Thiruvalluvar University

Syllabus for I semester

Credit Distribution for PG Programme in Mathematics

M.Sc., Mathematics

	First Year Semester-I	Credit	Hours per week(L/T/P)
Part A	CC1 - Algebraic Structures	5	7
	CC2 - Real Analysis I	5	7
	CC3 - Ordinary Differential Equations	4	6
	Elective I(Generic / Discipline Specific)(One from Group A)	3	5(4L+1T)
	Elective II(Generic / Discipline Specific)(One from Group B)	3	5(4L+1T)
	Total	20	30

Elective I to be chosen from Group A and Elective II to be chosen from Group B

Group A: (PM/AP/IC/ITC)

- 1. Number Theory and Cryptography
- 2. Graph Theory and Applications
- 3. Formal Languages and Automata Theory
- 4. Programming in C++ and Numerical Methods

Group B:(PM/AP/IC/ITC)

- 1. Lie Groups and Lie Algebras
- 2. Mathematical Programming
- 3. Fuzzy Sets and Their Applications
- 4. Discrete Mathematics

	Title of the		ALGEBRAIC STRUCTURES							
	Course									
	Paper		CORE I							
	Number									
Category	Core		Ι	Credits 4 Course						
						Cod	e			
		Semester	Ι							
Instructio	nal Hours	Lecture	Tuto	rial	Lab Prace	tice	Tota	l		
per week		4	1				5			
Pre-requis	site	UG level M	lodern .	Algebra						
Objectives	s of the	To introduc	ce the	concepts an	nd to devel	op wo	orking	knowledge on		
Course		class equation	on, sol	vability of	groups, fii	nite a	belian	groups, linear		
		transformati	ons, re	al quadratic	e forms					

Course Outline	UNIT-I : Counting Principle - Class equation for finite groups and
	its applications - Sylow's theorems (For theorem 2.12.1, First proof
	only).
	Chapter 2: Sections 2.11 and 2.12 (Omit Lemma 2.12.5)
	UNIT-II : Solvable groups - Direct products - Finite abelian
	groups- Modules
	Chapter 5 : Section 5.7 (Lemma 5.7.1, Lemma 5.7.2, Theorem
	5.7.1)
	Chapter 2: Section 2.13 and 2.14 (Theorem 2.14.1 only)
	Chapter 4: Section 4.5
	UNIT-III : Linear Transformations: Canonical forms –Triangular
	form - Nilpotent transformations.
	Chapter 6: Sections 6.4, 6.5
	UNIT-IV : Jordan form - rational canonical form.
	Chapter 6 : Sections 6.6 and 6.7
	UNIT-V: Trace and transpose - Hermitian, unitary, normal
	transformations, real quadratic form.
	Chapter 6 : Sections 6.8, 6.10 and 6.11 (Omit 6.9)
Extended Professional	Questions related to the above topics, from various competitive
Component (is a part of	examinations UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC
internal component	/ others to be solved
only, Not to be included	(To be discussed during the Tutorial hour)
in the External	
Examination question	
paper)	
Skills acquired from this	Knowledge, Problem Solving, Analytical ability, Professional
course	Competency, Professional Communication and Transferrable Skill
Recommended Text	I.N. Herstein. Topics in Algebra (II Edition) Wiley Eastern
	Limited, New Delhi, 1975.
Reference	1. M.Artin, <i>Algebra</i> , Prentice Hall of India, 1991.
Books	2. P.B.Bhattacharya, S.K.Jain, and S.R.Nagpaul, <i>Basic Abstract</i>
	Algebra (II Edition) Cambridge University Press, 1997. (Indian
	Edition)
	3. I.S.Luther and I.B.S.Passi, <i>Algebra</i> , Vol. I – Groups(1996); Vol.
	II Rings, Narosa Publishing House, New Delhi, 1999
	4 D S Malik IN Mordeson and MK Sen <i>Fundamental</i> of
	Abstract Algebra McGrow Hill (International Edition) New
	Nostruct Algebru, McOraw IIII (International Edition), New
	Y OFK. 1997.
	5. N.Jacobson, <i>Basic Algebra</i> , Vol. I & II W.H.Freeman (1980);
	also published by Hindustan Publishing Company, New Delhi.
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics.
e-Learning Source	http://www.opensource.org, www.algebra.com

Students will be able to

CLO 1: Recall basic counting principle, define class equations to solve problems, explain Sylow's theorems and apply the theorem to find number of Sylow subgroups

CLO 2: Define Solvable groups, define direct products, examine the properties of finite abelian groups,

define modules

CLO 3: Define similar Transformations, define invariant subspace, explore the properties of triangular matrix, to find the index of nilpotence to decompose a space into invariant subspaces, to find invariants of linear transformation, to explore the properties of nilpotent transformation relating nilpotence with invariants.

CLO 4: Define Jordan, canonical form, Jordan blocks, define rational canonical form, define companion matrix of polynomial, find the elementary devices of transformation, apply the concepts to find characteristic polynomial of linear transformation.

