 555-4321 19 3.75

William Edwards Anytown, CA 94539

E-NOTES / CS & BCA

81 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

a. Identify the critical missing information from the Local_phone and Cell_phone

attributes. (Hint: How do you call someone who lives in a different state or province?)

b. Would you store this additional information in the Local_phone and Cell_phone

attributes or add new attributes to the schema for STUDENT?

c. Consider the Name attribute.What are the advantages and disadvantages of splitting this

field from one attribute into three attributes (first name, middle name, and last name)?

d. What general guideline would you recommend for deciding when to store information in

a single attribute and when to split the information?

e. Suppose the student can have between 0 and 5 phones. Suggest two different designs that

allow this type of information.

24. Recent changes in privacy laws have disallowed organizations from using Social Security

numbers to identify individuals unless certain restrictions are satisfied. As a result, most U.S.

universities cannot use SSNs as primary keys (except for financial data). In practice,

Student_id, a unique identifier assigned to every student, is likely to be used as the primary

key rather than SSN since Student_id can be used throughout the system.

a. Some database designers are reluctant to use generated keys (also known as surrogate keys)

for primary keys (such as Student_id) because they are artificial. Can you propose any

natural choices of keys that can be used to identify the student record in a UNIVERSITY

database?

b. Suppose that you are able to guarantee uniqueness of a natural key that includes last name.

Are you guaranteed that the last name will not change during the lifetime of the database?

If last name can change, what solutions can you propose for creating a primary key that

still includes last name but remains unique?

c. What are the advantages and disadvantages of using generated (surrogate) keys?

E-NOTES / CS & BCA

82 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

OBJECTIVE TYPE QUESTIONS

1. Which of the following represents a relationship among a set of values.

a) A Row
b) A Table

c) A Field

d) A Column

2. Column header is refer as

a) Table

b) Relation
c) Attributes

d) Domain

3. Which algebra is widely used in DBMS?

a) Relational algebra

b) Arithmetic algebra

c) Both

d) None

4. A Relation is a

a) Subset of a Cartesian product of a list of attributes

b) Subset of a Cartesian product of a list of domains

c) Subset of a Cartesian product of a list of tuple

d) Subset of a Cartesian product of a list of relations

5. In mathematical term Table is referred as

a) Relation

b) Attribute

c) Tuple

d) Domain

6. In mathematical term Row is referred as

a) Relation

b) Attribute
c) Tuple

d) Domain

7. Allow us to identify uniquely a tuple in the relation.

a) Super key

b) Domain

c) Attribute

d) Schema

8. Which of the following is Relation-algebra Operation

a) Select

b) Union

c) Rename

d) All of the above

9. Set of premitted values of each attribute is called

a) Domain

b) Tuple

c) Relation

d) Schema

E-NOTES / CS & BCA

83 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

10. In tuple relational calculus P1 ®P2 is equivalent to

a) ¬P1 Ú P2

b) P1 Ú P2

c) P1 Ù P2

d) P1 Ù¬P2

11. Relational Algebra is

a) Data Definition Language .

b) Meta Language

c) Procedural query Language

d) None of the above

12. _______ produces the relation that has attributes of R1 and R2

a) Cartesian product

b) Difference

c) Intersection

d) Product

13. Cartesian product in relational algebra is

a) A Unary operator.

b) A Binary operator.

c) A Ternary operator.

d) Not defined.

14. DML is provided for

a) Description of logical structure of database.

b) Addition of new structures in the database system.

c) Manipulation & processing of database.

d) Definition of physical structure of database system.

15. Which of the following Relational Algebra operations require that both tables (or virtual

tables) involved have the exact same attributes/data types?

a) Join, Projection, Restriction

b) Multiplication and Division

c) Union, Intersection, Minus

d) Minus, Multiplication, Intersection

16. Logical design of database is called

a) Database Instance

b) Database Snapshot

c) Database Schema

d) All of the above

17 The result of the UNION operation between R1 and R2 is a relation that includes

a) All the tuples of R1

b) All the tuples of R2

c) All the tuples of R1 and R2

d) All the tuples of R1 and R2 which have common columns

18. Which of the following is not Unary operation?

a) Select

b) Project

c) Rename

d) Union

E-NOTES / CS & BCA

84 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

19. Which of the following is not binary operation?

a) Union

b) Project

c) Set Difference

d) Cartesian Product

20. Which of the following in not Outer join?

a) Left outer join

b) Right outer join

c) Full outer join

d) All of the above

21. A file manipulation command that extracts some of the records from a file is called

a) SELECT

b) PROJECT

c) JOIN

d) PRODUCT

22. What does the following SQL statement do?

Select * From Customer Where Cust_Type = “Best”;

a) Selects all the fields from the Customer table for each row with a customer labeled “best”

b) Selects the “*” field from the Customer table for each row with a customer labeled “best”

c) Selects fields with a “*” in them from the Customer table

d) Selects all the fields from the Customer table for each row with a customer labeled “*”

23. In an SQL statement, which of the following parts states the conditions for row

selection?

a) Select

b) From

c) Order By

d) Where

24. Cross Product is a:

a) Unary Operator

b) Ternary Operator

c) Binary Operator

d) Not an operator

25. ‘AS’ clause is used in SQL for

a) Selection operation.

b) (B) Rename operation.

c) (C) Join operation.

d) (D) Projection operation

26. Which of the following is correct:

a) SQL query automatically eliminates duplicates.

b) (B)SQL permits attribute names to be repeated in the same relation.

c) SQL query will not work if there are no indexes on the relations

d) (D)None of these

27. Which of the following is a legal expression in SQL?

a) SELECT NULL FROM EMPLOYEE;

b) SELECT NAME FROM EMPLOYEE;

c) SELECT NAME FROM EMPLOYEE WHERE SALARY = NULL;

d) None of the above

E-NOTES / CS & BCA

85 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

28. A set of possible data values is called

a) Attribute.

b) Degree.

c) Tuple.

d) Domain

29. Which of the operations constitute a basic set of operations for manipulating relational

data?

a) Predicate calculus

b) Relational calculus

c) Relational algebra

d) None of the above

KEYS

1-a, 2-c, 3-a, 4-b, 5-a, 6-c, 7-a, 8-d, 9-a, 10-c, 11-c, 12-a, 13-b, 14-c, 15-c,

16-c, 17-d, 18-d, 19-b, 20-d, 21-a, 22-a, 23-d, 24-c, 25-b, 26-d, 27-b, 28-d, 29-c.

E-NOTES / CS & BCA

86 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

UNIT – III

CHAPTER 5: NORMALIZATION

5.1. INTRODUCTION

The process of normalization was first developed by E. F. Codd. Database designed based on E-R

model may have some amount of inconsistency, uncertainty and redundancy.

Normalization is the process of efficiently organizing data in a database. There are two goals of

the normalization process:

 Eliminating redundant data and

 Ensuring data dependencies make sense (only storing related data in a table).

5.2. What is Normalization?

Normalization is defined as a step by step process of decomposing a complex relation into simple

and stable relations.

Advantages of Normalization

 Faster search performance

 Data integrity is easily maintained within the database.

 Reduces data redundancy in a database(So Decreased storage space)

 Remove Insert, Delete, Update anomalies during database activates

 Security is easier to maintain or manage.

Disadvantages of Normalization

 Performance: all the joins required to merge data slow processing & place additional

stress on your hardware.

 Complex queries: developers have to code complex queries in order to merge data from

different tables.

 It is very time consuming and difficult process in normalizing relations of higher degree.

E-NOTES / CS & BCA

87 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

The Normal Forms

The different stages of Normalization are known as “Normal Form”. (It referred to as first normal

form or 1 NF, 2 NF, 3 NF, BCNF, 4 NF and 5 NF (PJNF)). Normalization process is based on

functional dependency.

E-NOTES / CS & BCA

88 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

5.3. FUNCTIONAL DEPENDENCY

A functional dependency (FD) is a constraint between two sets of attributes from the database. A

functional dependency denoted by X Y, between two sets of attributes X and Y that are subsets

of relation R.

It specifies a constraint on the possible tuples that can form a relation instance r of R. The constraint

states that for any two tuples t1 and t2 in r such that t1[X] = t2[Y]. This means that values of the

X component of a tuple uniquely or functionally determine the values of the Y component.

Functional dependency is a term derived from mathematical theory, which states that for every

element in the attribute. For example, given the value of item code, there is only one value of item

name for it. Thus item name is functionally dependent on item code. This is shown as:

Item code -> item name

Functional dependency may also be based on a composite attribute. For example, if we write

{X, Y} -> Z

It means that Z is functionally dependent on composite attribute X and Y.

A functional dependency is a property of the meaning or semantics of the attributes in a relation

schema R. The functional dependencies can denote as,

Name{Ph.No., Major}

Course Prof

{Name, Course} Grade

Where, in the first relation, the attributes Ph.No and Major are functionally dependent on the prime

attribute Name. Alternatively, we can say that the prime attribute Name determined the non prime

attributes Ph.No and Major. Similarly we can now explain the other two relational schemas also.

E-NOTES / CS & BCA

89 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

TYPES OF FUNCTIONAL DEPENDENCY

1. Full functional dependency

2. Partial functional dependency

3. Transitive functional dependency

4. Multi-Valued Dependency

5. Join Dependency

5.3.1. FULL FUNCTIONAL DEPENDENCY

When all non-key attributes are dependent on the key attribute, it is called full functional

dependency. For example, consider the relation schema of an employee,

The term full functional dependency (FFD) is used to indicate the minimum set of attributes in a

determinant of a functional dependency (FD). In other words, the set of attributes X will be fully

functionally dependent on the set of attributes Y if the following conditions are satisfied:

 X is functionally dependent on Y and

 X is not functionally dependent on any subset of Y.

o In relation ASSIGN

FD: {EMP-ID, PROJECT, PROJECT-BUDGET} {YRS-SPENT-BY-EMP-ON

PROJECT}

o The values of EMP-ID, PROJECT and PROJECT-BUDGET determine a unique value of

YRS-SPENT-BY-EMP-ON-PROJECT.

o However, it is not a full functional dependency because neither the EMP-ID YRS-

SPENT-BY-EMP-ON-PROJECT nor the PROJECT YRS-SPENT-B Y-EMP-ON-

PROJECT holds true.

o In fact, it is sufficient to know only the value of a subset of {EMP-ID, PROJECT,

PROJECT-BUDGET), namely, {EMP-ID, PROJECT}, to determine the YRS-SPENT-

BY-EMP-ON-PROJECT.

o Thus, the correct full functional dependency (FFD) can be written as:

 FD: {EMP-ID, PROJECT} {YRS-SPENT-BY-EMP-ON-PROJECT}

E-NOTES / CS & BCA

90 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Relation R1 : BUDGET

 PROJECT PROJECT - BUDGET

P1

P2

P3

P4

P5

P6

INR 100 CR

INR 150 CR

INR 200 CR

INR 100 CR

INR 150 CR

INR 300 CR

Relation R2: ASSIGN

EMP – NO PROJECT

YRS – SPENT

BY EMP-ON-

PROJECT

106519

112233

106519

123243

106519

111222

P1

P3

P2

P4

P3

P1

5

2

5

10

3

4

E-NOTES / CS & BCA

91 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

5.3.2. PARTIAL DEPENDENCY

 A functional dependency X -> Y is a partial dependency if some attributes A -> X can be removed

from X and the dependency still holds. It means that all non-key attributes are not dependent on

the key attribute. There is a partial dependency of non-key attributes either on the key attribute or

on the non-key attribute.

5.3.3. TRANSITIVE DEPENDENCY

A functional dependency X -> Y in a relation R is a transitive dependency if there is a set of

attributes Z that is not a subset of any key of R and both X -> Z and Z -> Y hold. In general

sense we can say that if A, B, C are three attributes in a table, and if A is related to B and B is

related to C, then A is indirectly related to C.

E-NOTES / CS & BCA

92 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

In the above figure, DNO is dependent on key attribute ENO and DNAME is dependent on DNO

which we can denote as,

ENO ->{ENAME, ADDR, BDATE, DNO}

DNO -> DNAME

From the above dependencies we can say that DNAME is indirectly related to key attribute

ENO. So, DNAME is transitively dependent on ENO.

5.3.4. MULTI-VALUED DEPENDENCY

Let R be a relational variable and A, B and C are subsets of the attributes of R. Then we say that

B is multi-dependent on A. Symbolically, it can be denoted as,

A ->-> B and read as A multi-determines B

Multi-valued dependencies are a generalization of functional dependencies, in the sense that

every functional dependency is an multi-valued dependency. But the converse is not true

5.3.5. JOIN DEPENDENCY

Join dependency is a constraint, similar to a Functional dependency or a Multi-valued dependency.

It is satisfies if and only if the relation concerned is the join of certain number of projections. The

definition is if R be a relational variable, and A, B,, Z are subsets of attributes of R, then R

satisfies the Join Dependency that is denoted a,

* {A, B,, Z} and read as star A, B,, Z

5.4. NORMAL FORMS

5.4.1. FIRST NORMAL FORM (1 NF)

DEFINITION

A relation is in 1NF if and only if all underlying domains contain scalar values only.

PURPOSE

The purpose of this Normal form is to ensure that a table does not contain any multi-part or multi-

valued fields, and that each field holds only a single value for any given record.

E-NOTES / CS & BCA

93 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 The objective of first normal form is that the table should contain no repeating groups of

data.

 Data is divided into logical units called entities or tables (Note: when each entity has been

designed, a primary key is assigned to it.)

 All attributes (column) in the entity (table) must be single valued.

 Repeating or multi valued attributes are moved into a separate entity (table) & a

relationship is established between the two tables or entities.

Example:

EMPLOYEE (UN-NORMALIZED DATA)

Emp_No Name Dept_No Dept_Name Skills

1 Ravi 201 R & D C, PERL, JAVA

2 Meena 224 IT LINUX, MAC

3 Kala 201 R & D DB2, ORACLE, JAVA

The First normal form says that each field in a table must contain only a single type of data and

each piece of data must be stored in only one place. This results in isolating of repeating groups

within an entity. But in the above example SKILLS fields have redundancy.

Problem: Employee relation schema with lack of atomicity in skills (attribute). Suppose you want

to delete the dept_no as ‘201’ then you lose two data. (Because of redundancy data) It may call

Insert, Delete, Update anomalies during database activates

Solution: Make a separate table for each set of attributes with a primary key

EMPLOYEE (1 NF)

Emp_No Name Dept_No Dept_Name Skills

1 Ravi 201 R & D C

E-NOTES / CS & BCA

94 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

1 Ravi 201 R & D PERL

1 Ravi 201 R & D JAVA

2 Meena 224 IT LINUX

2 Meena 224 IT MAC

3 Kala 201 R & D DB2

3 Kala 201 R & D ORACLE

3 Kala 201 R & D JAVA

Although the table is far from perfect, it is now in First Normal Form and is ready to be tested

against Second Normal form

ADVANTAGE

 Easier to query/sort the data:

 More scalable

 Each row can be identified for updating

DISADVANTAGE

This solution has the disadvantage of introducing redundancy in relation. So we move on to 2NF.

5.4.2. SECOND NORMAL FORM (2 NF)

DEFINITION

A relation is in 2 NF if and only if it is in 1 NF and every non- key attribute is fully

dependent on the primary key.

 The objective of second normal form is that every field in a table should relate to

the primary key field in its entity.

E-NOTES / CS & BCA

95 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 It means that data that is only partly dependent on the primary key is stored into

another table

 To bring table into a second normal form, it should be first in first normal form.

Example:

EMPLOYEE (1 NF)

Emp_No Name Dept_No Dept_Name Skills

1 Ravi 201 R & D C

1 Ravi 201 R & D PERL

1 Ravi 201 R & D JAVA

2 Meena 224 IT LINUX

2 Meena 224 IT MAC

3 Kala 201 R & D DB2

3 Kala 201 R & D ORACLE

3 Kala 201 R & D JAVA

Name, dept_no, and dept_name are functionally dependent on emp_no.(emp_no -> name,

dept_no, dept_name)

Problem: Skills(attribute) is not functionally dependent on emp_no since it is not unique to each

emp_no.

SKILLS (2NF)

Emp_No Skills

1 C

1 PERL

1 JAVA

2 LINUX

2 MAC

3 DB2

3 ORACLE

3 JAVA

E-NOTES / CS & BCA

96 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Solution: Make a separate table like emp _ details (emp_no, name, dept_no, dept_name) and skill_

details (emp_no, skills) and to set a primary key for emp_no attribute. The resulting tables must

be related to each other by use of foreign key.

Now that we have removed the duplicative data from the employee table, and it have to be moved to a

separate table. We’ve satisfied the first rule of second normal form. We still need to use a foreign key to tie

the two tables together. The result table looks like.

Employee (2NF)

Emp_no

Name

Dept_no

Dept_name

skills

Benefits:

 Decrease storage efficiency

 Less data repetition

Disadvantage:

This solution has the disadvantage of introducing redundancy in skills relation. So we move on to 3NF.

5.4.3. THIRD NORMAL FORM (3 NF)

Definition:

A relation is in 3 NF if and only if it is in 2 NF and every non- key attribute is non-

transitively dependent (mutual dependent) on the primary key.

 The objective of third normal form is to remove field /data in a table that is not dependent

on the primary key. It means that, any non-key (not fully) field in a table must relate to the

primary key of the table& not to any other field.

EMPLOYEE (2 NF)

Emp_No Name Dept_No Dept_Name

1 Ravi 201 R & D

2 Meena 224 IT

3 Kala 201 R & D

E-NOTES / CS & BCA

97 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 The entity is in second normal form and non-key attributes cannot depend on another non-

key attributes

 All non-key attributes should depend directly on the whole primary key and not on each

other.

Example:

EMPLOYEE (2 NF)

Emp_No Name Dept_No Dept_Name

1 Ravi 201 R & D

2 Meena 224 IT

3 Kala 201 R & D

Dept_no and dept_name are functionally dependent on emp_no however, department can be considered a

separate entity.

Here #emp_no, #dept_no are primary key attribute.

Benefits: No extraneous (coming from the outside) data.

EMPLOYEE (3 NF)

Emp_No Name Dept_No

1 Ravi 201

2 Meena 224

3 Kala 201

DEPARTMENT (3NF)

Emp_No Dept_No Dept_Name

1 201 R & D

2 224 IT

E-NOTES / CS & BCA

98 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

5.4.4. Boyce- Code NORMAL FORM (BCNF)

Definition: A relation is in BCNF if and only if the only determinants are candidate keys

(more than one unique key).

 It is based on FD that takes into account all candidate keys in a relation.

 A relation is said to be in BCNF if and only if every determinant is a candidate key.

 A determinant is an attribute or a group of attributes on which some other attribute is fully

functionally determinant

 To test whether a relation is in BCNF, we identify all the determinants and make sure that

they are candidate keys.

Example:

R = (A, B, C)

F = {A B, B C}

Key = {A}

Here R is not in BCNF. Decomposition R1 = (A, B), R2 = (B,C), R1 and R2 in BCNF, Lossless-

join decomposition.

Consider a scenario of a large development organization, where the projects are organized in

project groups, each with a team leader acting as a liaison between the overall project and a group

of developers in a matrix organization. Assume we have the following situation: Each Project can

have many Developers.

• Each Developer can have many Projects.

• For a given Project, each Developer only works for one Lead Developer.

• Each Lead Developer only works on one Project.

• A given Project can have many Lead Developers.

In this case, we could theoretically design a table in two different ways:

E-NOTES / CS & BCA

99 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Project No Developer Lead Developer

20020123 John Doe Elmer Fudd

20020123 Jane Doe Sylvester

20020123 Jimbo Elmer Fudd

20020124 John Doe Ms. Depesto

Case 1: Project Number and Developer as a Candidate Key can be used to determine the Lead

Developer. In this case, the Lead Developer depends on both attributes of the key, and the table is

3NF if we consider that our Primary Key.

Lead Developer Developer Project No

Elmer Fudd John Doe 20020123

Sylvester Jane Doe 20020123

Elmer Fudd Jimbo 20020123

Ms. Depesto John Doe 20020124

Case 2: Lead Developer and Developer is another Candidate Key, but in this case, the Project

Number is determined by the Lead Developer alone.

Thus it would not be 3NF if we consider that our Primary Key. In reality, these three data items

contain more than one relation (Project - Lead Developer and Lead Developer - Developer). To

normalize to BCNF, we would remove the second relation and represent it in a second table. (This

also illustrates why a table is formally named a relation.)

ProjectNo Lead Developer

20020123 Elmer Fudd

20020123 Sylvester

20020123 Elmer Fudd

20020124 Ms. Depesto

E-NOTES / CS & BCA

100 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

5.4.5. FORTH NORMAL FORM (4NF)

Definition: A table is in Boyce-Code normal form (BCNF) and there are no multi-valued

dependencies.

 The fourth normal form (4NF) is concerned with dependencies between the elements of

compound keys composed of three or more attributes

 The 4NF eliminates the problems of 3NF. 4NF is violated when a relation has undesirable

MVDs and hence can be used to identify and decompose such relations

Example 1

 Relation EMPLOYEE, as shown in Fig.

 A tuple in this relation represents the fact that an employee (EMP-NAME) works on the

project (PROJ-NAME) and has a dependent (DEPENDENT-NAME).

 This relation is not in 4NF because in the non-trivial MVDs EMP-NAME PROJ-

NAME

 And EMP-NAMEDEPENDENT-NAME, EMP-NAME is not a super key of

EMPLOYEE.

 Now the relation EMPLOYEE is decomposed into EMP_PROJ and EMP_DEPENDENTS.

 Thus, both EMP_PROJ and EMP_DEPENDENT are in 4NF, because the MVDs EMP-

NAME PROJ-NAME in EMP_PROJ

 And EMP-NAME DEPENDENT-NAME in EMP_DEPENDENTS are trivial MVDs.

 No other non-trivial MVDs hold in either EMP_PROJ or EMP_DEPENDENTS. No FDs

hold in these relation schemas either.

Relation EMPLOYEE

EMP-NAME PROJ-NAME DEPENDENT-NAME

Thomas

Thomas

Thomas

P-1

P-2

P-1

Mathew

Rajesh

Rajesh

E-NOTES / CS & BCA

101 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Thomas P-2 Mathew

PROBLEMS WITH MVDS AND 4NF

 FDs, MVDs and 4NF are not sufficient to identify all data redundancies.

 Let us consider a relation PERSONS_ON_JOB_SKILLS, as shown in Table.

 This relation stores information about people applying all their skills to the jobs to which they

are assigned. But, they use particular or all skills only when the job needs that skill.

Relation: Persons_on_Job_Skills

Person Skill-Type Job

Thomas

Thomas

Thomas

Thomas

John

Antony Paul Raj

Analyst

Analyst

DBA

DBA

DBA

Analyst

J-1

J-2

J-2

J-3

J-1

J-1

 The relation PERSONS_ON_JOB_SKILLS of Table is in BCNF and 4NF.

Relation: Emp_Proj

EMP-NAME PROJ-NAME

Thomas

Thomas

Thomas

Thomas

P-1

P-2

P-1

P-2

Relation: Emp_DEPENDENT

EMP-NAME DEPENDENT-NAME

Thomas

Thomas

Thomas

Thomas

Mathew

Rajesh

Rajesh

Mathew

E-NOTES / CS & BCA

102 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 For example, person "Thomas" who possesses skills "Analyst" and "DBA" applies them

to job J-2, as J-2 needs both these skills.

 The same person "Thomas" applies skill "Analyst" only to job J-1, as job J-1 needs only

skill "Analyst" and not skill "DBA".

 Thus, if we delete <Thomas, DBA, J-2>, we must also delete <Thomas, Analyst, J-2>,

because persons must apply all their skills to a job if that requires those skills.

5.4.6. JOIN DEPENDENCIES AND FIFTH NORMAL FORM (5NF)

The anomalies of MVDs and are eliminated by join dependency (JD) and 5NF.

1. JOIN DEPENDENCIES (JD)

 A join dependency (JD) can be said to exist if the join of R1 and R2 over C is equal to

relation R.

o Where, R1 and R2 are the decompositions R1(A, B, C), and R2 (C,D) of a given

relations R (A, B, C, D).

 R1 and R2 is a lossless decomposition of R.

 In other words, *(A, B, C, D), (C, D) will be a join dependency of R if the join of the

join's attributes is equal to relation R.

o *(R1, R2, R3 ) indicates that relations R1, R2, R3 and soon are a join

dependency (JD) of R.

 Relation R to satisfy a JD *(R1, R2,….,RN) is that

o R = R1 U R2 U …..U RN .

 Thus, whenever we decompose a relation R into R1 = XUY and R2 = (R - Y) based on

an MVD X Y that holds in relation R, the decomposition has lossless join property.

 Therefore, lossless-join dependency can be defined as a property of decomposition, which

ensures that no spurious tuples are generated when relations are returned through a natural

join operation.

Example 1

o Relation PERSONS_ON_JOB_SKILLS, as shown in above fig .

E-NOTES / CS & BCA

103 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

o This relation can be decomposed into three relations namely, HAS_SKILL,

NEEDS_SKILL cind ASSIGNED_TO_JOBS.

o fig. the join dependencies of decomposed relations.

 if we join decomposed relations HAS_SKILL and NEEDS_SKILL, a relation

CAN_USE_JOB_SKILL is obtained, as shown in above Fig.

This relation stores the data about persons who have skills applicable to a particular job. But, each

person who has a skill required for a particular job need not be assigned to that job.

Thus, redundant tuples (rows) that show unnecessary SKILL-TYPE and JOB combinations are

removed by joining with relation NEEDS_SKILL.

E-NOTES / CS & BCA

104 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

2. FIFTH NORMAL FORM (5NF)

 For every non-trivial join dependency *(R1 R2 R3) each decomposed relation Ri is a super

key of the main relation R.

 5NF is also called project-join normal form (PJNM).

 There are some relations, who cannot be decomposed into two or higher normal form

relations by means of projections as discussed in 1NF, 2NF, 3NF and BCNF.

E-NOTES / CS & BCA

105 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 Relations are decomposed into three or more relations, which can be reconstructed by

means of a three-way or more join operation. This is called fifth normal form (5NF).

 The 5NF eliminates the problems of 4NF. 5NF allows for relations with join dependencies.

 Any relation that is in 5NF, is also in other normal forms namely 2NF, 3NF and 4NF.

 5NF is mainly USED FROM theoretical point of view and not for practical database design

Example 1

 Let us consider the relation PER SONS_ON_JOB_S KILLS of Fig.

 The three relations are

o HAS_SKILL (PERSON, SKILL-TYPE)

o NEEDS_SKILL (SKILL-TYPE, JOB)

o JOB_ASSIGNED (PERSON, JOB))

 Now by applying the definition of 5NF, the join dependency is given as:

o *((PERSON, SKILL-TYPE), (SKILL-TYPE, JOB), (PERSON, JOB))

 The above statement is true because a join relation of these three relations is equal to the

original relation PERSONS_ON_JOB_SKILLS.

 The consequence of these join dependencies is that the SKILL-TYPE, JOB or PERSON, is not

relation key, and hence the relation is not in 5NF. Now suppose, the second tuple (row 2) is

removed from relation PERSONS_ON_JOB_SKILLS, a new relation is created that no longer has

any join dependencies. Thus the new relation will be in 5NF.

5.4.7. DOMAIN KEY NORMAL FORM (DKNF)

The idea behind DKNF is to specify the “ultimate normal from” that takes into account all

possible types of dependencies and constraints.

Domain/Key Normal Form

Relation R is said to be in DKNF if and only if every constraint on R is a logical Consequence of

the domain constraints and key constraints that apply to R.

