THIRUVALLUVAR UNIVERSITY VELLORE

M.Sc PHYSICS SYLLABUS

FROM THE ACADEMIC YEAR 2023 – 2024

For Candidates admitted in the Colleges Affiliated to Thiruvalluvar University from the AcademicYear2023-2024 onwards

M.Sc., PHYSICS

Preamble

The curriculum for the P.G. Physics for universities and colleges is revised as per Learning Outcomes- based Curriculum Framework (LOCF). The learner centric courses are designed to enable the students to progressively develop a good understanding of the concepts of various domains in physics. Significant modification is the inclusion of the courses to equip students to face challenges in industries and make them employable. Skill development in different spheres and confidence building are given a special focus.

TANSCHE	E REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM
	FRAMEWORK FOR POSTGRADUATE EDUCATION
Programme	M. Sc., Physics
Programme	
Code	
Duration	PG – 2YEARS
	PO1: Problem Solving Skill
	Apply knowledge of Management theories and Human Resource practices to
	solve business problems through research in Global context.
	PO2: Decision Making Skill
	Foster analytical and critical thinking abilities for data-based decision-making.
	PO3: Ethical Value
	Ability to incorporate quality, ethical and legal value-based perspectives to all
	organizational activities.
	PO4: Communication Skill
Due que mane	Ability to develop communication, managerial and interpersonal skills.
Programme	PO5: Individual and Team Leadership Skill
(Dutcomes	Capability to lead themselves and the team to achieve organizational goals.
(POS)	PO6: Employability Skill
	Inculcate contemporary business practices to enhance employability skills in the
	competitive environment.
	PO7: Entrepreneurial Skill
	Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society
	Succeed in career endeavors and contribute significantly to society.
	PO 9 Multicultural competence
	Possess knowledge of the values and beliefs of multiple cultures and
	a global perspective.
	PO 10: Moral and ethical awareness/reasoning
	Ability to embrace moral/ethical values in conducting one's life.

	PSO1 – Placement
	ideas, behaviors, beliefs and apply diverse frames of reference to decisions and
	actions.
Programme Specific Outcomes (PSOs)	 actions. PSO 2 - Entrepreneur To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations. PSO3 - Research and Development Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development. PSO4 - Contribution to Business World To produce employable, ethical and innovative professionals to sustain in the dynamic business world. PSO 5 - Contribution to the Society To contribute to the development of the society by collaborating with stakeholders
	 for mutual benefit. PSO 6 Students will utilize e-resources, digital tools and techniques for widening their knowledge base. PSO 7 Students gain exposure to programming language and skills. PSO 8 Student will appreciate the interplay of mathematics, physics and technology. PSO 9 Students will develop adequate knowledge and skills for employment and entrepreneurship. PSO 10 An awareness of civic and ecological duties as good citizens and importance of human values will be inculcated in students

Semester-I	Credit	Semester-II	Credit	Semester-III	Credit	Semester-IV	Credi t
1.1. Core-I	4	2.1. Core-IV	4	3.1. Core-VII	4	4.1. Core-X	4
1.2 Core-II	4	2.2 Core-V	4	3.2 Core-VIII	4	4.2 Core-XI	4
1.3 Core – III	4	2.3 Core – VI	4	3.3 Core – IX	4	4.3 Core - XII	4
1.4 Elective -I (Generic/ Discipline Centric)	3	2.4 Elective -III (Generic/ Discipline Centric)	3	3. 4 Elective -V (Generic/ Discipline Centric)	3	4.4 Elective -VI (Generic/ Discipline Centric)	3
1.5 Elective -II (Generic Discipline Centric)	3	2.5 Elective -IV (Generic Discipline Centric)	3	3.5 Core Industry Module	3	4.5 Project with Viva-Voce	3
1.6 Ability Enhancement Course – Soft Skill - 1	2	2. 6 Ability Enhanceme nt Course – Soft Skill - 2	2	3. 6 Ability Enhancement Course – Soft Skill – 3	2	4.6 Ability Enhancement Course – Soft Skill - 4	2
1.7 Skill Enhancement Course – 1	2	2.7 Skill Enhanceme nt Course – 2	2	3.7 Skill Enhancement Course – 3 (Term Paper and Seminar Presentation)	2	4.7 Skill Enhancement Course – 4 (Professional Competency Skill)	2
				3.8 Internship/ Industrial Activity	2	4.8 Extension Activity	1
Total	22		22		24		23
		• 		·	, 	Total Credit Points	91

Template for P.G., Programme

Component wise Credit Distribution

Credits	SemI	SemII	SemIII	SemIV	Total	
Part A	18	18	18	18	72	
Part B						
(i) Discipline-	2	2	2	2	8	
Centric/Generic Skill						
(ii) Soft Skill	2	2	2	2	10	
(iii) Summer Internship / Industrial Training	-	-	2	-		
Part C	-	-	-	1	1	
Total Credits	20	22	26	23	91	

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

M. Sc., DEGREE COURSE IN PHYSICS COURSE STRUCTURE

FIRST SEMESTER

		Š.	RS	ours	MAX MARKS	
COURSE COMPONENTS	NAME OF THE COURSE	CREDIT	INST. HI	Exam H	CIA	EXT.
Core Paper-I	Mathematical Physics	4	6	3	25	75
Core Paper-II	Classical Mechanics and Relativity	4	5	3	25	75
Core Paper-II	Linear and Digital ICs and Applications	4	5	3	25	75
Core Practical-I	Analog and Digital Experiments	3	6	6	25	75
Elective -I (Generic / Discipline centric)	Choose any one from the list I	3	4	3	25	75
Elective-II (Generic / Discipline centric)	Choose any one from the list II	2	4	3	25	75
		20	30			

SECOND SEMESTER

COURSE	NAME OF THE COURSE		IRS	Hours	MAX MARKS	
COMPONENTS			INST. H	Exam I	CIA	EXT.
Core Paper-IV	Statistical Mechanics	4	5	3	25	75
Core Paper-V	Quantum Mechanics –I		6	3	25	75
Core Paper–VI	Condensed Matter Physics	4	5	3	25	75
Core Practical II	General Experiments		6	6	25	75
Elective- III	Choose any one from the list II	2	3	3	25	75
Elective – IV	Choose any one from the lists III	2	3	3	25	75
Common subject	Human Rights	-	2	3	25	75
	Internship / Industrial Activity*	-	-	-	-	-
		22	30			

*Internship will be carried out during the summer vacation of the first year and marks will be included in the Third Semester Marks Statement.

