ALLIED CHEMISTRY

1

SYLLABUS

FROM THE ACADEMIC YEAR 2023-2024

GENERIC ELECTIVE

Paper No.	Generic E	lective I						
Category	Generic	Generic Year I Credits 3		Course Code				
	Elective	Semester	Ι					
Instructional	Lecture	Tutorial	Lab Practic	e	Total			
hours per week	4	-			4			
Prerequisites	Higher sec	gher secondary chemistry						
Objectives of the	This cours	This course aims to provide knowledge on the						
course	 ba: coi coi im Qu 	 basics of atomic orbitals, chemical bonds, hybridization concepts of thermodynamics and its applications. concepts of nuclear chemistry importance of chemical industries Qualitative and analytical methods. 						
Course Outline	UNIT I Chemica Chemic	al Bonding a cal Bonding:	nd Nuclear C Molecular Or	' hem bital '	istry Theory-bonding, antibonding			

and non-bonding orbitals. Molecular orbital diagrams for Hydrogen,
Helium, Nitrogen; discussion of bond order and magnetic properties.
Nuclear Chemistry: Fundamental particles - Isotopes, Isobars,
Isotones and Isomers-Differences between chemical reactions and nuclear reactions - group displacement law. Nuclear binding energy - mass defect - calculations. Nuclear fission and nuclear fusion - differences – Stellar energy. Applications of radioisotopes - carbon dating, rock dating and medicinal applications.
Unit II Industrial Chemistry
Fuels: Fuel gases: Natural gas, water gas, semi water gas, carbureted
water gas, producer gas, CNG, LPG and oil gas (manufacturing details
not required). Silicones: Synthesis, properties and uses of silicones.
Fertilizers: Urea, ammonium sulphate, potassium nitrate, NPK fertilizer,
superpriospriate, urpre superpriospriate.

3

Fundamental Concepts in Organic Chemistry

Hybridization: Orbital overlap, hybridization and geometry of CH4, C2H4, C2H2 and C6H6. Electronic effects: Inductive effect and consequences on Ka and Kb of organic acids and bases, electromeric,

mesomeric, hyper conjugation and steric- examples.

Reaction mechanisms: Types of reactions-aromaticity (Huckel's rule)

- aromatic electrophilic substitution; nitration, halogenation, Friedel-Craft's alkylation and acylation. Heterocyclic compounds: Preparation, properties of pyrrole and pyridine.

UNIT IV

Thermodynamics and Phase Equilibria

Thermodynamics: Types of systems, reversible and irreversible processes, isothermal and adiabatic processes and spontaneous processes. Statements of first law and second law of thermodynamics. Carnot's cycle and efficiency of heat engine. Entropy and its

	significance. Free energy change and its importance (no derivation).
	Conditions for spontaneity in terms of entropy and Gibbs free energy.
	Relationship between Gibbs free energy and entropy.
	Phase Equilibria: Phase rule - definition of terms in it. Applications of phase rule to water system. Two component system - Reduced phase rule and its application to a simple eutectic system (Pb-Ag).
	UNITV
	Analytical Chemistry
	Introduction to qualitative and quantitative analysis. Principles of
	volumetric analysis. Separation and purification techniques – extraction,
	distillation and crystallization.
	Chromatography: principle and application of column, paper and thin layer chromatography.
Extended Professional	Questions related to the above topics, from various competitive examinations UPSC/ JAM /TNPSC others to be solved

Component (is a part of internal component only, Not to be included in the external examination question paper)	(To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. V.Veeraiyan, Text book of Ancillary Chemistry; High mount
lext	publishing house, Chennai, first edition,2009.
	2. S.Vaithyanathan, Text book of Ancillary Chemistry; Priya
	Publications, Karur, 2006.
	3. S.ArunBahl, B.S.Bahl, Advanced Organic Chemistry; S.Chand and
	Company, NewDelhi, twenty third edition, 2012.
	4. P.L.Soni, H.M.Chawla, Text Book of Organic Chemistry; Sultan
	Chand & sons, New Delhi, twenty ninthedition, 2007.
Reference Books	5. P.L.Soni, Mohan Katyal, Textbook of Inorganic chemistry; Sultan Chan
	dandCompany,New Delhi, twentieth edition, 2007.
	6. B.R.Puri,L.R.Sharma,M.S.Pathania,TextbookPhysicalChemistry;V
	ishalPublishingCo., New Delhi, fortyfortyseventh edition, 2018.
	7. B.K,Sharma,IndustrialChemistry;GOELpublishinghouse,Meerut,si
	xteenthedition, 2014.
Course Learning O	outcomes (for Mapping with POs and PSOs) On
completion of the c	ourse the students should be able to
CO 1: gain in-dept	h knowledge about the theories of chemical bonding, nuclear reactions and

CO 1: gain in-depth knowledge about the theories of chemical bonding, nuclear reaction its applications.