E-NOTES / CS & BCA

106 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Domain/Key Normal Form is a newer normal form and is similar to BCNF in that it is partially

based on the enforcement of primary keys and candidate keys. So you already understand at least

that much of this Normal Form. But it is also based upon the idea of Domain. Most texts on

database design state that a Domain is merely a set of acceptable values from which a specific field

can draw its own values. That’s only partially true; a Domain is much more then. A Domain has

two sides; a logical side and a physical side. The logical side deals with issues such as default

value range of values, whether the value is required and whether the value can be Null. The

physical side deals with issues such as data type, length, decimal places and allowable characters.

Once you understand this idea, you can use this Normal Form

In order for a table to be in Domain/Key Normal Form it must fulfil these requirements.

1. Each field must be fully and properly defined.

2. Each field must represent a characteristic of the table’s subject.

 3. Each non – key field in the table must be functionally dependent upon the entire primary key.

4. Each table should represent only a single Subject

A table DKNF will be free of transitive dependencies, Multi – Valued dependencies and

modification anomalies. In fact, a table in DKNF is automatically in Fifth Normal Form

Review Questions

1. Why do we need normalization?

2. Explain the functional dependency with multi-valued dependencies with example.

3. Explain 3NF with example and Compare BCNF and 3NF.

4. Explain 4NFs. How it is different from other normal forms?

5. What is 3NF?

6. What is functional dependency?

7. Explain the purpose of normalization and schema refinement.

E-NOTES / CS & BCA

107 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

8. Explain the role of minimal cover for set of FDs in 3rd normal form.

9. What is the difference between controlled and uncontrolled redundancy? Illustrate with

examples.

OBJECTIVE TYPE QUESTIONS

1. A relation that has no partial dependencies is in which normal form

a) First

b) Second

c) Third

d) BCNF

2. A functional dependency between two or more non-key attributes is called

a) Transitive dependency

b) Partial transitive dependency

c) Functional dependency

d) Partial functional dependency

3. If K is a foreign key in a relation R1, then

a) Every tuple of R1 has a distinct value for K

b) K cannot have a null value for tuples in R1

c) K is a key for some other relation

d) K is a Primary key for R1

4. Which of the following concept is applicable with respect to 2NF?

a) Full functional dependency

b) Partial dependency

c) Transitive dependency

d) Non-transitive dependency

5. If every non-key attribute is functionally dependent on the primary key, the relation will

be in

a) First Normal Form

b) Second Normal Form

c) Third Normal Form

d) Fourth Formal Form

6. In DBMS FD stands for

a) Facilitate data

b) Functional data

c) Facilitate dependency

d) Functional dependency

7. Which of the following is based on Multi Valued Dependency?

a) First

b) Second

c) Third

d) Fourth

E-NOTES / CS & BCA

108 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

8. Which of the following is correct?

a) Function dependencies are not associated with relations; they are based on the semantics

of information that we are dealing with

b) If a relation has no redundant information its attributes must not have any function

dependencies

c) Functional dependencies may be determined if we are given several instances of a

relation

d) The FDs that hold for attributes of a relation need not be satisfied at all times

9. A functional dependency between two or more non-key attributes is called

a) Partial functional dependency

b) Partial non-key dependency

c) Transitive dependency

d) Partial transitive dependency

KEYS

1-b, 2-a, 3-c, 4-a, 5-c, 6-d, 7-d, 8-a, 9-c

E-NOTES / CS & BCA

109 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

UNIT – IV

CHAPTER 6: STRUCTURED QUERY LANGUAGE

6.1. INTRODUCTION

Structured Query Language (SQL) is a standard computer language for storing, manipulating and

retrieving data in databases. SQL is used to communicate with a database. According to ANSI, it

is the standard language for relational database management systems.

It is the special purpose domain specific language for querying the data in Relational Database

Management System (RDBMS). An SQL developer must decide what type of data that will be

stored inside each column when creating a table.

The data type is a guideline for SQL to understand what type of data is expected inside of each

column, and it also identifies how SQL will interact with the stored data.

6.2. STRUCTURED QUERY LANGUAGE

Structured Query Language, commonly abbreviated to SQL and pronounced as “sequel”, is not a

conventional computer programming language in the normal sense of the phrase. It allows users

to access data in relational database management systems.

SQL is about data and results; each SQL statement returns a result, whether that result be a query,

an update to a record or the creation of a database table. SQL is most often used to address a

relational database, which is what some people refer to as a SQL database.

So in brief we can describe SQL as follows:

 SQL stands for Structured Query Language

 SQL allows you to access a database

 SQL can execute queries against a database

E-NOTES / CS & BCA

110 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 SQL can retrieve data from a database

 SQL can insert new records in a database

 SQL can delete records from a database

 SQL can update records in a database

 SQL is easy to learn

6.2.1. NEED FOR SQL

SQL is an exceptional programming language that is utilized to interface with databases. It works

by understanding and analyzing databases that include data fields in their tables. The primary

objective where SQL was created was to give the possibility to common people get interested data

from database. Structured Query Language (SQL) is used to retrieve data or otherwise interface

with a relational database.

6.2.2. TYPES OF SQL STATEMENTS

SQL statements are categorized into four different type of statements, which are

1. DDL (DATA DEFINITION LANGUAGE)

A data definition or data description language (DDL) is syntax similar to a computer

programming language for defining data structures, especially database schemas. DDL

DDL

CREATE

ALTER

DROP

DATABASE LANGUAGES STATEMENTS

DML

SELECT

INSERT

UPDATE

DELETE

TCL

ROLLBACK

GRANT

COMMIT

REVOKE

E-NOTES / CS & BCA

111 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

statements create, modify, and remove database objects such as tables, indexes, and users.

Common DDL statements are CREATE, ALTER, and DROP.

2. DML (DATA MANIPULATION LANGUAGE)

DML is abbreviation of Data Manipulation Language. It is used to retrieve, store, modify,

delete, insert and update data in database. Examples: SELECT, UPDATE, INSERT statements.

DDL is abbreviation of Data Definition Language. It is used to create and modify the structure

of database objects in database.

3. TCL (TRANSACTION CONTROL LANGUAGE)

A data control language (DCL) is a syntax similar to a computer programming language used

to control access to data stored in a database (Authorization). In particular, it is a component

of Structured Query Language (SQL). Examples of DCL commands include: GRANT to allow

specified users to perform specified tasks.

6.3. FEATURES OF SQL

SQL commands follow a number of basic rules:

 SQL keywords are not normally case sensitive, though this in this tutorial all commands

(SELECT, UPDATE etc) are upper-cased.

 Variable and parameter names are displayed here as lower-case.

 New-line characters are ignored in SQL, so a command may be all on one line or broken

up across a number of lines for the sake of clarity.

 Many DBMS systems expect to have SQL commands terminated with a semicolon

character.

Some of the advantages of SQL are:

o With SQL, it is possible to query our database in several ways, using English-like

statements.

o With SQL, a user can access data from a relational database management system.

o It allows the user to describe the data.

E-NOTES / CS & BCA

112 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

o It allows the user to define the data in the database and manipulate it when needed.

o It allows the user to create , drop database and table.

o It allows the user to create a view, stored procedure, function in a database.

o It allows the user to set permission on tables, procedures, and views.

o High speed. Using the SQL queries, the user can quickly and efficiently retrieve a large

amount of records from a database.

o No coding is needed.

o Well defined standards.

o Portability.

6.4. SELECT SQL OPERATIONS

The select statement is used to query the database and retrieve selected data that match the

criteria that user specify.

Syntax:

select "column1" [,"column2",etc]

from "tablename"

[where "condition"]; [] = optional

The column names that follow the select keyword determine which columns will be returned in

the results. The table name that follows the keyword from specifies the table that will be queried

to retrieve the desired results. The where clause (optional) specifies which data values or rows

will be returned or displayed, based on the criteria described after the keyword where.

Conditional selections used in the where clause:

= Equal

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

E-NOTES / CS & BCA

113 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

<> Not equal to

LIKE

The LIKE pattern matching operator can also be used in the conditional selection of the where

clause. Like is a very powerful operator that allows you to select only rows that are "like" what

you specify. The percent sign "%" can be used as a wild card to match any possible character that

might appear before or after the characters specified.

Example:

1. select * from employee;

Empid First Last Age Address City State

1 Anu Radha 45 Gandhi Nagar Vellore Tamil Nadu

2 Shanthi Mani 30 Gandhi Nagar Vellore Tamil Nadu

3 Vidya Lakshmi 30 Gandhi Nagar Vellore Tamil Nadu

2. select first, last, city from employee where first LIKE 'A%';

Empid First Last Age Address City State

1 Anu Radha 45 Gandhi Nagar Vellore Tamil Nadu

This SQL statement will match any first names that start with 'A'. Strings must be in single

quotes.

3. select first, last from employee where last LIKE '%a';

This statement will match any last names that end in 'a'.

Empid First Last Age Address City State

1 Anu Radha 45 Gandhi Nagar Vellore Tamil Nadu

4. select * from employee where first = 'Vidya';

E-NOTES / CS & BCA

114 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

This will only select rows where the first name equals 'Vidya' exactly.

Empid First Last Age Address City State

3 Vidya Lakshmi 30 Gandhi Nagar Vellore Tamil Nadu

6.5. GROUPING THE OUTPUT OF THE QUERY

6.5.1. SQL GROUP Functions

Group functions are built-in SQL functions that operate on groups of rows and return one value

for the entire group. These functions are: COUNT, MAX, MIN, AVG, SUM, DISTINCT

a. SQL COUNT (): This function returns the number of rows in the table that satisfies the

condition specified in the WHERE condition. If the WHERE condition is not specified, then the

query returns the total number of rows in the table.

For Example: If you want the number of employees in a particular department, the query would

be:

SELECT COUNT (*) FROM employee WHERE dept = 'Electronics';

The output would be '2' rows.

If you want the total number of employees in all the department, the query would take the form:

SELECT COUNT (*) FROM employee;

The output would be '5' rows.

b. SQL DISTINCT(): This function is used to select the distinct rows.

For Example: If you want to select all distinct department names from employee table, the

query would be:

SELECT DISTINCT dept FROM employee;

E-NOTES / CS & BCA

115 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

To get the count of employees with unique name, the query would be:

SELECT COUNT (DISTINCT name) FROM employee;

c. SQL MAX(): This function is used to get the maximum value from a column.

To get the maximum salary drawn by an employee, the query would be:

SELECT MAX (salary) FROM employee;

d. SQL MIN(): This function is used to get the minimum value from a column.

To get the minimum salary drawn by an employee, he query would be:

SELECT MIN (salary) FROM employee;

e. SQL AVG(): This function is used to get the average value of a numeric column.

To get the average salary, the query would be

SELECT AVG (salary) FROM employee;

f. SQL SUM(): This function is used to get the sum of a numeric column

To get the total salary given out to the employees,

SELECT SUM (salary) FROM employee;

6.5.2. SQL GROUP BY CLAUSE

The SQL GROUP BY Clause is used along with the group functions to retrieve data grouped

according to one or more columns.

For Example: If you want to know the total amount of salary spent on each department, the

query would be:

SELECT dept, SUM (salary) FROM employee GROUP BY dept;

E-NOTES / CS & BCA

116 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

The output would be like:

dept salary

Electrical 25000

Electronics 55000

Aeronautics 35000

InfoTech 30000

NOTE: The group by clause should contain all the columns in the select list expect those used

along with the group functions.

SELECT location, dept, SUM (salary) FROM employee GROUP BY location, dept;

The output would be like:

location dept salary

Bangalore Electrical 25000

Bangalore Electronics 55000

Mysore Aeronautics 35000

Mangalore InfoTech 30000

6.5.3. SQL HAVING Clause

Having clause is used to filter data based on the group functions. This is similar to WHERE

condition but is used with group functions. Group functions cannot be used in WHERE Clause

but can be used in HAVING clause.

SQL HAVING Clause Example

If you want to select the department that has total salary paid for its employees more than 25000,

the sql query would be like;

E-NOTES / CS & BCA

117 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

SELECT dept, SUM (salary) FROM employee GROUP BY dept HAVING SUM (salary) > 25000;

The output would be like:

 dept salary

Electronics 55000

Aeronautics 35000

InfoTech 30000

When WHERE, GROUP BY and HAVING clauses are used together in a SELECT statement,

the WHERE clause is processed first, then the rows that are returned after the WHERE clause

is executed are grouped based on the GROUP BY clause.

Finally, any conditions on the group functions in the HAVING clause are applied to the grouped

rows before the final output is displayed.

6.6. QUERYING FROM MULTIPLE TABLES

6.6.1. SQL SUBQUERY

Subquery or Inner query or Nested query is a query in a query. SQL subquery is usually

added in the WHERE Clause of the SQL statement. Most of the time, a subquery is used when

you know how to search for a value using a SELECT statement, but do not know the exact value

in the database.

Subqueries are an alternate way of returning data from multiple tables.

Subqueries can be used with the following SQL statements along with the comparison operators

like =, <, >, >=, <= etc.

 SELECT

 INSERT

 UPDATE

 DELETE

E-NOTES / CS & BCA

118 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

a. Subqueries with the SELECT Statement

Subqueries are most frequently used with the SELECT statement. The basic syntax is as follows

SELECT column_name [, column_name] FROM table1 [, table2]

WHERE column_name OPERATOR

(SELECT column_name [, column_name] FROM table1 [, table2] [WHERE])

Example

Consider the CUSTOMERS table having the following records

ID NAME AGE ADDRES SALARY

1 Ramesh 35 Ahmedabad 2000.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

Now, let us check the following subquery with a SELECT statement.

SQL> SELECT * FROM CUSTOMERS WHERE ID IN (SELECT ID FROM CUSTOMERS

 WHERE SALARY > 4500) ;

This would produce the following result.

ID NAME AGE ADDRES SALARY

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 8500.00

7 Muffy 24 Indore 10000.00

E-NOTES / CS & BCA

119 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

b. Subqueries with the INSERT Statement

Subqueries also can be used with INSERT statements. The INSERT statement uses the data

returned from the subquery to insert into another table. The selected data in the subquery can be

modified with any of the character, date or number functions.

The basic syntax is as follows.

INSERT INTO table_name [(column1 [, column2])]

SELECT [*|column1 [, column2] FROM table1 [, table2] [WHERE VALUE OPERATOR]

Example

Consider a table CUSTOMERS_BKP with similar structure as CUSTOMERS table. Now to copy

the complete CUSTOMERS table into the CUSTOMERS_BKP table, you can use the following

syntax.

SQL> INSERT INTO CUSTOMERS_BKP SELECT * FROM CUSTOMERS WHERE ID IN

(SELECT ID FROM CUSTOMERS) ;

c. Subqueries with the UPDATE Statement

The subquery can be used in conjunction with the UPDATE statement. Either single or multiple

columns in a table can be updated when using a subquery with the UPDATE statement.

The basic syntax is as follows.

UPDATE table SET column_name = new_value [WHERE OPERATOR [VALUE]

 (SELECT COLUMN_NAME FROM TABLE_NAME) [WHERE)]

Example

Assuming, we have CUSTOMERS_BKP table available which is backup of CUSTOMERS table.

The following example updates SALARY by 0.25 times in the CUSTOMERS table for all the

customers whose AGE is greater than or equal to 27.

E-NOTES / CS & BCA

120 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

SQL> UPDATE CUSTOMERS SET SALARY = SALARY * 0.25 WHERE AGE IN (SELECT

AGE FROM CUSTOMERS_BKP WHERE AGE >= 27);

This would impact two rows and finally CUSTOMERS table would have the following records.

ID NAME AGE ADDRES SALARY

1 Ramesh 35 Ahmedabad 125.00

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

5 Hardik 27 Bhopal 2125.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

d. Subqueries with the DELETE Statement

The subquery can be used in conjunction with the DELETE statement like with any other

statements mentioned above.

The basic syntax is as follows.

DELETE FROM TABLE_NAME [WHERE OPERATOR [VALUE]

(SELECT COLUMN_NAME FROM TABLE_NAME) [WHERE)]

Example

Assuming, we have a CUSTOMERS_BKP table available which is a backup of the CUSTOMERS

table. The following example deletes the records from the CUSTOMERS table for all the

customers whose AGE is greater than or equal to 27.

SQL> DELETE FROM CUSTOMERS WHERE AGE IN (SELECT AGE FROM

CUSTOMERS_BKP WHERE AGE >= 27);

E-NOTES / CS & BCA

121 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

This would impact two rows and finally the CUSTOMERS table would have the following

records.

ID NAME AGE ADDRES SALARY

2 Khilan 25 Delhi 1500.00

3 Kaushik 23 Kota 2000.00

4 Chaitali 25 Mumbai 6500.00

6 Komal 22 MP 4500.00

7 Muffy 24 Indore 10000.00

6.6.2. CORRELATED SUBQUERY

A query is called correlated subquery when both the inner query and the outer query are

interdependent. For every row processed by the inner query, the outer query is processed as well.

The inner query depends on the outer query before it can be processed.

SELECT p.product_name FROM product p WHERE p.product_id = (SELECT

o.product_id FROM order_items o WHERE o.product_id = p.product_id);

NESTED SUBQUERY

1) You can nest as many queries you want but it is recommended not to nest more than 16

subqueries in oracle

NON-CORELATED SUBQUERY

2) If a subquery is not dependent on the outer query it is called a non-correlated subquery

SUBQUERY ERRORS

3) Minimize subquery errors: Use drag and drop, copy and paste to avoid running subqueries

with spelling and database typos. Watch your multiple field SELECT comma use, extra or to

few getting SQL error message "Incorrect syntax".

E-NOTES / CS & BCA

122 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

SQL SUBQUERY COMMENTS

Adding SQL Subquery comments are good habit (/* your command comment */) which can

save you time, clarify your previous work. results in less SQL headaches

6.7. RETRIEVAL USING SET OPERATORS

SQL supports few Set operations which can be performed on the table data. These are used to get

meaningful results from data stored in the table, under different special conditions.

 There are 4 different types of SET operations, along with example:

1. UNION

2. UNION ALL

3. INTERSECT

4. MINUS

6.7.1. UNION Operation

UNION is used to combine the results of two or more SELECT statements. However it will

eliminate duplicate rows from its result set. In case of union, number of columns and datatype

must be same in both the tables, on which UNION operation is being applied.

Example of UNION

The First table,

ID Name

1 abhi

2 adam

The Second table,

Union SQL query will be,

ID Name

2 adam

3 Chester

E-NOTES / CS & BCA

123 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

SELECT * FROM First

UNION

SELECT * FROM Second;

The result set table will look like,

ID NAME

1 abhi

2 adam

3 Chester

6.7.2. UNION ALL

This operation is similar to Union. But it also shows the duplicate rows.

Example of Union All

The First table,

ID NAME

1 abhi

2 adam

The Second table,

ID NAME

2 adam

3 Chester

Union All query will be like,

SELECT * FROM First

UNION ALL

SELECT * FROM Second;

E-NOTES / CS & BCA

124 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

The resultset table will look like,

ID NAME

1 abhi

2 adam

2 adam

3 Chester

6.7.3. INTERSECT

Intersect operation is used to combine two SELECT statements, but it only returns the records which

are common from both SELECT statements. In case of Intersect the number of columns and

datatype must be same.

NOTE: MySQL does not support INTERSECT operator.

Example of Intersect

The First table,

ID NAME

1 abhi

2 adam

The Second table,

ID NAME

2 adam

3 Chester

E-NOTES / CS & BCA

125 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Intersect query will be,

SELECT * FROM First

INTERSECT

SELECT * FROM Second;

The resultset table will look like

ID NAME

2 adam

6.7.4. MINUS

The Minus operation combines results of two SELECT statements and return only those in the

final result, which belongs to the first set of the result.

Example of Minus

The First table,

ID NAME

1 abhi

2 adam

The Second table,

ID NAME

2 adam

3 Chester

E-NOTES / CS & BCA

126 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Minus query will be,

SELECT * FROM First

MINUS

SELECT * FROM Second;

The resultset table will look like,

ID NAME

1 abhi

REVIEW QUESTIONS

1. Discuss in detail the operators SELECT, PROJECT and UNION with suitable

examples.

2. Explain about the following clauses with example queries.

(i) Group by

(ii) Order by

(iii)Aggregation functions.

3. Give syntaxes to Create and Alter a table.

4. List aggregate functions supported by SQL.

5. Explain the role of views. Why role got importance? What are the problems in view

updating?

6. Give syntax for DML commands? Show their operations with an example?

7. List and Explain SET operations of SQL.

8. Where do we need nesting of queries? Give an example.

E-NOTES / CS & BCA

127 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

9. Differentiate between updatable views and non-updatable views?

10. Write string operations supported by SQL.

11. Consider the following relation schema:

Sailors (sid: integer, sname: string, rating: integer, age: real)

Boat(bid: integer, bname: string, color: string)

Reserves(sid: integer, bid: integer, day: date)

Write the following queries in SQL.

a. Find the average age of the sailor who are eligible for voting for each rating level

that has at least two sailors.

b. Find the name of sailors who have reserved both red and a green boat.

c. Find the sailor_id of sailors who have reserved a red boat

12. Discuss the following clauses with examples

(i) HAVING

(ii) GROUP BY

(iii) Relational set operations.

13. Identify some informal queries and update operations that you would expect to apply

to the database shown in Figure 1.

14. Specify all the relationships among the records of the database shown in Figure 1.

15. Give some additional views that may be needed by other user groups for the database

shown in Figure 1.

16. Cite some examples of integrity constraints that you think can apply to the database

shown in Figure 1.

17. Consider Figure 1.

A. If the name of the ‘CS’ (Computer Science) Department changes to ‘CSSE’

(Computer Science and Software Engineering) Department and the

corresponding prefix for the course number also changes, identify the columns

in the database that would need to be updated.

B. Can you restructure the columns in the COURSE, SECTION, and

PREREQUISITE tables so that only one column will need to be updated?

E-NOTES / CS & BCA

128 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Figure 1:

E-NOTES / CS & BCA

129 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

18. Think of different users for the database shown in Figure 1. What types of applications

would each user need? To which user category would each belong, and what type of

interface would each need?

19. Choose a database application with which you are familiar. Design a schema and show

a sample database for that application, using the notation of Figures 1. and 2. What

types of additional information and constraints would you like to represent in the

schema? Think of several users of your database, and design a view for each.

20. Consider Figure 2.

In addition to constraints relating the values of columns in one table to columns in

another table, there are also constraints that impose restrictions on values in a column

or a combination of columns within a table. One such constraint dictates that a column

or a group of columns must be unique across all rows in the table.

For example, in the STUDENT table, the Student_number column must be unique (to

prevent two different students from having the same Student_number). Identify the

column or the group of columns in the other tables that must be unique across all rows

in the table.

Figure 2:

E-NOTES / CS & BCA

130 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

21. How do the relations (tables) in SQL differ from the relations defined formally in

Relational Database? Discuss the other differences in terminology. Why does SQL

allow duplicate tuples in a table or in a query result?

22. List the data types that are allowed for SQL attributes.

23. Describe the four clauses in the syntax of a simple SQL retrieval query. Show what

type of constructs can be specified in each of the clauses. Which are required and

which are optional?

24. Consider the database shown in Figure 1. Whose schema is shown in Figure 2? What

are the referential integrity constraints that should hold on the schema? Write

appropriate SQL DDL statements to define the database.

25. Write SQL update statements to do the following on the database schema shown in

Figure 1.

a. Insert a new student, <‘Johnson’, 25, 1,‘Math’>, in the database.

b. Change the class of student ‘Smith’ to 2.

c. Insert a new course, <‘Knowledge Engineering’, ‘CS4390’, 3, ‘CS’>.

d. Delete the record for the student whose name is ‘Smith’ and whose student

e. number is 17.

26. Design a relational database schema for a database application of your choice.

a. Declare your relations, using the SQL DDL.

b. Specify a number of queries in SQL that are needed by your database

application.

c. Based on your expected use of the database, choose some attributes that should

have indexes specified on them.

d. Implement your database, if you have a DBMS that supports SQL.

27. Describe the six clauses in the syntax of an SQL retrieval query. Show what type of

constructs can be specified in each of the six clauses. Which of the six clauses are

required and which are optional?

28. Describe conceptually how an SQL retrieval query will be executed by specifying

the conceptual order of executing each of the six clauses.

E-NOTES / CS & BCA

131 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

29. Discuss how NULLs are treated in comparison operators in SQL. How are NULLs

treated when aggregate functions are applied in an SQL query? How are NULLs treated

if they exist in grouping attributes?

30. Discuss how each of the following constructs is used in SQL, and discuss the various

options for each construct. Specify what each construct is useful for.

a. Nested queries.

b. Joined tables and outer joins.

c. Aggregate functions and grouping.

d. Triggers.

e. Assertions and how they differ from triggers.

f. Views and their updatability.

g. Schema change commands.

31. Specify the following queries in SQL on the database schema in Figure 1.

Figure 5:

E-NOTES / CS & BCA

132 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

a. Retrieve the names and major departments of all straight-A students

(students who have a grade of A in all their courses).

b. Retrieve the names and major departments of all students who do not have

a grade of A in any of their courses.

32. In SQL, specify the following queries on the database in Figure 5 using the concept

of nested queries.

a. Retrieve the names of all employees who work in the department that has the

employee with the highest salary among all employees.

b. Retrieve the names of all employees whose supervisor’s supervisor has

‘888665555’ for SSN.

c. Retrieve the names of employees who make at least $10,000 more than the

employee who is paid the least in the company.

33. Specify the following views in SQL on the COMPANY database schema shown in

Figure 3.

a. A view that has the department name, manager name, and manager salary for

every department.

b. A view that has the employee name, supervisor name, and employee salary for

each employee who works in the ‘Research’ department.

c. A view that has the project name, controlling department name, number of

employees, and total hours worked per week on the project for each project.

d. A view that has the project name, controlling department name, number of

employees, and total hours worked per week on the project for each project with

more than one employee working on it.

34. Consider the following view, DEPT_SUMMARY, defined on the COMPANY

database in Figure 3.

E-NOTES / CS & BCA

133 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

CREATE VIEW DEPT_SUMMARY (D, C, Total_s, Average_s) AS

SELECT Dno, COUNT (*), SUM (Salary), AVG (Salary) FROM

EMPLOYEE GROUP BY Dno;

State which of the following queries and updates would be allowed on the view. If a query

or update would be allowed, show what the corresponding query or update on the base

relations would look like, and give its result when applied to the database in Figure 3.

a. SELECT * FROM DEPT_SUMMARY;

b. SELECT D, C FROM DEPT_SUMMARY WHERE TOTAL_S > 100000;

c. SELECT D, AVERAGE_S FROM DEPT_SUMMARY WHERE C > (

SELECT C FROM DEPT_SUMMARY WHERE D=4);

d. UPDATE DEPT_SUMMARY SET D=3 WHERE D=4;

e. DELETE FROM DEPT_SUMMARY WHERE C > 4;

35. List the operations of relational algebra and the purpose of each.

36. What is union compatibility? Why do the UNION, INTERSECTION, and

DIFFERENCE operations require that the relations on which they are applied be union

compatible?

37. Discuss some types of queries for which renaming of attributes is necessary in order to

specify the query unambiguously.

38. How are the OUTER JOIN operations different from the INNER JOIN operations?

How is the OUTER UNION operation different from UNION?

39. List the various cases where use of a NULL value would be appropriate.

40. Define the following terms: entity, attribute, attribute value, relationship instance,

composite attribute, multivalued attribute, derived attribute, complex attribute, key

attribute, and value set (domain).

E-NOTES / CS & BCA

134 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

41. Under what conditions can an attribute of a binary relationship type be migrated to

become an attribute of one of the participating entity types?

42. Consider an entity type SECTION in a UNIVERSITY database, which describes the

section offerings of courses.

The attributes of SECTION are Section_number, Semester, Year, Course_number,

Instructor, Room_no (where section is taught), Building (where section is taught),

Weekdays (domain is the possible combinations of weekdays in which a section can

be offered {‘MWF’,‘MW’, ‘TT’, and so on}), and Hours (domain is all possible time

periods during which sections are offered {‘9–9:50 A.M.’, ‘10–10:50 A.M.’, ...,

‘3:30–4:50 P.M.’, ‘5:30–6:20 P.M.’, and so on}).