LIST -1: ELECTIVE PAPERS (First Year)

- 1. Energy Physics
- 2. Crystal Growth and Thin films
- 3. Materials Science

LIST -2: ELECTIVE PAPERS (First Year)

- 4. Bio Physics
- 5. Non-linear Dynamics
- 6. Advanced Mathematical Physics

LIST 3: INDUSTRY ORIENTED ELECTIVE (IOE)

- 7. Advanced Spectroscopy
- 8. Microprocessor 8086 and Microcontroller 8051
- 9. Characterization of Materials
- 10. Medical Physics
- 11. Solid Waste Management
- 12. Sewage and Waste Water Treatment and Reuse
- 13. Solar Energy Utilization

(Note: Institutions can also frame such IOE courses more suitable for their locality.)

Paper-1 - MATHEMATICAL PHYSICS

I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	MATHEMATICAL PHYSICS	Core				4	6	75

Pre-Requisites

Knowledge of Matrices, vectors, differentiation, integration, differential equations

- To equip students with the mathematical techniques needed for understanding theoretical treatment in different courses taught in their program
- > To extend their manipulative skills to apply mathematical techniques in their fields
- > To help students apply Mathematics in solving problems of Physics

UNITS	CourseDetails
	Basic concepts - Definitions- examples of vector space - Linear independence -
UNIT I:	Scalar product- Orthogonality – Gram-Schmidt orthogonalization process –linear
LINEAR	operators – Dual space- ket and bra notation – orthogonal basis – change of basis –
VECTOR SPACE	Isomorphism of vector space - projection operator -Eigen values and Eigen
	functions - Direct sum and invariant subspace - orthogonal transformations and
	rotation
	Review of Complex Numbers -de Moivre's theorem-Functions of a Complex
UNIT II:	Variable- Differentiability -Analytic functions- Harmonic Functions- Complex
COMPLEX	Integration- Contour Integration, Cauchy – Riemann conditions – Singular points –
ANALYSIS	Cauchy's Integral Theorem and integral Formula -Taylor's Series - Laurent's
	Expansion- Zeros and poles – Residue theorem
	Types of Matrices and their properties, Rank of a Matrix -Conjugate of a matrix -
UNIT III:	Adjoint of a matrix - Inverse of a matrix - Hermitian and Unitary Matrices -Trace
MATRICES	of a matrix- Transformation of matrices - Characteristic equation - Eigen values
	and Eigen vectors - Cayley–Hamilton theorem –Diagonalization
	Definitions -Fourier transform and its inverse - Transform of Gaussian function and
UNIT IV:	Dirac delta function -Fourier transform of derivatives - Cosine and sine transforms
FOURIER	- Convolution theorem. Application: Diffusion equation: Flow of heat in an infinite
	and in a semi - infinite medium - Wave equation: Vibration of an infinite string and
A LAPLACE	of a semi - infinite string.
TRANSFORMS	Laplace transform and its inverse - Transforms of derivatives and integrals $-$
	Differentiation and integration of transforms - Dirac delta functions - Application -
	Laplace equation: Potential problem in a semi - infinite strip

	Second order differential equation- Sturm-Liouville's theory - Series solution with
	simple examples - Hermite polynomials - Generating function - Orthogonality
UNITV:	properties - Recurrence relations - Legendre polynomials - Generating function -
DIFFERENTIAL	Rodrigue formula – Orthogonality properties - Dirac delta function- One
EQUATIONS	dimensional Green's function and Reciprocity theorem -Sturm-Liouville's type
	equation in one dimension & their Green's function.
	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits
Learning activity	Competitive Examinations, Employable and Communication Skill Enhancement
g	Social Accountability and Patriotism
	1 PK Chattanadhyay 2012 Mathematical Physics (2 nd adition) New Age
	1. F.K. Chattopadnyay, 2015, <i>Muthematical Physics</i> (2 – edition), New Age
	2 P.D. Gunto 2000 Mathematical Physics (A th edition) Vikes Publishing House
	2. B.D.Gupta, 2009, Muthematical Physics (4 edition), vikas Publishing House
	2 Sothya Prokoch Mathematical Physical Sultan Chand and song
	5. Satilya Flakash, Mainematical Physics, Suitan Chand and Sons
TEXT BOOKS	4. H. K. Dass and DI. Kama verma, 2014, <i>Mainematical Physics</i> , Sevenu Deviced Edition S. Chend & Company Put Ltd. New Delhi
	Kevised Edition, S. Chand & Company Pvt. Ltd., New Deini.
	5. A w Josni, 2017, Matrices and Tensors in Physics, 4th Edition (Demortant) New Acceletametic and Det Ltd. India
	(Paperback), New Age International Pvt.Ltd., India
	6. George Artken and Hans J Weber, 2012, Mathematical Methods for
	<i>Physicists</i> – A Comprehensive Guide (7th edition), Academic press.
	1. E. Kreyszig, 1983, Aavancea Engineering Mathematics, Wiley Eastern
	2. D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics, 3rd
	Ed. Narosa, New Delhi.
REFERENCE	3. S. Lipschutz, 1987, <i>Linear Algebra, Schaum's Series</i> , McGraw - Hill, New
BOOKS	York 3. E. Butkov, 1968, <i>Mathematical Physics</i> Addison - Wesley
	Reading, Massachusetts.
	4. P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition
	Affiliated East West, New Delhi.
	5. C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering Mathematics, C
	th Edition, International Edition, McGraw-Hill, New York
	I. <u>www.khanacademy.org</u>
	2. <u>https://youtu.be/LZnRIOA1_21</u>
WEB	3. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath</u>
SOURCES	4. <u>https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_RYTE</u>
	<u>U27vS_SIED56gNjVJGO2qaZ</u>
	5. https://archive.nptel.ac.in/courses/115/106/115106086/

Paper-2 - CLASSICAL MECHANICS AND RELATIVITY I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	CLASSICAL MECHANICS AND RELATIVITY	Core				4	5	75

Pre-Requisites

Knowledge of fundamentals of mechanics, Foundation in mathematical methods.

- > To understand fundamentals of classical mechanics.
- > To understand Lagrangian formulation of mechanics and apply it to solve equation of motion.
- > To understand Hamiltonian formulation of mechanics and apply it to solve equation of motion.
- > To discuss the theory of small oscillations of a system.
- > To learn the relativistic formulation of mechanics of a system.