CLO 5: Define trace, define transpose of a matrix, explain the properties of trace and transpose, to find trace, to find transpose of matrix, to prove Jacobson lemma using the triangular form, define symmetric matrix, skew symmetric matrix, adjoint, to define Hermitian, unitary, normal transformations and to verify whether the transformation in Hermitian, unitary and normal

			PSOs						
	1	2	1	2	3				
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

Strong: Medium:

Low:

	Title	of	REAL ANALYSIS I							
	the									
	Cours	e								
	Paper	•	CORE	EII						
	Numb	er								
Category	Core		Year	l	Credits	4	Cou	Course		
			Semester			LID	Cod	e		
Instruction	nal Ho	urs	Lecture	<u> </u>	torial	Lab Pract	tice	l ota	1	
per week	•4 -		4 UC level real and		t			3		
Pre-requis	ite of	the	UG level real analysis concepts							
Course	01	the	Integration conv	ably with	of infinite	series infi	nite 1	on, Ki	et and uniform	
Course			convergence and i	its internl	av hetween v	various limit	ting o	nerati	ons	
Course Or	tline		UNIT-I : Functi	ions of	bounded va	riation - I	ntrodi	1ction	- Properties of	
	time		monotonic functi	ons - Fu	nctions of l	bounded va	riatio	n - T	otal variation -	
			Additive property	of total	variation - T	otal variatio	n on	[a, x]	as a function of	
			x - Functions of	f bound	ed variation	expressed	as tl	he dif	ference of two	
			increasing functio	ons - Cont	inuous funct	tions of bour	nded	variati	on.	
			Chapter – 6 : Sec	ctions 6.1	l to 6.8					
			Infinite Series :	Absolute	and condition	onal converg	gence	- Diri	ichlet's test and	
			Abel's test - Rear	rangemer	nt of series	- Riemann'	s theo	orem o	on conditionally	
			convergent series.							
			Chapter 8 : Sections 8.8, 8.15, 8.17, 8.18							
			UNIT-II : The Riemann - Stieltjes Integral - Introduction - Notation - The							
			definition of the Riemann - Stieltjes integral - Linear Properties - Integration							
			by parts- Change of variable in a Riemann - Stieltjes integral - Reduction to a							
			Riemann Integral – Euler's summation formula - Monotonically increasing							
			integrators, Upper and lower integrals - Additive and linearity properties of							
			Chapter - 7 · Sections 7.1 to 7.14							
			UNIT III . The Diamann Stighting Integral Integrations of hounded							
			variation-Sufficient conditions for the existence of Riemann Stielties							
			integrals-Necessary conditions for the existence of RS integrals-Mean value							
			theorems _integra	iy conun als as a	function of	the interv	- LAN 191 - 191	Secor	nd fundamental	
			theorem of integral calculus-Change of variable Second Magn Value							
			Theorem for Riemann integral. Riemann-Stielties integrals depending on a							
			parameter- Differentiation under integral sign-Lebesque criteriaon for							
			existence of Riem	ann integ	rals. Chapte	r - 7 : 7.15	to 7.2	6		
				C	1					
			UNIT-IV : Infi	nite Seri	es and infi	nite Produ	cts -	Dout	ole sequences -	
			Double series -	Rearrange	ement theor	em for do	uble	series	- A sufficient	
			condition for equ	ality of i	terated serie	es - Multipl	licatio	on of	series – Cesaro	
			summability - Infinite products.							
			Chapter - 8 Sec,	8.20, 8.21	to 8.26					
			Power series - M	lultiplicat	ion of power	r series - Th	ne Tay	ylor's a	series generated	
			by a function - Be	ernstein's	theorem - Al	bel's limit th	eoren	n - Tai	uber's theorem	
			Chapter 9 : Secti	ions 9.14	9.15, 9.19,	9.20, 9.22, 9	.23			

	UNIT-V: Sequences of Functions – Pointwise convergence of sequences of
	functions - Examples of sequences of real - valued functions - Uniform
	convergence and continuity - Cauchy condition for uniform convergence -
	Uniform convergence of infinite series of functions - Riemann - Stieltjes
	integration - Non-uniform Convergence and Term-by-term Integration -
	Uniform convergence and differentiation - Sufficient condition for uniform
	convergence of a series - Mean convergence.
	Chapter -9 Sec 9.1 to 9.6, 9.8,9.9,9.10,9.11, 9.13
Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved
Component (is a part	(To be discussed during the Tutorial hour)
of internal	
component only, Not	
to be included in the	
External Examination	
question paper)	
Skills acquired from	Knowledge, Problem Solving, Analytical ability, Professional Competency,
this course	Professional Communication and Transferrable Skill
Recommended Text	Tom M.Apostol : <i>Mathematical Analysis</i> , 2 nd Edition, Addison-Wesley
	Publishing Company Inc. New York, 1974.
Reference	1. Bartle, R.G. Real Analysis, John Wiley and Sons Inc., 1976.
Books	2. Rudin, W. Principles of Mathematical Analysis, 3 ^{ra} Edition. McGraw Hill
	Company, New York, 1976.
	3. Malik,S.C. and Savita Arora. <i>Mathematical Anslysis</i> , Wiley Eastern
	Limited.New Delhi, 1991.
	4. Sanjay Arora and Bansi Lal, Introduction to Real Analysis, Satya
	Prakashan, New Delhi, 1991.
	5. Gelbaum, B.R. and J. Olmsted, <i>Counter Examples in Analysis</i> , Holden day,
	San Francisco, 1964.
	6. A.L.Gupta and N.R.Gupta, <i>Principles of Real Analysis</i> , Pearson Education,
	(Indian print) 2003.
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
e-Learning Source	http://www.opensource.org, www.mathpages.com

Students will be able to

CLO1: Analyze and evaluate functions of bounded variation and Rectifiable Curves.