Assume that Section_number is unique for each course within a particular

semester/year combination (that is, if a course is offered multiple times during a

particular semester, its section offerings are numbered 1, 2, 3, and so on). There are

several composite keys for section, and some attributes are components of more than

one key. Identify three composite keys, and show how they can be represented in an

ER schema diagram.

43. Consider the following GRADEBOOK relational schema describing the data for a

grade book of a particular instructor. (Note: The attributes A, B, C, and D of COURSES

store grade cutoffs.)

CATALOG(Cno, Ctitle)

STUDENTS(Sid, Fname, Lname, Minit)

COURSES(Term, Sec_no, Cno, A, B, C, D)

ENROLLS(Sid, Term, Sec_no)

Specify and execute the following queries using the RA interpreter on the GRADEBOOK

database schema.

E-NOTES / CS & BCA

135 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

a. Retrieve the names of students enrolled in the Automata class during the fall 2009

term.

b. Retrieve the Sid values of students who have enrolled in CSc226 and CSc227.

c. Retrieve the Sid values of students who have enrolled in CSc226 or CSc227.

d. Retrieve the names of students who have not enrolled in any class.

e. Retrieve the names of students who have enrolled in all courses in the CATALOG

table.

OBJECTIVE TYPE QUESTIONS

1. Which SQL Query is use to remove a table and all its data from the database?

a) Create Table

b) Alter Table

c) Drop Table

d) None of these

2. In precedence of set operators the expression is evaluated from:

a) Left to Left

b) Left to Right

c) Right to Right

d) Right to Left

3. A logical description of some portion of database that is required by a user to

perform task is called as

a) System View

b) User View

c) Logical View

d) Data View

4. A command to remove a relation from an SQL database

a) Delete table <table name>

b) Drop table <table name>

c) Erase table <table name>

d) Alter table <table name>

5. Which of the following is not an Aggregate function?

a) Min

b) Max

c) Select

d) Avg

6. Which of the following is not Modification of the Database

a) Deletion

b) Insertion
c) Sorting

d) Updating

E-NOTES / CS & BCA

136 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

7. A type of query that is placed within a WHERE or HAVING clause of another

query is called

a) Super query

b) Sub query

c) Master query

d) Multi-query

8. A transaction completes its execution is said to be

a) Saved

b) Loaded

c) Rolled

d) Committed

9 Which of the following is correct regarding Aggregate functions?

a) it takes a list of values and return a single values as result

b) it takes a list of values and return a list of values as result

c) it takes a single value and returns a list of values as result

d) it takes a single value and returns a single value as result

10. Which of the following operation is used if we are interested in only certain

columns of a table?

a. PROJECTION

b. SELECTION

c. UNION

d. JOIN

11. Which of the following is a comparison operator in SQL?

a) =

b) LIKE

c) BETWEEN

d) All of the above

12. To delete a particular column in a relation the command used is:

a) UPDATE

b) DROP

c) ALTER

d) DELETE

13. The ______ operator is used to compare a value to a list of literals values that have

been specified.

a) BETWEEN

b) ANY

c) IN

d) ALL

14. Which of the following is a valid SQL type?

a) CHARACTER

b) NUMERIC

c) FLOAT

d) All of the above

E-NOTES / CS & BCA

137 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

15. Count function in SQL returns the number of

a. values.

b. distinct values.

c. groups.

d. columns

16. _______________ is a virtual table that draws its data from the result of an SQL

SELECT statement.

a) View

b) Synonym

c) Sequence

d) Transaction

KEYS

1-c, 2-b, 3-b, 4-b, 5-c, 6-c, 7-b, 8-d, 9-a, 10-a, 11-d, 12-c, 13-a, 14-d,

15-a, 16-a

E-NOTES / CS & BCA

138 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

CHAPTER 7: T-SQL – TRIGGERS AND DYNAMIC EXECUTION

7.1. INTRODUCTION

Oracle uses an extension of SQL called PL/SQL whereas MS SQL Server/Sybase uses

Trans-SQL. Transact-SQL enhances the power of SQL and minimizes the occasions on

which users must resort to a programming language to accomplish a desired task.

Extended-SQL’s capabilities go beyond the many commercial versions of SQL.

T-SQL is organized by each block of statement. A block of statement can embrace another block

of statement in it. A block of statement starts by BEGIN and finishes by END. There are many

statements in the block, and statements is separated from each other by a semicolon (;).

The structure of the block:

?

1

2

3

4

BEGIN

 -- Declare variables

 -- T-SQL Statements

END;

7.2. T-SQL (TRANSACT-SQL)

T-SQL (Transact-SQL) is a set of programming extensions from Sybase and Microsoft that

add several features to the Structured Query Language (SQL), including transaction

control, exception and error handling, row processing and declared variables.

All applications that communicate with SQL Server do so by sending T-SQL statements to

the server. T-SQL queries include the SELECT statement, selecting columns, labeling

output columns, restricting rows and modifying a search condition.

https://searchsqlserver.techtarget.com/definition/SQL

E-NOTES / CS & BCA

139 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

T-SQL identifiers, meanwhile, are used in all databases, servers, and database objects in

SQL Server. These include the following tables, constraints, stored procedures, views,

columns and data types. T-SQL identifiers must each have a unique name, are assigned

when an object is created and are used to identify an object.

T-SQL STATEMENT EXAMPLES

The most popular T-SQL statement is the stored procedure, which is a compiled and stored

T-SQL code. Similar to views, stored procedures generate an execution plan when called

the first time. The difference is stored procedures can select data and execute any T-SQL

code within any parameters.

User-defined functions are another example of T-SQL statements. User-defined functions

take input parameters, perform an action and return the results to the call.

RESTORE A DATABASE WITH T-SQL.

Another example is a trigger, which is a stored T-SQL script that runs when a statement

other than SELECT is issued against a table or view. The two common triggers are

AFTER triggers and INSTEAD OF triggers.

Programming T-SQL statements enables IT pros to build applications contained within

SQL Server. These applications -- or objects -- can insert, update, delete or read data

stored in a database.

7.2.1. T-SQL FUNCTIONS

In addition to SQL Server's built-in functions, users can define functions using T-SQL.

 Types of T-SQL functions include:

 Aggregate functions, which operate on a collection of values, but return one

summary value.

 Ranking functions, which return a ranking value for every row within a partition.

E-NOTES / CS & BCA

140 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 Rowset functions, which return an object that can be used as a table reference in

SQL statements.

 Scalar functions, which operate on a single value and return a single value.

SQL Server also supports analytical functions in T-SQL to depict complex analytical tasks.

These analytical functions enable IT pros to perform common analysis, such as ranking,

percentiles, moving averages and cumulative sums to be expressed in a single SQL

statement.

DIFFERENCE BETWEEN T-SQL AND SQL

There are three distinct differences between the two.

 While T-SQL is an extension to SQL, SQL is a programming language.

 T-SQL contains procedural programming and local variable, while SQL does not.

 T-SQL is proprietary, while SQL is an open format.

JOINS IN T-SQL

Joins in T-SQL are clauses used to combine rows from two or more tables, based on a

related column between them. Joins specify how SQL should use data from one table to

select the rows in another table. Several operators -- such as =, <, >, <>, <=, >=, !=,

BETWEEN, LIKE, and NOT -- can be used to join tables.

Different types of joins are available in T-SQL. They include, for example, inner

joins and outer joins. An inner join, which returns rows when there is a match in both

tables, can be specified in either the FROM or WHERE clauses. Outer joins, which can be

specified in the FROM clause only, finds and returns matching data and some dissimilar

data from tables.

E-NOTES / CS & BCA

141 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

7.2.2. TRANSACT-SQL

Transact-SQL is a database procedural programming language. Microsoft's monopoly, used

in SQL Server. Procedural languages are designed to extend SQL's abilities while being able to

integrate well with SQL. Several features such as local variables and string/data processing are

added. These features make the language Turing-complete. They are also used to write stored

procedures: pieces of code residing on the server to manage complex business rules that are hard

or impossible to manage with pure set-based operations.

A Turing Complete system means a system in which a program can be written that will

find an answer (although with no guarantees regarding runtime or memory).

REVIEW QUESTIONS

1. Mention what is T-SQL?

2. Mention what is the difference between SQL and T-SQL?

3. Please name at least five commands which can manipulate text in the T-SQL

code. For example, replace a text string, obtain a portion of the text, etc.

4. Is it possible to import data directly from T-SQL commands without using SQL

Server Integration Services? If so, what are the commands?

5. Mention new error handling commands which are introduced with the SQL

Server 2005 and beyond? What commands did they replace? How are they

command used?

6. Mention how T-SQL statements can be written and submitted to the Database

engine?

7. Mention what is “GO” in T-SQL?

8. Difference between Delete & Truncate Statement? Which Statement Can Be

Rollbacked?

9. Why you should not use a Cursor? What Are Its Alternatives?

10. What Are The Multiple Ways To Execute A Dynamic Query?

11. What should be the Ideal Combination with in & Union (all) in terms of

Performance?

E-NOTES / CS & BCA

142 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

UNIT – V

CHAPTER 8: PROCEDURAL LANGUAGE

8.1. INTRODUCTION

PL/SQL is an extension of Structured Query Language (SQL) that is used in Oracle. Unlike

SQL, PL/SQL allows the programmer to write code in a procedural format. Full form of

PL/SQL is "Procedural Language extensions to SQL". It was developed by Oracle

Corporation in the early 90's to enhance the capabilities of SQL.

PL/SQL means instructing the compiler 'what to do' through SQL and 'how to do' through

its procedural way. Similar to other database languages, it gives more control to the

programmers by the use of loops, conditions and object-oriented concepts.

 Figure 8.1: Features of PL/SQL

FOLLOWING ARE CERTAIN NOTABLE FACTS ABOUT PL/SQL

 PL/SQL is a completely portable, high-performance transaction-processing

language.

E-NOTES / CS & BCA

143 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 PL/SQL provides a built-in, interpreted and OS independent programming

environment.

 PL/SQL can also directly be called from the command-line SQL*Plus interface.

 Direct call can also be made from external programming language calls to

database.

 PL/SQL's general syntax is based on that of ADA and Pascal programming

language.

 Apart from Oracle, PL/SQL is available in Times Ten in-memory

database and IBM DB2.

ADVANTAGES OF PL/SQL

PL/SQL is a completely portable, high-performance transaction processing language that

offers the following advantages:

 Tight Integration with SQL

 Better Performance

 Higher Productivity Full Portability

 Tight Security

 Access to Pre-defined Packages

 Support for Object-Oriented Programming

 Support for Developing Web Applications and Pages

8.2. PL/ SQL BLOCK STRUCTURE

The basic unit of a PL/SQL source program is the block, which groups related declarations

and statements. A PL/SQL block is defined by the

keywords DECLARE, BEGIN, EXCEPTION, and END. These keywords partition the

block into a declarative part, an executable part, and an exception-handling part. Only the

executable part is required.

E-NOTES / CS & BCA

144 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Declarations are local to the block and cease to exist when the block completes execution,

helping to avoid cluttered namespaces for variables and subprograms. Blocks can be

nested: Because a block is an executable statement, it can appear in another block wherever

an executable statement is allowed.

In PL/SQL, the code is not executed in single line format, but it is always executed by

grouping the code into a single element called Blocks. In this tutorial, you are going to

learn about these blocks.

The above picture illustrates the different PL/SQL block and their section order.

Blocks contain both PL/SQL as well as SQL instruction. All these instruction will be

executed as a whole rather than executing a single instruction at a time. PL/SQL blocks

have a pre-defined structure in which the code is to be grouped.

Below are different sections of PL/SQL blocks.

1. Declaration section

2. Execution section

3. Exception-Handling section

E-NOTES / CS & BCA

145 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

1. DECLARATION SECTION

This is the first section of the PL/SQL blocks. This section is an optional part. This is the

section in which the declaration of variables, cursors, exceptions, subprograms, pragma

instructions and collections that are needed in the block will be declared.

 Below are few more characteristics of this part.

 This particular section is optional and can be skipped if no declarations are needed.

 This should be the first section in a PL/SQL block, if present.

 This section starts with the keyword 'DECLARE' for triggers and anonymous

block. For other subprograms, this keyword will not be present. Instead, the part

after the subprogram name definition marks the declaration section.

 This section should always be followed by execution section.

2. EXECUTION SECTION

Execution part is the main and mandatory part which actually executes the code that is

written inside it. Since the PL/SQL expects the executable statements from this block this

cannot be an empty block, i.e., it should have at least one valid executable code line in it.

Below are few more characteristics of this part.

 This can contain both PL/SQL code and SQL code.

 This can contain one or many blocks inside it as a nested block.

 This section starts with the keyword 'BEGIN'.

 This section should be followed either by 'END' or Exception-Handling section (if

present)

3. EXCEPTION-HANDLING SECTION

The exception is unavoidable in the program which occurs at run-time and to handle this

Oracle has provided an Exception-handling section in blocks. This section can also contain

PL/SQL statements. This is an optional section of the PL/SQL blocks.

 This is the section where the exception raised in the execution block is handled.

E-NOTES / CS & BCA

146 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 This section is the last part of the PL/SQL block.

 Control from this section can never return to the execution block.

 This section starts with the keyword 'EXCEPTION'.

 This section should always be followed by the keyword 'END'.

 The Keyword 'END' marks the end of PL/SQL block.

8.2.1. PL/SQL BLOCK SYNTAX

Below is the syntax of the PL/SQL block structure.

DECLARE --optional

 <declarations>

BEGIN --mandatory

 <executable statements. At least one executable statement is mandatory>

EXCEPTION --optional

 <exception handles>

END; --mandatory

/

Note: A block should always be followed by '/' which sends the information to the compiler

about the end of the block.

8.2.2. TYPES OF PL/SQL BLOCK

PL/SQL blocks are of mainly two types.

1. Anonymous blocks

2. Named Blocks

E-NOTES / CS & BCA

147 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

1. ANONYMOUS BLOCKS

Anonymous blocks are PL/SQL blocks which do not have any names assigned to them.

They need to be created and used in the same session because they will not be stored in the

server as database objects.

Since they need not store in the database, they need no compilation steps. They are written

and executed directly, and compilation and execution happen in a single process.

Below are few more characteristics of Anonymous blocks.

 These blocks don't have any reference name specified for them.

 These blocks start with the keyword 'DECLARE' or 'BEGIN'.

 Since these blocks do not have any reference name, these cannot be stored for later

purpose. They shall be created and executed in the same session.

 They can call the other named blocks, but call to anonymous block is not possible

as it is not having any reference.

 It can have nested block in it which can be named or anonymous. It can also be

nested in any blocks.

 These blocks can have all three sections of the block, in which execution section is

mandatory, the other two sections are optional.

EXAMPLE:

1 DECLARE

2 num NUMBER(2);

3 sq NUMBER(3);

4 BEGIN

5 num:= &Number1;

E-NOTES / CS & BCA

148 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

6 sq := num*num;

7 DBMS_OUTPUT.PUT_LINE(‘Square:’ ||sq);

8 END;

2. NAMED BLOCKS

Named blocks have a specific and unique name for them. They are stored as the database

objects in the server. Since they are available as database objects, they can be referred to

or used as long as it is present on the server. The compilation process for named blocks

happens separately while creating them as a database objects.

Below are few more characteristics of Named blocks.

 These blocks can be called from other blocks.

 The block structure is same as an anonymous block, except it will never start with

the keyword 'DECLARE'. Instead, it will start with the keyword 'CREATE' which

instruct the compiler to create it as a database object.

 These blocks can be nested within other blocks. It can also contain nested blocks

EXAMPLE:

1 FUNCTION sqr (num IN NUMBER)

2 RETURN NUMBER is sq NUMBER(2);

3 BEGIN

4 sq:= num*num;

5 RETURN sq;

6 END;

E-NOTES / CS & BCA

149 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

8.2.3. FUNDAMENTALS OF PL/SQL

 PL/SQL IDENTIFIERS

PL/SQL identifiers are constants, variables, exceptions, procedures, cursors, and reserved

words. The identifiers consist of a letter optionally followed by more letters, numerals,

dollar signs, underscores, and number signs and should not exceed 30 characters.

By default, identifiers are not case-sensitive. So you can use integer or INTEGER to

represent a numeric value. You cannot use a reserved keyword as an identifier.

PL/SQL DELIMITERS

A delimiter is a symbol with a special meaning. Following is the list of delimiters in

PL/SQL:

 Delimiter Description

 +, -, *, / Addition, subtraction/negation, multiplication, division

% Attribute indicator

' Character string delimiter

. Component selector

(,) Expression or list delimiter

: Host variable indicator

, Item separator

" Quoted identifier delimiter

= Relational operator

@ Remote access indicator

E-NOTES / CS & BCA

150 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

; Statement terminator

:= Assignment operator

=> Association operator

|| Concatenation operator

** Exponentiation operator

 <<, >> Label delimiter (begin and end)

 /*, */ Multi-line comment delimiter (begin and end)

-- Single-line comment indicator

.. Range operator

 <, >, <=, >= Relational operators

 <>, '=, ~=, ^= Different versions of NOT EQUAL

PL/SQL COMMENTS

Program comments are explanatory statements that can be included in the PL/SQL code

that you write and helps anyone reading its source code. All programming languages allow

some form of comments.

The PL/SQL supports single-line and multi-line comments. All characters available inside

any comment are ignored by the PL/SQL compiler. The PL/SQL single-line comments

start with the delimiter -- (double hyphen) and multi-line comments are enclosed by /* and

*/.

E-NOTES / CS & BCA

151 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

DECLARE

 -- variable declaration

 message varchar2(20):= 'Hello, World!';

BEGIN

 /*

 * PL/SQL executable statement(s)

 */

 dbms_output.put_line(message);

END;

/

OUTPUT:

Hello World

 PL/SQL procedure successfully completed.

8.3. PL/SQL - DATA TYPES

The PL/SQL variables, constants and parameters must have a valid data type, which

specifies a storage format, constraints, and a valid range of values. There are six built-in

PL/SQL data types:

1. Scalar data types - Scalar data types haven't internal components.

2. Composite data types - Composite data types have internal components to

manipulate data easily.

3. Reference data types - This data types work like a pointer to hold some value.

4. LOB data types - Stores large objects such as images, graphics, video.

5. Unknown Column types - Identify columns when not know the type of column.

https://way2tutorial.com/plsql/plsql-data-types.php#scalartypes
https://way2tutorial.com/plsql/plsql-data-types.php#lobtypes
https://way2tutorial.com/plsql/plsql-data-types.php#unknowntype

E-NOTES / CS & BCA

152 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

6. User Define data types - Define your own data type that inherited from predefined

base data type.

8.3.1. SCALAR DATA TYPES

Scalar data types haven’t internal components. It is like a linear data type.

Scales data type divides into four different types

1. Numeric

2. Character

3. Boolean

4. Date/Time

a. NUMERIC DATA TYPES

Following are numeric data types in PL/SQL:

Datatype Description, Storage(Maximum)

NUMBER(p,s) NUMBER data type used to store numeric data.

BINARY_INTEGER BINARY_INTEGER data type store signed integer's value.

PLS_INTEGER PLS_INTEGER data type used to store signed integers data.

b. CHARACTER DATA TYPES

Character Data types used to store an alphabetic/alphanumeric character. Following are

some character data types in PL/SQL

Datatype Description Storage

(Maximum)

CHAR CHAR data type used to store character data within a predefined

length.

32767 bytes

https://way2tutorial.com/plsql/plsql-data-types.php#userdefine

E-NOTES / CS & BCA

153 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

CHARACTER CHARACTER data type same as CHAR data type. It is another

name of CHAR data type.

32767 bytes

VARCHAR2 VARCHAR2 data type used to store variable strings data within

a predefined length.

32767 bytes

LONG LONG data type used to store variable string data within a

predefined length, This data type used for backward

compatibility. Please use LONG data to the CLOB type.

32760 bytes

c. BOOLEAN DATA TYPES

Boolean Data Types stores logical values either TRUE or FALSE

Datatype Description

Boolean Boolean data type stores logical values. Boolean data types doesn't take any

parameters.Boolean data type store, either TRUE or FALSE. Also, store NULL,

Oracle treats NULL as an unassigned boolean variable.

d. DATE/TIME DATATYPES

A variable that has date/time data type hold value call datetimes. Oracle SQL automatically

converts character value into default date format ('DD-MON-YY') TO_DATE values.

Following are Date/Time data types in Oracle SQL.

Datatype Description

DATE DATE data type to store valid date-time format with a fixed

length.

E-NOTES / CS & BCA

154 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

TIMESTAMP TIMESTAMP data type to store valid date (year, month, day) with time (hour,

minute, second).

In PL/SQL datetime data type or interval data type fields values show the valid values for

each field.

Field Name Valid Value Valid Interval Value

YEAR -4712 to 9999 IntegerValue exclude 0

MONTH 01 to 12 0 to 11

DAY 01 to 31 Integer Value exclude 0

HOUR 00 to 23 0 to 23

MINUTE 00 to 59 0 to 59

SECOND 00 to 59.9(n) here n is precision of time fractional

seconds

0 to

59.9(n)

8.3.2. PL/SQL COMPOSITE DATA TYPES

A composite data type stores values that have internal components and internal components

can be either scalar or composite. Internal components can be of same data type and

different data type. PL/SQL allows us to define two kinds of composite data types:

1. Collection - The internal components must have the same data type and we can

access each element of a collection variable by its unique index

 syntax: variable_name(index).

E-NOTES / CS & BCA

155 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

2. Record - The internal components can have different data types and we can access

each field of a record variable by its name

 syntax: variable_name.field_name.

Collections in PL/SQL:

Oracle provides three types of collections.

1. Index-by Table(associate array),

2. Nested Tables, and

3. VARRAY.

All these collections are like a single dimension array.

Syntax of collection declaration is as follows:-

 TYPE type IS -- type is collection variable name, a valid identifier

 { assoc_array_type_def

 | varray_type_def

 | nested_table_type_def

 } ;

Collection can be created in following ways

1. Defines a collection type and then declare a variable of that type.

2. Use %TYPE to declare a collection variable of the same type as a previously declared

collection variable.

ASSOCIATE ARRAY (INDEXED TABLES):

Associative array is a set of key-value pairs and each key should be unique index. The data

type of index can be either a string type or PLS_INTEGER. Indexes are stored in sort order,

not creation order.

Syntax of associative array type creation :

TYPE type IS {

 --assoc_array_type_def

E-NOTES / CS & BCA

156 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 TABLE OF datatype [NOT NULL]

 INDEX BY { PLS_INTEGER | BINARY_INTEGER | VARCHAR2 (v_size) |

data_type }

};

On combining both collection declaration and associate table type declaration, we create

associative array and store key value pairs in following program and we can perform

various operation on it (Collections method).It's first way of creating collection(another

way uses %TYPE).In below sample program, we create TYPE of associative array named

as address and then create a variable employee_address of TYPE address. Refer in-line

comments for more details:

DECLARE

--Associative array type indexed by BINARY_NUMBER

TYPE address IS TABLE OF VARCHAR2(200) INDEX BY BINARY_INTEGER ;

--Associative array variable of type address

employees_address address;

BEGIN

 employees_address('01') := 'Hyderabad, INDIA';

 employees_address('02') := 'Banglore, INDIA';

 employees_address('03') := 'NY, USA';

 -- FIRST and NEXT gives firs and next element of collecton

DBMS_OUTPUT.PUT_LINE('FIRST and LAST ELEMENT key of collection are ' ||

 employees_address.FIRST || ' and ' || employees_address.LAST);

 --COUNT()method gives total no of elements in collection

DBMS_OUTPUT.PUT_LINE('Total no of elements in collection '

 || employees_address.COUNT);

 --EXISTS check for existence of key

IF employees_address.EXISTS(02) THEN

 employees_address.DELETE(02);

http://docs.oracle.com/cd/E11882_01/appdev.112/e25519/composites.htm#LNPLS00508

E-NOTES / CS & BCA

157 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

END IF;

DBMS_OUTPUT.PUT_LINE('Total no of elements in collection after delete '

 || employees_address.COUNT);

 END;

OUTPUT:

FIRST and LAST ELEMENT key of collection are 1 and 3

Total no of elements in collection 3

Total no of elements in collection after delete 2

VARRAY:

It is variable-size array and element counts in it can vary from 0 to declared maximum size.

Characteristics of VARRAY:

 Elements of VARRAY can be accessed by variable_name (index).VARRY index

starts from 1 (lowest_index = 1) and it can go up to maximum size of VARRAY.

 As contrast to associative array, it can be persisted in database table and order

of elements (indexes and element order) remain stable.

 VARRAY has constructor support as contrast to Associative array that does not

support collection constructor. A collection constructor is a system-defined

function with the same name as a collection type, which returns a collection of

that type. Syntax of a constructor invocation is:

 collection_type ([values,...]), values are optional. If no value is passed

constructor returns empty collection.

 VARRAY is stored as a single object in a column in database table.(if size of

object is more than 4KB then it is stored separately but in same namespace).

Following diagram depicts how VARRAY is stored in database table: Highlighted

column refers to VARRAY type and stored in database column as other scalar

type.

E-NOTES / CS & BCA

158 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

VARRAY creation and its initialization

Syntax of VARRAY creation is as follows - varray_type_def with collection

-- size_limit: upper limit of VARRAY(maximum that many elements can be stored)

 TYPE type IS { VARRAY | [VARYING] ARRAY } (size_limit)

 OF datatype [NOT NULL]

Consider following sample program which creates a VARRY to store address information

of employees and initialize it with constructor. Here ADDRESS is VARRAY type with

upper limit of container 3 and using constructor collection of type ADDRESS created is

returned to emp_address.

DECLARE

 -- VARRAY type declaration of type VARCHAR, upperlimit 3

 TYPE ADDRESS IS VARRAY(3) OF VARCHAR2(45);

 -- varray variable initialized with constructor of type ADDRESS

 emp_address ADDRESS := ADDRESS('HYD,IND', 'NY,USA','BANG,IND');

 BEGIN

 DBMS_OUTPUT.PUT_LINE('VARRAY elements count is '

 || emp_address.COUNT);

 DBMS_OUTPUT.PUT_LINE('Address display - Iteration over VARRAY');

 --emp_address.FIRST= 1 and emp_address.LAST = 3

E-NOTES / CS & BCA

159 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 FOR i IN emp_address.FIRST..emp_address.LAST LOOP

 DBMS_OUTPUT.PUT_LINE(i || '. address is ' || emp_address(i));

 END LOOP;

 DBMS_OUTPUT.PUT_LINE('Modify emp_address VARRAY ');

 emp_address(1) := 'Sydeny, AUS';

 DBMS_OUTPUT.PUT_LINE('Accessing VARRAY based on index,modified address

is '

 ||emp_address(1)); -- notice modified value here.

 --emp_address.DELETE(2);--Delete operation on VARRAY is not allowed.

 END;

OUTPUT:

VARRAY elements count is 3

Address display - Iteration over VARRAY

1. address is HYD,IND

2. address is NY,USA

3. address is BANG,IND

Modify emp_address VARRAY

Accessing VARRAY based on index, modified address is Sydeny, AUS

NESTED TABLES:

 It is a table (with rows and columns) that is stored in database table as data of a column in

no particular order.When that table is retrieved form database in PL/SQl context,

PL/SQL indexes all rows starting from 1 and based on index we can access each row of

nested table using method:

 nested_table_var(index).

Following diagram shows how Nested tables is stored in database table. Highlighted inner

table in CUSTOMER_DETAILS column refers to Nested table type and stored as part of

column data.

