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ABSTRACT ALGEBRA

Abstract Algebra is the study on algebraic structure. Algebraic structure is an

ordered pair (A, ?) of a non-empty set A together with binary operation ?.

An n−Array operation is a mapping f : An → A. If n = 1, the mapping

f : A→ A is said to be an Unary operation. If n = 2, the mapping f : A× A→ A

is said to be an Binary operation, and so on.

The Binary operation is denoted by ? and based on the Binary operation we have

various Algebraic Structures like Group, Field, Rings, Vector Spaces, etc.,

Group is an algebraic structure with one Binary Operation.

Field, Rings, Vector Spaces are all algebraic structures with two Binary

operations.

UNIT I

GROUPS

Definition of a Group - Examples - Subgroups

Definition 1. Group: A non empty set G together with a binary operation ?

defined on the set G is said to be a Group if it satisfies the following axioms

(i) Closed Property: For all a, b ∈ G implies that a ? b ∈ G

(ii) Associative Property: For all a, b, c ∈ G implies that a ? (b ? c)=(a ? b) ? c.

(iii) Existance of Identity: There exist an element e ∈ G sucht that a? e=e ?a=a

for all a ∈ G.

(iv) Existance of Inverse: For every a ∈ G there exist an element a−1 ∈ G such

that a ? a−1=a−1 ? a=e.

Definition 2. Abelian Group: A group is said to be an abelian group if it satisfies

a commutative property.

• Commutative Property: For all a, b ∈ G implies that a ? b=b ? a.

1



2 ABSTRACT ALGEBRA

Example 1.

(i) (R,+) is an infinite abelian group.

(ii) (R− 0, ·) is an infinite abelian group.

(iii) (C,+) is an infinite abelian group.

(iv) (C− 0, ·) is an infinite abelian group.

(v) Set of all 2× 2 matrices with real numbers a, b, c, d, such that ad− bc 6= 0 is

an infinite non-abelian group.

Example 2. The integers Z = {. . . ,−2,−1, 0, 1, 2, . . . } form a group under the

operation of addition.

Consider two integers m,n ∈ Z. Sum of two integers is an integer hence it is

closed. The identity is 0, and the inverse of n ∈ Z is written as −n and it is

exist. Notice that the set of integers under addition have the additional property

that m + n = n + m and therefore form an abelian group.

Definition 3. Order of a Group: The number of elements present in the group

G is said to be order of a group and it is denoted by |G| or o(G).

Definition 4. Finite Group: If |G| or o(G) is finite, the group G is said to be

finite group. Otherwise it is said to be infinite group.

Example 3.

(i) G = {−1, 1} is an finite abelian group

(ii) (Z,+) is an infinite abelian group

Definition 5. Quasi group A algebraic structure is said to be an Quasi group if

it satisfies only the closed Property.

Definition 6. Semi group A algebraic structure is said to be an Semi group if it

satisfies the closed Property and Associative Property.

Example 4. (N,+) is an Semi-group.

Definition 7. Monoid A algebraic structure is said to be an Monoid if it satisfies

the closed Property, Associative Property and Existance of Identity.
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Example 5.

(i) (Z, ·) is an Monoid but not an group.

(i) (N, ·) is an Monoid.

Definition 8. Cancellation Law’s: Let G be a group, then the Left Cancellation

Law is defined as

a · u = a · w =⇒ u = w

and the Right Cancellation Law is defined as

u · a = w · a =⇒ u = w

for all a, u, w ∈ G.

Theorem 1. State and prove Left and Right Cancellation Law’s

Proof. Let G be a group, then the Left Cancellation Law is defined as

a · u = a · w =⇒ u = w (1)

Pre-multiply by a−1 on both side of equation (1), we arrive

a−1(a · u) = a−1(a · w)

=⇒ (a−1a) · u = (a−1a) · w

=⇒ e · u = e · w

=⇒ u = w.

The Right Cancellation Law is defined as

u · a = w · a =⇒ u = w (2)

Post-multiply by a−1 on both side of equation (2), we arrive

(u · a)a−1 = (w · a)a−1

=⇒ u · (aa−1) = w · (aa−1)

=⇒ u · e = w · e

=⇒ u = w.

�
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Problem 1. Let G denote the set of all matrices of the form

(
x x

x x

)
where

x ∈ R?. Then show that G is a group under matrix multiplication.