UNITS	Course Details
UNIT I: PRINCIPLES OF CLASSICAL MECHANICS	Mechanics of a single particle – mechanics of a system of particles – conservation laws for a system of particles – constraints – holonomic & non-holonomic constraints – generalized coordinates – configuration space – transformation equations – principle of virtual work.
UNIT II: LAGRANGIAN FORMULATION	D'Alembert's principle –Lagrangian equations of motion for conservative systems – applications: simple pendulum, spherical pendulum, compound pendulum, Linear harmonic oscillator, Atwood's machine, particle moving on the surface of the earth.
UNIT III: HAMILTONIAN FORMULATION	Phase space – cyclic coordinates – Generalised momentum (conjugate/ canonical), conservation of linear and angular momentum – Hamiltonian function – Hamilton's canonical equations of motion – applications: simple pendulum, one dimensional simple harmonic oscillator, motion of particle in a central force field.
UNIT IV: SMALL OSCILLATIONS	Stable and unstable equilibrium, Formulation of the problem: Lagrange's equation of small oscillations – transformation to normal coordinates – frequencies of normal modes – The parallel pendulum – linear triatomic molecule.
UNIT V: RELATIVITY	Inertial and non-inertial frames – Lorentz transformation equations – length contraction and time dilation – relativistic addition of velocities – Einstein's mass-energy relation – Minkowski's space – four vectors – position, velocity, momentum, acceleration and force in four vector notation and their transformations

	Expert Lectures, Online Seminars - Webinars on Industrial
Learning activity	Interactions/Visits, Competitive Examinations, Employable and
Learning activity	Communication Skill Enhancement, Social Accountability and
	Patriotism
	1. H. Goldstein, 2002, Classical Mechanics, 3rd Edition, Pearson
TEVT BOOKS	Edu.
	2. J. C. Upadhyaya, <i>Classical Mechanics</i> , HimalayaPublshing.
	Co.New Delhi.
	3. Gupta, Kumar, Sharma, Classical Mechanics, Pragati
	Prakashan, Meerut
IEAI DOORS	4. G Aruldhas, Classical Mechanics, Eastern Economy Edition,
	PHI Learning Pvt Ltd, New Delhi
	5. R. G. Takwala and P.S. Puranik, Introduction to Classical
	Mechanics – Tata – McGraw Hill, New Delhi, 1980.
	6. N. C. Rana and P.S. Joag, Classical Mechanics - Tata McGraw
	Hill, 2001
	1. K. R. Symon, 1971, Mechanics, Addison Wesley, London.
	2. S. N. Biswas, 1999, Classical Mechanics, Books & Allied,
REFERENCE BOOKS	Kolkata.
	3. T.W.B. Kibble, Classical Mechanics, ELBS.

4. Greenwood, Classical Dynamics, PHI, New Delhi.

ein Classical Mechanics optimized.pdf

3. https://nptel.ac.in/courses/122/106/122106027/

editionpdf-pdf-free.html

iii-fall-2014/lecture-notes/

WEB SOURCES

1. http://poincare.matf.bg.ac.rs/~zarkom/Book Mechanics Goldst

2. https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-2014-

4. https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-

5. https://www.britannica.com/science/relativistic-mechanics

Paper- 3 - LINEAR AND DIGITAL ICs & APPLICATIONS | I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	LINEAR AND DIGITAL ICs AND APPLICATIONS	Core				4	5	75

Pre-Requisites

Knowledge of semiconductor devices, basic concepts of digital and analog electronics

- > To introduce the basic building blocks of linear integrated circuits.
- > To teach the linear and non-linear applications of operational amplifiers.
- > To introduce the theory and applications of PLL.
- > To introduce the concepts of waveform generation and introduce one special function ICs.
- Exposure to digital IC's

UNITS	Course Details
UNIT I: INTEGRATED CIRCUITS AND OPERATIONAL AMPLIFIER	Introduction, Classification of IC's, basic information of Op-Amp 741 and its features, the ideal Operational amplifier, Op-Amp internal circuit, Op- Amp characteristics and parameters, Inverting and Non-inverting amplifier – adder, subtraction, average, differentiator and integrator
UNIT II: APPLICATIONS OF OP-AMP	 LINEAR APPLICATIONS OF OP-AMP: Solution to simultaneous equations and differential equations, Instrumentation amplifiers, V to I and I to V converters. NON-LINEAR APPLICATIONS OF OP-AMP: Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider, Comparators, Schmitt trigger, Multivibrators, Triangular and Square waveform generators.
UNIT III: ACTIVE FILTERS & TIMER AND PHASE LOCKED LOOPS	ACTIVE FILTERS: Introduction, Butterworth filters – 1st order, 2nd order low pass and high pass filters, band pass, band reject and all pass filters. TIMER AND PHASE LOCKED LOOPS: Introduction to IC 555 timer, description of functional diagram, monostable and astable operations and applications, Schmitt trigger, PLL - introduction, basic principle, phase detector/comparator, voltage controlled oscillator (IC 566), low pass filter, monolithic PLL and applications of PLL
UNIT IV: VOLTAGE REGULATOR & D to A and A to D CONVERTERS	VOLTAGE REGULATOR : Introduction, Series Op-Amp regulator, IC Voltage Regulators, IC 723 general purpose regulators, Switching Regulator. D/A and A/D CONVERTERS : Introduction, basic DAC techniques - weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A to D converters -parallel comparator type ADC, counter type ADC, successive

	approximation ADC and dual slope ADC, DAC and ADC Specifications.						
UNIT V:	COMBINATIONAL CIRCUITS USING TTL 74XX ICs: Study of logic						
COMBINATIONAL	gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC						
CIRCUITS USING	7485), Decoder (IC74138, IC74154), BCD to7-segment decoder (IC7447),						
TTL 74XX ICs &	Encoder (IC74147), Multiplexer (IC74151), Demultiplexer (IC 74154).						
SEQUENTIAL	EQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops (IC						
CIRCUITS USING	7474, IC 7473), Shift Registers, Universal Shift Register (IC 74194), 4- bit						
TTL 74XX ICs	synchronous binary counter (IC 7493).						
	Expert Lectures, Online Seminars - Webinars on Industrial						
Learning Activity	Interactions/Visits, Competitive Examinations, Employable and						
	Communication Skill Enhancement, Social Accountability and Patriotism						
	 D. Roy Choudhury, Shail B. Jain (2012), <i>Linear Integrated Circuit,</i> <i>4th edition,</i> New Age International Pvt.Ltd.,NewDelhi,India Ramakant A. Gayakwad, (2012), <i>OP-AMP and Linear Integrated</i> <i>Circuits, 4th edition,</i> Prentice Hall / Pearson Education, NewDelhi. B.L. Theraia and A.K. Theraia. 2004. <i>4 Tarthook of Electrical</i> 						
TEXT BOOKS	 B.E. Ineraja and A.K. Ineraja, 2004, A Textbook of Electrical technology, S. Chand & Co. V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S. 						
	 5. V. Vijayendran, 2008, <i>Introduction to Integrated electronics (Digital & Analog)</i>, S.Viswanathan Printers & Publishers Private Ltd, Reprint. V. 						
	 Sergio Franco (1997), Design with operational amplifiers and analog integrated circuits, McGraw Hill, New Delhi. 						
	2. Gray, Meyer (1995), Analysis and Design of Analog Integrated Circuits, Wiley International, New Delhi.						
REFERENCE BOOKS	3. Malvino and Leach (2005), <i>Digital Principles and Applications 5th Edition</i> , Tata McGraw Hill, New Delhi						
	4. Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson Education New Delhi						
	5. Millman & Halkias, <i>Integrated Electronics</i> , Tata McGraw Hill, 17th						
	Reprint (2000)						
	1. <u>https://nptel.ac.in/course.html/digital circuits/</u>						
	2. <u>https://nptel.ac.in/course.html/electronics/operational amplifier/</u>						
	3. <u>https://www.allaboutcircuits.com/textbook/semiconductors/chpt-</u>						
WEB SOURCES	7/field-effect-controlled-thyristors/						
	4. <u>https://www.electrical4u.com/applications-of-op-amp/</u>						
	5. <u>https://www.geeksforgeeks.org/digital-electronics-logic-design-</u> <u>tutorials/</u>						