E-NOTES / CS & BCA

160 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Nested table creation and its initialization

 Syntax of Nested table creation is as follows, (nested_table_type_def with collection) :

 TYPE type IS {TABLE OF datatype [NOT NULL] }

 we have an Customer_detail_object is a Object TYPE and it stores customer details and

nested table is collection of that object- each row of nested table is customer_detail_object.

If you do no understand what is this Object, do not worry we will revisit it again, for the

time being just assume it is a container which can store different data types. Follow

following steps and execute query in sequence :

Step 1: Create Object type having fields CustID, cust_name, cust_address, execute below

query to create Object named Customer_detail_object.

--create Object Customer_detail_object : Created in schema level.

 create type Customer_detail_object as object

 (

 custID NUMBER(14),

 cust_name varchar2(25),

 cust_address varchar2(100)

);

http://4.bp.blogspot.com/-3Fmz_cXbFCs/Vf65y-eJJZI/AAAAAAAAI94/lE3lAT6tjEM/s1600/Nested+tables.PNG

E-NOTES / CS & BCA

161 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Step2: Now nested table type CUSTOMER_DETAILS of object type

Customer_detail_object.888888

--Create TABLE of object Customer_detail_object: Created in schema level

 create type CUSTOMER_DETAILS as Table of Customer_detail_object;

Step 3: Create a table, PRODUCTS_CUSTOMRS_DETAILS, in database with a fields

of type CUSTOMER_DETAILS (while creating table we specify about

CUSTOMER_DETAILS as nested table).

 --create table in database , NESTED TABLE clause is mandatory to append

create table PRODUCTS_CUSTOMRS_DETAILS

(

 product_id number(5),

 product_name varchar2(30),

 CUSTOMER_DETAILS HR.CUSTOMER_DETAILS

) NESTED TABLE CUSTOMER_DETAILS STORE AS CUSTOMRS_OBJECTS;

Step 4: Insert rows in table. We have created two rows and each row has

CUSTOMER_DETAILS table with two rows. If constructor used is empty, nested table

will be empty not NULL.

Insert data into table

insert into PRODUCTS_CUSTOMRS_DETAILS

 values(1,'P1',

CUSTOMER_DETAILS(

 Customer_detail_object(1,'RSQ','BANG,INDIA'),

 Customer_detail_object(2,'RTA','AUSTIN,USA')

));

E-NOTES / CS & BCA

162 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

insert into PRODUCTS_CUSTOMRS_DETAILS values (2,'P2',

CUSTOMER_DETAILS (

 Customer_detail_object (1,'RSQ','BANG,INDIA'),

 Customer_detail_object(2,'BAC','NY,USA')

));

 commit;

Now we have completed set-up to query database and see the stored result from PL/SQL

program.

declare

customerDetails_Tab CUSTOMER_DETAILS;

begin

--insert a record in database table with nested table data

 insert into products_CUSTOMRS_DETAILS

 values(3,'P3',

CUSTOMER_DETAILS(

 Customer_detail_object(1,'ACV','HYD,INDIA'),

 Customer_detail_object(2,'ERT','AUSTIN,USA')

));

 commit;

 --select record and store nested table value in customerDetails_Tab

 select CUSTOMER_DETAILS into customerDetails_Tab

 from products_CUSTOMRS_DETAILS

 where product_id = 1;

 --update nested table column in database

 update products_CUSTOMRS_DETAILS set CUSTOMER_DETAILS =

customerDetails_Tab

 where product_id = 3;

 commit;

E-NOTES / CS & BCA

163 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

end;

Here we played around with DML statements and treating inner table as atomic

value(Insert, select or update nested table in column).We can deal with individual row of

nested table using TABLE command as follows:

 select * from table (select CUSTOMER_DETAILS from

 products_CUSTOMRS_DETAILS where product_id = 1);

Above query executes and it displays nested tables corresponding to row with product_id

= 1, as follows :

PL/SQL records:

Use PL/SQL records when you want to store values of different data types but only one

occurrence at a time. PL/SQL record must contain one or more components (called fields)

of any scalar, RECORD or Index by table data type.

Creating PL/SQL records:

Syntax:

TYPE type_name is RECORD

 (field_declaration [, field_declaration]...);

identifier type name;

field_declaration:

field_name {field_type | variable%type

 | table.column%type | table%rowtype}

 [[NOT NULL] {:= | DEFAULT} expr]

Example:

http://3.bp.blogspot.com/-aphmrutHP0U/Vf7dSgRumoI/AAAAAAAAI-I/P6_dOPCEnPI/s1600/table+_fuf.PNG

E-NOTES / CS & BCA

164 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

TYPE emp_record_type IS RECORD

 (lname VARCHAR2(20),

 job_id VARCHAR2(30) DEFAULT 'Developer',

 salary NUMBER emp.salary%TYPE);

emp_type emp_record_type;

...

Using %ROWTYPE in composite data type: The %ROWTYPE attribute is useful when

the number and data types of the underlying database columns is unknown and retrieving

a row with the SELECT * from statement.

Example:

DECLARE

 emp_rec employees%ROWTYPE;

BEGIN

 SELECT * INTO emp_rec FROM employees

 WHERE employee_id = 124;

 emp_rec.hire_date := SYSDATE;

 UPDATE EMP SET ROW = emp_rec;

END;

8.3.3. REFERENCE DATA TYPES:

In PL/SQL, REF data types are pointers that uniquely identify a piece of data as an object.

A reference can be established between an existent valid object and a table or type attribute

using the REF pointer data type. An attribute referring to a nonexistent object leads to

"dangling" situation. Note that a NULL object reference is different from a Dangling

Reference.

To insert data into a ref column, the REF function is used to get an object instance

reference.

Syntax:

[ATTRIBUTE | COLUMN] REF [OBJECT TYPE]

http://psoug.org/definition/NULL.htm

E-NOTES / CS & BCA

165 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Example:

The example code below shows the declaration of the REF attribute in table REFTAB. It

points to TYPE_REFT object instance. Note the usage of REF as a function and the

reference to an object instance.

CREATE OR REPLACE TYPE TYP_REFT AS OBJECT

(A NUMBER,

B NUMBER);

/

Type created.

CREATE TABLE REFTT OF TYP_REFT;

Table created.

CREATE TABLE REFTAB

(ID REF TYP_REFT);

Table created.

INSERT INTO REFTT VALUES (1,2);

1 row created.

INSERT INTO REFTAB

SELECT REF(T) FROM REFTT T

1 row created.

SELECT * FROM REFTAB;

ID

E-NOTES / CS & BCA

166 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

00002202086F2A5BC83EC7440E97984B2C9EA9D9FEB2393991A58C42298

97D0F775122F006

8.3.4. LARGE OBJECT DATATYPES (LOB TYPES)

LOB data types use to store large object such as image, video, graphics, text, audio.

Maximum size up to 4 Gigabytes. Following are LOB data types in SQL.

Datatype Description Storage(Maximum)

BFILE BFILE data type to store a large binary object into

Operating System file. This data type variable store

full file locator's path, which points to a stored binary

object within a server. BFILE data type read-only,

you can't modify them.

Size: up to 4GB (232 -

1 byte)

BLOB BLOB data type same as BFILE data type to store an

unstructured binary object into Operating System file.

BLOB type fully supported transactions are

recoverable and replicated.

Size: 8 TB to 128 TB

(4GB - 1) *

DB_BLOCK_SIZE

CLOB CLOB data type to store large blocks of character data

into Database. Store single byte and multi-byte

character data. CLOB type fully supported

transactions are recoverable and replicated.

Size: 8 TB to 128 TB

(4GB - 1) *

DB_BLOCK_SIZE

E-NOTES / CS & BCA

167 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

NCLOB NCLOB data type to store large blocks of NCHAR

data into Database. Store single byte and multi-byte

character data. NCLOB type fully supported

transactions are recoverable and replicated.

Size: 8 TB to 128 TB

(4GB - 1) *

DB_BLOCK_SIZE

8.3.5. UNKNOWN COLUMN TYPES

PL/SQL this data type is used when column type is not know.

Datatype Description

%Type This data type is used to store value unknown data type column in a table.

The column is identified by %type data type.

%RowType This data type is used to store values unknown data type in all columns in

a table. All columns are identified by %RowType datatype.

%RowID RowID is data type. RowID is two types extended or restricted.

Extended return 0 and restricted return 1 otherwise return the row number.

Function of Row ID:

8.3.6. USER-DEFINED SUBTYPES

PL/SQL gives you the control to create your own sub data type that inherited from a

predefined base type. Subtypes can increase reliability and provide compatibility with

ANSI/ISO type. Several predefined subtypes are in a STANDARD package.

Defining Subtypes

The declarative part of PL/SQL block using the following syntax,

E-NOTES / CS & BCA

168 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

SUBTYPE subtype_name IS base_type[(constraint)] [NOT NULL];

Following the example, predefined data type inherits from CHARACTER and INTEGER

data type to make a new sub type,

SUBTYPE CHARACTER IS CHAR;

SUBTYPE INTEGER IS NUMBER(10,4); -- allows for numbers

Example:

DECLARE

 SUBTYPE message IS varchar2(25);

 SUBTYPE age IS INTEGER(2,0);

 description message;

 ages age;

BEGIN

 description := 'Web Developer';

 ages := 22;

 dbms_output.put_line('I am ' || description || ' and I am ' || ages || ' years Old.');

END;

OUTPUT:

I am Web Developer and I am 22 years Old.

PL/SQL procedure successfully completed.

8.4. PL/SQL - VARIABLES

A variable is a meaningful name which facilitates a programmer to store data temporarily

during the execution of code. It helps you to manipulate data in PL/SQL programs. It is

nothing except a name given to a storage area.

E-NOTES / CS & BCA

169 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Each variable in the PL/SQL has a specific data type which defines the size and layout of

the variable's memory. A variable should not exceed 30 characters. Its letter optionally

followed by more letters, dollar signs, numerals, underscore etc.

VARIABLE DECLARATION IN PL/SQL

PL/SQL variables must be declared in the declaration section or in a package as a global

variable. When you declare a variable, PL/SQL allocates memory for the variable's value

and the storage location is identified by the variable name.

SYNTAX FOR DECLARING VARIABLE

variable_name [CONSTANT] datatype [NOT NULL] [:= | DEFAULT initial_value]

Here, variable_name is a valid identifier in PL/SQL and datatype must be valid PL/SQL

data type. A data type with size, scale or precision limit is called a constrained declaration.

The constrained declaration needs less memory than unconstrained declaration.

NAMING RULES FOR PL/SQL VARIABLES:

The variable in PL/SQL must follow some naming rules like other programming languages.

 The variable_name should not exceed 30 characters.

 The name of the variable must begin with ASCII letter. The PL/SQL is not case

sensitive so it could be either lowercase or uppercase. For example: v_data and

V_DATA refer to the same variables.

 You should make your variable easy to read and understand, after the first character,

it may be any number, underscore (_) or dollar sign ($).

 NOT NULL is an optional specification on the variable.

INITIALIZING VARIABLES IN PL/SQL

Every time you declare a variable, PL/SQL defines a default value NULL to it. If you want

to initialize a variable with other value than NULL value, you can do so during the

declaration, by using any one of the following methods.

E-NOTES / CS & BCA

170 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 The DEFAULT keyword

 The assignment operator

 counter binary_integer := 0;

 greetings varchar2(20) DEFAULT 'Hello Javaprogram';

It also specify NOT NULL constraint to avoid NULL value. If you specify the NOT NULL

constraint, you must assign an initial value for that variable. You must have a good

programming skill to initialize variable properly otherwise, sometimes program would

produce unexpected result.

Example of initializing variable

1. DECLARE

2. a integer := 30;

3. b integer := 40;

4. c integer;

5. f real;

6. BEGIN

7. c := a + b;

8. dbms_output.put_line('Value of c: ' || c);

9. f := 100.0/3.0;

10. dbms_output.put_line('Value of f: ' || f);

11. END;

OUTPUT:

1. Value of c: 70

2. Value of f: 33.333333333333333333

3.

4. PL/SQL procedure successfully completed.

E-NOTES / CS & BCA

171 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Variable Scope in PL/SQL:

PL/SQL allows nesting of blocks. A program block can contain another inner block. If you

declare a variable within an inner block, it is not accessible to an outer block.

There are two types of variable scope:

 Local Variable: Local variables are the inner block variables which are not

accessible to outer blocks.

 Global Variable: Global variables are declared in outermost block.

Example of Local and Global variables

1. DECLARE

2. -- Global variables

3. num1 number := 95;

4. num2 number := 85;

5. BEGIN

6. dbms_output.put_line('Outer Variable num1: ' || num1);

7. dbms_output.put_line('Outer Variable num2: ' || num2);

8. DECLARE

9. -- Local variables

10. num1 number := 195;

11. num2 number := 185;

12. BEGIN

13. dbms_output.put_line('Inner Variable num1: ' || num1);

14. dbms_output.put_line('Inner Variable num2: ' || num2);

15. END;

16. END;

17. /

E-NOTES / CS & BCA

172 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

OUTPUT:

1. Outer Variable num1: 95

2. Outer Variable num2: 85

3. Inner Variable num1: 195

4. Inner Variable num2: 185

5. PL/SQL procedure successfully completed.

8.5. PL/SQL - OPERATORS

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulation. PL/SQL language is rich in built-in operators and provides the following

types of operators :

1. Arithmetic operators

2. Relational operators

3. Comparison operators

4. Logical operators

5. String operators

8.5.1. ARITHMETIC OPERATORS

Following table shows all the arithmetic operators supported by PL/SQL. Let us

assume variable A holds 10 and variable B holds 5, then

Operator Description Example

 + Adds two operands A + B will give 15

 - Subtracts second operand from the first A - B will give 5

 * Multiplies both operands A * B will give 50

 / Divides numerator by de-numerator A / B will give 2

 **
Exponentiation operator, raises one operand

to the power of other
A ** B will give 100000

E-NOTES / CS & BCA

173 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

8.5.2. RELATIONAL OPERATORS

Relational operators compare two expressions or values and return a Boolean result.

Following table shows all the relational operators supported by PL/SQL.

Let us assume variable A holds 10 and variable B holds 20, then

Operator Description Example

 =
Checks if the values of two operands are equal or not, if

yes then condition becomes true.

(A = B) is not

true.

 != <>

 ~=

Checks if the values of two operands are equal or not, if

values are not equal then condition becomes true.

(A != B) is

true.

 >
Checks if the value of left operand is greater than the value

of right operand, if yes then condition becomes true.

(A > B) is not

true.

 <
Checks if the value of left operand is less than the value of

right operand, if yes then condition becomes true.

(A < B) is

true.

 >=

Checks if the value of left operand is greater than or equal

to the value of right operand, if yes then condition becomes

true.

(A >= B) is

not true.

 <=

Checks if the value of left operand is less than or equal to

the value of right operand, if yes then condition becomes

true.

(A <= B) is

true

8.5.3. COMPARISON OPERATORS

Comparison operators are used for comparing one expression to another. The result is

always either TRUE, FALSE or NULL.

E-NOTES / CS & BCA

174 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Operator Description Example

LIKE

The LIKE operator compares a character,

string, or CLOB value to a pattern and returns

TRUE if the value matches the pattern and

FALSE if it does not.

If 'Zara Ali' like 'Z% A_i'

returns a Boolean true, whereas,

'Nuha Ali' like 'Z% A_i' returns

a Boolean false.

BETWEEN

The BETWEEN operator tests whether a

value lies in a specified range. x BETWEEN a

AND b means that x >= a and x <= b.

If x = 10 then, x between 5 and

20 returns true, x between 5 and

10 returns true, but x between

11 and 20 returns false.

 IN

The IN operator tests set membership. x IN

(set) means that x is equal to any member of

set.

If x = 'm' then, x in ('a', 'b', 'c')

returns Boolean false but x in

('m', 'n', 'o') returns Boolean

true.

IS NULL

The IS NULL operator returns the BOOLEAN

value TRUE if its operand is NULL or FALSE

if it is not NULL. Comparisons involving

NULL values always yield NULL.

If x = 'm', then 'x is null' returns

Boolean false.

8.5.4. LOGICAL OPERATORS

Following table shows the Logical operators supported by PL/SQL. All these operators

work on Boolean operands and produce Boolean results. Let us assume variable A holds

true and variable B holds false, then

E-NOTES / CS & BCA

175 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Operator Description Examples

 and
Called the logical AND operator. If both the operands are true

then condition becomes true.

(A and B) is

false.

 or
Called the logical OR Operator. If any of the two operands is

true then condition becomes true.

(A or B) is

true.

 not

Called the logical NOT Operator. Used to reverse the logical

state of its operand. If a condition is true then Logical NOT

operator will make it false.

not (A and B)

is true.

8.5.5. PL/SQL OPERATOR PRECEDENCE

Operator precedence determines the grouping of terms in an expression. This affects how

an expression is evaluated. Certain operators have higher precedence than others; for

example, the multiplication operator has higher precedence than the addition operator.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has higher

precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the

lowest appear at the bottom. Within an expression, higher precedence operators will be

evaluated first.

The precedence of operators goes as follows: =, <, >, <=, >=, <>, !=, ~=, ^=, IS NULL,

LIKE, BETWEEN, IN.

E-NOTES / CS & BCA

176 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Operator Operation

** Exponentiation

+, - identity, negation

*, / multiplication, division

+, -, || addition, subtraction, concatenation

Comparison

NOT logical negation

AND conjunction

OR inclusion

8.6. PL/SQL - CONDITIONS

Decision-making structures require that the programmer specify one or more conditions

to be evaluated or tested by the program, along with a statement or statements to be

executed if the condition is determined to be true, and optionally, other statements to be

executed if the condition is determined to be false.

Following is the general form of a typical conditional (i.e., decision making) structure

found in most of the programming languages :

E-NOTES / CS & BCA

177 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

PL/SQL programming language provides following types of decision-making statements.

Click the following links to check their detail.

Statement & Description

IF - THEN statement

The IF statement associates a condition with a sequence of statements enclosed by the

keywords THEN and END IF. If the condition is true, the statements get executed and

if the condition is false or NULL then the IF statement does nothing.

IF-THEN-ELSE statement

IF statement adds the keyword ELSE followed by an alternative sequence of statement.

If the condition is false or NULL, then only the alternative sequence of statements get

executed. It ensures that either of the sequence of statements is executed.

IF-THEN-ELSIF statement

 It allows you to choose between several alternatives.

Case statement

Like the IF statement, the CASE statement selects one sequence of statements to

execute. However, to select the sequence, the CASE statement uses a selector rather than

https://www.tutorialspoint.com/plsql/plsql_if_then.htm
https://www.tutorialspoint.com/plsql/plsql_if_then_else.htm
https://www.tutorialspoint.com/plsql/plsql_if_then_elsif.htm
https://www.tutorialspoint.com/plsql/plsql_case_statement.htm

E-NOTES / CS & BCA

178 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

multiple Boolean expressions. A selector is an expression whose value is used to select

one of several alternatives.

Searched CASE statement

The searched CASE statement has no selector, and it's WHEN clauses contain search

conditions that yield Boolean values.

nested IF-THEN-ELSE

You can use one IF-THEN or IF-THEN-ELSIF statement inside another IF-

THEN or IF-THEN-ELSIF statement(s).

8.7. PL/SQL - LOOPS

A loop statement allows us to execute a statement or group of statements multiple times

and following is the general form of a loop statement in most of the programming

languages −

PL/SQL provides the following types of loop to handle the looping requirements. Click

the following links to check their detail.

https://www.tutorialspoint.com/plsql/plsql_searched_case.htm
https://www.tutorialspoint.com/plsql/plsql_nested_if.htm

E-NOTES / CS & BCA

179 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Loop Type & Description

PL/SQL Basic LOOP

In this loop structure, sequence of statements is enclosed between the LOOP and the END

LOOP statements. At each iteration, the sequence of statements is executed and then control

resumes at the top of the loop.

PL/SQL WHILE LOOP

Repeats a statement or group of statements while a given condition is true. It tests the

condition before executing the loop body.

PL/SQL FOR LOOP

Execute a sequence of statements multiple times and abbreviates the code that manages the

loop variable.

Nested loops in PL/SQL

 You can use one or more loop inside any another basic loop, while, or for loop.

LABELING A PL/SQL LOOP

PL/SQL loops can be labeled. The label should be enclosed by double angle brackets (<<

and >>) and appear at the beginning of the LOOP statement. The label name can also

appear at the end of the LOOP statement. You may use the label in the EXIT statement to

exit from the loop.

DECLARE

 i number(1);

 j number(1);

BEGIN

 << outer_loop >>

https://www.tutorialspoint.com/plsql/plsql_basic_loop.htm
https://www.tutorialspoint.com/plsql/plsql_while_loop.htm
https://www.tutorialspoint.com/plsql/plsql_for_loop.htm
https://www.tutorialspoint.com/plsql/plsql_nested_loops.htm

E-NOTES / CS & BCA

180 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 FOR i IN 1..3 LOOP

 << inner_loop >>

 FOR j IN 1..3 LOOP

 dbms_output.put_line('i is: '|| i || ' and j is: ' || j);

 END loop inner_loop;

 END loop outer_loop;

END; /

OUTPUT:

i is: 1 and j is: 1

i is: 1 and j is: 2

i is: 1 and j is: 3

i is: 2 and j is: 1

i is: 2 and j is: 2

i is: 2 and j is: 3

i is: 3 and j is: 1

i is: 3 and j is: 2

i is: 3 and j is: 3

PL/SQL procedure successfully completed.

THE LOOP CONTROL STATEMENTS

Loop control statements change execution from its normal sequence. When execution

leaves a scope, all automatic objects that were created in that scope are destroyed. PL/SQL

supports the following control statements.

Labeling loops also help in taking the control outside a loop. Click the following links to

check their details.

E-NOTES / CS & BCA

181 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Control Statement & Description

EXIT statement

The Exit statement completes the loop and control passes to the statement immediately after

the END LOOP.

CONTINUE statement

Causes the loop to skip the remainder of its body and immediately retest its condition prior

to reiterating.

GOTO statement

Transfers control to the labeled statement. Though it is not advised to use the GOTO

statement in your program.

8.8. PL/SQL – STRINGS

The string in PL/SQL is actually a sequence of characters with an optional size

specification. The characters could be numeric, letters, blank, special characters or a

combination of all. PL/SQL offers three kinds of strings :

 Fixed-length strings − In such strings, programmers specify the length while

declaring the string. The string is right-padded with spaces to the length so

specified.

 Variable-length strings − In such strings, a maximum length up to 32,767, for the

string is specified and no padding takes place.

 Character large objects (CLOBs) − These are variable-length strings that can be

up to 128 terabytes.

PL/SQL strings could be either variables or literals. A string literal is enclosed within

quotation marks.

For example:

https://www.tutorialspoint.com/plsql/plsql_exit_statement.htm
https://www.tutorialspoint.com/plsql/plsql_continue_statement.htm
https://www.tutorialspoint.com/plsql/plsql_goto_statement.htm

E-NOTES / CS & BCA

182 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

'This is a string literal.' Or 'hello world'

To include a single quote inside a string literal, you need to type two single quotes next to

one another. For example:

'this isn’t what it looks like'

8.8.1. DECLARING STRING VARIABLES

Oracle database provides numerous string datatypes, such as CHAR, NCHAR,

VARCHAR2, NVARCHAR2, CLOB, and NCLOB. The datatypes prefixed with

an 'N' are 'national character set' datatypes, that store Unicode character data.

If you need to declare a variable-length string, you must provide the maximum length of

that string.

For example, the VARCHAR2 data type. The following example illustrates declaring and

using some string variables:

DECLARE

 name varchar2(20);

 company varchar2(30);

 introduction clob;

 choice char(1);

BEGIN

 name := 'John Smith';

 company := 'Infotech';

 introduction := ' Hello! I''m John Smith from Infotech.';

 choice := 'y';

 IF choice = 'y' THEN

 dbms_output.put_line(name);

 dbms_output.put_line(company);

 dbms_output.put_line(introduction);

E-NOTES / CS & BCA

183 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 END IF;

END; /

OUTPUT:

John Smith

Infotech

Hello! I'm John Smith from Infotech.

PL/SQL procedure successfully completed

To declare a fixed-length string, use the CHAR datatype. Here you do not have to specify

a maximum length for a fixed-length variable. If you leave off the length constraint, Oracle

Database automatically uses a maximum length required.

The following two declarations are identical −

red_flag CHAR(1) := 'Y';

 red_flag CHAR := 'Y';

8.8.2. PL/SQL STRING FUNCTIONS AND OPERATORS

PL/SQL offers the concatenation operator (||) for joining two strings.

The following table provides the string functions provided by PL/SQL:

 Function & Purpose

ASCII(x): Returns the ASCII value of the character x.

CHR(x): Returns the character with the ASCII value of x.

CONCAT(x, y): Concatenates the strings x and y and returns the appended string.

INITCAP(x): Converts the initial letter of each word in x to uppercase and returns that

string.

E-NOTES / CS & BCA

184 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

INSTR(x, find_string [, start] [, occurrence]): Searches for find_string in x and

returns the position at which it occurs.

LENGTH(x): Returns the number of characters in x.

LOWER(x): Converts the letters in x to lowercase and returns that string.

SUBSTR(x, start [, length]): Returns a substring of x that begins at the position

specified by start. An optional length for the substring may be supplied.

TRIM([trim_char FROM) x): Trims characters from the left and right of x.

UPPER(x): Converts the letters in x to uppercase and returns that string.

DECLARE

 greetings varchar2(30) := '......Hello World.....';

BEGIN

 dbms_output.put_line(RTRIM(greetings,'.'));

 dbms_output.put_line(LTRIM(greetings, '.'));

 dbms_output.put_line(TRIM('.' from greetings));

END;

/

OUTPUT:

......Hello World

Hello World.....

Hello World

PL/SQL procedure successfully completed.

8.9. PL/SQL – ARRAYS

The PL/SQL programming language provides a data structure called the VARRAY, which

can store a fixed-size sequential collection of elements of the same type. A varray is used

to store an ordered collection of data, however it is often better to think of an array as a

collection of variables of the same type.

E-NOTES / CS & BCA

185 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

All varrays consist of contiguous memory locations. The lowest address corresponds to

the first element and the highest address to the last element.

An array is a part of collection type data and it stands for variable-size arrays. We will

study other collection types in a later chapter 'PL/SQL Collections'.

Each element in a varray has an index associated with it. It also has a maximum size that

can be changed dynamically.

Creating a Varray Type

A varray type is created with the CREATE TYPE statement. You must specify the

maximum size and the type of elements stored in the varray.

The basic syntax for creating a VARRAY type at the schema level is :

CREATE OR REPLACE TYPE varray_type_name IS VARRAY(n) of <element_type>

Where,

 varray_type_name is a valid attribute name,

 n is the number of elements (maximum) in the varray,

 element_type is the data type of the elements of the array.

Maximum size of a varray can be changed using the ALTER TYPE statement.

E-NOTES / CS & BCA

186 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

For Example:

CREATE Or REPLACE TYPE namearray AS VARRAY(3) OF VARCHAR2(10);

/ Type created.

The basic syntax for creating a VARRAY type within a PL/SQL block is :

TYPE varray_type_name IS VARRAY(n) of <element_type>

For Example:

TYPE namearray IS VARRAY(5) OF VARCHAR2(10);

Type grades IS VARRAY(5) OF INTEGER;

Let us now work out on a few examples to understand the concept :

Example 1:

The following program illustrates the use of varrays :

DECLARE

 type namesarray IS VARRAY(5) OF VARCHAR2(10);

 type grades IS VARRAY(5) OF INTEGER;

 names namesarray;

 marks grades;

 total integer;

BEGIN

 names := namesarray('Kavita', 'Pritam', 'Ayan', 'Rishav', 'Aziz');

 marks:= grades(98, 97, 78, 87, 92);

 total := names.count;

 dbms_output.put_line('Total '|| total || ' Students');

 FOR i in 1 .. total LOOP

E-NOTES / CS & BCA

187 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 dbms_output.put_line('Student: ' || names(i) || '

 Marks: ' || marks(i));

 END LOOP;

END;

/

OUTPUT:

Total 5 Students

Student: Kavita Marks: 98

Student: Pritam Marks: 97

Student: Ayan Marks: 78

Student: Rishav Marks: 87

Student: Aziz Marks: 92

PL/SQL procedure successfully completed.