Solution: Let A,B ∈ G where A =

(
x x

x x

)
and B =

(
y y

y y

)
. Then

AB =

(
2xy 2xy

2xy 2xy

)
∈ G.

We know that matrix multiplication is associative. Let E =

(
e e

e e

)
∈ G such

that AE = A. Therefore(
x x

x x

)(
e e

e e

)
=

(
x x

x x

)

=⇒ (
2xe 2xe

2xe 2xe

)
=

(
x x

x x

)

=⇒
2xe = x.

Hence e = 1
2

and hence E =

(
1
2

1
2

1
2

1
2

)
is the identity element of G. Let

(
y y

y y

)

be the inverse of

(
x x

x x

)
. Then

(
x x

x x

)(
y y

y y

)
=

(
1
2

1
2

1
2

1
2

)
.

Therefore, (
2xy 2xy

2xy 2xy

)
=

(
1
2

1
2

1
2

1
2

)
.

Hence 2xy = 1
2

which implies y = x
4
. Therefore, inverse of

(
x x

x x

)
is

(
x
4

x
4

x
4

x
4

)
.

Hence G is a Group.
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Problem 2. Show that the set G = {1,−1, i,−i} is a group under multiplication.

Proof. Closure Property:

1 · −1 = −1 ∈ G, −1 · i = −i ∈ G,

i · −i = 1 ∈ G, −i · 1 = −i ∈ G.

Hence G is closed under multiplication.

Associative Property: Consider 1,−1, i ∈ G

1 · (−1 · i) = (1 · −1) · i

1 · −i = −1 · i

− i = −i

Hence · is Associative.

Existance of Identity:

1 · 1 = 1 ∈ G, −1 · 1 = −1 ∈ G,

i · 1 = i ∈ G, −i · 1 = −i ∈ G

The identity element is 1 and it exists in G.

Hence · is Associative.

Existance of Inverse:

1 · 1 = 1 ∈ G, −1 · −1 = 1 ∈ G,

i · −i = 1 ∈ G, −i · i = 1 ∈ G.

Hence Inverse exists. Therefore, G is a group under multiplication.

Commutative Property:

1 · −1 = −1 · 1 = −1, 1 · −i = −i · 1 = −i,

i · −i = −i · i = 1, −1 · i = i · −1 = −i.

Hence Inverse exists. Therefore, G is an finite abelian group under multiplication.

�
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It is often convenient to describe a group in terms of an addition or multiplication

table. Such a table is called a Cayley table.

· 1 -1 i -i

1 1 -1 i -i

-1 -1 1 -i i

i i -i -1 1

-i -i i 1 -1

Closed: There is no new element is formed in the composition table. Therefore, Multi-

plication is closed

Associative: A composition table under multiplication of integers

are always associative. Therefore, multiplication is associative.

Identity: From the first row or column, the identity element is 1. Therefore, Identity

exists.

Inverse: From the composition table 1,−1 are self inverses and i,−i are inverse to each

other. Therefore, Inverse exists.

Commutative: The composition table is symmetric about leading diagonal. Therfore

Multiplication is commutative.

Hence, G is a abelian group under multiplication.

Problem 3. Show that the cube root of unity is a group.

· 1 a a2

1 1 a a2

a a a2 1

a2 a2 1 a

Closed: There is no new element is formed in the composition table. Therefore, Multi-

plication is closed

Associative: A composition table under multiplication of integers

are always associative. Therefore, multiplication is associative.

Identity: From the first row or column, the identity element is 1. Therefore, Identity

exists.

Inverse: From the composition table 1 is the self inverse and a, a2 are inverse to each

other. Therefore, Inverse exists.
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Commutative: The composition table is symmetric about leading diagonal. Therfore

Multiplication is commutative.

Hence, G is a abelian group under multiplication.

Problem 4. Show that the set (C,+) is an abelian group.

Solution: Let C = {. . . , 1 + i,−1 + i, 2 + i,−2− i, . . . }
Closure Property: (2 + i) + (3 + i) = 5 + 2i ∈ C.

Hence C is closed under +.

Associative Property:

Consider 1 + i,−1 + 2i, i ∈ G

1 + i+ (−1 + 2i+ i) = (1 + i+−1 + 2i) + i

1 + i− 1 + 3i = 3i+ i

4i = 4i

Hence + is Associative.

Existance of Identity: e = 0 + 0i

The identity element is e = 0 + 0i and it exists in C.

