B.Sc. Degree Course in Mathematics

(Common to B.Sc Physics, Chemistry and Computer Science)

Choose any one of the following papers

I OR III SEMESTER 1. NUMERICAL METHODS I

2.ALLIED MATHEMATICS I

Title of the Course		NUMERICAL METHODS – I								
Paper Number		ELECTIVE E1								
Category	Core	Year	I OR II	Credits	3	Cou	rse			
		Semester	I OR III			Cod	e			
Instruction	nal Hours	Lecture	Tut	orial	Lab Practice		Tota	1		
per week		4				4				
Pre-requis	site	12 th Standa	ard Mather	natics						
Objectives of the		> To know the methods of solving simultaneous linear equations.								
Course		> To a	acquire kn	owledge ab	out forward	d diffe	erence	s and Backward		
		diffe	erences and	l their relati	onship.					
		Knowledge about central difference operators and problems based								
		To study Newton's divided difference formula and problem								
		based on Lagrange's interpolation formula.								
Course Ou	ıtline	Unit I: Solutions of algebraic and transcendental equations: Bisection								
		method- Regula-falsi method - Newton-Raphson method.								
		Chapter 1 :Section 1.1, 1.3, 1.4 Hours :								
		Unit II: Solutions of Simultaneous Linear Equations: Gauss-Elimination								
		method, Gauss -Jordan method, Crout's method, Gauss-Seidel method.								
		Chapter 2 : Section 2.1 to 2.4 & 2.6 Hours : 12								
		Unit III: Finite Differences: E operators and relation between them -								
		Differences	of a poly	nomial - F	Factorial po	lynon	nials-	inverse operator		
		Δ^{-1} -Sumr	nation Seri	ies.						
	Chapter 3 : Section 3.1 to 3.4 & 3.6, 3.7 Hours : 12									
		Unit IV: Interpolation with Equal Intervals : Newton's Forward and								
		Backward Interpolation formulae - Central Differences Formulae: Gauss								
		- Forward a	and Backward Formulae - Stirling's Formula.							
		Chapter 4 : Section 4.1 to 4.3 (omit 4.1 a, 4.4) & 4.7 Hours : 12								
		Chapter 5	: Section 5	5.1to 5.4.						

	Unit V: Interpolation with Unequal Intervals: Divided Differences -
	Newton's Divided Differences Formula for Interpolation - Lagrange's
	Formula for Interpolation - Inverse Interpolation-Lagrange's method
	Reversion of Series method.
	Chapter 6 :Section 6.1, 6.2, 6.5 & 6.7 Hours : 12
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TNPSC / others to be solved
Component (is a	(To be discussed during the Tutorial hour)
part of internal	
component only,	
Not to be included	
in the External	
Examination	
question paper)	
Skills acquired	Knowledge, problem solving, analytical ability, professional
from this course	competency, professional communication and transferable skill.
Recommended	P.Kandasamy, K.Thilagavathy (2003) Calculus of Finite differences &
Text	Numerical Analysis, S. Chand & Company Ltd., New Delhi-55.
Reference Books	1. B.D. Gupta.(2001) <i>Numerical Analysis</i> . Konark Pub. Ltd., Delhi
	2. M.K. Venkataraman. (1992) Numerical methods for Science and
	Engineering National Publishing Company, Chennai.
	3. S. Arumugam. (2003) Numerical Methods, New Gamma
	Publishing, Palayamkottai.
	4. H.C. Saxena. (1991) Finite differences and Numerical analysis
	S.Chand & Co., Delhi
Website and	https://ocw.mit.edu/courses/22-15-essential-numerical-methods-fall-
e-Learning Source	2014/pages/syllabus/
	https://ocw.mit.edu/courses/18-330-introduction-to-numerical-analysis-
	<u>spring-2004/</u>

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to

CLO1: After studied unit -1, the student will be able to solve Iteration method- Regula-falsi method- Newton-Raphson method.

CLO2:After studied unit -2, the student will be able to calculate interpolation values by applying Gauss-Elimination method, Gauss-Jordan method.

CLO3:After studied unit -3, the student will be able to calculate Differences of a polynomial-Factorial polynomials- inverse operator Δ^{-1} -Summation Series.

CLO4:After studied unit -4, the student will be able to estimate one or more missing terms of the given set of data.

CLO5: After studied unit -5, the student will be able to estimate the interpolation value for unequal intervals based on Lagrange's formula of inverse interpolation.