SAMPLE PROGRAMS:

Example 1: Simple display statement

Step 1:

SQL> Set Serveroutput On;

 Step 2:

SQL> begin

 2 dbms_output.put_line('Welcome to PL/SQL');

 3 end;

 4 /

Output:

Welcome to PL/SQL

PL/SQL procedure successfully completed.

E-NOTES / CS & BCA

188 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Example 2: Calculation using Variables

Step 1:

SQL> Set Serveroutput On;

Step 2:

SQL>declare

 2 a number;

 3 b number;

 4 c number;

 5 begin

 6 a :=10;

 7 b :=20;

 8 c :=a+b;

 9 dbms_output.put_line('A + B = ' ||c);

 10 end;

 11 /

Output:

A + B = 30

PL/SQL procedure successfully completed.

Example 3: Using Table:

Step1 :

 SQL> create table stu(rno number(3), name varchar2(20), DBMS number(3), DS

number(3), CO number(3), total number(4), average number(4), result varchar2(8));

Table created.

Step 2:

SQL>insert into stuvalues(&rno,'&name',&dbms,&ds,&co,&total,&average,&result);

Step 3:

SQL> select * from stu;

E-NOTES / CS & BCA

189 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 RNO NAME DBMS DS CO TOTAL AVERAGE RESULT

---------- -------------------- ---------- ---------- ---------- ---------- -------------- -----------

 1 shree 90 90 90 270 90 pass

 2 priya 80 80 80 240 80 pass

Step 4: set serveroutput on;

 Step 5: Go to Edit mode and type the following coding.

declare

no stu.rno%type;

name stu.name%type;

m1 stu.dbms%type;

m2 stu.ds%type;

m3 stu.co%type;(or) st stu%rowtype;

tot stu.total%type;

aveg stu.average%type;

res stu.result%type;

begin

no :=&no;

select rno,name,dbms,ds,co,total,average,result into

no,name,m1,m2,m3,tot,aveg,res from stu where rno=no;

dbms_output.new_line();

dbms_output.put_line('***********************');

dbms_output.put_line('Student Marks Statement');

dbms_output.put_line('***********************');

dbms_output.new_line();

dbms_output.put_line('Register Number : '||no);

dbms_output.put_line('Student Name : '||name);

dbms_output.put_line('DBMS Mark : '||m1);

dbms_output.put_line('DS Mark : '||m2);

dbms_output.put_line('CO Mark : '||m3);

E-NOTES / CS & BCA

190 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

dbms_output.put_line('Total Marks : '||tot);

dbms_output.put_line('Average : '||aveg);

dbms_output.put_line('Result Pass/Fail : '||res);

end;

/

Step 6:

SQL> /

Enter value for no: 2

Output:

old 11: no :=&no;

new 11: no :=2;

Student Marks Statement

Register Number : 2

Student Name : priya

DBMS Mark : 80

DS Mark : 80

CO Mark : 80

Total Marks : 240

Average : 80

Result Pass/Fail : pass

 PL/SQL procedure successfully completed.

8.10. PL/SQL TABLES AND RECORDS

PL/SQL tables use a primary key to give you array-like access to rows. The number of

rows in a PL/SQL table can increase dynamically. The PL/SQL tables grows as new rows

are added. PL/SQL tables can have one column and a primary key, neither of which can

E-NOTES / CS & BCA

191 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

be named. The column can belong to any scalar type, but the primary key mustbelong to

type BINARY_INTEGER.

A PL/SQL tables can consist of one simple datatype or be defined as a type of record and

is sometimes referred to as an Indexbytable. Rows in a PL/SQL table do not have to be

contiguous. Objects of type TABLE are known as PL/SQL tables.

PL/SQL has two composite data types:

1. TABLE

2. RECORD

8.10.1. TABLES

Tables with simple datatypes can be populated as:

<variable>(<integer>) := <value>;

Tables with complex datatypes will need the columns populated individually as:

<variable>(<integer>).<column_name> := <value>;

Or from a cursor:

fetch <cursor_name> into <variable>(<integer>);

Example1 of PL/SQLTable:

Type my_first_table is table of varchar2(10)

Index by binary_integer;

Var_of_table my_first_table;

E-NOTES / CS & BCA

192 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Var_of_table(1) := ‘hello world’;

Var_of_table(2) := ‘bye’;

To delete individual records from PL/SQL tables:

Var_of_emp .delete(1);

To remove all entries from a PL/SQL table:

Var_of_emp.delete;

Or

Var_of_emp := var1_of_emp

Where var1_of_emp does not contain any value, it is empty.

COUNT method can be used to return number of records in a PL/SQL Table.

Var_of_table.count

First, Next and Last methods of PL/SQL Tables.

First is for first index in the PL/SQL Tables.

Last is for last index in the PL/SQL Tables.

Next is for next index in the PL/SQL Tables.

Example showing First and Next method of PL/SQL tables

SQL> set serveroutput on

SQL> Declare

2

3 Type my_dept_table is table of varchar2(20)

4 Index by binary_integer;

5

E-NOTES / CS & BCA

193 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

6 Var_of_dept my_dept_table;

7 Index_value number;

8

9 Begin

10

11 For dept_rec in (select * from dept) loop

12 Var_of_dept(dept_rec.deptno) := dept_rec.dname;

13 End loop;

14

15 Index_value := var_of_dept.first;

16 Loop

17 Exit when index_value is null;

18 Dbms_output.put_line (index_value || ' ' ||var_of_dept(index_value));

19 Index_value := var_of_dept.next(index_value);

20 End loop;

21 End;

22 /

OUTPUT

10 ACCOUNTING

20 RESEARCH

30 SALES

40 OPERATIONS

PL/SQL procedure successfully completed.

E-NOTES / CS & BCA

194 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

8.10.2. RECORDS

A record is a data structure that can hold data items of different kinds. Records consist of

different fields, similar to a row of a database table. For example, you want to keep track

of your books in a library.

To track the following attributes about each book, such as Title, Author, Subject, Book

ID. A record containing a field for each of these items allows treating a BOOK as a logical

unit and allows you to organize and represent its information in a better way.

PL/SQL can handle the following types of records:

a. Table-based records

b. Cursor-based records

c. User-defined records

a. TABLE-BASED RECORDS

The %ROWTYPE attribute enables a programmer to

create tablebased and cursorbased records.

The following example illustrates the concept of table-based records. We will be using

the CUSTOMERS table we had created:

DECLARE

 customer_rec customers%rowtype;

BEGIN

 SELECT * into customer_rec

 FROM customers

 WHERE id = 5;

 dbms_output.put_line('Customer ID: ' || customer_rec.id);

 dbms_output.put_line('Customer Name: ' || customer_rec.name);

E-NOTES / CS & BCA

195 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 dbms_output.put_line('Customer Address: ' || customer_rec.address);

 dbms_output.put_line('Customer Salary: ' || customer_rec.salary);

END;

/

OUTPUT:

Customer ID: 5

Customer Name: Hardik

Customer Address: Bhopal

Customer Salary: 9000

PL/SQL procedure successfully completed.

b. CURSOR-BASED RECORDS

The following example illustrates the concept of cursor-based records. We will be using

the CUSTOMERS table we had created:

DECLARE

 CURSOR customer_cur is

 SELECT id, name, address

 FROM customers;

 customer_rec customer_cur%rowtype;

BEGIN

 OPEN customer_cur;

 LOOP

 FETCH customer_cur into customer_rec;

 EXIT WHEN customer_cur%notfound;

 DBMS_OUTPUT.put_line(customer_rec.id || ' ' || customer_rec.name);

E-NOTES / CS & BCA

196 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 END LOOP;

END;

/

OUTPUT:

1 Ramesh

2 Khilan

3 kaushik

4 Chaitali

5 Hardik

6 Komal

PL/SQL procedure successfully completed.

c. USER-DEFINED RECORDS

PL/SQL provides a user-defined record type that allows you to define the different record

structures. These records consist of different fields. Suppose you want to keep track of

your books in a library.

If we want to track the following attributes about each book :

 Title

 Author

 Subject

 Book ID

DEFINING A RECORD

 The record type is defined as :

TYPE

type_name IS RECORD

 (field_name1 datatype1 [NOT NULL] [:= DEFAULT EXPRESSION],

E-NOTES / CS & BCA

197 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 field_name2 datatype2 [NOT NULL] [:= DEFAULT EXPRESSION],

 ...

 field_nameN datatypeN [NOT NULL] [:= DEFAULT EXPRESSION);

record-name type_name;

The Book record is declared in the following way :

DECLARE

TYPE books IS RECORD

(title varchar(50),

 author varchar(50),

 subject varchar(100),

 book_id number);

book1 books;

book2 books;

ACCESSING FIELDS

To access any field of a record, we use the dot (.) operator. The member access operator

is coded as a period between the record variable name and the field that we wish to access.

Following is an example to explain the usage of record :

DECLARE

 type books is record

 (title varchar(50),

 author varchar(50),

 subject varchar(100),

 book_id number);

 book1 books;

E-NOTES / CS & BCA

198 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 book2 books;

BEGIN

 -- Book 1 specification

 book1.title := 'C Programming';

 book1.author := 'Nuha Ali ';

 book1.subject := 'C Programming Tutorial';

 book1.book_id := 6495407;

 -- Book 2 specification

 book2.title := 'Telecom Billing';

 book2.author := 'Zara Ali';

 book2.subject := 'Telecom Billing Tutorial';

 book2.book_id := 6495700;

 -- Print book 1 record

 dbms_output.put_line('Book 1 title : '|| book1.title);

 dbms_output.put_line('Book 1 author : '|| book1.author);

 dbms_output.put_line('Book 1 subject : '|| book1.subject);

 dbms_output.put_line('Book 1 book_id : ' || book1.book_id);

 -- Print book 2 record

 dbms_output.put_line('Book 2 title : '|| book2.title);

 dbms_output.put_line('Book 2 author : '|| book2.author);

 dbms_output.put_line('Book 2 subject : '|| book2.subject);

 dbms_output.put_line('Book 2 book_id : '|| book2.book_id);

END;

/

OUTPUT:

Book 1 title : C Programming

Book 1 author : Nuha Ali

Book 1 subject : C Programming Tutorial

E-NOTES / CS & BCA

199 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Book 1 book_id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial

Book 2 book_id : 6495700

PL/SQL procedure successfully completed.

8.11. PL/SQL CURSOR

When an SQL statement is processed, Oracle creates a memory area known as context area.

A cursor is a pointer to this context area. It contains all information needed for processing

the statement.

In PL/SQL, the context area is controlled by Cursor. A cursor contains information on a

select statement and the rows of data accessed by it. A cursor is used to referred to a

program to fetch and process the rows returned by the SQL statement, one at a time.

There are two types of cursors:

 Implicit Cursors

 Explicit Cursors

8.11.1. PL/SQL IMPLICIT CURSORS

The implicit cursors are automatically generated by Oracle while an SQL statement is

executed, if you don't use an explicit cursor for the statement. These are created by default

to process the statements when DML statements like INSERT, UPDATE, DELETE etc.

are executed.

Orcale provides some attributes known as Implicit cursor's attributes to check the status of

DML operations. Some of them are: %FOUND, %NOTFOUND, %ROWCOUNT and

%ISOPEN.

For Example:

E-NOTES / CS & BCA

200 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

When you execute the SQL statements like INSERT, UPDATE, DELETE then the cursor

attributes tell whether any rows are affected and how many have been affected. If you run

a SELECT INTO statement in PL/SQL block, the implicit cursor attribute can be used to

find out whether any row has been returned by the SELECT statement. It will return an

error if there no data is selected.

The following table specifies the status of the cursor with each of its attribute.

Attribute Description

%FOUND Its return value is TRUE if DML statements like INSERT, DELETE and

UPDATE affect at least one row or more rows or a SELECT INTO

statement returned one or more rows. Otherwise it returns FALSE.

%NOTFOUND Its return value is TRUE if DML statements like INSERT, DELETE and

UPDATE affect no row, or a SELECT INTO statement return no rows.

Otherwise it returns FALSE. It is a just opposite of %FOUND.

%ISOPEN It always returns FALSE for implicit cursors, because the SQL cursor is

automatically closed after executing its associated SQL statements.

%ROWCOUNT It returns the number of rows affected by DML statements like INSERT,

DELETE, and UPDATE or returned by a SELECT INTO statement.

For Example:

Create customers table and have records:

ID NAME AGE ADDRESS SALARY

1 Ramesh 23 Allahabad 20000

2 Suresh 22 Kanpur 22000

E-NOTES / CS & BCA

201 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

3 Mahesh 24 Ghaziabad 24000

4 Chandan 25 Noida 26000

5 Alex 21 Paris 28000

6 Sunita 20 Delhi 30000

Let's execute the following program to update the table and increase salary of each

customer by 5000. Here, SQL%ROWCOUNT attribute is used to determine the number of

rows affected:

Create procedure:

1. DECLARE

2. total_rows number(2);

3. BEGIN

4. UPDATE customers

5. SET salary = salary + 5000;

6. IF sql%notfound THEN

7. dbms_output.put_line('no customers updated');

8. ELSIF sql%found THEN

9. total_rows := sql%rowcount;

10. dbms_output.put_line(total_rows || ' customers updated ');

11. END IF;

12. END;

13. /

OUTPUT:

 6 customers updated

 PL/SQL procedure successfully completed.

E-NOTES / CS & BCA

202 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Now, if you check the records in customer table, you will find that the rows are updated.

select * from customers;

ID NAME AGE ADDRESS SALARY

1 Ramesh 23 Allahabad 25000

2 Suresh 22 Kanpur 27000

3 Mahesh 24 Ghaziabad 29000

4 Chandan 25 Noida 31000

5 Alex 21 Paris 33000

6 Sunita 20 Delhi 35000

8.11.2. PL/SQL EXPLICIT CURSORS

The Explicit cursors are defined by the programmers to gain more control over the context

area. These cursors should be defined in the declaration section of the PL/SQL block. It is

created on a SELECT statement which returns more than one row.

Syntax of explicit cursor

CURSOR cursor_name IS select_statement;

You must follow these steps while working with an explicit cursor.

1. Declare the cursor to initialize in the memory.

2. Open the cursor to allocate memory.

3. Fetch the cursor to retrieve data.

4. Close the cursor to release allocated memory.

E-NOTES / CS & BCA

203 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

1) Declare the cursor: It defines the cursor with a name and the associated SELECT

statement.

Syntax for explicit cursor decleration

 CURSOR name IS SELECT statement;

2) Open the cursor: It is used to allocate memory for the cursor and make it easy to fetch

the rows returned by the SQL statements into it.

Syntax for cursor open: OPEN cursor_name;

3) Fetch the cursor: It is used to access one row at a time. You can fetch rows from the

above-opened cursor as follows:

Syntax for cursor fetch: FETCH cursor_name INTO variable_list;

4) Close the cursor: It is used to release the allocated memory. The following syntax is

used to close the above-opened cursors.

Syntax for cursor close: Close cursor_name;

For Example

Explicit cursors are defined by programmers to gain more control over the context area. It

is defined in the declaration section of the PL/SQL block. It is created on a SELECT

statement which returns more than one row.

Create customers table and have records:

ID NAME AGE ADDRESS SALARY

1 Ramesh 23 Allahabad 20000

2 Suresh 22 Kanpur 22000

3 Mahesh 24 Ghaziabad 24000

E-NOTES / CS & BCA

204 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

4 Chandan 25 Noida 26000

5 Alex 21 Paris 28000

6 Sunita 20 Delhi 30000

Create procedure:

Execute the following program to retrieve the customer name and address.

1. DECLARE

2. c_id customers.id%type;

3. c_name customers.name%type;

4. c_addr customers.address%type;

5. CURSOR c_customers is

6. SELECT id, name, address FROM customers;

7. BEGIN

8. OPEN c_customers;

9. LOOP

10. FETCH c_customers into c_id, c_name, c_addr;

11. EXIT WHEN c_customers%notfound;

12. dbms_output.put_line(c_id || ' ' || c_name || ' ' || c_addr);

13. END LOOP;

14. CLOSE c_customers;

15. END;

16. /

OUTPUT:

1 Ramesh Allahabad

2 Suresh Kanpur

3 Mahesh Ghaziabad

E-NOTES / CS & BCA

205 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

4 Chandan Noida

5 Alex Paris

6 Sunita Delhi

PL/SQL procedure successfully completed.

FOR EXAMPLE CURSOR PROGRAM

SQL> declare

 2 cursor stucur is select * from stu;

 3 st stucur%rowtype;

 4 begin

 5 open stucur;

 6 loop

 7 fetch stucur into st;

 8 exit when stucur%notfound;

 9 st.total := st.dbms+st.ds+st.co;

 10 st.average := st.total/3;

 11 if(st.dbms >=50 and st.ds >=50 and st.co >=50) then

 12 st.result := 'PASS';

 13 else

 14 st.result := 'FAIL';

 15 end if;

 16 update stu set total=st.total, average=st.average, result=st.result where rno=st.rno;

 17 end loop;

 18 end;

 19 /

Output:

PL/SQL procedure successfully completed.

E-NOTES / CS & BCA

206 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Step 4:

SQL> select * from stu;

RNO NAME DBMS DS CO TOTAL AVERAGE RESULT

---------- -------------- ---------- ---------- ---------- ---------- ---------------- ----------

 1 shree 90 90 90 270 90 PASS

 2 priya 80 80 80 240 80 PASS

 3 anu 20 30 56 106 35 FAIL

 4 suja 67 34 56 157 52 FAIL

8.12. PL/SQL EXCEPTION HANDLING

An error occurs during the program execution is called Exception in PL/SQL. PL/SQL

facilitates programmers to catch such conditions using exception block in the program and

an appropriate action is taken against the error condition.

There are two type of exceptions:

o System-defined Exceptions

o User-defined Exceptions

8.12.1. PL/SQL SYSTEM-DEFINED EXCEPTIONS

Syntax for exception handling:

Following is a general syntax for exception handling:

1. DECLARE

2. <declarations section>

3. BEGIN

4. <executable command(s)>

E-NOTES / CS & BCA

207 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

5. EXCEPTION

6. <exception handling goes here >

7. WHEN exception1 THEN

8. exception1-handling-statements

9. WHEN exception2 THEN

10. exception2-handling-statements

11. WHEN exception3 THEN

12. exception3-handling-statements

13.

14. WHEN others THEN

15. exception3-handling-statements

16. END;

PL/SQL PRE-DEFINED EXCEPTIONS

There are many pre-defined exception in PL/SQL which are executed when any database

rule is violated by the programs.

For example: NO_DATA_FOUND is a pre-defined exception which is raised when a

SELECT INTO statement returns no rows.

Following is a list of some important pre-defined exceptions:

Exception Oracle

Error

SQL

Code

Description

ACCESS_INTO_NULL 06530 -6530 It is raised when a NULL object is

automatically assigned a value.

CASE_NOT_FOUND 06592 -6592 It is raised when none of the choices in the

"WHEN" clauses of a CASE statement is

selected, and there is no else clause.

E-NOTES / CS & BCA

208 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

COLLECTION_IS_NULL 06531 -6531 It is raised when a program attempts to

apply collection methods other than exists to

an uninitialized nested table or varray, or the

program attempts to assign values to the

elements of an uninitialized nested table or

varray.

DUP_VAL_ON_INDEX 00001 -1 It is raised when duplicate values are

attempted to be stored in a column with

unique index.

INVALID_CURSOR 01001 -1001 It is raised when attempts are made to make

a cursor operation that is not allowed, such

as closing an unopened cursor.

INVALID_NUMBER 01722 -1722 It is raised when the conversion of a

character string into a number fails because

the string does not represent a valid number.

LOGIN_DENIED 01017 -1017 It is raised when s program attempts to log

on to the database with an invalid username

or password.

NO_DATA_FOUND 01403 +100 It is raised when a select into statement

returns no rows.

NOT_LOGGED_ON 01012 -1012 It is raised when a database call is issued

without being connected to the database.

PROGRAM_ERROR 06501 -6501 It is raised when PL/SQL has an internal

problem.

E-NOTES / CS & BCA

209 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

ROWTYPE_MISMATCH 06504 -6504 It is raised when a cursor fetches value in a

variable having incompatible data type.

SELF_IS_NULL 30625 -30625 It is raised when a member method is

invoked, but the instance of the object type

was not initialized.

STORAGE_ERROR 06500 -6500 It is raised when PL/SQL ran out of memory

or memory was corrupted.

TOO_MANY_ROWS 01422 -1422 It is raised when a SELECT INTO statement

returns more than one row.

 VALUE_ERROR 06502 -6502 It is raised when an arithmetic, conversion,

truncation, or size-constraint error occurs.

 ZERO_DIVIDE 01476 1476 It is raised when an attempt is made to

divide a number by zero

Example of exception handling:

Let's take a simple example to demonstrate the concept of exception handling. Here we are

using the already created CUSTOMERS table.

SELECT* FROM COUSTOMERS;

ID NAME AGE ADDRESS SALARY

1 Ramesh 23 Allahabad 20000

2 Suresh 22 Kanpur 22000

E-NOTES / CS & BCA

210 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

3 Mahesh 24 Ghaziabad 24000

4 Chandan 25 Noida 26000

5 Alex 21 Paris 28000

6 Sunita 20 Delhi 30000

1. DECLARE

2. c_id customers.id%type := 8;

3. c_name customers.name%type;

4. c_addr customers.address%type;

5. BEGIN

6. SELECT name, address INTO c_name, c_addr

7. FROM customers

8. WHERE id = c_id;

9. DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

10. DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

11. EXCEPTION

12. WHEN no_data_found THEN

13. dbms_output.put_line('No such customer!');

14. WHEN others THEN

15. dbms_output.put_line('Error!');

16. END;

17. /

OUTPUT:

No such customer!

PL/SQL procedure successfully completed.

E-NOTES / CS & BCA

211 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

The above program should show the name and address of a customer as result whose ID is

given. But there is no customer with ID value 8 in our database, so the program raises the

run-time exception NO_DATA_FOUND, which is captured in EXCEPTION block.

If you use the id defined in the above table (i.e. 1 to 6), you will get a certain result. For a

demo example: here, we are using the id 5.

1. DECLARE

2. c_id customers.id%type := 5;

3. c_name customers.name%type;

4. c_addr customers.address%type;

5. BEGIN

6. SELECT name, address INTO c_name, c_addr

7. FROM customers

8. WHERE id = c_id;

9. DBMS_OUTPUT.PUT_LINE ('Name: '|| c_name);

10. DBMS_OUTPUT.PUT_LINE ('Address: ' || c_addr);

11. EXCEPTION

12. WHEN no_data_found THEN

13. dbms_output.put_line('No such customer!');

14. WHEN others THEN

15. dbms_output.put_line('Error!');

16. END;

17. /

OUTPUT:

Name: alex

Address: paris

PL/SQL procedure successfully completed.

E-NOTES / CS & BCA

212 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

8.12.2. PL/SQL USER-DEFINED EXCEPTIONS

PL/SQL facilitates their users to define their own exceptions according to the need of the

program. A user-defined exception can be raised explicitly, using either a RAISE statement

or the procedure DBMS_STANDARD.RAISE_APPLICATION_ERROR.

Syntax for user define exceptions

1. DECLARE

2. my-exception EXCEPTION;

RAISING EXCEPTIONS

In the case of any internal database error, exceptions are raised by the database server

automatically. But it can also be raised explicitly by programmer by using command

RAISE.

Syntax for raising an exception:

1. DECLARE

2. exception_name EXCEPTION;

3. BEGIN

4. IF condition THEN

5. RAISE exception_name;

6. END IF;

7. EXCEPTION

8. WHEN exception_name THEN

9. statement;

10. END;

E-NOTES / CS & BCA

213 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

8.13. PL/SQL SUB PROGRAMS

A subprogram is a program unit/module that performs a particular task. These

subprograms are combined to form larger programs. This is basically called the 'Modular

design'.

A subprogram can be invoked by another subprogram or program which is called

the calling program. PL/SQL subprograms are named PL/SQL blocks that can be

invoked with a set of parameters.

PL/SQL provides two kinds of subprograms :

 Functions − These subprograms return a single value; mainly used to compute and

return a value.

 Procedures − These subprograms do not return a value directly; mainly used to

perform an action.

8.13.1 PL/SQL FUNCTIONS

A function is same as a procedure except that it returns a value. Therefore, all the

discussions of the previous chapter are true for functions too.

Syntax to create a function:

1. CREATE [OR REPLACE] FUNCTION function_name [parameters]

2. [(parameter_name [IN | OUT | IN OUT] type [, ...])]

3. RETURN return_datatype

4. {IS | AS}

5. BEGIN

6. < function_body >

7. END [function_name];

Here:

 Function_name: specifies the name of the function.

E-NOTES / CS & BCA

214 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 [OR REPLACE] option allows modifying an existing function.

 The optional parameter list contains name, mode and types of the parameters.

 IN represents that value will be passed from outside and OUT represents that this

parameter will be used to return a value outside of the procedure.

The function must contain a return statement.

o RETURN clause specifies that data type you are going to return from the function.

o Function_body contains the executable part.

o The AS keyword is used instead of the IS keyword for creating a standalone function.

PL/SQL Function Example

Let's see a simple example to create a function.

1. create or replace function adder(n1 in number, n2 in number)

2. return number

3. is

4. n3 number(8);

5. begin

6. n3 :=n1+n2;

7. return n3;

8. end;

9. /

Calling PL/SQL Function:

While creating a function, you have to give a definition of what the function has to do. To

use a function, you will have to call that function to perform the defined task. Once the

function is called, the program control is transferred to the called function.

After the successful completion of the defined task, the call function returns program

control back to the main program. To call a function you have to pass the required

E-NOTES / CS & BCA

215 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

parameters along with function name and if function returns a value then you can store

returned value.

Following program calls the function totalCustomers from an anonymous block:

1. DECLARE

2. c number(2);

3. BEGIN

4. c := totalCustomers();

5. dbms_output.put_line('Total no. of Customers: ' || c);

6. END;

7. /

OUTPUT:

Total no. of Customers: 4

PL/SQL procedure successfully completed.

PL/SQL Recursive Function

A program or a subprogram can call another subprogram. When a subprogram calls itself,

it is called recursive call and the process is known as recursion.

Example to calculate the factorial of a number

Let's take an example to calculate the factorial of a number. This example calculates the

factorial of a given number by calling itself recursively.

1. DECLARE

2. num number;

3. factorial number;

4. FUNCTION fact(x number)

5. RETURN number

6. IS

7. f number;

E-NOTES / CS & BCA

216 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

8. BEGIN

9. IF x=0 THEN

10. f := 1;

11. ELSE

12. f := x * fact(x-1);

13. END IF;

14. RETURN f;

15. END;

16.

17. BEGIN

18. num:= 6;

19. factorial := fact(num);

20. dbms_output.put_line(' Factorial '|| num || ' is ' || factorial);

21. END;

22. /

OUTPUT:

Factorial 6 is 720

PL/SQL procedure successfully completed.

PL/SQL Drop Function

Syntax for removing your created function:

If you want to remove your created function from the database, you should use the

following syntax.

1. DROP FUNCTION function_name;

E-NOTES / CS & BCA

217 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

8.13.2. PL/SQL PROCEDURE

The PL/SQL stored procedure or simply a procedure is a PL/SQL block which performs

one or more specific tasks. It is just like procedures in other programming languages.

The procedure contains a header and a body.

 Header: The header contains the name of the procedure and the parameters or

variables passed to the procedure.