Hence identity exists.

Existance of Inverse:

1 + i+ (−1− i) = 0 + 0i

1 + 3i+ (−1− 3i) = 0 + 0i

Hence Inverse exists. Therefore, C is a group under multiplication.

Commutative Property:

(1 + i) + (3 + 4i) = (3 + 4i) + (1 + i) = 5 + 5i

Hence Inverse exists. Therefore, C is an infinite abelian group under addition.

Problem 5. Show that identity element of a Group is unique.

Proof. Let e1 and e2 be any two identity elements of G. If e1 be the identity element, then

e1 ? e2 = e2 ? e1 = e2. (3)

If e2 be the identity element, then

e1 ? e2 = e2 ? e1 = e1. (4)
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Now, from (3) and (4), we arrive e1 = e2. Hence, identity element of a Group is unique. �

Problem 6. Show that in a group G, for every a ∈ G, inverse of G is unique.

Proof. Let e be the identity of G. Let a1 and a2 be any two inverses of a ∈ G. If a1 be

the inverse a, then

a1 ? a = a ? a1 = e. (5)

If a2 be the inverse a, then

a2 ? a = a ? a2 = e. (6)

Now, from (5) and (6), we arrive a1 = a2. Hence, inverse of G is unique. �

Problem 7. Let G be a group. If a, b ∈ G, then (ab)−1 = b−1a−1.

Proof. Let

a, b ∈ G.

Then

(ab)(b−1a−1) = aea−1 = aa−1 = e.

Similarly,

(b−1a−1)(ab) = e.

Hence, (ab)−1 = b−1a−1. �

Problem 8. Let G be a group. For any a ∈ G, (a−1)−1 = a.

Proof. Now

a−1(a−1)−1 = e.

Multiplying both sides of this equation by a, we have

(a−1)−1 = e(a−1)−1

= aa−1(a−1)−1

= ae

= a.

�
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Problem 9. Let G be a group and a and b be any two elements in G. Then the equations

ax = b and xa = b have unique solutions in G.

Proof. Let ax = b. Pre-multiply by a−1, we get

a−1ax = a−1b

ex = a−1b

x = a−1b.

Hence, the solution of ax = b is exist. To prove uniqueness, let x1 and x2 are both solutions

of ax = b, then

ax1 = b = ax2.

So

x1 = a−1ax1

= a−1ax2

= x2.

Hence, ax = b has unique solution.

Let xa = b and post-multiply by a−1, we get

xaa−1 = ba−1

xe = ba−1

x = ba−1.

Hence, solution of xa = b is exist. To prove uniqueness, let y1 and y2 are both solutions

of xa = b, then

y1a = b = y2a.

So

y1 = a−1y1a

= a−1y2a

= y2.

Hence, xa = b has unique solution. �
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Assignment: Group

Assignment: Part A

(1) Define Group

(2) Give an example for group

(3) Define abelian group

(4) Show that identity element of a group is unique

(5) Show that in a group G, for every a ∈ G, inverse of a is unique.

(6) In a group G, show that (ab)−1 = b−1a−1 for a, b ∈ G.

Assignment: Part B

(1) Show that

(
x x

x x

)
where x ∈ R? then G is a group under matrix multiplication.

(2) Prove that (a · b)n = anbn if G is an abelian group for all a, b ∈ G and all integers

n.

(3) If G is a group in which (ab)i = aibi for three consecutive integers i for all a, b ∈ G,

show that G is abelian.

(4) If G is a group prove that

(i) The identity element of G is unique.

(ii) For all a, b ∈ G, (a · b)−1 = b−1 · a−1

Assignment: Part C

(1) Show that set of all 2×2 matrices

(
a b

c d

)
with real numbers a, b, c, d, such that

ad− bc 6= 0 is a non-abelian group under multiplication matrices.

(2) Verify that the set of all Natural numbers is Group with respect to addition and

multiplication.

(3) Show that the cube root of unity is a group.

(4) Show that (R− {0}, ·) is an abelian group.
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Definition 9. Subgroup: If a subset H of a group G is itself a group under the operation

of G, then we say that H is a subgroup of G.

Example 6. (i) (2Z,+) is a subgroup of (Z,+). (ii) For any n ∈ Z+, we have (Zn,+) <

(Z,+) < (Q,+) < (R,+) < (C,+).

Notation:

(i) We write H ≤ G to mean H is a subgroup of G.