CLO2: Describe the concept of Riemann-Stieltjes integral and its properties.

CLO3: Demonstrate the concept of step function, upper function, Lebesgue function and their integrals.

CLO4: Construct various mathematical proofs using the properties of Lebesgue integrals and establish the Levi monotone convergence theorem.

CLO5: Formulate the concept and properties of inner products, norms and measurable functions.

	POs	PSOs

	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

r.	Title of	ORDINARY DIFFERENTIAL EQUATIONS									
t	the										
	Course	CODE III									
	Paper	CORE	COKE III								
	Number	X 7	T		4	C					
Category	Core	Year	1 T	Credits	4	Cours	se				
In stars of a r	al II anna	Semester	1 Tu4		Lah Duan		Tatal				
nor week	al Hours		1	oriai	Lab Fraci	lice	<u>1 ota</u> 5	1			
Pro roquisi	ito	HG level Calculus	and Diff	erential Eq.		•	5				
Objectives	of the	To develop strop	og backor	ound on fi	inding solut	tions to	o lin	ear differential			
Course	of the	equations with co	onstant ar	nd variable		ts and	also	with singular			
Course		points, to study of	existence	and unique	eness of th	e solu	itions	of first order			
		differential equation	ons					01 1100 01001			
Course Out	tline	UNIT-I : Linear o	equations	with const	ant coeffici	ents					
		Second order homogeneous	equations-Init	ial value problen	ns-Linear depende	ence and in	ndepend	dence-Wronskian and a			
		Chantar 2. Sastia	ma 1 to 6	equation of orde							
		UNIT II : Linoar	ons 1 to 0	s with cons	tont cooffic	ionts					
		Homogeneous and	non-hom	ogeneous e	quation of o	rder n	_Initi	ial value			
		problems- Annihil	ator metho	od to solve	non-homog	eneous	equa	tion- Algebra			
		of constant coeffic	ient opera	tors.	non nonnog	0110040	equa	inon ingeoira			
		Chapter 2 : Sections 7 to 12.									
		UNIT-III : Linear equation with variable coefficients									
		Initial value problems -Existence and uniqueness theorems – Solutions to solve a non-homogeneous equation –									
		Wronskian and linear dependence – reduction of the order of a homogeneous equation – homogeneous equation with analytic coefficients-The Legendre equation.									
		Chanter 3 Sections 1 to 8 (Omit section 9)									
		UNIT-IV 'Linear equation with regular singular points									
		Fuler equation – Second order equations with regular singular points –									
		Exceptional cases	– Bessel F	Function.		0		8 1			
		Chapter 4 : Sec	tions 1 to	4 and 6 to	8 (Omit se	ctions	5 and	d 9)			
		UNIT-V : Existen	nce and u	uniqueness	of solution	s to fi	irst o	rder equations:			
		Equation with var	riable sepa	arated – Ex	kact equation	n – m	nethoo	d of successive			
		approximations –	the Lipso	chitz condit	tion – conv	ergenc	e of	the successive			
		approximations an	d the exis	tence theore	em.						
		Chapter 5 : Section	ons 1 to 6	(Omit Se	ctions 7 to 9	9)					
Extended		Questions related	to the abo	ve topics, f	rom various	s comp	oetitiv	e examinations			
Professiona	1	UPSC / TRB / NE	T / UGC -	- CSIR / GA	ATE / TNPS	SC / oth	ners to	o be solved			
Component	(is a part	(To be discussed d	luring the	Tutorial ho	ur)						
ot	internal										
component	only, Not										
to be includ	ded in the										
External EX	ammation										
Skille accu	ired from	Knowledge Droblem Solving Analytical ability Drofoggional Competence									
this course		Professional Communication and Transferrable Skill									
Recommen	ded Text	E.A.Coddington	A introd	uction to	ordinary a	 lifferen	ntial	equations (3 rd			
	WUU IVAL	Printing) Prenti	ce-Hall of	India Ltd.,	New Delhi,	1987.					

Reference	1.	Williams E. Boyce and Richard C. DI Prima, Elementary differential							
Books		equations and boundary value problems, John Wiley and sons, New York,							
		1967.							
	2.	George F Simmons, Differential equations with applications and historical							
		notes, Tata McGraw Hill, New Delhi, 1974.							
	3.	N.N. Lebedev, Special functions and their applications, Prentice Hall of							
		India, New Delhi, 1965.							
	4.	W.T. Reid. Ordinary Differential Equations, John Wiley and Sons, New							
		York, 1971							
	5.	M.D.Raisinghania, Advanced Differential Equations, S.Chand & Company							
		Ltd. New Delhi 2001							
	6.	B.Rai, D.P.Choudary and H.I. Freedman, A Course in Ordinary							
		Differential Equations, Narosa Publishing House, New Delhi, 2002.							
Website and	htt	p://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,							
e-Learning Source	htt	p://www.opensource.org, www.mathpages.com							

Students will be able to

CLO1: Establish the qualitative behavior of solutions of systems of differential equations .