 Body: The body contains a declaration section, execution section and exception

section similar to a general PL/SQL block.

How to pass parameters in procedure:

When you want to create a procedure or function, you have to define parameters .There is

three ways to pass parameters in procedure:

1. IN parameters: The IN parameter can be referenced by the procedure or function. The

value of the parameter cannot be overwritten by the procedure or the function.

2. OUT parameters: The OUT parameter cannot be referenced by the procedure or

function, but the value of the parameter can be overwritten by the procedure or function.

3. INOUT parameters: The INOUT parameter can be referenced by the procedure or

function and the value of the parameter can be overwritten by the procedure or function.

PL/SQL CREATE PROCEDURE

Syntax for creating procedure

1. CREATE [OR REPLACE] PROCEDURE procedure_name

2. [(parameter [,parameter])]

3. IS

4. [declaration_section]

5. BEGIN

E-NOTES / CS & BCA

218 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

6. executable_section

7. [EXCEPTION

8. exception_section]

9. END [procedure_name];

Create procedure example

In this example, we are going to insert record in user table. So you need to create user table

first.

Table creation:

create table user(id number(10) primary key,name varchar2(100));

Now write the procedure code to insert record in user table.

Procedure Code:

1. create or replace procedure "INSERTUSER"

2. (id IN NUMBER,

3. name IN VARCHAR2)

4. is

5. begin

6. insert into user values(id,name);

7. end;

8. /

Output:

Procedure created.

PL/SQL program to call procedure

E-NOTES / CS & BCA

219 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

1. BEGIN

2. insertuser(101,'Rahul');

3. dbms_output.put_line('record inserted successfully');

4. END;

5. /

Now, see the "USER" table, you will see one record is inserted.

ID Name

101 Rahul

PL/SQL Drop Procedure

Syntax for drop procedure

1. DROP PROCEDURE procedure_name;

Example of drop procedure

1. DROP PROCEDURE pro1;

EXAMPLE PROGRAMS FOR PROCEDURE AND FUNCTIONS

Example 1: Executing from a single named procedure

Step 1: Type the procedure coding

create or replace procedure divexp(a number, b number) as

c number;

begin

c := a/b;

dbms_output.put_line('The Result of C is : ' || c);

exception

when zero_divide then

dbms_output.put_line('Divide by Zero Error !!!!');

end divexp;

E-NOTES / CS & BCA

220 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

/

Output:

Procedure created.

Step 2: Setting the Server to output mode.

SQL> set serveroutput on;

Step 3: To Call the Procedure and to display the Value of C

SQL> call divexp(144,3);

Output:

The Result of C is : 48

Call completed.

SQL> call divexp(28,0);

Output:

Divide by Zero Error !!!!

Call completed.

Example 2: Calling a Procedure inside a procedure.

Step 1: Type the Coding

SQL> create or replace

 2 procedure sum_ab (a int, b int, c out int) is

 3 begin

 4 c := a + b;

 5 end;

 6 /

Output:

Procedure created.

E-NOTES / CS & BCA

221 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Step 2:

SQL> set serveroutput on;

Step 3: Type the Calling Procedure

SQL> declare

 2 r int;

 3 begin

 4 sum_ab(23,29,r);

 5 dbms_output.put_line('sum is: ' || r);

 6 end;

 7 /

Output:

SUM IS: 52

PL/SQL procedure successfully completed.

Example 3: Using Table fields.

SQL> select * from stu;

RNO NAME DBMS DS CO TOTAL AVERAGE RESULT

---------- -------------- ---------- ---------- ---------- ---------- ---------------- ----------

 1 shree 90 90 90 270 90 PASS

 2 priya 80 80 80 240 80 PASS

 3 anu 20 30 56 106 35 FAIL

 4 suja 67 34 56 157 52 FAIL

Step 1: Type the coding in SQL prompt.

create or replace procedure tabproc(no number)as

 m1 number;

 m2 number;

 m3 number;

 tot number;

E-NOTES / CS & BCA

222 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 aver number;

 failexp exception;

 begin

 select dbms,ds,co into m1,m2,m3 from stu where rno=no;

 if m1<50 or m2<50 or m3<50 then

 raise failexp;

 else

 tot :=m1+m2+m3;

 aver :=tot/3;

 dbms_output.put_line('TOTAL : ' ||tot);

 dbms_output.put_line('AVERAGE : ' ||aver);

 dbms_output.put_line('The Student is Passed in all the subject');

 end if;

 exception

 when failexp then

 dbms_output.put_line('The Student is Failed');

 when others then

 dbms_output.put_line('LOOP is not executed');

 end tabproc;

/

Output:

Procedure created.

Step 2: Call the procedure by giving the input.

SQL> call tabproc(4);

Output:

The Student is Failed

Call completed.

SQL> call tabproc(1);

E-NOTES / CS & BCA

223 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Output:

TOTAL : 270

AVERAGE : 90

The Student is Passed in all the subject

Call completed.

FUNCTION

Example 1: Simple Function

Step 1: Type the coding.

create or replace function add_two (a int,b int) return int is

begin

return (a + b);

end;

Output:

Function created

Step 2: To run the coding call the above function by typing the following coding.

begin

dbms_output.put_line(’RESULT IS : ’ || add_two(12,34));

end;

Output:

RESULT IS : 46

PL/SQL procedure successfully completed.

Example 2: Using Table.

Step 1: Type the coding

create or replace function tabfunc(no number) return varchar2 as

m1 number;

m2 number;

m3 number;

tot number;

E-NOTES / CS & BCA

224 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

aver number;

failexp exception;

begin

select dbms,ds,co into m1,m2,m3 from stu where rno=no;

if m1<50 or m2<50 or m3<50 then

raise failexp;

else

tot :=m1+m2+m3;

aver :=tot/3;

dbms_output.put_line('TOTAL : ' ||tot);

dbms_output.put_line('AVERAGE : ' ||aver);

return('PASS');

end if;

exception

when failexp then

return ('FAIL');

when others then

dbms_output.put_line('LOOP is not executed');

end;

/

Output:

Function created.

Step 2:

SQL> set serveroutput on;

Step 3: To pass the values for the above function.

SQL> begin

 dbms_output.put_line('RESULT IS : ' || tabfunc(1));

 end;

 /

E-NOTES / CS & BCA

225 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Output:

TOTAL : 270

AVERAGE : 90

RESULT IS : PASS

PL/SQL procedure successfully completed.

SQL> begin

 dbms_output.put_line('RESULT IS : ' || tabfunc(4));

 end;

 /

Output:

RESULT IS : FAIL

PL/SQL procedure successfully completed.

Review Questions

1. What is the FUNCTION operation? What is it used for?

2. Why do we use database triggers? Give the syntax of a trigger.

3. Explain exception handling in PL/SQL.

4. How is a DECLARE statement used?

5. How do you compile PL/SQL code?

6. What is the difference between %TYPE and %ROWTYPE? Give an example.

7. List some schema objects that are created using PL/SQL.

8. Explain the difference between procedure and function.

9. What are the differences between triggers and constraints?

10. What is rollback? How is it different from rollback to statement?

11. What are some of the pre-defined exceptions in PL/SQL?

12. Can you use IF statement inside a SELECT statement? How?

13. Write a simple procedure to select some records from the database using some

parameters.

E-NOTES / CS & BCA

226 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

OBJECTIVE TYPE QUESTIONS

1. Which of the following is true about data types in PL/SQL?

a) Large Object or LOB data types are pointers to large objects that are stored

separately from other data items, such as text, graphic images, video clips, and

sound waveforms.

b) The composite data types have data items that have internal components that can

be accessed individually. For example, collections and records.

c) References are pointers to other data items.

d) All of the above

2. Which of the following is not true about the PL/SQL data structure VARRAY?

a) In oracle environment, the starting index for VARRAYs is always 1.

b) You can initialize the VARRAY elements using the constructor method of the

VARRAY type, which has the same name as the VARRAY.

c) VARRAYs are one-dimensional arrays.

d) None of the above.

3. DECLARE

 -- Global variables

 num number := 95;

BEGIN

 dbms_output.put_line('num: ' || num1);

 DECLARE

 -- Local variables

 num number := 195;

 BEGIN

 dbms_output.put_line('num: ' || num1);

 END;

END

What will happen when the code is executed?

a) It won’t execute, it has syntax error

b) It will print num: 95 num: 195

c) It will print num: 95 num: 95

d) It will print num: 195 num: 195

4. What is wrong in the following code snippet?

DECLARE

 x number := 1;

BEGIN

 LOOP

 dbms_output.put_line(x);

E-NOTES / CS & BCA

227 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 x := x + 1;

 IF x > 10 THEN

 exit;

 END IF;

 dbms_output.put_line('After Exit x is: ' || x);

END;

a) There is nothing wrong.

b) The IF statement is not required.

c) There should be an END LOOP statement.

d) The exit statement should be in capital letters.

5 - Which of the following is not true about PL/SQL cursors?

a) A cursor is a view on a table.

b) A cursor holds the rows (one or more) returned by a SQL statement.

c) The set of rows the cursor holds is referred to as the active set.

d) None of the above.

6. The pre-defined exception NO_DATA_FOUND is raised when

a) A null object is automatically assigned a value.

b) A SELECT INTO statement returns no rows.

c) PL/SQL has an internal problem.

d) PL/SQL ran out of memory or memory was corrupted.

7 - Observe the syntax given below −

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

 Declaration-statements

BEGIN

 Executable-statements

EXCEPTION

 Exception-handling-statements

END;

Which of the following holds true for the WHEN clause?

E-NOTES / CS & BCA

228 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

a) This provides a condition for rows for which the trigger would fire and this clause

is valid only for row level triggers.

b) This provides a condition for rows for which the trigger would fire and this clause

is valid only for table level triggers.

c) This provides a condition for rows for which the trigger would fire and this clause

is valid only for view based triggers.

d) All of the above.

8. All objects placed in a package specification are called

a) Public objects.

b) Private objects.

c) None of the above.

d) Both of the above.

9. Which of the following code is the correct syntax for creating an index-by table

named salary that will store integer values along with names and the name field will

be the key?

a) TYPE salary IS TABLE OF NUMBER INDEX BY VARCHAR2(20);

b) CREATE TABLE salary OF NUMBER INDEX BY VARCHAR2(20);

c) TYPE salary IS INDEXED TABLE OF NUMBER INDEX BY VARCHAR2(20);

d) None of the above.

10. Savepoints are set to

a) Help in splitting a long transaction into smaller units.

b) Help in rolling back to some checkpoint, within a long transaction.

c) To execute a COMMIT automatically.

d) Answer a. and b.

11. Which of the following is not true about PL/SQL cursors?

a) A cursor is a view on a table.

b) A cursor holds the rows (one or more) returned by a SQL statement.

c) The set of rows the cursor holds is referred to as the active set.

d) None of the above.

12. The pre-defined exception NO_DATA_FOUND is raised when

a) A null object is automatically assigned a value.

b) A SELECT INTO statement returns no rows.

c) PL/SQL has an internal problem.

d) PL/SQL ran out of memory or memory was corrupted.

13. Which Exception is also known as Oracle named exception handler?

a) Predefined Exception

b) Internal Exception

c) User defined Exception

E-NOTES / CS & BCA

229 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

d) None of the above

14. Which Package lets you use database triggers to alert an application when

specific database values change?

a) DBMS_OUTPUT

b) DBMS_ALERT

c) DBMS_PIPE

d) All mentioned above

15. Which statement lets you create standalone functions that are stored in an

Oracle database?
a) SQL CREATE PROCEDURE

b) SQL CREATE FUNCTION

c) Both A & B

d) None of the above

16. Which parameter acts like a constant inside the subprogram?

a) IN

b) OUT

c) Both A & B

d. None of the above

17. Which of the following is used to define code that is executed / fired when certain

actions or event occur?

a) Replace

b) Keyword

c) Trigger

d) Cursor

18. Which Operator Returns TRUE if a subquery returns at least one row?

a) EXISTS

b) IN

c) IS NULL

d) LIKE

19. How many attributes does every explicit cursor and cursor variable have?

a) 3

b) 2

c) 4

d) 5

20. Which datatypes can be used with a RECORD Type?

E-NOTES / CS & BCA

230 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

a) NUMBER,VRCHAR2

b) %TYPE,OR %ROWTYPE

c) REF,CURSOR

d) BOTH A & B

KEYS

1-d, 2-d, 3-b, 4-c, 5-a, 6-b, 7-a, 8-a, 9-a, 10-d, 11-a, 12-b, 13-a, 14-b,

15-b, 16-a, 17-c, 18-a, 19-c, 20-d.

E-NOTES / CS & BCA

231 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

CHAPTER 9: OBJECT ORIENTED TECHNOLOGY

9.1. INTRODUCTION

Object-oriented technology (OOT) is a software design model in which objects contain

both data and the instructions that work on the data. It is increasingly deployed in

distributed computing.

An Object Oriented Database (OODB) is a system combining characteristics of a database

with the manipulation of objects typically available in object oriented languages. In object

oriented database, information is represented in the form of objects.

Object oriented databases are exactly same as object oriented programming languages. If

we can combine the features of relational model (transaction, concurrency, recovery) to

object oriented databases, the resultant model is called as object oriented database model.

E-NOTES / CS & BCA

232 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

9.2. OBJECT ORIENTED FEATURES

 Complex Objects: these are built from simpler ones by applying constructors to

them. Constructors must be orthogonal to the objects, meaning they can be applied

to each object. The use of complex objects improves the capability of representing

of the real world.

 Object Identity: OO systems are identity-based, meaning that each representation

of information has its own identifiers. Please note that identity-based models are

common in OO programming languages but rather new in database technology,

since in most relational databases relations are valued based.

 Encapsulation: An object contains both programs and data and offers to the world

an interface and an implementation part. The interface part is the specification of

the set of operations that can be performed on the object; the implementation part

describes the implementation of each operation. In most OODB, even data

specification is part of the interface.

 Types and Classes: a type summarizes the common features of a set of objects; a

class has an extension which contains the set of objects that instantiates the classes

and has a set of operations with which the user can manipulate the objects.

 Inheritance: the ability of a subclass to receive all data and operations coming

from its super classes. It helps code reusability and is also a better-structured and

more concise description of the real world and the shared specifications of

applications.

 Overriding, Overloading and Late Binding: when a single identifier is bound to

different operation code in different types, one says that the code is overridden and

the operation is overloaded. To provide this functionality, code is not bound to

operation identifiers at compile time but at run time, thus performing the so called

late binding.

 Computational completeness: the ability of expressing and computing functions

using any combination of the available manipulating operations over the data is

E-NOTES / CS & BCA

233 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

natural for any programming language, but rather new for database languages. In

this respect SQL is not complete.

 Extensibility: predefined and user-defined types must have the same status,

meaning they must be supported by the system as completely equivalent.

9.3. COMPONENTS

1. Messages

2. Methods

3. Variables

9.3.1. MESSAGES

A message provides an interface or acts as a communication medium between an

object and the outside world. A message can be of two types:

a. Read-only message: If the invoked method does not change the value of a

variable, then the invoking message is said to be a read-only message.

b. Update message: If the invoked method changes the value of a variable,

then the invoking message is said to be an update message.

9.3.2. METHODS

When a message is passed then the body of code that is executed is known as a

method. Every time when a method is executed, it returns a value as output. A

method can be of two types:

a. Read-only method: When the value of a variable is not affected by a method, then

it is known as read-only method.

b. Update-method: When the value of a variable changes by a method, then it is

known as an update method.

9.3.3. VARIABLES

It stores the data of an object. The data stored in the variables makes the object

distinguishable from one another.

E-NOTES / CS & BCA

234 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

9.4. OBJECT CLASSES

An object which is a real world entity is an instance of a class. Hence first we need to define

a class and then the objects are made which differ in the values they store but share the

same class definition.

The objects in turn corresponds to various messages and variables stored in it.

Example –

class CLERK

 { //variables

 char name;

 string address;

 int id;

 int salary;

 //messages

 char get_name();

 string get_address();

 int annual_salary();

 };

In above example we can see, CLERK is a class that holds the object variables and

messages.

An OODBMS also supports inheritance in an extensive manner as in a database there may

be many classes with similar methods, variables and messages. Thus, the concept of class

hierarchy is maintained to depict the similarities among various classes.

The concept of encapsulation that is the data or information hiding is also supported by

object oriented data model. And this data model also provides the facility of abstract data

E-NOTES / CS & BCA

235 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

types apart from the built-in data types like char, int, float. ADT’s are the user defined data

types that hold the values within it and can also have methods attached to it.

Thus, OODBMS provides numerous facilities to it’s users, both built-in and user defined.

It incorporates the properties of an object oriented data model with a database management

system, and supports the concept of programming paradigms like classes a cxnd objects

along with the support for other concepts like encapsulation, inheritance and the user

defined ADT’s (abstract data types).

REVIEW QUESTIONS

1. What are the various kinds of interactions catered by DBMS?

2. Segregate database technology's development.

3. Enlist the various relationships of database.

OBJECTIVE TYPE QUESTIONS

1. ODL supports which of the following types of association relationships?

a) Unary

b) Unary and Binary

c) Unary and Binary and Ternary

d) Unary and Binary and Ternary and higher

2. An extent is which of the following?

a) A keyword that indicates that the subclass inherits from a superclass

b) A keyword that indicates that the superclass inherits from a subclass

c) The set of all instances of a class within a database
d) Only one instance of a class within a database

3. Identify the class name for the following code: ABC123 course();

a) ABC123

b) course

c) course()

d) All of the above

4. Using ODL, you can define which of the following?

E-NOTES / CS & BCA

236 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

a) Attribute

b) Structure

c) Operation

d) All of the above

5. The keyword "inverse" is used in which of the following?

a) Class

b) Attribute

c) Raltionship

d) All of the above

KEYS

1-b, 2-c, 3-a, 4-d, 5-c

E-NOTES / CS & BCA

237 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Appendix A: ODBC CONNECTIVITY (VB with SQL * PLUS)

Step 1 : Create a table in SQL*Plus

SQL> desc stu

 Name Null? Type

 --- -------- ----------------------------

 RNO NUMBER(3)

 NAME VARCHAR2(20)

 DBMS NUMBER(3)

 DS NUMBER(3)

 CO NUMBER(3)

 TOTAL NUMBER(4)

 AVERAGE NUMBER(4)

 RESULT VARCHAR2(8)

Step 2 : Open Control Panel -> Administrative tools -> Data Sources (ODBC) ->

Add ->

Microsoft ODBC for oracle -> type the following

Then click OK

The following Screen will appear

E-NOTES / CS & BCA

238 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Then click OK

Step 3 : Now Open VB Form Screen. And Design your form as follows

E-NOTES / CS & BCA

239 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

E-NOTES / CS & BCA

240 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Step 4 : Go to the Properties of Adodc1

E-NOTES / CS & BCA

241 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Click Next

E-NOTES / CS & BCA

242 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

E-NOTES / CS & BCA

243 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Click OK

Go to Authentication and type as follows

E-NOTES / CS & BCA

244 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Go to RecordSource and do the following

E-NOTES / CS & BCA

245 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Then Finally Click OK

Step 5 : Now Change the properties of all the Text button to the following (DataSource

and DataField)

Step 6 : After Changing all the properties of Text boxes type the Corresponding

Code inn each buttons

E-NOTES / CS & BCA

246 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Option Explicit

Dim db As New ADODB.Connection

Dim rs As New ADODB.Recordset

Dim query As String

Private Sub Form_Load()

db.Open ("Provider=MSDASQL.1;User ID=scott;Password=tiger;Data

Source=priya;Persist Security Info=False")

rs.Open "select * from stu", db, adOpenDynamic

db.Properties.Refresh

End Sub

Private Sub Text5_LostFocus()

Text6.Text = Val(Text3.Text) + Val(Text4.Text) + Val(Text5.Text)

Text7.Text = Val(Text6.Text) / 3

If Val(Text3.Text) >= 50 And Val(Text4.Text) >= 50 And Val(Text5.Text) >= 50 Then

Text8.Text = "PASS"

Else

Text8.Text = "FAIL"

End If

End Sub

Private Sub clear1()

Text1.Text = " "

Text2.Text = " "

Text3.Text = " "

E-NOTES / CS & BCA

247 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Text4.Text = " "

Text5.Text = " "

Text6.Text = " "

Text7.Text = " "

Text8.Text = " "

End Sub

Private Sub display()

Text1.Text = rs(0)

Text2.Text = rs(1)

Text3.Text = rs(2)

Text4.Text = rs(3)

Text5.Text = rs(4)

Text6.Text = rs(5)

Text7.Text = rs(6)

Text8.Text = rs(7)

End Sub

Private Sub clear_Click()

Call clear1

End Sub

Private Sub exit_Click()

End

End Sub

Private Sub add_Click()

query = "insert into stu values('" & (Text1.Text) & "','" & (Text2.Text) & "','" &

(Text3.Text) & "','" & (Text4.Text) & "','" & (Text5.Text) & "','" & (Text6.Text) & "','" &

(Text7.Text) & "','" & (Text8.Text) & "')"

E-NOTES / CS & BCA

248 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

db.Execute (query)

db.Execute ("commit")

MsgBox "SUCCESFULLY ADDED ", vbInformation + vbOKOnly, "Added"

Call clear1

db.Properties.Refresh

End Sub

Private Sub delete_Click()

query = "delete from stu where rno='" & (Text1.Text) & "'"

db.Execute (query)

db.Execute ("commit")

MsgBox "Successfully Deleted the Record", vbInformation + vbOKOnly

Call clear1

db.Properties.Refresh

db.Close

Call Form_Load

End Sub

Private Sub update_Click()

query = "update stu set name='" & (Text2.Text) & "',m1='" & (Text3.Text) & "',m2='" &

(Text4.Text) & "',m3='" & (Text5.Text) & "',total='" & (Text6.Text) & "',average='" &

(Text7.Text) & "', result='" & (Text8.Text) & "' where rollno='" & (Text1.Text) & "'"

db.Execute (query)

db.Execute ("commit")

MsgBox "Successfully Modified the Record"

Call clear1

db.Properties.Refresh

E-NOTES / CS & BCA

249 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

db.Close

Call Form_Load

End Sub

Private Sub show_Click()

If Text1.Text = " " Then

MsgBox "Enter the Roll No to Display", vbInformation + vbOKOnly

Else

query = "select * from stu where rno='" & (Text1.Text) & "'"

Set rs = db.Execute(query)

Call display

End If

db.Properties.Refresh

db.Close

Call Form_Load

End Sub

Private Sub first_Click()

rs.MoveFirst

Call display

MsgBox "This is first record"

End Sub

Private Sub previous_Click()

rs.MovePrevious

If rs.BOF Then

E-NOTES / CS & BCA

250 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

MsgBox "This is first record"

Else

Call display

End If

End Sub

Private Sub next_Click()

rs.MoveNext

If rs.EOF = True Then

MsgBox "This is last record"

Else

Call display

End If

End Sub

Private Sub last_Click()

rs.MoveLast

Call display

MsgBox "This is last record"

End Sub

Step 7 : Save & Executer your program.

E-NOTES / CS & BCA

251 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Appendix B: JDBC CONNECTIVITY

JDBC Means Java Database Connectivity.

JDBC API is a Java API that can access any kind of tabular data, especially data stored in

a Relational Database. JDBC works with Java on a variety of platforms, such as Windows,

Mac OS, and the various versions of UNIX.

Structure of JDBC as shown in the following figure

Database

 The database is defined as Organized Collection of related Information’s.

FMS

 It means File Management System.

E-NOTES / CS & BCA

252 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Example:

 C, C++, COBOL, Fortran etc

To use File Management System (FMS)

 Permanent Storage of Data (Data Consistency)

Drawback:

 Security Less

 Time Consume (Loop)

DBMS

 Database Management System

Example:

 DBase, FoxBASE, FoxPro, MS-Acess, Oracle, SQL Server etc

Advantages:

 File Management System + Random Access Files

Drawback:

 This system is Security Less because no implicit file formats.

RDBMS

 Relational Database Management System

Example:

 Oracle, Sybase, DB2, SQL-SERVER, MS-Access(partial)

Data: Collection of Information’s (Raw & Facts). Anything can be Data or Data is

meaningless

Example:

 10 x 2000

Example:

 No Name Sal

 10 x 2000

E-NOTES / CS & BCA

253 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

File

 File means Collection of Records

Record

 File means Collection of Fields

Field

 File means Collection of Statements

Statement

 File means Collection of Words

Word

 File means Collection of Characters (Alphabets)

JDBC Driver

 JDBC is a Java API to connect and execute the query with the database. It is a part

of JavaSE (Java Standard Edition). JDBC API uses JDBC drivers to connect with the

database. There are four types of JDBC drivers:

 Type-1 Driver or JDBC-ODBC bridge

 Type-2 Driver or Native API Partly Java Driver

 Type-3 Driver or Network Protocol Driver

 Type-4 Driver or Thin Driver

DBC-ODBC Bridge

 Type-1 Driver act as a bridge between JDBC and other database connectivity

mechanism (ODBC). This driver converts JDBC calls into ODBC calls and redirects the

request to the ODBC driver.

E-NOTES / CS & BCA

254 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Advantage

 Easy to use

 Allow easy connectivity to all database supported by the ODBC Driver.

Disadvantage

 Slow execution time

 Dependent on ODBC Driver.

 Uses Java Native Interface (JNI) to make ODBC call.

Native API Driver

 This type of driver makes use of Java Native Interface (JNI) call on database

specific native client API. These native clients API are usually written in C and C++.

E-NOTES / CS & BCA

255 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Advantage

 faster as compared to Type-1 Driver

 Contains additional features.

Disadvantage

 Requires native library

 Increased cost of Application

Network Protocol Driver

 This driver translates the JDBC calls into a database server independent and

Middleware server-specific calls. Middleware server further translates JDBC calls into

database specific calls.

Advantage

 Does not require any native library to be installed.

 Database Independency.

 Provide facility to switch over from one database to another database.

Disadvantage

 Slow due to increase number of network call.

Thin Driver

 This is Driver called Pure Java Driver because. This driver interact directly with

database. It does not require any native database library, that is why it is also known as

Thin Driver.

E-NOTES / CS & BCA

256 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Advantage

 Does not require any native library.

 Does not require any Middleware server.

 Better Performance than other driver.

Disadvantage

 Slow due to increase number of network call.

Common JDBC Components

The JDBC API provides the following interfaces and classes

 Driver Manager: This class manages a list of database drivers. Matches

connection requests from the java application with the proper database driver using

communication sub protocol. The first driver that recognizes a certain sub protocol

under JDBC will be used to establish a database Connection.

 Driver: This interface handles the communications with the database server. You

will interact directly with Driver objects very rarely. Instead, you use a

DriverManager object, which manages objects of this type. It also abstracts the

details associated with working with Driver objects.

 Connection: This interface with all methods for contacting a database. The

connection object represents communication context, i.e., all communication with

database is through connection object only.

 Statement: You use objects created from this interface to submit the SQL

statements to the database. Some derived interfaces accept parameters in addition

to executing stored procedures.

E-NOTES / CS & BCA

257 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 ResultSet: These objects hold data retrieved from a database after you execute an

SQL query using Statement objects. It acts as an iterate to allow you to move

through its data.

 SQLException: This class handles any errors that occur in a database application.

In java to connect with Database we have 5 Steps

1. Load the Driver

2. Get the Connection

3. Create the Statement

4. Load the ResultSet

5. Close the Connection

 java.sql.*

This package Contains the Classes and Interfaces for Database concepts

Note:

 All the Database concepts should raise SQLException

 (Or) to write the program in try catch block

1. Load the Driver

JDK provides a Default driver to communicate with the Database which is available in

JVM

 "sun.jdbc.odbc.JdbcOdbcDriver"

 java.lang.* Default Package of Java

 java.lang.Object Base class

Derived classes as follows

 java.lang.String

 java.lang.StringBuffer

 .