(ii) If H is not equal to G, we write H < G. Then, we say H is a proper subgroup of

G.

(iii) {e} and G are called the trivial subgroups. All other subgroups are nontrivial.

Problem 10. Let H be a subgroup of G. Then

(i) the identity element of H is the same as that of G.

(ii) for each a ∈ H the inverse of a in H is the same as the inverse of a ∈ G.

Proof.

(i) Let e and e′ be the identities of G and H respectively. Let a ∈ H and e′ is the identity

of H, we have

e′a = a.

Since e is the identity of G and a ∈ G, we have

a = ea.

Therefore e′a = ea. By right cancellation law, we have

e′ = e.

(ii) Let a′ and a′′ be the inverse of a in G and H respectively. Since by (i), G and H have

the same identity element e, we have

a′a = e = a′′a.

Hence by cancellation law

a′ = a′′.

�
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Problem 11. A subset H of a group G is a subgroup of G iff

(i) it is closed under the binary operation in G.

(ii) The identity e of G is in H.

(ii) a ∈ H =⇒ a−1 ∈ H.

Proof. Let H be a subgroup of G. The result follows immediately from the Problem-10.

Conversely let H be a subset of G satisfying cinditions (i),(ii)and (iii). Then, obviously

H itselt is a group with respect to the binary operarion in G. Therefore H is a subgroup

of G. �

Problem 12. A non-empty subset H of a group G is a subgroup of G iff a, b ∈ H =⇒
ab−1 ∈ H.

Proof. =⇒ Let H be a subgroup of G. Then

a, b ∈ H

=⇒ a, b−1 ∈ H

=⇒ ab−1 ∈ H.

Therefore,

a, b ∈ H =⇒ ab−1 ∈ H.

Conversely, let H be a non-empty subset of G such that

a, b ∈ H =⇒ a, b−1 ∈ H.

To prove: H is subgroup of G. Since H 6= Φ, there exists an element a ∈ H. Hence

aa−1 ∈ H.

Thus e ∈ H. Also, since e, a ∈ H, ea−1 ∈ H. Hence a−1 ∈ H.

Now let a, b ∈ H. Then a, b−1 ∈ H. Hence

a(b−1)−1 = ab ∈ H.

Thus H is closed under the binary operation in G. Thus by above theorem H is a subgroup

of G. �
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Problem 13. If H and K are subgroups of a group G then H ∩K is also a subgoup of G.

Proof. Clearly e ∈ H ∩K and hence H ∩K is non-empty. Now let a, b ∈ H ∩K. Then

a, b ∈ H

and

a, b ∈ K.

Since H and K are subgroups of G,

ab−1 ∈ H

and

ab−1 ∈ K

.

Therefore,

ab−1 ∈ H ∩K.

Hence by the above theorem H ∩K is a subgroup of G. �

Definition 10. Let G be a group, H a subgroup of G; for a, b∈G we say a is congruent

to b mod H, written as

a ≡ b mod H

if

ab−1 ∈ H

.

Definition 11. Left coset: Let H be a subgroup of a group G. Let a∈G. Then the set

aH = {ah|h ∈ H}

is called the Left coset of H defined by a in G.

Definition 12. Right coset: Let H be a subgroup of a group G. Let a∈G. Then the

set

Ha = {ha|h ∈ H}

is called the Left coset of H defined by a in G.

Definition 13. Order(or)Period: If G is a group and a ∈ G, the Order(or)Period of a

is the least positive integer m such that

am = e

.
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Definition 14. If H is a subgroup of G and a ∈ G, then Ha consists of all elements in G

of the form ha ∈ H. If H, K are two subgroups of G, then

HK = {x ∈ G|x = hk, h ∈ H, k ∈ K}

.

Definition 15. Index: Let H be a subgroup of G. The number of distinct left(right)

cosets of H in G is called the index of H in G and is denoted by [G : H].

Example 7. (Z8,
⊕

). H = {0, 4} is a subgroup. The left cosets of H are given by

(i) 0 +H = {0, 4} = H

(ii) 1 +H = {1, 5}

(iii) 2 +H = {2, 6}

(iv) 3 +H = {3, 7}.

These are the four distinct left cosets of H. Hence the index of the subgroup H is 4.

Theorem 2. Let G be a group and H ba a subgroup of G. Then

(i) a ∈ H =⇒ aH = H.