Core - PRACTICAL I - Analog and Digital	I YEAR - FIRST SEMESTER
Experiments	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	PRACTICAL I – Analog and Digital Experiments	Core				3	6	75

Pre-Requisites

Knowledge and hands on experience of Analog and Digital electronics experiments of Physics

Learning Objectives

- > To observe the applications of FET and UJT.
- > To study the different applications of operational amplifier circuits.
- > To learn about Combinational Logic Circuits and Sequential Logic Circuits
- > To learn Digital logic circuits and verify its truth tables

Course Details

(Minimum of Twelve Experiments from the list)

- 1. Construction of relaxation oscillator using UJT (2N2646)
- 2. FET (BFW10) CS amplifier- Frequency response, input impedance, output impedance
- 3. Study of important electrical characteristics of IC741.
- 4. V- I Characteristics of different colours of LED.
- 5. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- 6. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.
- 7. Construction of Schmidt triggers circuit using IC 741 for a given hysteresis (both AC & DC mode) application as squarer.
- 8. Construction of square wave and Triangular wave generator using IC 741,
- 9. Construction of pulse generator using the IC 741 application as frequency divider
- 10. Study of (i) arithmetic operations using IC 7483- 4-bit binary addition & subtraction and (ii) arithmetic logic unit using IC 74181.
- 11. Construction of Current to Voltage and Voltage to Current Conversion using IC 741.
- 12. Construction of second order butter worth multiple feedback narrow band pass filter
- 13. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193
- 14. Construction of Schmidt trigger circuit using IC555 for a given hysteresis (both AC & DC mode)– Application as squarer
- 15. Construction of pulse generator using the IC 555 Application as frequency divider
- 16. Study of binary up / down counters, Ring counter and Johnson counter- IC 7476/IC 7473
- 17. IC 7490 as scalar/ Modulus counter and seven segment display using IC7447/ IC 7448
- 18. Solving simultaneous equations IC 741 / IC LM324
- Op-Amp-Active filters: Low pass, High pass and Band pass filters (2nd Order) Butter worth filter
- 20. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type)
- 21. Construction of square wave generator using IC 555 Study of VCO

22 G 1 C	1 11 1 4 1 1.4				
22. Study of synchronous parallel 4-bit binary up/down counter using IC 74193					
23. Study of a	nchronous parallel 4-bit	binary up/down counter using IC 7493			
24. Constructi	of Multiplexer and Der	nultiplexer using ICs.			
	1. Practical Physics	Gupta and Kumar, Pragati Prakasan.			
	2. Kit Developed t	or doing experiments in Physics- Instruction manual,			
	R.Srinivasan K.R	Priolkar, Indian Academy of Sciences.			
	3. Electronic Labo	ratory Primer a design approach, S. Poornachandra,			
IEXI BOOKS	B.Sasikala, Whee	eler Publishing, New Delhi.			
	4. Electronic lab ma	nual Vol I, K ANavas, Rajath Publishing.			
	5. Electronic lab ma	nual Vol II, K ANavas, PHI eastern Economy Edition			
	1. Advanced Practic	al Physics, S.P Singh, PragatiPrakasan.			
	2. An advanced cou	rse in Practical Physics, D.Chattopadhayay, C.R Rakshit,			
	New Central Boo	k Agency Pvt. Ltd			
DFFFDFNCF	3. Op-Amp and lin	ear integrated circuit, Ramakanth A Gaykwad, Eastern			
REFERENCE	Economy Edition				
BOOKS	4. A course on exp	eriment with He-Ne Laser, R.S. Sirohi, John Wiley &			
	Sons (Asia) Pvt.	Ltd.			
	5. Electronic lab m	anual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya			
	Publishing.				

Paper IV - STATISTICAL MECHANICS

I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	STATISTICAL MECHANICS	Core				4	6	75

Pre-Requisites

Knowledge of Laws of thermodynamics, phase transition, entropy, ensembles, partition function, classical and quantum statistics, thermal equilibrium, Brownian motion

- To acquire the knowledge of thermodynamic potentials and to understand phase transition in thermodynamics
- > To identify the relationship between statistic and thermodynamic quantities
- > To comprehend the concept of partition function, canonical and grand canonical ensembles
- To grasp the fundamental knowledge about the three types of statistics
- To get in depth knowledge about phase transitions and fluctuation of thermodynamic properties that vary with time

UNITS	Course Details				
	Thermodynamic potentials - Phase Equilibrium - Gibb's phase rule -				
UNIT I:	Phase transitions and Ehrenfest's classifications -Third law of				
PHASE	Thermodynamics. Order parameters - Landau's theory of phase				
TRANSITIONS	transition - Critical indices - Scale transformations and dimensional				
	analysis.				
UNIT II:	Foundations of statistical mechanics - Specification of states of a				
STATISTICAL	system - Micro canonical ensemble - Phase space - Entropy -				
MECHANICS AND	Connection between statistics and thermodynamics - Entropy of an				
THERMODYNAMICS	ideal gas using the micro canonical ensemble - Entropy of mixing and				
	Gibb's paradox.				
UNIT III:	Trajectories and density of states - Liouville's theorem - Canonical				
CANONICAL AND	and grand canonical ensembles - Partition function - Calculation of				
GRAND CANONICAL	statistical quantities - Energy and density fluctuations.				
ENSEMBLES					
UNIT IV:	Density matrix - Statistics of ensembles - Statistics of indistinguishable				
CLASSICAL AND	particles - Maxwell-Boltzmann statistics - Fermi-Dirac statistics - Ideal				
QUANTUM	Fermi gas - Degeneracy - Bose-Einstein statistics - Plank radiation				
STATISTICS	formula - Ideal Bose gas - Bose-Einstein condensation.				