E-NOTES / CS & BCA

258 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 .

 java.lang.Class

This class contains a static method.

 forName(String Driver);

 *Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Through this step to load the driver

2. Get the Connection

 It used to select the Database which going to use Connection Interface. It’s in

java.sql.*

// Connection con = new Connection (); Error

 java.sql.DriverManager

 class

 It contains a static Method

 getConnection(String DSN) ret Connection

**Connection con = DriverManager.getConnection ("jdbc: odbc: DSN");

 Through the above step we get the connection object

 Connection

 Interface

 Methods:

 createStatement() ret Statement

 PreparedStaement() ret prepare Statement

 close()

DSN

 It means Data Source Name.

3. Create the Statement

 This statement is used to select the Table from the particular Database.

E-NOTES / CS & BCA

259 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 Statement Interface in java.sql.*;

 ***Statement st = con.createStatement ();

 3rd Step

 Methods:

 executeQuery (String DQL) ret ResultSet

 executeQuery (String DML) ret int

 executeQuery (String DDL) ret int

SQL

 It means Structured Query Language

 Structure It means Well Ordered

 Query It means retrieves the Information’s

 Language it means Communication between user and Database

SQL*PLUS

 It’s an Editor

 To work all the SQL/PL-SQL inside the SQL*PLUS editor only

RDBMS

DDL: It means Data Definition Language which contains following SQL commands.

 CREATE, ALTER, DROP, TRUNCATE

DML: It means Data Manipulation Language which contains following SQL commands.

 INSERT, UPDATE, DELETE & SELECT

DCL: It means Data Control Language which contains the following commands.

 GRANT, REVOKE

TCL: It means Transaction Control Language which contains following commands.

 COMMIT, ROLLBACK, SAVEPOINT

E-NOTES / CS & BCA

260 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

4. Load the ResultSet

 This step is used to fetch Records as per Query

 Result Set Interface in java.sql.*

 Resultset is a Collection

 ****ResultSet rs = st.executeQuery("select * from <Tname>");

Methods:

 next () ret boolean

 SetString (String value)

 setString (int Field no, String value)

 GetString (String Field name)

 getString (int Field no)

5. Close the Connection

 This step is used to save the transactions.

 *****con.close();

Example Database

MS-Access

 Tables in Database No Limit

 Records in Tables No Limit

 Fields in Table

 in Oracle 7.x max 256

 in Oracle >=8 max 1000

 f:\Sacet3\Tables.Mdb

 Dept Table

E-NOTES / CS & BCA

261 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

How to Create DSN?

Start->Settings->Control panel->ODBC Data Sources (32 Bit)

This step up to windows XP

Or

Start->Control Panel\System and Security\Administrative Tools

This step windows -7 to latest version

 A window will appear

 Click "Add" Button to create a new DSN

 Another window will Appear

 Select *.mdb

 Click "Finish" Button

 Another window will appear

 Data Source Name Sact

 Description

 Click "Select" Button

 File Dialog will appear

 Select f:\Sacet3\Tables.mdb

 Click "Ok" Button

 Close the Control Panel

Example 1: Program to show all records from Dept Table

import java.sql.*;

class sq1

{

 public static void main(String args[])

 {

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection("jdbc:odbc:Sact");

 Statement st = con.createStatement();

E-NOTES / CS & BCA

262 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 ResultSet rs = st.executeQuery("Select * from dept");

 while(rs.next())

 {

System.out.println(rs.getString("dno") + "\t" + rs.getString("dname") + "\t" +

rs.getString(3));

 }

 con.close();

 }catch(Exception ex)

 {

 System.out.println("sq1 : " + ex);

 }

 }

}

Example 2: Program to show particular record from Dept Table

import java.sql.*;

class sq2

{

 public static void main(String args[])

 {

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection("jdbc:odbc:Sact");

 Statement st = con.createStatement();

ResultSet rs = st.executeQuery("Select * from dept where dno='10'");

E-NOTES / CS & BCA

263 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

//ResultSet rs = st.executeQuery("Select * from dept where dno='10' or dno='20' or

dno='30'");

//ResultSet rs = st.executeQuery("Select * from dept where dno in('10','20','30')");

 while(rs.next())

 {

System.out.println(rs.getString("dno") + "\t" + rs.getString("dname") + "\t" +

rs.getString(3));

 }

 con.close();

 }catch(Exception ex)

 {

 System.out.println("sq2 : " + ex);

 }

 }

}

Example 3: Program to show particular record from Dept Table

import java.sql.*;

import java.io.*;

class sq3

{

 public static void main(String args[])

 {

 try

E-NOTES / CS & BCA

264 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection("jdbc:odbc:Sact");

 Statement st = con.createStatement();

 DataInputStream din = new DataInputStream(System.in);

 System.out.print("Enter Dno. : ");

 String no = din.readLine();

//ResultSet rs = st.executeQuery("Select * from dept where dno='no'");

ResultSet rs = st.executeQuery("Select * from dept where dno='"+no+"'");

 int i = 0;

 while(rs.next())

 {

System.out.println(rs.getString("dno") + "\t" + rs.getString("dname") + "\t" +

rs.getString(3));

 i = 1;

 }

 if(i == 0)

 {

 System.out.println("Dno Not Found");

 }

 con.close();

E-NOTES / CS & BCA

265 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 }catch(Exception ex)

 {

 System.out.println("sq3 : " + ex);

 }

 }

}

Example 4: Program to insert a record into Dept Table

import java.sql.*;

import java.io.*;

class sq4

{

 public static void main(String args[])

 {

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection("jdbc:odbc:Sact");

 Statement st = con.createStatement();

//st.executeUpdate("insert into dept values('60','BBB','CCC')");

 DataInputStream din = new DataInputStream(System.in);

 System.out.print("Enter Dno. : ");

 String no = din.readLine();

 System.out.print("Enter Dna. : ");

 String na = din.readLine();

E-NOTES / CS & BCA

266 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 System.out.print("Enter Loc. : ");

 String lc = din.readLine();

st.executeUpdate("insert into dept values('"+no+"','"+na+"','"+lc+"')");

 System.out.println("1 Row Created");

 con.close();

 }catch(Exception ex)

 {

 System.out.println("sq4 : " + ex);

 }

 }

}

Example 5: Program to insert a Record into Dept Table using Prepared Statement

 PreparedStatement is a Interface

 Methods:

 SetString (int Field no, String value)

 executeUpdate () Insert, Update, Delete

import java.sql.*;

import java.io.*;

class sq5

{

 public static void main(String args[])

 {

 try

 {

E-NOTES / CS & BCA

267 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection("jdbc:odbc:Sact");

PreparedStatement ps = con.prepareStatement("insert into dept values(?,?,?)");

 DataInputStream din = new DataInputStream(System.in);

 System.out.print("Enter Dno. : ");

 String no = din.readLine();

 System.out.print("Enter Dna. : ");

 String na = din.readLine();

 System.out.print("Enter Loc. : ");

 String lc = din.readLine();

 ps.setString(1,no);

 ps.setString(2,na);

 ps.setString(3,lc);

 ps.executeUpdate();

 System.out.println("1 Row Created");

 con.close();

 }catch(Exception ex)

 {

 System.out.println("sq5 : " + ex);

 }

 }

}

Example 6: Program to Update a Record into Dept Table

import java.sql.*;

import java.io.*;

E-NOTES / CS & BCA

268 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

class sq6

{

 public static void main(String args[])

 {

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection("jdbc:odbc:Sact");

 Statement st = con.createStatement();

 DataInputStream din = new DataInputStream(System.in);

 System.out.print("Enter Dno. : ");

 String no = din.readLine();

ResultSet rs = st.executeQuery("select * from dept where dno='"+no+"'");

 int i = 0;

 while(rs.next())

 {

 i = 1;

 break;

 }

 if(i == 1)

 {

 System.out.print("Enter Dna. : ");

 String na = din.readLine();

 System.out.print("Enter Loc. : ");

 String lc = din.readLine();

E-NOTES / CS & BCA

269 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

st.executeUpdate("update dept set dname='"+na+"',loc='"+lc+"' where dno='"+no+"'");

 System.out.println("Updated");

 }

 else

 {

 System.out.println("Invalid DNo");

 }

 con.close();

 }catch(Exception ex)

 {

 System.out.println("sq6 : " + ex);

 }

 }

}

Example 7: Program to Delete a Record from Dept Table

import java.sql.*;

import java.io.*;

class sq7

{

 public static void main(String args[])

 {

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection("jdbc:odbc:Sact");

E-NOTES / CS & BCA

270 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 Statement st = con.createStatement();

 DataInputStream din = new DataInputStream(System.in);

 System.out.print("Enter Dno. : ");

 String no = din.readLine();

ResultSet rs = st.executeQuery("select * from dept where dno='"+no+"'");

 int i = 0;

 while(rs.next())

 {

 i = 1;

 break;

 }

 if(i == 1)

 {

st.executeUpdate("delete from dept where dno='"+no+"'");

 System.out.println("Deleted");

 }

 else

 {

 System.out.println("Invalid DNo");

 }

 con.close();

 }catch(Exception ex)

 {

 System.out.println("sq7 : " + ex);

E-NOTES / CS & BCA

271 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 }

 }

}

Example 8: Program to Create a Table Emp into the Database

import java.sql.*;

import java.io.*;

class sq8

{

 public static void main(String args[])

 {

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 Connection con = DriverManager.getConnection("jdbc:odbc:Sact");

 Statement st = con.createStatement();

st.executeUpdate("create table Emp(Eno Text(5),Ename Text(25),Job Text(20), Sal

Text(10),Dno Text(5))");

 System.out.println("Table Created");

 con.close();

 }catch(Exception ex)

 {

 System.out.println("sq8 : " + ex);

 }

 }

}

E-NOTES / CS & BCA

272 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Example 9: Program to show all Records from Scott.Emp Table in the Oracle

Database

import java.sql.*;2

import java.io.*;

class sq9

{

 public static void main(String args[])

 {

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Connection con = DriverManager.getConnection("jdbc:odbc:Sact1","scott","tiger");

 Statement st = con.createStatement();

ResultSet rs = st.executeQuery("select * from emp");

 while(rs.next())

 {

System.out.println(rs.getString(1) + "\t" + rs.getString(2) + "\t" +rs.getString(3) + "\t" +

rs.getString(6));

 }

 con.close();

 }catch(Exception ex)

 {

 System.out.println("sq9 : " + ex);

 }

 }

E-NOTES / CS & BCA

273 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

}

Example 10: Applet using JDBC

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

import java.sql.*;

public class appjdbc extends Applet implements ItemListener

{

 Choice c1 = new Choice();

 TextField t1 = new TextField(20);

 TextField t2 = new TextField(20);

 Connection con;

 Statement st;

 ResultSet rs;

 public void init()

 {

 add(c1); add(t1); add(t2);

 try

 {

 db();

 rs = st.executeQuery("select * from dept");

 while(rs.next())

 {

 c1.add(rs.getString(1));

 }

E-NOTES / CS & BCA

274 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 con.close();

 }catch(Exception ex)

 {

 System.out.println("appjdbc init() : " + ex);

 }

 c1.addItemListener(this);

 }

 public void itemStateChanged(ItemEvent e)

 {

 try

 {

 db();

//rs = st.executeQuery("select * from dept where dno='"+c1.getSelectedItem()+"'");

rs = st.executeQuery("select * from dept where deptno=" + c1.getSelectedItem());

 while(rs.next())

 {

 t1.setText(rs.getString(2));

 t2.setText(rs.getString(3));

 break;

 }

 con.close();

 }catch(Exception ex)

 {

 System.out.println("appjdbc ischg() : " + ex);

 }

 }

E-NOTES / CS & BCA

275 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 public void db()

 {

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

// con = DriverManager.getConnection("jdbc:odbc:Sact");

con = DriverManager.getConnection("jdbc:odbc:Sact1","scott","tiger");

 st = con.createStatement();

 }catch(Exception ex)

 {

 System.out.println("appjdbc db() : " + ex);

 }

 }

}

// <applet code=appjdbc width=300 height=300></applet>

Example 11: Frames using JDBC

import java.awt.*;

import java.awt.event.*;

import java.sql.*;

class frjdbc extends Frame implements ActionListener

{

 Panel p1 = new Panel(new GridLayout(3,2)); // Labels & Text

 Panel p2 = new Panel(new GridLayout(1,4)); // buttons

 Panel p3 = new Panel(new GridLayout(2,1)); // p1,p2

 Panel p4 = new Panel(new BorderLayout()); // p3

E-NOTES / CS & BCA

276 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 Label l1 = new Label("Enter Dno. : ");

 TextField t1 = new TextField(20);

 Label l2 = new Label("Enter Dna. : ");

 TextField t2 = new TextField(20);

 Label l3 = new Label("Enter Loc. : ");

 TextField t3 = new TextField(20);

 Button b1 = new Button("Save");

 Button b2 = new Button("Edit");

 Button b3 = new Button("Delete");

 Button b4 = new Button("Exit");

 Connection con;

 Statement st;

 ResultSet rs;

 int i;

 public frjdbc()

 {

 p1.add(l1); p1.add(t1);

 t1.addFocusListener(new FocusAdapter()

 {

 public void focusLost(FocusEvent e)

 {

 try

 {

 db();

rs = st.executeQuery("select * from dept where dno='"+t1.getText()+"'");

 i = 0;

E-NOTES / CS & BCA

277 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 while(rs.next())

 {

 t2.setText(rs.getString(2));

 t3.setText(rs.getString(3));

 i = 1;

 break;

 }

 con.close();

 }catch(Exception ex)

 {

 System.out.println("frjdbc const() : " + ex);

 }

 }

 });

 p1.add(l2); p1.add(t2);

 p1.add(l3); p1.add(t3);

 p2.add(b1); p2.add(b2); p2.add(b3);

 p2.add(b4);

 b1.addActionListener(this);

 b2.addActionListener(this);

 b3.addActionListener(this);

 b4.addActionListener(this);

 p3.add(p1); p3.add(p2);

 p4.add(p3,BorderLayout.CENTER);

 addWindowListener(new WindowAdapter()

E-NOTES / CS & BCA

278 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 {

 public void windowClosing(WindowEvent e)

 {

 System.exit(-4);

 }

 });

 add(p4);

 setSize(300,300);

 setVisible(true);

 }

 public static void main(String args[])

 {

 new frjdbc();

 }

 public void actionPerformed(ActionEvent e)

 {

 if(e.getSource() == b1)

 {

 if(i == 0)

 {

 try

 {

 db();

st.executeUpdate("insertinto dept values ('"+t1.getText()+"','"+t2.getText()+"',

'"+t3.getText()+" ') ");

 con.close();

E-NOTES / CS & BCA

279 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 t1.setText("");

 t2.setText("");

 t3.setText("");

 t1.requestFocus();

 }catch(Exception ex)

 {

 System.out.println("frjdbc apfm b1() : " + ex);

 }

 }

 }

 else if(e.getSource() == b2)

 {

 if(i == 1)

 {

 try

 {

 db();

st.executeUpdate("update dept set dname='"+t2.getText()+"', loc='"+t3.getText()+"' where

dno='"+t1.getText()+"'");

 con.close();

 t1.setText("");

 t2.setText("");

 t3.setText("");

 t1.requestFocus();

 i = 0;

 }catch(Exception ex)

 {

E-NOTES / CS & BCA

280 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 System.out.println("frjdbc apfm b2() : " + ex);

 }

 }

 }

 else if(e.getSource() == b3)

 {

 if(i == 1)

 {

 try

 {

 db();

st.executeUpdate("delete from dept where dno='"+t1.getText()+"'");

 con.close();

 t1.setText("");

 t2.setText("");

 t3.setText("");

 t1.requestFocus();

 i = 0;

 }catch(Exception ex)

 {

 System.out.println("frjdbc apfm b3() : " + ex);

 }

 }

 }

 else if(e.getSource() == b4)

E-NOTES / CS & BCA

281 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 {

 System.exit(4);

 }

 }

 public void db()

 {

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 con = DriverManager.getConnection("jdbc:odbc:Sact");

 st = con.createStatement();

 }catch(Exception ex)

 {

 System.out.println("frjdbc db() : " + ex);

 }

 }

}

Example 12: Swings using JDBC loading all Records of Dept Table (Database) into

the Swings Table

import javax.swing.*;

import java.awt.*;

import java.sql.*;

import java.awt.event.*;

class swjdbc extends JFrame

{

 JTable t1;

E-NOTES / CS & BCA

282 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 Connection con;

 Statement st;

 ResultSet rs;

 int i = 0;

 public swjdbc()

 {

 Container con1 = getContentPane();

 try

 {

 db();

 rs = st.executeQuery("select * from dept");

 while(rs.next())

 {

 i++;

 }

 con.close();

 }catch(Exception ex)

 {

 System.out.println(ex);

 }

 String d[][] = new String[i][3];

 String t[] = {"Dno","Dname","Loc"};

 try

 {

 db();

E-NOTES / CS & BCA

283 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 int j = 0;

 rs = st.executeQuery("select * from dept");

 while(rs.next())

 {

 d[j][0] = rs.getString(1);

 d[j][1] = rs.getString(2);

 d[j][2] = rs.getString(3);

 j++;

 }

 con.close();

 }

 catch(Exception ex)

 {

 System.out.println(ex);

 }

 t1 = new JTable(d,t);

JScrollPane jsp = newJScrollPane

(t1,JScrollPane.VERTICAL_SCROLLBAR_ALWAYS,

JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS);

 con1.add(jsp);

 setSize(300,300);

 setVisible(true);

 }

 public void db()

E-NOTES / CS & BCA

284 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 {

 try

 {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 con = DriverManager.getConnection("jdbc:odbc:Oss");

 st = con.createStatement();

 }catch(Exception ex)

 {

 System.out.println(ex);

 }

 }

 public static void main(String args[])

 {

 new swjdbc();

 }

}

E-NOTES / CS & BCA

285 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

APPENDIX C: SAMPLE PROGRAMS / APPLICATIONS using SQL * PLUS

1. TABLE CREATION AND SIMPLE QUERIES

A. DATA DEFINITION LANGUAGE

Aim:

To execute data definition language using create, alter, drop.

1. CREATE TABLE

Problem: Create a table with the fields reg, name, dob, m1, m2, m3, total, average.

Query:

 SQL>create table student(reg number,name varchar (10),dob number(8),m1

number(5),m2 number(5),total number(5),average number(5,2)) ;

Output:

Table created.

2. ALTER TABLE

Problem: Alter the table to add the field sex.

Query: SQL> alter table student add (sex varchar(2)) ;

Output:

Table altered.

Query: SQL> alter table student modify (dob number (10));

Output:

Table altered.

Query: SQL> alter table student drop column dob;

Output:

Column dropped

3. DROP TABLE

Problem: Drop the created table using the drop query.

Query: SQL>drop table student;

Output:
Table dropped.

Result:

 Thus the data definition language is executed successfully.

E-NOTES / CS & BCA

286 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

B. DATA MANIPULATION LANGUAGE

Aim:

 To execute data manipulation language using select, update, insert, delete.

1. INSERT

Problem: Insert fields in the corresponding table

Query: SQL> insert into student values ('®', '&name', '&dob', '&m1', '&m2', '&total',

'&average');

Enter value for reg: 007

Enter value for name: Indhu

Enter value for dob: 01-jan-1989

Enter value for m1: 99

Enter value for m2: 99

Enter value for total: 198

Enter value for average: 99.00

old 1: insert into student values('®','&name','&dob','&m1','&m2','&total','&average')

new 1: insert into student values('007','Indhu','01-jan-1989','99','99','198','99.00')

insert into student values('007','Indhu’,'01-jan-1989','99','99','198','99.00')

Output:

 1 row inserted.

2. UPDATE

Problem: Update the field using update query

Query: SQL> update student set name='priya' where reg='007';

Output:

1 row updated.

3. DELETE

Problem: Delete the record using delete query

Query: SQL> delete from student where reg=007;

Output:

1 row deleted.

E-NOTES / CS & BCA

287 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

4. SELECT

Problem: Select the table using select query

Query: SQL> select * from student ;

Output:
 REG NAME DEPT M1 M2 M3 TOTAL AVG RESULT CLASS FEES AGE

----- -------- ------ ------------------- -------- ------ --------- ------- ------ ------

 1 Indhu MCA 99 99 99 297 99 p a paid 20

 2 Priya MCA 98 98 98 294 98 p a paid 21

 3 Divya MBA 97 97 97 291 97 p a nil 29

Problem: Display the students record whose avg is > 97 and age = 20

Query: SQL> select * from student where avg > 97 and age like’20’;

Output:

REG NAME DEPT M1 M2 M3 TOTAL AVG RESULT CLASS FEES AGE

----- -------- ------ ------------------- -------- ------ --------- ------- ------ ------

 1 Indhu MCA 99 99 99 297 99 p a paid 20

Problem: Display the students record whose name ends with a.

Query: SQL> select * from student where name like ‘%a’;

Output:
 REG NAME DEPT M1 M2 M3 TOTAL AVG RESULT CLASS FEES AGE
 ----- -------- ------ ------------------- -------- ------ ------------- -------- ------ ------

 2 Priya MCA 98 98 98 294 98 p a paid 21

Problem: Display the students record whose total lies between 200 and 296.

Query: SQL> select * from student where total between 200 and 296;

Output:
 REG NAME DEPT M1 M2 M3 TOTAL AVG RESULT CLASS FEES AGE
 ----- -------- ------ ------------------- -------- ------ -------------- ------- ------ ------

 2 Priya MCA 98 98 98 294 98 p a paid 21

 3 Divya MBA 97 97 97 291 97 p a nil 29

Problem: Display the students record whose avg is > 98.

E-NOTES / CS & BCA

288 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Query: SQL> select * from student where avg > 98;

Output:
REG NAME DEPT M1 M2 M3 TOTAL AVG RESULT CLASS FEES AGE

 ----- -------- ------ ------------------- -------- -------- ------------ ------- ------ -------

 1 Indhu MCA 99 99 99 297 99 p a paid 20

Result:

 Thus the data manipulation language is executed successfully.

C. SIMPLE QUERIES

Aim: To execute Simple queries using SQL.

a) Relational Operator

Problem: Display the students record whose avg is > 90

Query SQL> select * from stud01 where avg>90;

Output

 ROLLNO NAME MARK1 MARK2 TOTAL AVG

 ---------- -------- ----------- ----------- -------- ------

 2 priya 91 95 186 93

 3 bala 95 92 187 94

Problem: Display the students record whose avg is < 80.

Query

SQL> select * from stud01 where avg<80;

Output

ROLLNO NAME MARK1 MARK2 TOTAL AVG

---------- -------- --------- ------------ ---------- ------

 1 uma 85 70 155 75

Problem: Display the students record whose mark1 >= 95.

Query: SQL> select * from stud01 where mark1>=95;

E-NOTES / CS & BCA

289 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Output

ROLLNO NAME MARK1 MARK2 TOTAL AVG

---------- -------- --------- ------------ -------- ------

 3 bala 95 92 187 94

Problem: Display the students record whose mark1 <= 75.

Query: SQL> select * from stud01 where mark2<=75;

Output

ROLLNO NAME MARK1 MARK2 TOTAL AVG

---------- -------- --------- ------------ -------- ------

 1 uma 85 70 155 75

Problem: Display the students record whose total =187.

Query: SQL> select * from stud01 where total=187;

Output

ROLLNO NAME MARK1 MARK2 TOTAL AVG

---------- -------- --------- ------------ -------- ------

 3 bala 95 92 187 94

Problem: Display the student’s record whose total not equal to 190.

Query: SQL> select * from stud01 where total ^=190;

Output

 ROLLNO NAME MARK1 MARK2 TOTAL AVG

 ---------- -------- --------- ------------ -------- ------

 1 uma 85 70 155 75

 2 priya 91 95 186 93

 3 bala 95 92 187 94

B) Special Operators

Problem: Display the student’s name whose rollno is either 1 or 2.

Query: SQL> select name from stud01 where rollno IN (1,2);

E-NOTES / CS & BCA

290 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Output

NAME

uma

priya

Problem: Display the student’s name whose rollno is not 1.

Query

SQL> select name from stud01 where rollno NOT IN (1);

Output

 NAME

 priya

 bala

Problem: Display the students average whose name is “uma”.

Query : SQL> select avg from stud01 where name LIKE ('uma');

Output

 AVG

 75

Problem: Display the student’s average whose name is not like “uma”.

Query: SQL> select avg from stud01 where name NOT LIKE ('uma');

Output

 AVG

 93

 94

Problem: Display the student’s records whose total is ranges from 180 to 190.

Query : SQL> select * from stud01 where total between 180 and 190;

E-NOTES / CS & BCA

291 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Output

ROLLNO NAME MARK1 MARK2 TOTAL AVG

 ---------- -------- --------- --------- ------------ ------

 2 priya 91 95 186 93

 3 bala 95 92 187 94

c) Logical operators

Problem: Display the student’s records whose average is greater than 80 and less than 90.

Query: SQL> select * from stud01 where avg>80 and avg<95;

Output:

 ROLLNO NAME MARK1 MARK2 TOTAL AVG

 ---------- -------- --------- ------------ -------- ------

 2 priya 91 95 186 93

 3 bala 95 92 187 94

Problem: Display the student’s records whose average is greater than 74 or less than 94.

Query: SQL> select * from stud01 where avg>74 or avg<94;

Output:

 ROLLNO NAME MARK1 MARK2 TOTAL AVG

 ---------- -------- --------- ------------ -------- ------

 1 uma 85 70 155 75

 2 priya 91 95 186 93

 3 bala 95 92 187 94

Problem: Display the student’s records whose average is not greater than 90.

Query:

SQL> select * from stud01 where not avg>90;

Output:

 ROLLNO NAME MARK1 MARK2 TOTAL AVG

 ---------- -------- --------- ------------ -------- ------

 1 uma 85 70 155 75

RESULT:

 Thus the simple queries using SELECT command has been successfully executed.

E-NOTES / CS & BCA

292 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

2. QUERIES USING AGGREGATE FUNCTION AND SET OPERATIONS

A. AGGREGATE FUNCTION

Aim:
To execute aggregate functions using SQL * PLUS.

1. DISTINCT

Problem: Display the department without repetition.

Query : SQL> select distinct (dept) from student;

Output:

distinct (dept)

 mca

2. AVERAGE

Problem: Display the average of the total from the student table..

Query: SQL> Select avg (total) from student;

Output:

avg(total)

 260

3. COUNT

Problem: Display the count of the name from the student table..

Query: SQL>Select count (name) from student;

Output:

count (name)

 5

4. MINIMUM

Problem: Display the minimum value of the average from the student table..

Query: SQL>select min (average) from student;

E-NOTES / CS & BCA

293 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Output:

min (average)

 183

5. MAXIMUM

Problem: Display the maximum value of the average from the student table..

Query: SQL>select max (average) from student;

Output:

max (average)

 183

6. SUM

Problem: Display the sum of the total from the student table..

Query: SQL>select sum (total) from student;

Output:

sum (total)

 1300

Result:

Thus the aggregate or group functions are executed successfully.

 B. SET OPERATORS USING SELECT COMMAND

Aim:

To execute set operators using SQL * PLUS.

The First table,

ID Name

1 abhi

2 adam

E-NOTES / CS & BCA

294 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

The Second table,

1. UNION

Problem: Display the records by combining two tables using Union

Query:

SELECT * FROM First

UNION

SELECT * FROM Second;

 Output:

ID Name

1 abhi

2 adam

3 Chester

2. UNION ALL

Problem: Display all the records by combining two tables using Union

Query:

SELECT * FROM First

UNION ALL

SELECT * FROM Second;

ID Name

2 adam

3 Chester

E-NOTES / CS & BCA

295 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Output:

3. INTERSECT

Problem: Display the records for common records in both the tables using

Intersect

Query:

SELECT * FROM First

INTERSECT

SELECT * FROM Second;

Output:

ID NAME

2 adam

4. MINUS

Problem: Display the records which is present on first able is not on the second table.