(ii) aH = bH =⇒ a−1b ∈ H.
(iii) a ∈ bH =⇒ a−1 ∈ Hb−1.
(iv) a ∈ bH =⇒ aH = bH.

Proof. (i) Let a ∈ H. We claim that

aH = H.

Let x ∈ aH. Then

x = ah

for some h ∈ H. Now, a ∈ H and h ∈ H =⇒ ah = x ∈ H(Since H is a subgroup).

Hence,

aH ⊂ H.

Let x ∈ H. Then

x = a(a−1x) ∈ aH.

Hence,

H ⊂ aH.
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Thus,

H = aH.

Conversly, let aH = H. Now a = ae ∈ aH. Therfore

a ∈ H.

(ii) Let aH = bH. Therefore,

a−1(aH) = a−1(bH).

Therefore,

H = (a−1b)H

. Therefore, (by i)

a−1b ∈ H.

Conversely, let a−1b ∈ H. Then, (by i)

a−1bH = H.

Therefore,

aa−1bH = aH

and hence

bH = aH

.

(iii) Let a ∈ bH. Then

a = bh

for some h ∈ H. Therefore

a−1 = (bh)−1 = h−1b−1 ∈ Hb−1.

(iv) Let a ∈ bH. We claim that aH = bH. Let x ∈ aH. Then

x = ah1

for some h1 ∈ H. Also a ∈ bH =⇒ a = bh2 for some h2 ∈ H—(1). Therefore,

x = (bh2)h1 = b(h2h1) ∈ bH.

Therefore,

aH ∈ bH
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. Now, let x = bh3 for some h3 ∈ H. Also from (1), b = ah−12 . Therefore,

x = ah−12 h3 ∈ aH.

Therefore,

bH ⊂ aH.

Hence,

aH = bH.

Then,

a = ae ∈ aH.

Therefore,

a ∈ bH.

�

Theorem 3. Let H ba a subgroup of G. Then

(i) any two left cosets of H are either identical or disjoint.

(ii) union of all the left cosets of H is G

(iii) the number of slements in any left coset aH is the same as the number of elements

in H.

Proof. (i) Let aH and bH be two left cosets. Suppopse aH and bH are not disjoint. We

claim that

aH = bH.

Since aH and bH are not disjoint. that is aH∩bH 6= Φ. Therefore there exists an element

c ∈ aH ∩ bH.

Therefore

c ∈ aH and c ∈ bH.

Therefore,

aH = cH and bH = cH.

Therefore,

aH = bH.

(ii) Let a ∈ G. Then

a = ae ∈ aH.
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Therefore, Every element of G belongs to a left coset of H. Therefore, the union of all the

left cosets of H is G.

(iii) The map f : H → aH defined by

f(h) = ah

is clearly a bijection. Hence every left coset has the same number of elements as H. �

Theorem 4. Let H be a subgroup of G. The number of left cosets of H is the same as

the number of right cosets of H.

Proof. Let L and R respectively denotethe set of left and right cosets of H. We define a

map f : L→ R by

f(aH) = Ha−1.

f is well defined: Let

aH = bH

=⇒ a−1b ∈ H

=⇒ a−1 ∈ Hb−1

=⇒ Ha−1 = Hb−1

=⇒ f(aH) = f(bH).

f is 1− 1: Let

f(aH) = f(bH)

=⇒ Ha−1 = Hb−1

=⇒ a−1 ∈ Hb−1

=⇒ a−1 = bh−1

=⇒ a ∈ bH

=⇒ aH = bH.

f is onto: For, every right coset Ha has a pre-image under f namely a−1H.

Hence f is a bijection from L to R. Hence the number of left cosets is the same as the

number of right cosets. �
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Theorem 5. Lagrange’s theorem: Let G be a finite group of order n and H be any

subgroup of G. Then the order of H divides the order of G.

Proof. Let |H| = m and [G : H] = r. Then the number of distinct left cosets of H in G is

r. By the Theorem-3, these r left cosets are mutually disjoint, they have the same number

of elements namely m and their union is G. Therefore, n = rm. Hence m divides n. �

Theorem 6. The order of any element of a finite group G divides the order of G.

Proof. Let G be a group of order n. Let a ∈ G be an element of order m. Then the order

of a is the same as the order of the cyclic group < a >. Now by lagrange’s theorem the

order the subgroup < a > divides the order of G. �

Theorem 7. let G be a group of order n. Let a ∈ G, then an = e.