CLO2: Recognize the physical phenomena modeled by differential equations and dynamical systems.

CLO3: Analyze solutions using appropriate methods and give examples.

CLO4: Formulate Green's function for boundary value problems.

CLO5: Understand and use various theoretical ideas and results that underlie the mathematics in this course.

			PSOs						
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	2	3	3	3	2	1
CLO2	2	1	3	1	3	3	3	2	1
CLO3	3	2	3	1	3	3	3	2	1
CLO4	1	2	3	2	3	3	3	2	1
CLO5	3	1	2	3	3	3	3	2	1

ELECTIVE COURSES

Courses are grouped (Group A to Group F) so as to include topics from Pure

Mathematics(PM), Applied Mathematics(AM), Industrial Components(IC) and IT Oriented(ITC) courses for flexibility of choice by the stakeholders / institutions.

Semester I : Elective I and Elective II

Elective I to be chosen from Group A and Elective II to be chosen from Group B

Title of the	e Course	NUMBER THEORY AND CRYPTOGRAPHY							
Paper Nu	nber	ELECTIVE	_		-	I			
Category	Elective	Year	I	Credits	3	Cou	rs		
		Semester	Ι			eCo	de		
Instructio	nal Hours	Lecture	Tuto	orial	Lab Practice		ce Total		
per week		3 1 4							
Pre-requis	site	UG level Numb	er Th	eory			I		
Objectives Course	s of the	 Demonstrate ability to learn elementary ideas from number theory which will haveapplications in cryptography. Introduce various cryptosystems and apply them in the necessary fields. Understand the concepts of public key and primality Learn the public key cryptography and RSA algorithm 							
Course Ou	ıtline	UNIT-1 Some Topics in Elementary Number Theory							
		Time Estimat Algorithm – (Chap UNIT–II Some simple	es for Congr ter I C crypto	ryptograpi osystems – 1	nmetic – Di omeapplicat ny Enciphering	visibi tions t g matr	lity a	nd Euclidean etoring.	
		UNIT-III	$\frac{1}{0}$	uadratic R	esidues				
		Quadratics –]	Resid	ues and reci	procity.				
		Chapter II							
		UNIT-IV	Pı	ıblic Key					
		The idea of	f Pul	olic key	Cryptograpl	ny –	RS.	A –	
		Discrete Law	– Kn	apsack –Z	ero–Knowle	edge.			
		Chapter IV: Sections 1 to 5							
		UNIT-V Primality and Factoring							
		Pseudo-primes - The rho method - Fermat factorization and factor							
		bases – The c	contin	ued fraction	nmethod – T	The qu	ladra	tic sieve	
		method.							

Group A: (PM/AP/IC/ITC)

	Chapter V: Sections 1 to 5
Extended Professional Component	Questions related to the above topics, from various competitive examinationsUPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved
Skills acquired from	Knowledge, Problem Solving, Analytical ability, Professional
this course	Competency, Professional Communication and Transferrable Skill

Recommended Text	1. Neal Koblitz, A Course in Number Theory and Cryptography,						
	Springer-Verlag, New York, 1987						
Reference Books	1. Niven and Zuckerman, An Introduction to Theory of						
	Numbers, Third Edition, Wiley EasternLtd, New						
	Delhi,1976.						
	2. David M. Burton, Elementary Number Theory, Wm. C.						
	Brown Publishers, Dubuque, Iowa,1989.						
	3. K. Ireland and M. Rosen, A Classical Introduction to						
	Modern Number Theory, Springer-Verlag,1972.						
Website and	1. <u>http://mathworld.wolfram.com</u>						
e-Learning Source	2. <u>https://ocw.mit.edu/courses/6-042j-</u>						
	mathematics-for-computer-science-fall-						
	2010/resources/lecture-4-number-						
	theory-i/						

Course Learning Outcome

After successful completion on the course the student will be able to

- CO1 Acquire the knowledge of elementary number theory
- **CO2** Apply various cryptosystems and understand the concepts of quadratic, residues and reciprocity
- CO3 Develop the idea of public key cryptography, RSA Algorithms.
- CO4 Solve problems using the continued fraction method and the quadratic sieve method.
- CO5 Demonstrate ability to apply concepts of Fermat factorization and factor bases.

Title of the	e Course	GRAPH THEORY AND APPLICATIONS					
Paper Nur	nber	ELECTIVE					
Category	Elective	Year	Ι	Credits	3	Course	