UNIT V.	Cluster expansion for a classical gas - Virial equation of state – Calculation of					
REAL GAS	the first Virial coefficient in the cluster expansion - Ising model - Mean-field					
ISING MODEL	theories of the Ising model in three, two and one dimensions - Exact solutions					
AND	in one dimension Correlation of space-time dependent fluctuations -					
FLUCTUATIO	luctuations and transport phenomena - Brownian motion - Langevin's theory					
NS	Fluctuation-dissination theorem - The Fokker-Planck equation					
	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,					
Learning activity	Competitive Examinations, Employable and Communication Skill					
	Enhancement, Social Accountability and Patriotism					
	1. S. K. Sinha, 1990, Statistical Mechanics, Tata McGraw Hill, New					
	Delhi.					
	2. Gupta Kumar, Statistical Mechanics, Pragati Prakashan, Meerut					
	3. Satya Prakash & J P agarwal, Statistical Mechanics, Kedar Nath Ram					
	Nath, Meerut					
TEXT BOOKS	4. B. K. Agarwal and M. Eisner, 1998, <i>Statistical Mechanics</i> , Second					
	Edition New Age International, New Delhi.					
	5. J. K. Bhattachariee, 1996, <i>Statistical Mechanics</i> : An Introductory Text,					
	Allied Publication, New Delhi.					
	1. R. K. Pathria, 1996, Statistical Mechanics, 2 nd edition, Butter					
	WorthHeinemann, New Delhi.					
	2 L. D. Landau and F. M. Lifshitz 1969 Statistical Physics Pergamon Press					
	Oxford					
DEFEDENCE	2 K Huong 2002 Statistical Machanias Toylor and Francis London					
POOKS	5. K. Huang, 2002, <i>Statistical Mechanics</i> , Taylor and Francis, London					
DUUKS	4. W. Greiner, L. NeiseandH.Stoecker, <i>Thermodynamics and Statistical</i>					
	Mechanics, Springer Verlang, New York.					
	5. A. B. Gupta, H. Roy, 2002, <i>Thermal Physics</i> , Books and Allied, Kolkata.					
	6. M. K. Zemansky, 1968, Heat and Thermodynamics, 5 th edition, McGraw-					
	Hill New York.					
	1. <u>https://byjus.com/chemistry/third-law-of-thermodynamics/</u>					
	2. <u>https://web.stanford.edu/~peastman/statmech/thermodynamics.html</u>					
WEB	3. <u>https://en.wikiversity.org/wiki/Statistical_mechanics_and_thermodyna</u>					
SOURCES	mics					
	4. https://en.wikipedia.org/wiki/Grand_canonical_ensemble					
	5. <u>https://en.wikipedia.org/wiki/Ising_model</u>					

Paper V - QUANTUM MECHANICS - I

I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	QUANTUM MECHANICS – I	Core				4	6	75

Pre-Requisites

Knowledge of Newton's laws of motion, Schrodinger's equation, integration, differentiation.

- To develop the physical principles and the mathematical background important to quantum mechanical descriptions.
- > To describe the propagation of a particle in a simple, one-dimensional potential.
- To formulate and solve the Schrodinger's equation to obtain eigenvectors and energies for particle in a three-dimensional potential.
- To explain the mathematical formalism and the significance of constants of motion, and see their relation to fundamental symmetries in nature
- To discuss the Approximation methods like perturbation theory, Variational and WKB methods for solving the Schrödinger equation.

UNITS	Course Details
UNIT I: BASIC FORMALISM	Interpretation of the wave function – Time dependent Schrodinger equation – Time independent Schrodinger equation – Stationary states – Ehrenfest's theorem – Linear vector space – Linear operator – Eigen functions and Eigen
	Values – Hermitian Operator – Postulates of Quantum Mechanics – Simultaneous measurability of observables – General Uncertainty relation
UNIT II:ONE DIMENSIONAL AND THREE- DIMENSIONAL ENERGY EIGEN VALUE PROBLEMS	Square – well potential with rigid walls – Square well potential with finite walls – Square potential barrier – Alpha emission – Linear harmonic oscillator: Operator method – Particle moving in a spherically symmetric potential – System of two interacting particles – Hydrogen atom – Rigid rotator
UNIT III: GENERAL FORMALISM	Dirac notation – Equations of motions – Schrodinger representation – Heisenberg representation – Interaction representation – Coordinate representation – Momentum representation – Symmetries and conservation laws – Unitary transformation – Parity and time reversal
UNIT IV: APPROXIMATION METHODS	Time independent perturbation theory for non-degenerate energy levels – Degenerate energy levels – Stark effect in Hydrogen atom – Ground and excited state – Variation method – Helium atom – WKB approximation – Connection formulae (no derivation) – WKB quantization – Application to simple harmonic oscillator.
UNIT V:	Eigen value spectrum of general angular momentum – Ladder operators and

ANGULAR	their algebra - Matrix representation - Spin angular momentum - Addition					
MOMENTUM	of angular momenta - CG Coefficients - Symmetry and anti - symmetry of					
	wave functions - Construction of wave-functions and Pauli's exclusion					
	principle.					
	Expert Lectures, Online Seminars - Webinars on Industrial					
Learning activity	Interactions/Visits, Competitive Examinations, Employable and					
	Communication Skill Enhancement, Social Accountability and Patriotism					
	1. P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics,					
	2 nd edition(37th Reprint), Tata McGraw-Hill, New Delhi, 2010.					
	2. Satya Prakash, Advanced Quantum Mechanics. Kedar Nath Ram Nath,					
	New Delhi					
	3. G. Aruldhas, <i>Quantum Mechanics, 2nd edition</i> , Prentice Hall of India,					
τεντ βοους	New Delhi, 2009. A Devid I Criffithe Introduction to Organtum Machanics 4th adition					
TEAT BOOKS	4. David J Griffiths, Introduction to Quantum Mechanics. 4th eattion,					
	5 SI Gupta and ID Gupta Advanced Quantum Theory and Fields 1^{st}					
	Edition S Chand& Co., New Delhi, 1982					
	6. A. Ghatak and S. Lokanathan, <i>Ouantum Mechanics: Theory and</i>					
	Applications, 4 th Edition, Macmillan, India, 1984.					
	1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and					
	Sons, New York, 1970.					
	2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern					
DEFEDENCE	Ltd, New Delhi, 1985.					
REFERENCE	3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition,					
BOOKS	Pergomon Press, Oxford, 1976.					
	4. S. N. Biswas, Quantum Mechanics, Books and Alled Ltd., Kolkata,					
	5 V Devanathan Quantum Mechanics 2nd edition Alpha Science					
	International Ltd. Oxford , 2011.					
	1. http://research.chem.psu.edu/lxjgroup/download_files/chem565-					
	c7.pdf					
	2. http://www.feynmanlectures.caltech.edu/III_20.html					
WEB SOURCES	3. <u>http://web.mit.edu/8.05/handouts/jaffe1.pdf</u>					
	4. https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory_Lectures/					
	Lecture 1.pdf					
	5. <u>https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.pdf</u>					