Proof. Let the order of a be m. Then m divides n. Hence

n = mq.

Therefore

an = amq = (am)q = eq = e.

�

Theorem 8. In a group G, show that G is abelian group iff (a · b)2 = a2 · b2, for all

a, b ∈ G.

Proof. Given that G is abelian group

=⇒ a · b = b · a for all a, b ∈ G.

Now,

(a · b)2 = (a · b)(a · b)

= a(ba)b

= a(ab)b

= (aa)(bb)

= a2b2.

Therefore, (a · b)2 = a2 · b2, for all a, b ∈ G.

Conversely, let G be a group satisfying

(a · b)2 = a2 · b2
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for all a, b ∈ G.

=⇒ (ab)(ab) = (aa)(bb)

=⇒ a(ba)b = a(ab)b.

Now, pre-multiply by a−1 and post-multiply by b−1, we get

ba = ab

for all a, b ∈ G. Therefore, G is an abelian group. �

Theorem 9. In a group G, let (ab)i = aibi for three consecutive integers, for all a, b ∈ G.

Prove that G is an abelian group.

Proof. Let

(ab)m = ambm (7)

(ab)m+1 = am+1bm+1 (8)

(ab)m+2 = am+2bm+2 (9)

for some integers m, and for all a, b ∈ G.

Claim: G is abelian.

=⇒ ab=ba, for all a, b ∈ G. Using (7) and (8), we get

(ab)m+1 = am+1bm+1

=⇒ (ab)(ab)m = aambbm

=⇒ (ab)ambm = aambbm

=⇒ a(bam)bm = a(amb)bm.

By left and right cancellation laws,

b(am) = amb

for all a, b ∈ G.

Similarly, we get bam+1 = am+1b, for all a, b ∈ G. Therefore,

b(ama) = (ama)b

=⇒ (bam)a = am(ab)

=⇒ (amb)a = am(ab)

=⇒ am(ba) = am(ab).
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By left cancellation law,

ba = ab,

for all a, b ∈ G. Therefore, G is an abelian group. �

Theorem 10. Let G be group. Let a, b ∈ G. Then

(ab)−1 = b−1a−1

and

(a−1)−1 = a.

Proof.

(ab)(b−1a−1)

= a(bb−1)a−1

= aea−1

= aa−1 = e.

Similarly

(b−1a−1)(ab) = e.

Hence,

(ab)−1 = b−1a−1.

(ii) aa−1 = e and a−1a = e =⇒ (a−1)−1 = a.

�

Theorem 11. Let G be a group of order n. Let a ∈ G then an = e.

Proof. Let the order of a be m. Then m divides n. Hence,

n = mq.

Therefore,

an = amq = (am)q = eq = e.

�

Theorem 12. Euler’s Theorem: If n is any integer and (a, n) = 1 then aφ(n) ≡
1(modn).

(φ(n) is the number of positive integers less than n relatively prime to n).
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Proof. Let

G = {m/m < n & (m,n) = 1}.

G is a group under multiplication modulo n. This group is of order φ(n).

Now, Let (a, n) = 1. Let a = qn+ r; 0 ≤ r < n so that a ≡ r( mod n).

Since (a, n) = 1 we have (n, r) = 1 so that r ∈ G.. Therefore

rφ(n) = 1.

Therefore,

rφ(n) ≡ 1( mod n).

Also,

aφ(n) ≡ rφ(n)( mod n).

Since ≡ is transitive, we get

aφ(n) ≡ 1( mod n).

�

Theorem 13. Fermat’s Theorem Let p be a prime number and a be any integer rela-

tively prime to p. Then, ap−1 ≡ 1(modp).

Proof. Since p is prime, φ(p) = p− 1. Now, by Euler’s Theorem

aφ(p) ≡ 1( mod p).

=⇒ ap−1 ≡ 1( mod p).

�

Problem 14. Let A and B be subgroups of a finite group G such that A is a subgroup of

B. Show that

[G : A] = [G : B][B : A].

Solution:

[G : A] =
|G|
|A|

[G : B] =
|G|
|B|

and

[B : A] =
|B|
|A|

.
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Therefore,

[G : B][B : A] =
|G|
|B|
|B|
|A|

=
|G|
|A|

= [G : A].

Hence,

[G : A] = [G : B][B : A].

Problem 15. Let H and K be two finite subgroups of a group G. Then

|HK| = |H||K|
|H ∩K|

.