		Semester	Ι	Code					
Instructional	Hours	Lecture	Tutorial	Lab Pract	ice T	otal			
per week		3 1 4							
Pre-requisite)	UG level Graph Theory							
Objectives	of	To study and develop the concepts of graphs, sub							
Course	the	graphs, trees, connectivity, Euler tours, Hamilton cycles,							
Course		vertex co	loring, and plana	r graphs	luciit sci	s, enques,			
Course Outli	ne								
Course Outin		UNIT	-I: GRAPHS,	SUBGRAP	HS AN	D TREES			
		Graphs a and Adja and Conr Vertices.	nd simple graphs acency Matrices- nection - Cycles	- Graph Iso Subgraphs - Trees - C	omorphi - Verte ut Edge	sm - The Incidence x Degrees - Paths s and Bonds - Cut			
		Chapter 1	(Section 1.1 - 1.	7); Chapte	r 2 (Sec	tion 2.1 - 2.3)			
		UNIT-II HAMIL	: CONNECT	TIVITY, I	EULER	TOURS AND			
		Connectiv	vity - Blocks - Eı	ıler tours – I	Hamilton	n			
		Chapt	er 3 (Section 3.1	-3.2) ; Chap	ter 4(Se	ction 4.1 - 4.2)			
		UNIT-III							
		:MATCI	HINGS,						
		EDGE O	LOURINGS						
		Matchings - Matchings and Coverings in Bipartite Graphs - Edge Chromatic Number - Vizing's Theorem.							
		Chapter 5 (Section 5.1 - 5.2); Chapter 6 (Section 6.1 - 6.2)							
		UNIT-IV : INDEPENDENT SETS AND CLIQUES, VERTEX COLOURINGS							
		Independent sets - Ramsey's Theorem - Chromatic Number - Brooks' Theorem - Chromatic Polynomials.							
		Chapter 7 (Section 7.1 – 7.2); Chapter 8 (Section 8.1 – 8.2, 8.4)							
		UNIT-V: PLANAR GRAPHS							
		Plane and planar Graphs - Dual graphs - Euler's Formula - The Five-Colour Theorem and the Four- Colour Conjecture. Chapter 9 (Section 9.1 - 9.3, 9.6)							

Extended Profession	Questions related to the above topics, from various competitive examinationsUPSC / TRB / NET / UGC – CSIR / GATE / TNPSC /
alComponent	others to be solved
	(To be discussed during the Tutorial hour)

Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional					
fromthis	Competency, Professional Communication and Transferrable Skill					
course						
Recommended Text	J.A.Bondy and U.S.R. Murthy, <i>Graph Theory and Applications</i> , Macmillan, London,1976.					
Reference Books	1. J.Clark and D.A.Holton, <i>A First look at Graph Theory</i> , Allied Publishers, New Delhi,1995.					
	 R. Gould. Graph Theory, Benjamin/Cummings, Menlo Park, 1989. 					
	3. A.Gibbons, <i>Algorithmic Graph Theory</i> , Cambridge University Press, Cambridge, 1989.					
	 R.J.Wilson and J.J.Watkins, <i>Graphs : An</i> Introductory Approach, John Wiley and Sons, New York, 1989. 					
	5. R.J. Wilson, <i>Introduction to Graph Theory</i> , Pearson Education, 4 th Edition, 2004,Indian Print.					
	6. S.A.Choudum, <i>A First Course in Graph Theory</i> , MacMillan India Ltd. 1987.					
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,					
e-Learning Source	http://www.opensource.org, www.mathpages.com					

Title of th	e Course	FORMAL LANGUAGES AND AUTOMATA THEORY						
Paper Nu	nber	ELECTIVE						
Category	Elective	Year	Ι	Credits	3	Cours		
		Semester	Ι			eCo	de	
Instructio	structional Hours Lecture Tutorial Lab Practice To		Tot	al				
per week		3	1				4	

Objectives of the Course	 The purpose of this course is to acquaint the student with an overview of the theoretical foundations of computer science from the perspective of formal languages. Classify machines by their power to recognize languages. Employ finite state machines to solve problems in computing. Explain deterministic and non-deterministic machines.
Course Outline	UNIT I : Finite Automata and Regular Expressions : Finite state systems- Deterministic Finite state Automata- Non deterministic Finite Automata- Finite Automata with Epsilon- Transitions – Regular Expressions- Finite Automata and Regular Expressions.
	UNIT II : Properties of Regular Languages : The Pumping Lemma for Regular Languages – Application of the Pumping Lemma – Closure Properties of Regular Languages – Reversal – Homomorphism – Decision properties of Regular Languages – Converting NFA's to DFA'S – Minimization of DFA's.
	UNIT III : Context Free Grammars and Languages : Context Free Grammars – Parse Trees – Normal forms for Context Free Grammars – Chomsky Normal Form – Greibach Normal Form.
	UNIT IV: Pushdown Automata :Definition – The languages of a PDA – Equivalence of PDA's and CFG's – Deterministic Pushdown Automata
	UNIT V: Properties of Context-Free Languages : The Pumping Lemma for Context-free Languages – Closure Properties of Context- Free Languages – Decision properties of CFL's.
Extended Profession alComponent	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved
	(To be discussed during the Tutorial hour)
Skills acquired fromthis course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill

Recommended Text	1Introduction to Automata Theory Languages and Computation.
	Hopcroft H.E. and Ullman J. D. Pearson Education.
	2. Introduction to Theory of Computation - Sipser 2nd edition
	Inomson

Student will have the ability to

- 1. gain knowledge of fundamental concepts of automata.
- 2.properties of regular languages.
- 3.push down automata and context free languages.