Paper VI - CONDENSED MATTER PHYSICS I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	CONDENSED MATTER PHYSICS	Core				4	5	75

Pre-Requisites

Basic knowledge of atomic physics, quantum mechanics and statistical mechanics.

- To describe various crystal structures, symmetry and to differentiate different types of bonding.
- To construct reciprocal space, understand the lattice dynamics and apply it to concept of specific heat.
- To critically assess various theories of electrons in solids and their impact in distinguishing solids.
- > Outline different types of magnetic materials and explain the underlying phenomena.
- Elucidation of concepts of superconductivity, the underlying theories relate to current areas of research.

UNITS	Course Details
UNIT I: CRYSTAL PHYSICS	Types of lattices - Miller indices – Symmetry elements and allowed rotations - Simple crystal structures – Atomic Packing Factor- Crystal diffraction – Bragg's law – Scattered Wave Amplitude - Reciprocal Lattice (sc, bcc, fcc). Structure and properties of liquid crystals. Diffraction Conditions - Laue equations - Brillouin zone - Structure factor - Atomic form factor - Inert gas crystals - Cohesive energy of ionic crystals - Madelung constant - Types of crystal binding (general ideas).
UNIT II: LATTICE DYNAMICS	Lattice with two atoms per primitive cell - First Brillouin zone - Group and phase velocities - Quantization of lattice vibrations - Phonon momentum - Inelastic scattering by phonons - Debye's theory of lattice heat capacity - Thermal Conductivity - Umkalapp processes.
UNIT III: THEORY OF METALS AND SEMICONDUCTORS	Free electron gas in three dimensions - Electronic heat capacity - Wiedemann-Franz law - Band theory of metals and semiconductors - Bloch theorem - Kronig-Penney model - Semiconductors - Intrinsic carrier concentration – Temperature Dependence - Mobility - Impurity conductivity – Impurity states - Hall effect - Fermi surfaces and construction - Experimental methods in Fermi surface studies - de Hass-van Alphen effect .
UNIT IV: MAGNETISM	Diamagnetism - Quantum theory of paramagnetism - Rare earth ion - Hund's rule - Quenching of orbital angular momentum - Adiabatic demagnetization - Quantum theory of ferromagnetism - Curie point - Exchange integral - Heisenberg's interpretation of Weiss field - Ferromagnetic domains - Bloch wall - Spin waves - Quantization - Magnons - Thermal excitation of magnons - Curie temperature and susceptibility of ferrimagnets - Theory of antiferomagnetism - Neel temperature.

UNIT V: Superconductivity	 Experimental facts: Occurrence - Effect of magnetic fields - Meissner effect Critical field – Critical current - Entropy and heat capacity - Energy gap - Microwave and infrared properties - Type I and II Superconductors. Theoretical Explanation: Thermodynamics of super conducting transition - London equation - Coherence length – Isotope effect - Cooper pairs – Bardeen Cooper Schrieffer (BCS) Theory – BCS to Bose – Einstein Condensation (BEC) regime- Nature of paring and condensation of Fermions. Single particle tunneling - Josephson tunneling - DC and AC Josephson effects - High temperature Superconductors – SQUIDS.
Learning activity	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 C. Kittel, 1996, Introduction to Solid State Physics, 7th Edition, Wiley, New York. Gupta Kumar, Solid State Physics, Kedar Nath Ram Nath, New Delhi Rita John, Solid State Physics, Tata Mc-GrawHill Publication A. J. Dekker, Solid State Physics, Macmillan India, New Delhi. M. Ali Omar, 1974, Elementary Solid State Physics – Principle and Applications, Addison - Wesley H. P. Myers, 1998, Introductory Solid State Physics, 2nd Edition, Viva Book, New Delhi.
REFERENCE BOOKS	 J. S. Blakemore, 1974, Solid state Physics, 2nd Edition, W.B. Saunder, Philadelphia H. M. Rosenburg, 1993, The SolidState, 3rd Edition, OxfordUniversity Press, Oxford. J. M. Ziman, 1971, Principles of the Theory of Solids, CambridgeUniversity Press, London. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice-Hall of India, New Delhi.
WEB SOURCES	 http://www.physics.uiuc.edu/research/electronicstructure/389/389-cal.html http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/index.html https://www.britannica.com/science/crystal https://www.nationalgeographic.org/encyclopedia/magnetism/ https://www.brainkart.com/article/Super-Conductors_6824/

Core - PRACTICAL II – General Experiments I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	PRACTICAL II - General Experiments	Core				3	6	75

Pre-Requisites

Knowledge and handling of General experiments of Physics

Learning Objectives

- To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- > To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical, magnetic and electrical properties of materials.

Course Details

(Minimum of Twelve Experiments from the list)

- 1. Determination of Young's modulus and Poisson's ratio by Elliptical fringes Cornu's Method
- 2. Determination of Young's modulus by Hyperbolic fringes Cornu's Method
- 3. Determination of Viscosity of the given liquid Meyer's disc
- 4. Measurement of Coefficient of linear expansion- Air wedge Method
- 5. B-H loop using Anchor ring.
- 6. Determination of Thickness of the enamel coating on a wire by diffraction
- 7. Determination of Rydberg's Constant Hydrogen Spectrum
- 8. Thickness of air film FP Etalon
- 9. Measurement of Band gap energy- Thermistor
- 10. Determination of Specific charge of an electron Thomson's method.
- 11. Determination of Wavelength, Separation of wavelengths Michelson Interferometer
- 12. GM counter Characteristics and inverse square law.
- 13. Measurement of Conductivity Four probe method.
- 14. Molecular spectra AlO band.
- 15. Measurement of wavelength of Diode Laser / He Ne Laser using Diffraction grating.
- 16. Determination of Stefan's constant of radiation from a hot body
- 17. Arc spectrum: Copper
- 18. Determination of e/m Millikan's method
- 19. Miscibility measurements using ultrasonic diffraction method
- 20. Determination of Numerical Apertures and Acceptance angle of optical fibers using Laser Source.