(or)

O(HK) =
O(H)O(K)

O(H ∩K)
.

Proof. Let L = H ∩K. Since H and K are subgroups of G, L is also a subgroup of G and

L ⊆ H and K.

Now, let Lx1, Lx2, . . . , Lxm be the distinct right cosets of L in K so that

K = Lx1 ∪ Lx2∪, . . . ,∪Lxm. (10)

and

m = [K : L] =
|K|
|L|

=
|K|

|H ∩K|
. (11)

Now, from equation (10), we get

HK = HLx1 ∪Hx2 ∪ . . . Hxm (12)

= Hx1 ∪Hx2 ∪ . . . Hxm(SinceL ⊆ H.)

Claim: The cosets Hx1, Hx2, . . . ,Hxm are distinct.

Suppose

Hxi = Hxj .

=⇒ xix
−1
j ∈ H.

Also xi, xj ∈ K and hence

xix
−1
j ∈ H ∩K = L.

Hence

Lxi = Lxj
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which is a contradiction since the cosets Lx1, Lx2, . . . , Lxm are distinct. Thus, from equa-

tion (12) and using (11), we have

|HK| = |Hx1|+ |Hx2|+ · · ·+ |Hxm|

= m|H|

=
|H||K|
|H ∩K|

.

Hence,

|HK| = |H||K|
|H ∩K|

.

�

Theorem 14. Let H and K be two subgroups of a group G. Then HK is a subgroup of

G iff HK = KH.

Proof. Let HK is a subgroup of G.

Claim: HK = KH.

Let x ∈ HK
=⇒ x−1 ∈ HK, Since HK is a subgroup.

Let x−1 = hk, where h ∈ H, k ∈ K. Therefore,

x = (hk)−1 = k−1h−1 ∈ KH,

since H and K are subgroups. Therefore,

HK ⊆ KH. (13)

Now, let x ∈ KH =⇒ x = kh for k ∈ K,h ∈ H.

=⇒ x−1 = (kh)−1 = h−1k−1 ∈ HK,

Now, since HK is a subgroup and x−1 ∈ HK, we have x ∈ HK. Therefore,

KH ⊆ HK. (14)

From (13) and (14), we get

HK = KH

Conversely, let HK = KH.

Claim: HK is subgroup of G.

Clearly e ∈ HK and hence HK is non-empty.
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Let x, y ∈ HK. Then x = h1k1 and y = h2k2, where h1, h2 ∈ H and k1, k2 ∈ K.

Now, xy−1 = (h1k1)(h2k2)
−1 = h1k1k

−1
2 h−12 .

Where k−12 h−12 ∈ KH, since KH = HK we get k−12 h−12 ∈ HK. Therefore,

k−12 h−12 = h3k3,

for h3 ∈ H, k3 ∈ K. Hence,

xy−1 = h1k1h3k3.

Now k1h3 ∈ KH, since KH = HK we have k1h3 ∈ HK.

=⇒ k1h3 = h4k4,

for h4 ∈ H, k4 ∈ K. Therefore,

xy−1 = h1(h4k4)k3 = (h1h4)(k4k3) ∈ HK.

Hence, HK is subgroup of G.

�

Assignment: Part A

(1) Give an example of a subgroup of the group of set of all integers with operation

addition

(2) Define subgroup of a group

(3) For a subgroup H of a group G, when do you say that a ≡ b( mod H) for a, b ∈ G.

(4) State the Fermat’s theorem

Assignment: Part B

(1) If H and K are subgroups of a group G prove that H ∩K is also a subgroup of G.

(2) Show that a non-empty subset H of a group G is a subgroup of G if and only if

ab−1 ∈ H for all a, b ∈ H.

(3) If H is a non-empty finite subset of a group G and if the closure property is

satisfied in H, show that H is a subgroup.

(4) Prove that a non empty subset H of a group is a subgroup of G if and only if

(i) a, b ∈ H implies that ab ∈ H
(ii) a ∈ H implies that a−1 ∈ H

(5) Show that if H is a subgroup of a group G the relation a ≡ b mod H is an

equivalence relation.



ABSTRACT ALGEBRA 25

Assignment: Part C

(1) State and prove Lagranges theorem

(2) If G is a finite group and a ∈ G prove that O(a)/O(G)

(3) Prove that HK is a subgroup of G if and only if HK = KH.