Title of the	e Course	PROGRAMMING IN C++ AND NUMERICAL ANALYSIS						
Paper Nu	nber	ELECTIVE						
Category	Elective	Year	Ι	Credits	3	Cou	rs	
		Semester	Ι	-		eCod	de	
Instructio	nal Hours	Lecture	Tuto	orial	Lab Prac	actice Total		tal
per week		3	1				4	
Objectives Course	s of the	This course introduces a higher level language C++ and numerical methods for hands-on experience on computers. Stress is also given on the error analysis.						
Course Ou	ıtline	UNIT-I Principles of OOP-Tokens-Expressions, Control Structures- Functions-Classes and Objects-constructors and destructors. Chapter 1 to 6						
		 UNIT-II Operator Overloading and type Conversions - Inheritance - Pointers, Virtual Functions and Polymorphism-Managing Console I/O Operations-Working with Files . Chapter 7 to 11 						

	UNIT-III Finite Digit Arithmetic and Errors Floating point
	arithmetic - Propagated Error - Generated Error - Error in Evaluation
	of a function f(x) Non-linear Equations: Bisection method- Secant
	Method - Regula Falsi Method - Newton's method - Muller's method -
	Fixed Point method - Chapters 1,2 : Only 2.1 to 2.6
	UNIT-IV System of Linear Equations Gauss- Elimination Method - Crout's method - Inverse of a matrix - Condition numbers and errors - Jacobi's method - Gauss-Seidel Method - Relaxation method. Numerical Differentiation and Integration: Numerical Differentiation - Numerical Integration - Newton-Cotes Formulas - Gaussian Quadrature - Double Integral Chapter 3 and 5 : 5.1 to 5.5 and 5.7 (omit 5.6)
	UNIT V Ordinary Differential Equations: Difference equation -
	Differential Equations:Single Step method-Runge-Kutta Method-
	Multi-step methods Chapter 6: 6.1 to 6.4 (omit 6.5)
Extended Profession alComponent	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET / UGC – CSIR / GATE / TNPSC / others to be solved
	(To be discussed during the Tutorial hour)
Skills acquired fromthis course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill
Recommended Text	1. E. Balagurusamy, Object Oriented Programming with C++, Tata
	McGraw Hill, New Delhi, 1999.
	2 Davi Presed An Introduction to Numerical Analysis (3rd edn)
	2. Devi Hasad, All Inforduction to Numerical Analysis (Sid edit)
	Narosa i ubrishing mouse, new Denn, 2000.
Reference Books	1. D. Ravichandran, Programming with C++, Tata McGraw Hill, New
	Delhi, 1996
	2. Conte and de Boor, Numerical Analysis, McGraw Hill, New York,
	1990
	3 John H Mathews, Numerical Methods for Mathematics, Science and
	Engineering (2nd Edn.) Prentice Hall New Delhi 2000
	Engineering (2nd Edit.), Frendee Fran, New Denn, 2000
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
e-Learning Source	http://www.opensource.org, www.mathpages.com

Group B: (PM/AP/IC/ITC)

Title of the Course		LIE GROUPS and LIE ALGEBRAS								
Paper Number		ELECTIVE								
Category	Elective	Year	Ι	Credits	3	Cou	rs			
		Semester	Ι			eCo	de			
Instruction	nal Hours	Lecture	Tuto	orial	Lab Practice		Tot	al		
per week		3	1				4			
Pre-requis	ite	UG level linear	algeb	ra and matr	rix groups.		1			
Objectives Course	of the	 In physics, Lie groups appear as symmetry groups of physical systems, and their Lie algebras (tangent vectors near the identity)may be thought of as infinitesimal symmetry motions. Lie algebras and their representations are used extensively in physics, 								
Course Ou	ıtline	notably in quantum mechanics and particle physics.								
		Chapter 1		1						
		UNITII: The Matrix Exponential								
		Chapter 2								
		UNITIII:Lie Algebras								
		Chapter 3								
		UNITIV:Basic Representation Theory								
		Chapter 4								
		UNITV:Semisimple Lie Algebras								
Chapter 7										
Extended	Profession	Questions related to the above topics, from various competitive								
alCompone	ent	(To be discussed during the Tutorial hour)								
Skille acc	uirad	Knowladza De	hlore	Solving	nalytical	hility	Draf	Passional		
froi	nthis	Competency,Pro	ofessio	onal Comm	unication a	nd Tra	ansfer	rable Skill		
Recommen	nded Text	1. Brain Hall, Lie Groups, Lie Algebras and Representations: An Elementary Introduction (Second Edition), Springer, USA, 201								

Reference Books	 V. S. Varadarajan, Lie groups, Lie algebras and their representations, Sringer 1984.
	 Brian Hall, Lie groups, Lie algebras and representations, Springer2003.
	 Barry Simon, Representations of finite and compact groups, AMS1996.
	 A. W. Knapp, Representation theory of semismiple Lie groups. Anoverview based on examples, Princeton university press 2002.
	 S. Kumaresan S, A course in differential geometry and Lie groups, Texts and Readings in Mathematics, 22. Hindustan Book Agency, New Delhi, 2002

Website and	1.	https://archive.nptel.ac.in/courses/111/108/111108134/
e-Learning Source	2.	https://www.digimat.in/nptel/courses/video/111108134/L42.htm 1