	Pos							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	2	1	-	3	2	1	
CLO2	3	2	3	2	1	1	3	2	1	
CLO3	3	2	3	2	1	1	3	2	1	
CLO4	3	2	3	2	1	1	3	2	1	
CLO5	3	3	3	2	1	1	3	2	1	

Title of the Course		ALLIED MATHEMATICS – I								
Paper Nur	nber	ELECTIVE COURSE I								
Category	Core	Year I OF		R II	Credits	3	Cou	rse		
		Semester	ΙΟ	R III			Code			
Instruction	nal	Lecture		Tuto	orial	Lab Practice		Total		
Hours		4		-				4		
per week										
Pre-requis	site	12 th Standa	ard M	lathem	natics					
Objectives	of the	• Ne	cessa	ry skil	ls to analyz	e and make	e deci	sion o	n Assignment	
Course		and	l Trar	nsport	ation proble	ems Simple	Harn	nonic	Motion	
		• To	solve	e real v	world probl	ems on Seq	uenci	ng an	d Network and	
0 0	41•	its	applie	cation	S C D'	1	P			
Course Ot	itline	UNIT-I: Summation of series: Binomial series - Exponential series -								
		Chapter 2: Sections : 213 22 221 23 233 Hours: 12								
			- 5000		<u> </u>	<u></u>	2.3.3.		110015. 12	
		UNII-II: Matrices: Symmetric – Skew-Symmetric – Hermitian– Skew								
		- Hermitian – Orthogonal and Unitary matrices – Cayley - Hamilton theorem (without proof) Verification Computation of inverse of								
		matrix using Cayley - Hamilton theorem								
	Chapter 4: Sections: $4.1.1 - 4.1.6$, $4.5.2$ and $4.5.3$. Hours: 12								Hours: 12	
		Numerice		hoda	Nouton's	mathadita	finda	root	annovimataly	
		Finite Differences : Interpolation: Operators , Δ , ∇ , E , E^{-1} difference								
		tables. Interpolation formulae: Newton's forward and backward								
		interpolatio	on for	rmula	e for equal i	intervals, L	agran	ge's in	nterpolation	
		formula.								
		Chapter 3: Sections 3.4.1. Chapter 5 : Sections : 5.1 and 5.2. Hours: 12								
		UNIT – IV: Trigonometry : Expansions of $\sin^n \theta$, $\cos^n \theta$, in a series								
		of powers of $\sin\theta$ and $\cos\theta$ - Expansions of $\sin(n\theta)$ and $\cos(n\theta)$ in a								
		series sines and cosines of multiples of " θ " - Expansions of sin θ , cos θ								
		and $\tan\theta$ in a series of powers of " θ " – Hyperbolic and inverse								
		hyperbolic	func	tions.						
Chapter 6: Section 6.1 – 6.3								Hours:12		
		UNIT-V: Differential Calculus: Successive differentiation, n th								
		derivatives, Leibnitz theorem (without proof) and applications,								
		Jacobians, maxima and minima of functions of two variables- Simple								
		Chapter 1	Sect	ion 1	1 to 1 2 1				Hourse 12	
	Chapter 1, Section 1.1 to 1.3.1. Hours: 12									

Extended	Questions related to the above topics, from various competitive										
Professional	examinations UPSC / TNPSC / others to be solved										
Component (is a	Fo be discussed during the Tutorial hour)										
part of internal											
component only,											
Not to be included											
in the External											
Examination											
question paper)											
Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional										
from this course	Competency, Professional Communication and Transferrable Skill										
Recommended	Allied Mathematics, Volume I and Volume II by P. Duraipandian and										
Text	S.Udayabaskaran, S. Chand Publications										
	Volume I: Unit I – IV, Volume II – Unit V										
Reference Books	1. Ancillary Mathematics by S. Narayanan and T.K. Manickavachagom										
	Pillay, S. Viswanathan Pinters, 1986, Chennai										
	2. Allied Mathematics by A. Singaravelu										
	3. Allied Mathematics by P.R. Vittal										

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to

CLO 1: Understand the concepts of Summation of Series.

CLO 2: Understand the concepts of Cayley Hamilton Theorem and inverse matrices.

CLO 3: Understand the concepts of finite differences.

CLO 4: Understand the knowledge about expansions, hyperbolic and inverse hyperbolic functions.

CLO 5: Understand the concept of Leibnitz theorem and functions of two variables

	Pos							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	2	3	1	3	1	1	3	1	1	
CLO2	3	2	1	3	1	1	3	1	1	
CLO3	3	2	1	3	1	1	3	1	1	
CLO4	3	3	1	3	1	1	3	1	1	
CLO5	3	2	1	3	1	1	3	1	1	