- CO 2: evaluate the efficiencies and uses of various fuels and fertilizers
- CO 3: explain the type of hybridization, electronic effect and mechanism involved in the organic reactions.
- CO 4: apply various thermodynamic principles, systems and phase rule.

CO 5: explain various methods to identify an appropriate method for the separation of chemical components

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3

4

Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PO's and CO's

CHEMISTRY FOR PHYSICAL SCIENCES I (FOR MATHEMATICS & PHYSICS STUDENTS)

Time: 3 Hours

Max. Marks: 75

SECTION - A (10 X 2 = 20)

Answer ALL the questions.

- 1. What are isotopes? Give an example.
- 2. What is the bond order of nitrogen?
- 3. What is LPG?
- 4. Write any two applications of NPK fertilizer.
- 5. Chloroacetic acid is stronger than acetic acid. Why?
- 6. State Huckel's rule.
- 7. Write the mathematical statement of first law of thermodynamics.
- 8. What is phase rule?
- 9. What is Rf value?
- 10. Define crystallization.

SECTION - B (5 X 5 = 25)

Answer ALL the questions.

11. (a) Using MO diagram calculate the bond order of Helium.

Or

(b) Write notes on nuclear fission using suitable example.

- 12. (a) Write notes on Natural gas and water gas.
 - Or
 - (b) Write the preparation and uses of superphosphate and Urea.
- 13. (a) Explain the geometry of ethylene on the basis of hybridization.

Or

- (b) Write the mechanism of Friedel- Craft's alkylation.
- 14. (a) Write the statements of second law of thermodynamics.

Or

- (b) Explain the phase diagram of water system.
- 15. (a) Write notes on distillation.

Or

(b) Explain the principle and working of column chromatography.

SECTION - B (3 X 10 = 30)

Answer any THREE of the following questions.

- 16. Write the applications of radioisotopes.
- 17. Give Synthesis, properties and uses of silicones.
- 18. Explain hyper conjugation and steric effect with suitable example.
- 19. Explain the applications of a simple eutectic system using the phase diagram of Pb-Ag system.
- 20. Explain the principle, working and applications of Thin layer chromatography.

Paper No.	Generic	Elective v	T / TT	G III	1		1			
Category	Generic	Year		Credits	1	Course Code				
	Elective	Semeste	1/111							
T / / 1	T (r	.							
Instructional	Lecture	Tutorial	Lab	ractice		Total				
nours per week	-	-	2			2				
Prerequisites	Thia	This course sime to movide knowledge on the								
course	11115		to pro-		euge	on the				
	• ba	asics of prep	aration	of solution	s.					
	• pr	inciples and	practic	al experier	nce o	f volumetric anal	ysis			
Course Outline	VOLUM	ETRIC AN	ALYSI	S						
	1	. Estimatio	n of so	lium hydro	xide	using standard s	odium			
	carbonate.									
	2. Estimation of hydrochloric acid using standard oxalic acid.									
	3	3. Estimation of ferrous sulphate using standard Mohr's salt.								
	4	4. Estimation of oxalic acid using standard ferrous subplate								
	5	Estimatio	n of po	tassium ne	man	ganate using star	ndard sodiun			
	hydroxide.									
	6. Estimation of magnesium using EDTA.									
	7. Estimation of ferrous ion using diphenyl amine as indicator.									
Reference Books	V.Venka	iteswaran,	R.Veera	samy, A.	R.Kı	ılandaivelu, Ba	sic Principl			
	ofPractical Chemistry; Sultan Chand & sons, Second edition, 1997.									
Course Learning (Dutcomes (1	for Mappin	g with]	POs and P	SOs)				
On completion of	the course t	the students	should	be able to)					
CO 1: gain an unde	rstanding of	the use of s	tandard	tlask and	volu	metric pipettes, b	urette.			
CO_2 : design, carry	out, record	and interpre	ter/har	suits OI VOI Iness	ume	une utration.				
CO4: analyze the cl	hemical con	stituents in s	illied cl	nemical pro	duct	S				

CO /PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12

Weighted percentage of Course Contribution to PSOs	3.0	3.0	3.0	3.0	3.0
---	-----	-----	-----	-----	-----

8

Level of Correlation between PSO's and CO's

CO /PO	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	12	12	12	12
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PO's and CO's

SCHEME OF VALUATION

CHEMISTRY PRACTICAL FOR PHYSICAL AND BIOLOGICAL SCIENCES

(for Mathematics and Physics – I Year/I Semester; for Botany and Zoology II Year/III Semester)

Internal assessment: 25 Marks External assessment: 75 marks Total: 100 marks Max. Marks: 75 Record: 15 Marks

Volumetric Analysis: 60 Marks

.

Volumetric Analysis : 60 Marks (Maximum)

Short Procedure : 10 Marks Error upto 2 % : 50 Marks 2 to 3 % : 40 Marks 3 to 4 % : 30 Marks 4 to 5 % : 20 Marks > 5 % : 10 Marks Arithmetic error : Deduct 1 mark Wrong calculation : Deduct 20 % of marks scored No calculation : Deduct 40 % of marks scored