Title of the Course	MATHEMATICAL PROGRAMMING								
Paper Number	ELECTIVE								
Category Elective	Year	Ι	Credits	3	Cou	irs	23PMAE16		
	Semester	Ι			eCode				
Instructional Hours	Lecture	Tuto	orial	Lab Prac	Lab Practice 7		Total		
per week	3	1			4				
Objectives of	This course intr	oduce	s advanced	topics in Li	near a	and r	ion-linear		
the	Programming								
Course									
Course Outline									
	UNIT	`-I							
	INTE	GER	LINEAR I	PROGRAM	MIN	G :	Types of		
	Intege	er Lin	ear Program	nming Prol	olems	- C	oncept of		
	Cuttin	ng Pla	ne - Gomo	ry's All In	teger	Cutt	ing Plane		
	Metho	od -	Gomory's	mixed Inte	eger	Cutti	ng Plane		
	metho	od - B1	anch and B	ound Meth	od.				
	DYNA	AMIC	PROGRA	MMING:	Cha	racte	ristics of		
	Dynar	nic	Programmi	ng Proble	m -	D	eveloping		
	Optim	nal Do	ecision Pol	icy - Dyn	amic	Prog	gramming		
	Under	Under Certainty - DP approach to solve LPP.							
	Chapter-7: 7.1 - 7.6 and Chapter-20: 20.1 - 20.5								
	UNIT-II								
	CLASSICAL OPTIMIZATION METHODS :								
	Unconstrained Optimization - Constrained Multi-								
	variab	ole O	ptimization	with Equ	ality	Con	straints -		
	Const	rained	l Multi-v	ariable C)ptim	izatio	on with		
	inequality Constraints.								
	NON-LINEAR PROGRAMMING METHODS Examples								
	of NLPP - General NLPP -								
	Graphical solution - Quadratic Programming - Wolfe' modified Simplex Methods.								
	Chapter-23: 23.1 - 23.4 and Chapter-24: 24.1 - 24.4								
	UNIT-III : THEORY OF SIMPLEX METHOD								
	Canonical and Standard form of LP - Slack and						black and		
	Surph	us Va	ariables -	Reduction	0I ution	any	reasible		
	Ontim		a Dasic F	bounded or	Jution	-A	Intimality		
	conditions - Some complications and their resolutions								

	- Degeneracy and its resolution Chapter-25: 25.1 - 25.4, 25.6-25.9
	UNIT-IV
	REVISED SIMPLEX METHOD : Standard forms for Revised simplex Method - Computational procedure for Standard form I - comparison of simplex method and Revised simplex Method.
	BOUNDED VARIABLES LP PROBLEM: The simplex algorithm
	Chapter-26: 26.1 - 26.4
	Chapter-28: 28.1, 28.2
	UNIT-V
	PARAMETRIC LINEAR PROGRAMMING : Variation in the coefficients c_j , Variations in the Right hand side, b_i .
	GOAL PROGRAMMING : Difference between LP and GP approach - Concept of Goal Programming - Goal Programming Model formulation - Graphical Solution Method of Goal Programming - Modified Simplex method of Goal Programming.
	Chapter-29: 29.1 - 29.3.
	Chapter-8: 8.1 - 8.4, 8.6 and 8.7.
Extended	Questions related to the above topics, from various competitive
Profession	examinationsUPSC / TNPSC / others to be solved
alComponent	(To be discussed during the Tutorial hour)
Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional
fromthis	Competency, Professional Communication and Transferrable Skill
course	

Recommended Text	1.J.K.Sharma, Operations Research, Theory and Applications, Third Edition (2007) Macmillan India Ltd.
Reference Books	 Hamdy A. Taha, Operations Research, (seventh edition) Prentice - Hall of India Private Limited, New Delhi, 1997. S.S. Rao - Optimization Theory and Applications, Wiley Eastern Ltd. New Delhi. 1990.
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,
e-Learning Source	http://www.opensource.org, www.mathpages.com

Title of the Course		FUZZY SETS AND THEIR APPLICATIONS							
Paper Nur	nber	ELECTIVE							
Category	Elective	Year	Ι	Credits	3	Cou	rs		
		Semester	Ι			eCo	de		
Instruction	nal Hours	Lecture	Tuto	orial	Lab Pract	tice	Tot	tal	
per week		3	1				4		
Objectives Course	s of the	Fuzzy is one of the latest topic in Mathematics that has real life applications. Hence it is essential for the students to learn this topic. This topic introduces the concept of uncertainty an fuzziness in logic that will enable the student to develop their intuitive mind further. The two years M.Sc. program is to prepare every student to face the competitive world outside.It will help them toacquire sufficient knowledge and skill in the subject that will make them competent in various areas of mathematics.							
		Classical Sets, Membership Function, Height of a fuzzy set – Normal and sub normal fuzzy sets – Support – Level sets, fuzzy points, Decomposition Theorems, Extension Principle.							
		UNIT II : Operation on fuzzy sets: Standard fuzzy operations – Union, intersection and complement – properties De. Morgan's laws - \Box -Cuts of fuzzy operations.							
		UNIT III : Fuzzy relations: CartesianProduct, Crisp relations – cardinality – operations and properties of Crisp and Fuzzy relations.Image and inverse image of fuzzy sets - Various definitions of fuzzy operations – Generalizations – Non interacting fuzzy sets, Tolerance and equivalence relations.							