Query:

SELECT * FROM First

MINUS

SELECT * FROM Second;

ID NAME

1 abhi

2 adam

2 adam

3 Chester

E-NOTES / CS & BCA

296 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Output:

ID NAME

1 abhi

Result:

 Thus set operators using select command completed successfully.

E-NOTES / CS & BCA

297 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

3. TABLE CREATION WITH VARIOUS JOINS

Aim:

 To execute multiple table queries using inner join,outerjoin

INNERJOIN

Query:

SQL> select * from stud01;

Output:

 ROLLNO NAME MARK1 MARK2 TOTAL AVG

 ---------- ---------- ---------- ---------- --------- -------

 1 uma 85 70 155 75

 2 priya 91 95 186 93

 3 bala 95 92 187 94

Query:

SQL> select * from stud;

Output:

 REGNO DOB FEES SNO

 --------- ---------- -------- --------

 1001 21-JAN-89 50000 1

 1002 02-MAY-88 35000 2

 1003 15-DEC-88 50000 3

 1004 12-FEB-89 50000 4

 1005 19-MAY-88 25000 5

 1006 15-JUN-88 30000 6

6 rows selected.

Query:

SQL> select rollno,name,avg from stud01,stud where stud01.rollno=stud.sno;

Output:

 ROLLNO NAME AVG

 ---------- ---------- ----------

 1 uma 75

 2 priya 93

 3 bala 94

E-NOTES / CS & BCA

298 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

OUTER JOINS

Left Outer Join:

Query:
SQL> select name,mark1,mark2,avg,fees from stud01,stud where

stud01.rollno=stud.sno(+);

Output:

NAME MARK1 MARK2 AVG FEES

---------- ---------- ---------- ---------- -----------

uma 85 70 75 50000

priya 91 95 93 35000

bala 95 92 94 50000

Right Outer Join:

Query:
SQL> select regno,dob,avg,fees from stud,stud01 where stud.sno(+)=stud01.rollno;

Output:

 REGNO DOB AVG FEES

 --------- ------------ ---------- --------

 1001 21-JAN-89 75 50000

 1002 02-MAY-88 93 35000

 1003 15-DEC-88 94 50000

Result:

 Thus the multiple table queries using inner join and outer join are executed

successfully.

E-NOTES / CS & BCA

299 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

4. NESTED SUB QUERIES AND CORRELATED SUB QUERIES

Aim:

 To execute sub queries using simple and correlated sub queries.

I)SIMPLE QUERY:

Query:

SQL> select * from stud where fees>(select avg(fees) from stud);

Output:

 REGNO DOB FEES SNO

---------- ---------------- ---------- --------

 1001 21-JAN-89 50000 1

 1003 15-DEC-88 50000 3

 1004 12-FEB-89 50000 4

ii) CORRELATED SUB QUERY

Query:

SQL> select sno,dob from stud where sno=(select rollno from stud01

 2 where stud.sno=stud01.rollno);

 Output:

 SNO DOB

 ------ --------------

 1 21-JAN-89

 2 02-MAY-88

 3 15-DEC-88

Result:

 Thus the sub queries using simple and correlated sub queries are executed

successfully.

E-NOTES / CS & BCA

300 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

5. VIEW CREATION AND MANIPULATION

Aim:

 To execute the views and its manipulation.

I) CREATION OF VIEW

Query:

SQL> create view vcomp as select no,name,quali from comp;

Output:

View created.

II) INSERTING DATA INTO VIEW

Query:

SQL>insert into vcomp values(&no,'&name','&quali');

Enter value for no: 6

Enter value for name: saranya

Enter value for quali: mba

old 1: insert into vcomp values(&no,'&name','&quali')

new 1: insert into vcomp values(6,'saranya','mba')

Output:

1 row created.

III) SELECTING THE VIEW

Query:

SQL> select * from vcomp;

Output:

 NO NAME QUALI

 ------- ----------- ---------

 1 prema mca

 2 indu mca

 3 saran mca

 4 muthu bca

 5 prabha

 6 saranya mba

6 rows selected.

IV) UPDATION IN THE VIEW

Query:

SQL>update vcomp set quali='bca'where no=5;

E-NOTES / CS & BCA

301 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Output:

1 row updated.

Query:

SQL> SELECT * FROM VCOMP;

Output:

 NO NAME QUALI

 ------- ----------- ---------

 1 prema mca

 2 indu mca

 3 saran mca

 4 muthu bca

 5 prabha bca

 6 saranya mba

6 rows selected.

V) DROPPING THE VIEW

Query:

SQL>drop vcomp;

Output:

View dropped

Result:

 Thus the database objects using views and its manipulation is executed successfully.

E-NOTES / CS & BCA

302 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

6. PL/SQL PROGRAM FOR CURSOR

Aim:

 To execute the cursor using PL/SQL Program.

Step 1:

SQL> insert into stu values(&rno,'&name',&dbms,&ds,&co,&total,&average,’&result’);

Enter value for rno: 3

Enter value for name: anu

Enter value for dbms: 20

Enter value for ds: 30

Enter value for co: 56

Enter value for total: null

Enter value for average: null

Enter value for result: null

old 1: insert into stu values(&rno,'&name',&dbms,&ds,&co,&total,&average,’&result’)

new 1: insert into stu values(3,'anu',20,30,56,null,null,null)

1 row created.

SQL> /

Enter value for rno: 4

Enter value for name: suja

Enter value for dbms: 67

Enter value for ds: 34

Enter value for co: 56

Enter value for total: null

Enter value for average: null

Enter value for result: null

old 1: insert into stu values(&rno,'&name',&dbms,&ds,&co,&total,&average,’&result’)

new 1: insert into stu values(4,'suja',67,34,56,null,null,null)

Step 2:

SQL> select * from stu;

RNO NAME DBMS DS CO TOTAL AVERAGE RESULT

-------- --------------- ---------- --------- -------- ----------- --------------- -------------

1 shree 90 90 90 270 90 pass

2 priya 80 80 80 240 80 pass

3 anu 20 30 56

4 suja 67 34 56

E-NOTES / CS & BCA

303 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Step 3: Type the following coding.

SQL> declare

 2 cursor stucur is select * from stu;

 3 st stucur%rowtype;

 4 begin

 5 open stucur;

 6 loop

 7 fetch stucur into st;

 8 exit when stucur%notfound;

 9 st.total := st.dbms+st.ds+st.co;

 10 st.average := st.total/3;

 11 if(st.dbms >=50 and st.ds >=50 and st.co >=50) then

 12 st.result := 'PASS';

 13 else

 14 st.result := 'FAIL';

 15 end if;

 16 update stu set total=st.total, average=st.average, result=st.result where rno=st.rno;

 17 end loop;

 18 end;

 19 /

Output:

PL/SQL procedure successfully completed.

Step 4:

SQL> select * from stu;

RNO NAME DBMS DS CO TOTAL AVERAGE RESULT

---------- -------------- ---------- ---------- ---------- ---------- ---------------- ----------

 1 shree 90 90 90 270 90 PASS

 2 priya 80 80 80 240 80 PASS

 3 anu 20 30 56 106 35 FAIL

 4 suja 67 34 56 157 52 FAIL

Result: Thus the cursor using PL/SQL Program is successfully executed.

E-NOTES / CS & BCA

304 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

7. PL/SQL PROGRAM FOR PACKAGES

Aim:

 To execute the packages using PL/SQL Program.

SQL>

CREATE OR REPLACE PACKAGE aa_pkg AUTHID DEFINER IS

 TYPE aa_type IS TABLE OF INTEGER INDEX BY VARCHAR2(15);

END;

/

CREATE OR REPLACE PROCEDURE print_aa (

 aa aa_pkg.aa_type

) AUTHID DEFINER IS

 i VARCHAR2(15);

BEGIN

 i := aa.FIRST;

 WHILE i IS NOT NULL LOOP

 DBMS_OUTPUT.PUT_LINE (aa(i) || ' ' || i);

 i := aa.NEXT(i);

 END LOOP;

END;

/

DECLARE

 aa_var aa_pkg.aa_type;

BEGIN

 aa_var('zero') := 0;

 aa_var('one') := 1;

 aa_var('two') := 2;

 print_aa(aa_var);

END;

/

OUTPUT:

1 one

2 two

0 zero

Result: Thus the packages using PL/SQL Program is successfully executed.

E-NOTES / CS & BCA

305 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

8. PL/SQL PROGRAM FOR TRIGGERS AND ITS TYPE

Aim:

 To execute the triggers using PL/SQL Program.

Trigger using Update

Step 1: Create two tables ystudent & zstudent

Table 1:

SQL> create table zstudent (rno number(3), name varchar2(20), Dept varchar2(20));

Table created.

Table 2:

SQL> create table ystudent(rno number(3), name varchar2(20), Dept varchar2(20));

Table created.

Step 2: Insert values for both the tables

SQL> insert into ystudent values(&rno,'&name','&dept');

SQL> insert into zstudent values(&rno,'&name','&dept');

SQL> select * from ystudent;

 RNO NAME DEPT

---------- -------------------- ------------------

 1 priya mca

 2 shree mba

 3 kavi cse

SQL>select * from zstudent;

 RNO NAME DEPT

------ -------------------- -------------------

 11 ravi mca

 21 bala eee

 31 ram it

Step 3: Type the coding for Trigger

SQL>create or replace trigger stutrigger

 before update of dept

 on zstudent

E-NOTES / CS & BCA

306 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 for each row

 begin

 insert into ystudent values

 (:old.rno,:old.name,:old.dept);

 end;

/

Output:

Trigger created.

Step 4: Type the coding to update the second table

SQL>update zstudent set dept='ECE' where rno=3;

1 row updated.

Step 5: Show the Updation on both the tables.

SQL> select * from ystudent;

 RNO NAME DEPT

---------- -------------------- --------------------

 1 priya mca

 2 shree mba

 3 kavi cse

 31 ram it

SQL> select * from zstudent;

 RNO NAME DEPT

---------- -------------------- --------------------

 11 ravi mca

 21 bala eee

 31 ram ECE

Result: Thus the triggers using PL/SQL Program is successfully executed.

E-NOTES / CS & BCA

307 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

9. PL/SQL PROGRAM FOR PROCEDURES AND FUNCTIONS

Aim:

 To execute the procedure and functions using PL/SQL Program.

a. PROCEDURES

1: Executing from a single named procedure

Step 1: Type the procedure coding

create or replace procedure divexp(a number, b number) as

c number;

begin

c := a/b;

dbms_output.put_line('The Result of C is : ' || c);

exception

when zero_divide then

dbms_output.put_line('Divide by Zero Error !!!!');

end divexp;

/

Output:

Procedure created.

Step 2: Setting the Server to output mode.

SQL> set serveroutput on;

Step 3: To Call the Procedure and to display the Value of C

SQL> call divexp(144,3);

Output:

The Result of C is : 48

Call completed.

SQL> call divexp(28,0);

Output:

Divide by Zero Error !!!!

Call completed.

2: Calling a Procedure inside a procedure.

E-NOTES / CS & BCA

308 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Step 1: Type the Coding

SQL> create or replace

 2 procedure sum_ab (a int, b int, c out int) is

 3 begin

 4 c := a + b;

 5 end;

 6 /

Output:

Procedure created.

Step 2:

SQL> set serveroutput on;

Step 3: Type the Calling Procedure

SQL> declare

 2 r int;

 3 begin

 4 sum_ab(23,29,r);

 5 dbms_output.put_line('sum is: ' || r);

 6 end;

 7 /

Output:

SUM IS: 52

PL/SQL procedure successfully completed.

3: Using Table fields.

SQL> select * from stu;

RNO NAME DBMS DS CO TOTAL AVERAGE RESULT

---------- -------------- ---------- ---------- ---------- ---------- ---------------- ----------

 1 shree 90 90 90 270 90 PASS

 2 priya 80 80 80 240 80 PASS

 3 anu 20 30 56 106 35 FAIL

 4 suja 67 34 56 157 52 FAIL

Step 1: Type the coding in SQL prompt.

create or replace procedure tabproc(no number)as

 m1 number;

 m2 number;

E-NOTES / CS & BCA

309 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

 m3 number;

 tot number;

 aver number;

 failexp exception;

 begin

 select dbms,ds,co into m1,m2,m3 from stu where rno=no;

 if m1<50 or m2<50 or m3<50 then

 raise failexp;

 else

 tot :=m1+m2+m3;

 aver :=tot/3;

 dbms_output.put_line('TOTAL : ' ||tot);

 dbms_output.put_line('AVERAGE : ' ||aver);

 dbms_output.put_line('The Student is Passed in all the subject');

 end if;

 exception

 when failexp then

 dbms_output.put_line('The Student is Failed');

 when others then

 dbms_output.put_line('LOOP is not executed');

 end tabproc;

/

Output:

Procedure created.

Step 2: Call the procedure by giving the input.

SQL> call tabproc(4);

Output:

The Student is Failed

Call completed.

SQL> call tabproc(1);

Output:

TOTAL : 270

AVERAGE : 90

The Student is Passed in all the subject

Call completed.

b. FUNCTIONS

1: Simple Function

E-NOTES / CS & BCA

310 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

Step 1: Type the coding.

create or replace function add_two (a int,b int) return int is

begin

return (a + b);

end;

Output:

Function created.

Step 2: To run the coding call the above function by typing the following coding.

begin

dbms_output.put_line(’RESULT IS : ’ || add_two(12,34));

end;

Output:

RESULT IS : 46

PL/SQL procedure successfully completed.

2: Using Table.

Step 1: Type the coding

create or replace function tabfunc(no number) return varchar2 as

m1 number;

m2 number;

m3 number;

tot number;

aver number;

failexp exception;

begin

select dbms,ds,co into m1,m2,m3 from stu where rno=no;

if m1<50 or m2<50 or m3<50 then

raise failexp;

else

tot :=m1+m2+m3;

aver :=tot/3;

dbms_output.put_line('TOTAL : ' ||tot);

dbms_output.put_line('AVERAGE : ' ||aver);

return('PASS');

end if;

exception

when failexp then

return ('FAIL');

when others then

E-NOTES / CS & BCA

311 BCS 41 / BCA 41 – DATA BASE MANAGEMENT SYSTEMS

dbms_output.put_line('LOOP is not executed');

end;

/

Output:

Function created.

Step 2:

SQL> set serveroutput on;

Step 3: To pass the values for the above function.

SQL> begin

 dbms_output.put_line('RESULT IS : ' || tabfunc(1));

 end;

 /

Output:

TOTAL : 270

AVERAGE : 90

RESULT IS : PASS

PL/SQL procedure successfully completed.

SQL> begin

 dbms_output.put_line('RESULT IS : ' || tabfunc(4));

 end;

 /

Output:

RESULT IS : FAIL

PL/SQL procedure successfully completed.

Result: Thus the procedures and functions using PL/SQL Program is successfully

executed.

	II. END USERS
	III. DBA (DATABASE ADMINISTRATOR)
	1.4.1. TYPES OF DATABASES
	I. RELATIONAL DATABASE
	II. DISTRIBUTED DATABASE
	III. CLOUD DATABASE
	IV. OBJECT-ORIENTED DATABASE
	V. GRAPH DATABASE
	DBA RESPONSIBILITIES
	I. INSTALLING AND UPGRADING AN SQL SERVER
	II. USING STORAGE PROPERLY
	III. PERFORMING BACKUP AND RECOVERY DUTIES
	IV. MANAGING DATABASE USERS AND SECURITY
	V. TRANSFERRING DATA
	VI. REPLICATING DATA

	The DBA should possess the following skills
	1. A Database Management System (DBMS) is
	4. Which of the following is not a level of data abstraction?
	b) Critical Level
	5. Disadvantages of File systems to store data is:
	d) All of the above
	7. Which of the following is not a Storage Manager Component?
	b) Logical Manager
	8. Data Manipulation Language enables users to
	d) All of the above (1)
	c) Critical Schema
	10. Which of the following is Database Language?
	d) All of the above (2)
	12. Snapshot of the data in the database at a given instant of time is called
	2.2.1. COMPONENTS OF AN E-R DIAGRAM

	2.3 KEYS
	2.3.1. TYPES OF KEY
	1. Primary key
	2. Candidate key
	3. Super Key
	4. Foreign key

	3. Minimal Super keys are called
	b) Candidate keys
	4. The Primary key must be
	i. RELATIONAL MODEL
	RULE 1: INFORMATION RULE
	RULE 2: GUARANTEED ACCESS RULE
	RULE 3: SYSTEMATIC TREATMENT OF NULL VALUES
	RULE 4: ACTIVE ONLINE CATALOG
	RULE 5: COMPREHENSIVE DATA SUB-LANGUAGE RULE
	RULE 6: VIEW UPDATING RULE
	RULE 7: HIGH-LEVEL INSERT, UPDATE, AND DELETE RULE
	RULE 8: PHYSICAL DATA INDEPENDENCE
	RULE 9: LOGICAL DATA INDEPENDENCE
	RULE 10: INTEGRITY INDEPENDENCE
	RULE 11: DISTRIBUTION INDEPENDENCE
	RULE 12: NON-SUBVERSION RULE
	ii. ENTITY-RELATIONSHIP MODEL
	iii. HIERARCHICAL MODEL
	iv. NETWORK MODEL
	1. Which of the following is a Data Model?
	d) All of the above

	UNIT – II
	CHAPTER 4: RELATIONAL ALGEBRA
	4.2. STRUCTURE OF RELATIONAL DATABASES
	4.2.2. PROJECT OPERATION
	4.2.3. UNION OPERATION
	Example:DEPOSITOR RELATION
	4.2.4. SET INTERSECTION
	4.2.5. SET DIFFERENCE
	4.2.6. CARTESIAN PRODUCT
	Example:EMPLOYEE RELATION DEPARTMENT RELATION
	4.2.7. RENAME OPERATION

	4.3. FUNDAMENTAL RELATIONAL ALGEBRA OPERATIONS
	4.3.1. JOIN OPERATIONS
	Example:EMPLOYEE RELATION
	4.3.2. TYPES OF JOIN OPERATIONS
	(A) NATURAL JOIN
	(B) OUTER JOIN
	a. Left outer join:
	b. Right outer join:
	c. Full outer join:
	(C) Equi join:

	4.4. ADDITIONAL RELATIONAL ALGEBRA OPERATIONS
	“Additional operations” refer to relational algebra operations that can be expressed in terms of the fundamentals — select, project, union, set-difference, cartesian-product, and rename.
	The compositions of these operations are so lengthy, yet so common, that we define new operations for them, based on the fundamentals.
	4.4.1. SET-INTERSECTION
	The set-intersection operation is a binary operation on relations r and s that is denoted by the traditional intersection symbol, ∩. r ∩ s results in all tuples t such that (t ∈ r) ∧ (t ∈ s).
	Set-intersection is defined in terms of set-difference:
	r ∩ s = r − (r − s)
	Thus, set-intersection must follow the same compatibility rules as set-difference: same arity, corresponding domains.
	4.4.2. THETA JOIN
	One can generalize the natural-join operation into a theta join, so named because instead of the specific “attribute-matching” condition involved in natural-join, we allow θ to be any predicate on the attributes in R ∪ S for r(R) and s(S).
	Thus, we have r ./θ s, defined as
	r ./θ s = σθ(r × s)
	4.5. EXTENDED RELATIONAL ALGEBRA OPERATIONS
	While they are technically “extensions” to the algebra, they still follow the mathematical rigor and precision that allow us to draw sweeping and powerful conclusions from simpler concepts.
	4.5.1. GENERALIZED PROJECTION
	The generalized-projection operation extends the fundamental projection operation by allowing arithmetic (or, in the most general case, overall transformative) functions in the projection’s attribute list. It is still denoted with Π, but now the strai...
	ΠF1,F2,... ,Fn (E)
	E is any relational algebra expression, which is of course a relation. Fk may be any expression involving constant values and the attributes of E’s resultant relation schema.
	4.6. NULL VALUES
	The outer-join operations bring the notion of null values into the relational algebra.
	n reality, there are a lot of plausible approaches for handling null. If we stick to the definition of null as an unknown or non-existent value, we can establish the following:
	Any arithmetic operations involving null must return null.
	Comparing anything to null really doesn’t have much meaning, so we create a new “boolean value” in this case — unknown, meaning that we really can’t say whether a comparison to null is true or false.
	By defining the new boolean value unknown, we need to determine how unknown interacts with the other boolean values, true and false, in terms of the Boolean operations ∧, ∨, and .
	4.7. MODIFICATION OF THE DATABASE
	So far, all of the operations that we have discussed “derive” new relations from others, but don’t actually modify or alter the original relations. How does one specify operations that change relations “in place?”
	The general guideline is to use the assignment operator, but to make assignments to existing relations instead of designating new temporary variables.
	4.7.1. DELETION
	Deletion of tuples is effectively a set-difference operation that is “permanent.” Thus, we can write deletion as:
	r ← r – E
	E in this case is any relational algebra expression that determines the tuples that are to be removed from r.
	4.7.2. INSERTION
	Similarly to deletion, insertion of tuples can be viewed as a union operation that is made permanent. Thus, insertion is:
	r ← r ∪ E
	E once more is a relational algebra expression that determines the tuples to be setunioned with (thus “inserted into”) r.
	4.7.3. UPDATION
	An update modification changes one or more values within a tuple. Once more, we find that updating is just a persistent version of another relational operation, this time generalized projection: r ← ΠF1,F2, ... ,Fn (r).

	4.8. TUPLE RELATIONAL CALCULUS
	4.9. DOMAIN RELATIONAL CALCULUS
	Domain Relational Calculus is a non-procedural query language equivalent in power to Tuple Relational Calculus. Domain Relational Calculus provides only the description of the query but it does not provide the methods to solve it. In Domain Relati...
	where, < x1, x2, x3, …, xn > represents resulting domains variables and P (x1, x2, x3, …, xn) represents the condition or formula equivalent to the Predicate calculus.

	2. Column header is refer as
	c) Attributes
	4. A Relation is a
	b) Subset of a Cartesian product of a list of domains
	5. In mathematical term Table is referred as
	6. In mathematical term Row is referred as
	c) Tuple
	7. Allow us to identify uniquely a tuple in the relation.
	8. Which of the following is Relation-algebra Operation
	d) All of the above
	9. Set of premitted values of each attribute is called
	16. Logical design of database is called
	18. Which of the following is not Unary operation?
	19. Which of the following is not binary operation?
	d) All of the above (1)

	6.5.1. SQL GROUP Functions
	6.5.2. SQL GROUP BY CLAUSE
	6.5.3. SQL HAVING Clause
	SQL HAVING Clause Example

	6.6.1. SQL SUBQUERY
	a. Subqueries with the SELECT Statement
	Example

	b. Subqueries with the INSERT Statement
	Example

	c. Subqueries with the UPDATE Statement
	Example

	d. Subqueries with the DELETE Statement
	Example

	6.6.2. CORRELATED SUBQUERY
	NESTED SUBQUERY
	NON-CORELATED SUBQUERY
	SUBQUERY ERRORS
	SQL SUBQUERY COMMENTS

	6.7.1. UNION Operation
	Example of UNION

	6.7.2. UNION ALL
	Example of Union All

	6.7.3. INTERSECT
	Example of Intersect

	6.7.4. MINUS
	Example of Minus

	4. A command to remove a relation from an SQL database
	6. Which of the following is not Modification of the Database
	c) Sorting
	9 Which of the following is correct regarding Aggregate functions?

	7.2. T-SQL (TRANSACT-SQL)
	T-SQL STATEMENT EXAMPLES
	7.2.1. T-SQL FUNCTIONS
	DIFFERENCE BETWEEN T-SQL AND SQL
	JOINS IN T-SQL
	3. Please name at least five commands which can manipulate text in the T-SQL code. For example, replace a text string, obtain a portion of the text, etc.
	4. Is it possible to import data directly from T-SQL commands without using SQL Server Integration Services? If so, what are the commands?
	5. Mention new error handling commands which are introduced with the SQL Server 2005 and beyond? What commands did they replace? How are they command used?
	Blocks contain both PL/SQL as well as SQL instruction. All these instruction will be executed as a whole rather than executing a single instruction at a time. PL/SQL blocks have a pre-defined structure in which the code is to be grouped.
	Below are different sections of PL/SQL blocks.
	1. DECLARATION SECTION
	3. EXCEPTION-HANDLING SECTION

	8.2.1. PL/SQL BLOCK SYNTAX
	8.2.2. TYPES OF PL/SQL BLOCK
	2. NAMED BLOCKS

	PL/SQL IDENTIFIERS
	PL/SQL DELIMITERS
	PL/SQL COMMENTS

	8.3. PL/SQL - DATA TYPES
	8.3.1. SCALAR DATA TYPES
	c. BOOLEAN DATA TYPES
	d. DATE/TIME DATATYPES
	Collections in PL/SQL:
	Oracle provides three types of collections.

	8.3.5. UNKNOWN COLUMN TYPES
	8.3.6. USER-DEFINED SUBTYPES
	Defining Subtypes
	Example:

	NAMING RULES FOR PL/SQL VARIABLES:
	INITIALIZING VARIABLES IN PL/SQL
	Example of initializing variable
	Example of Local and Global variables
	8.5.1. ARITHMETIC OPERATORS
	8.5.2. RELATIONAL OPERATORS
	8.5.3. COMPARISON OPERATORS
	8.5.4. LOGICAL OPERATORS
	8.5.5. PL/SQL OPERATOR PRECEDENCE

	8.6. PL/SQL - CONDITIONS
	8.7. PL/SQL - LOOPS
	LABELING A PL/SQL LOOP
	THE LOOP CONTROL STATEMENTS

	8.8. PL/SQL – STRINGS
	8.8.1. DECLARING STRING VARIABLES
	8.8.2. PL/SQL STRING FUNCTIONS AND OPERATORS

	8.9. PL/SQL – ARRAYS
	Creating a Varray Type
	Example 1:

	SAMPLE PROGRAMS:
	8.10.2. RECORDS
	a. TABLE-BASED RECORDS
	b. CURSOR-BASED RECORDS
	c. USER-DEFINED RECORDS
	ACCESSING FIELDS

	8.11. PL/SQL CURSOR
	8.11.1. PL/SQL IMPLICIT CURSORS
	For Example:
	8.11.2. PL/SQL EXPLICIT CURSORS
	Syntax of explicit cursor
	1) Declare the cursor: It defines the cursor with a name and the associated SELECT statement.
	2) Open the cursor: It is used to allocate memory for the cursor and make it easy to fetch the rows returned by the SQL statements into it.
	3) Fetch the cursor: It is used to access one row at a time. You can fetch rows from the above-opened cursor as follows:
	4) Close the cursor: It is used to release the allocated memory. The following syntax is used to close the above-opened cursors.
	For Example

	8.12. PL/SQL EXCEPTION HANDLING
	8.12.1. PL/SQL SYSTEM-DEFINED EXCEPTIONS
	PL/SQL PRE-DEFINED EXCEPTIONS
	Example of exception handling:
	8.12.2. PL/SQL USER-DEFINED EXCEPTIONS
	RAISING EXCEPTIONS
	The function must contain a return statement.

	PL/SQL Function Example
	PL/SQL Recursive Function
	Example to calculate the factorial of a number
	PL/SQL Drop Function

	8.13.2. PL/SQL PROCEDURE
	How to pass parameters in procedure:
	PL/SQL CREATE PROCEDURE
	Create procedure example
	PL/SQL program to call procedure
	PL/SQL Drop Procedure
	Example of drop procedure
	9.2. OBJECT ORIENTED FEATURES

	9.3. COMPONENTS
	JDBC Driver
	DBC-ODBC Bridge
	Native API Driver
	Network Protocol Driver
	Thin Driver

	Common JDBC Components
	3. INTERSECT
	INTERSECT
	4. MINUS