TEXT
BOOKS1. Practical Physics, Gupta and Kumar, Pragati Prakasan
2. Kit Developed for doing experiments in Physics- Instruction manual,

	R.Srinivasan K.R Priolkar, Indian Academy of Sciences							
	3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern							
	Economy Edition.							
	4. Electronic lab manual Vol I, K A Navas, Rajath Publishing							
	5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition							
	1. An advanced course in Practical Physics, D.Chattopadhayay,							
DEFEDENCE	C.RRakshit, New Central Book Agency Pvt. Ltd							
	2. Advanced Practical Physics, S.P Singh, PragatiPrakasan							
	3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons							
POOKS	(Asia) Pvt.ltd							
BUUKS	4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya							
	Publishing							
	5. Electronic Laboratory Primer a design approach, S. Poornachandra,							
	B.Sasikala, Wheeler Publishing, New Delhi							

Elective - List 1 – ENERGY PHYSICS

I/II YEAR - FIRST/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	ENERGY PHYSICS	ELECTIVE				3	4	75

Pre-Requisites

Knowledge of conventional energy resources

- > To learn about various renewable energy sources.
- > To know the ways of effectively utilizing the oceanic energy.
- > To study the method of harnessing wind energy and its advantages.
- > To learn the techniques useful for the conversion of biomass into useful energy.
- > To know about utilization of solar energy.

UNITS	Course Details
UNIT I: INTRODUCTION TO ENERGY SOURCES	Conventional and non-conventional energy sources and their availability- prospects of Renewable energy sources- Energy from other sources-chemical energy-Nuclear energy- Energy storage and distribution.
UNIT II: ENERGY FROM THE OCEANS	Energy utilization–Energy from tides–Basic principle of tidal power– utilization of tidal energy – Principle of ocean thermal energy conversion systems.
UNIT III: WIND ENERGY SOURCES	Basic principles of wind energy conversion-power in the wind-forces in the Blades- Wind energy conversion-Advantages and disadvantages of wind energy conversion systems (WECS) - Energy storage-Applications of wind energy.
UNIT IV: ENERGY FROM BIOMASS	Biomass conversion Technologies– wet and dry process– Photosynthesis - Biogas Generation: Introduction–basic process: Aerobic and anaerobic digestion –factors affecting bio digestion and generation of gas- bio gas from waste fuel– Properties of bio gas-utilization of biogas.
UNIT V: SOLAR ENERGY SOURCES	Solar radiation and its measurements-solar cells: Solar cells for direct conversion of solar energy to electric powers-solar cell electrical characteristics- Efficiency-solar water Heater -solar distillation- solar cooking-solar greenhouse.
Learning activity	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. G.D. Rai, 1996, Non – convention sources of, 4th edition, Khanna publishers,
	New Delhi.
	2. S. Rao and Dr. ParuLekar, Energy technology.
TEXT	3. M.P. Agarwal, Solar Energy, S. Chand and Co., New Delhi (1983).
BOOKS	4. Solar energy, principles of thermal collection and storage by S.P.Sukhatme,
	2 nd edition, Tata McGraw-Hill Publishing Co. Lt., New Delhi (1997).
	5. Energy Technology by S.Rao and Dr.Parulekar.
	1. Renewable energy resources, John Twidell and Tonyweir, Taylor and Francis
REFERENCE BOOKS	group. London and New York.
	2. Applied solar energy, A.B.MeinelandA.P.Meinal
	3. John Twidell and Tony Weir. Renewable energy resources. Taylor and Francis
	group. London and New York.
	4. Renewal Energy Technologies: A Practical Guide for Beginners C.S. Solanki-PHI
	Learning
	5. Introduction to Non-Conventional Energy Resources -Raja et. al., Sci. Tech
	Publications
	1.https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&printable=1
WED	2. https://www.nationalgeographic.org/encyclopedia/tidal-energy/
WEB	3. https://www.ge.com/renewableenergy/wind-energy/what-is-wind-energy
SOURCES	4. https://www.reenergyholdings.com/renewable-energy/what-is-biomass/
	5 https://www.acciona.com/renewable-energy/solar-energy/
	and a second constant and a second charge and a second s

Elective - List 1 – CRYSTAL GROWTH AND THIN FILMS

I/II YEAR – FIRST/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	CRYSTAL GROWTH AND THIN FILMS	ELECTIVE				3	4	75

Pre-Requisites						
Fundamentals of Crystal growth and thin films						
Learning Objectives						
To acquire the knowledge on Nucleation and Kinetics of crystal growth						
To understand the Crystallization Principles and Growth techniques						
To study various methods of Crystal growth techniques						
> To understand the thin film deposition methods						
> To apply the techniques of Thin Film Formation and thickness Measurement						

UNITS	Course Details
UNIT I:	Basic Concepts, Nucleation - Types of Nucleation - Formation of critical
CRYSTAL GROWTH	Nucleus - Classical theory of Nucleation - Homo and heterogeneous
KINETICS	formation of nuclei - rate of Nucleation - Growth from vapour phase
	solutions, solutions and melts.
	Crystallization Principles and Growth techniques - Solubility diagram -
UNIT II:	Super solubility - expression for super saturation - Metastable zone and
CRYSTALLIZATION	introduction period - Miers TC diagram - Solution growth - Low and high
PRINCIPLES	temperatures solution growth - Constant temperature bath as a
	Crystallizer.
	Gel, Melt and Vapour growth techniques Principle of Gel techniques -
UNIT III:	Various types of Gel - Structure and importance of Gel - Methods of Gel
GEL, MELT AND	growth and advantages - Melt techniques - Czochralski growth -
VAPOUR GROWTH	Bridgeman method - Vapour phase growth - Physical vapour deposition -
	Chemical vapour deposition.
UNIT IV:	Thin film deposition methods of thin film preparation, Thermal
THIN FILM	evaporation, Electron beam evaporation, pulsed LASER deposition, RF
DEPOSITION	Magnetron sputtering, MBE, chemical vapour deposition methods, Spray
METHODS	pyrolysis, Chemical bath deposition.
LINIT V.	Film growth and structure - Various stages in Thin Film formation,
	Capillarity model and Atomistic model and their comparison. Structure
	of Thin Film, Roll of substrate, Roll of film thickness, Film thickness
runimation	measurement - Interferometry, Quartz Crystal Oscillator techniques.