	UNIT IV : Decision making in Fuzzy environments: General Discussion – Individual Decision making – multi person decision making – multi criteria decision making – multi stage decision making – fuzzy ranking methods – fuzzy linear programming.						
	Unit V : Applications: Medicine – Economics – Fuzzy						
	Systems and Genetic Algorithms – Fuzzy Regression –						
	Interpersonal Communication – Other Applications.						
Extended	Questions related to the above topics, from various competitive						
Profession	examinationsUPSC / TNPSC / others to be solved						
alComponent	(To be discussed during the Tutorial hour)						
Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional						
fromthis	Competency, Professional Communication and Transferrable Skill						
course							
Recommended Text	1. G.J. Klir, and Bo Yuan, Fuzzy Sets and fuzzy Logic: Theory and						
	Applications, Prentice Hall of India Ltd., New Delhi, 2005.						

Reference Books	1. George J.Klir and Bo Yuan, Fuzzy sets and							
	Fuzzy Logic Theory and Applications, PHI							
	Leaning Private Limited, New Delhi (2009).							
	2. A. K. Bhargava; Fuzzy Set Theory,							
	Fuzzy Logic and their							
	Applications, published by S. Chand Pvt.							
	Limited (2013).							
	3. K.Pundir and R.Pundir, Fuzzy sets and their							
	application, Published by A Pragati edition							
	(2012							
	4. 4.H.J.Zimmermann, Fuzzy set theory and its							
	applications, Springer (2012).							
Website and	http://mathforum.org, http://ocw.mit.edu/ocwweb/Mathematics,							
e-Learning Source	http://www.opensource.org, www.mathpages.com							

To develop analytical mind so that the students can sharpen their mind better.

- To provide with sufficient practical oriented application thus the students can face the competitive world.
- To enable the students to have a thorough exposure to the different branches of Mathematics so as to gain a comprehensive knowledge of Mathematics.
- To mold the students in research/teaching or to find better placement in corporate sectors.

Title of the Course		DISCRETE MATHEMATICS								
Paper Nur	nber	ELECTIVE								
Category	Elective	Year	Ι	Credits	3	Cours				
		Semester	Ι			eCo	de			
		-								
Instruction	nal Hours	Lecture	Tuto	orial	Lab Pract	tice	Tot	tal		
per week	C (1	3	1				4			
Objectives	of the	1 Introd	uce t	he algebrai	c structure	s of	lattio	ces and Boolean		
Course		algebr	a.	-						
		2 Constr	uct th	e switching	; circuits wi	th app	plicat	tions.		
		3 Educa	te the	finite fields	and its ma	thema	atics]	properties.		
		4 Incule	ate th	e polynomi	als over fin	ite fie	elds,	Irreducibility and		
		5 Indeet	zatioi	1 of polynoi	nials.	with	tha 1	incor and avalia		
		codes	mau		g theory v	v Itil	une i	inical and cyclic		
		00005.	coues.							
Course Ou	ıtline	Unit-1.	Latt	ices						
		Properties and I	Exam	oles of Latt	ices – Dist	ributi	ve L	attices – Boolean		
		Algebras – Boolean Polynomials - Minimal Forms of Boolean								
		Polynomials.								
		Chapter 1: Sections 1–6								
		Unit-7).							
							~.			
		Switching Cir	cuits	– Applicatio	ons of Swite	ching	Circi	uits.		
		Chapter 2:Sections 7–8								
		Unit-3	:							
		Finite Fields.								
		Chapter 3:Sections 13								
		1								
		Unit-4	· :					Polynomials		
		Irreducible Polynomials over Finite Fields - Factorization of Polynomials over Finite Fields.								
		Chapter 3.Soc	tions	1/ 15						
		Chapter 5.5et	nons	14-13						

	Unit -5:						
	Linear Codes – Cyclic Codes.						
	Chapter 4:Sections 17–18						
Extended	Questions related to the above topics, from various competitive						
Profession	examinationsUPSC / TNPSC / others to be solved						
alComponent	(To be discussed during the Tutorial hour)						
Skills acquired	Knowledge, Problem Solving, Analytical ability, Professional						
fromthis	Competency, Professional Communication and Transferrable Skill						
course							
Recommended Text	Rudolf Lidl and Gunter Pilz, Applied Abstract Algebra, 2 nd						
	Indian Reprint, Springer Verlag, NewYork, 2006.						

Reference Books	 A.Gill,Applied Algebra for Computer Science, Prentice Hall Inc., New Jersey. J.L.Gersting, Mathematical Structures for Computer Science, 3rdEdn., ComputerSciencePress, New York. S.Wiitala,Discrete Mathematics - A Unified Approach, McGraw Hill Book Co.
Website and e-Learning Source	 <u>http://www.discrete-math-hub.com/resources-and-help.html</u> <u>https://onlinecourses.nptel.ac.in/noc22_cs123/preview</u> <u>https://onlinecourses.nptel.ac.in/noc22_cs85/preview</u>

Course Learning Outcome

After the successful completion of this course, the students will be able to

- CO1 Know the algebraic structures of lattices and Boolean algebra, and sketch the minimization of Boolean polynomials.
- CO2Model the switching circuits with applications.
- CO3 Understand the finite fields and its mathematics properties.
- CO4 Acquire the notions of the polynomials over finite fields, Irreducibility and factorization of polynomials.
- CO5Apply the coding theory with the linear and cyclic codes in cryptography.