	Expert Lectures, Online Seminars - Webinars on Industrial
Learning Activity	Interactions/Visits, Competitive Examinations, Employable and
	Communication Skill Enhancement, Social Accountability and Patriotism
	1. V. Markov Crystal growth for beginners: Fundamentals of
	Nucleation, Crystal Growth and Epitaxy (2004) 2nd edition
	2. A. Goswami, Thin Film Fundamentals (New Age, New Delhi, 2008)
	3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from
	Solution"
TEXT BOOKS	4. 4. D. Elwell and H. J. Scheel, "Crystal Growth from High
	Temperature Solution"
	5. Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge
	University Press. USA.
	1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986)
	2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School
	Notes".
	3. P. SanthanaRaghavan and P. Ramasamy, "Crystal Growth
REFERENCE	Processes",KRU Publications.
BOOKS	4. Krishna seshan, "Hand book of Thin-film deposition processes and
	techniques", Noyes publications. Newyork.
	5. H.E. Buckley, 1951, Crystal Growth, John Wiley and Sons,
	New York
	6. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London.
	1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMt
	rIO8kZl1D1Jp
	2. <u>https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy</u>
	7KeTLUuBu3WF
WEB SOURCES	3. <u>https://www.youtube.com/playlist?list=PLADLRin/kNjGIDIna9MD</u>
	<u>A53CMKFHPS19m</u> <u>A https://www.youtube.com/playlist2list=PI XHedI</u>
	xbyr8xII KOFs R oky3Yd1Emw
	5. <u>https://www.electrical4u.com/thermal-conductivity-of-metals/</u>

Elective - List 1 – MATERIALS SCIENCE

I/II YEAR - FIRST/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	MATERIALS SCIENCE	ELECTIVE				3	4	75

	Pre-Requisites
\triangleright	Basic knowledge on different types of materials
	Learning Objectives
\triangleright	To gain knowledge on optoelectronic materials
\succ	To learn about ceramic processing and advanced ceramics
\succ	To understand the processing and applications of polymeric materials
\triangleright	To gain knowledge on the fabrication of composite materials

> To learn about shape memory alloys, metallic glasses and nanomaterials

UNITS	Course details
UNIT I: OPTOELECTR ONIC MATERIALS	Importance of optical materials – properties: Band gap and lattice matching – optical absorption and emission – charge injection, quasi-Fermi levels and recombination – optical absorption, loss and gain. Optical processes in quantum structures: Inter-band and intra-band transitions Organic semiconductors. Light propagation in materials – Electro-optic effect and modulation, electro-absorption modulation
UNIT II CERAMIC MATERIALS	Ceramic processing: powder processing, milling and sintering – structural ceramics: zirconia, almina, silicon carbide, tungsten carbide – electronic ceramics – refractories – glass and glass ceramics
UNIT III POLYMERIC MATERIALS	Polymers and copolymers – molecular weight measurement – synthesis: chain growth polymerization – polymerization techniques – glass transition temperature and its measurement – viscoelasticity – polymer processing techniques – applications: conducting polymers, biopolymers and high temperature polymers.
UNIT IV COMPOSITE MATERIALS	Particle reinforced composites – fiber reinforced composites – mechanical behavior – fabrication methods of polymer matrix composites and metal matrix composites – carbon/carbon composites: fabrication and applications.
UNIT V: NEW MATERIALS Learning	Shape memory alloys: mechanisms of one-way and two-way shape memoryeffect, reverse transformation, thermo-elasticity and pseudo-elasticity,examples and applications - nanomaterials: classification, size effect onstructural and functional properties, processing and properties of Nanocrystalline materials, single walled and multi walled carbon nanotubesExpert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,Competitive Examinations, Employable and Communication Skill
	Enhancement, Social Accountability and Patriotism

	1. Jasprit Singh, Electronic and optoelectronic properties of semiconductor
TEXT BOOKS	structures, Cambridge University Press, 2007
	2. P. K. Mallick. Fiber-Reinforced Composites. CRC Press, 2008.
	3. V. Raghavan, 2003, Materials Science and Engineering, 4 th Edition,
	Prentice- Hall India, New Delhi(For units 2,3,4 and 5)
	4. G.K. Narula, K.S. Narula and V.K. Gupta, 1988, Materials Science, Tata
	McGraw-Hill
	5. M. Arumugam, 2002, Materials Science, 3 rd revised Edition, Anuratha
	Agencies
	1. B. S. Murty, P. Shankar, B. Raj, B. B. Rath and J. Murday. Textbook of
	Nanoscience and Nanotechnology. Springer- Verlag, 2012.
	2. K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki (Eds). Shape
	Memory and Super Elastic Alloys: Technologies and Applications.
	Wood head Publishing Limited, 2011.
REFERENCE	3 Lawrence H. VanVlack 1998. Elements of Materials Science and
BOOKS	Engineering 6 th Edition Second ISE reprint Addison-Wesley
	4 H Jabch and H Luth 2002 Solid State Physics – An Introduction to
	Principles of Materials Science 2 nd Edition Springer
	5 D Hull & T W Clyne An introduction to composite materials
	Cambridge University Press 2008.
	1 https://onlinecourses.pptel.ac.in/noc20.mm02/preview
	2 https://pntel.ac.in/courses/112104229
WEB	3. https://archive.nptel.ac.in/courses/113/105/113105081
SOURCES	4. https://nptel.ac.in/courses/113/105/113105025/
	https://eng.libretexts.org/Bookshelves/Materials Science/Supplemental Modu
	les (Materials Science)/Electronic Properties/Lattice Vibrations

Elective - List 2 – BIO PHYSICS

I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	BIO PHYSICS	ELECTIVE				3	4	75

Pre-Requisites

Fundamental concepts of Physics and Biology

- > To understand the physical principles involved in cell function maintenance.
- To understand the fundamentals of macromolecular structures involved in propagation of life.
- > To understand the biophysical function of membrane and neuron.
- To understand various kinds of radiation and their effects on living system and to know the hazards posed by such radiations and the required precautions.
- > To understand the physical principles behind the various techniques available for interrogating biological macromolecules.

UNITS	Course Details
UNIT I: CELLULAR BIOPHYSICS	Architecture and Life Cycle of cells – Organelles of Prokaryotic and Eukaryotic cell – Cell size and shape – Fine structure of Prokaryotic and Eukaryotic cell organization – Compartment & assemblies membrane system – Extracellular matrix - Molecular mechanisms of Vesicular traffic - Electrical activities of cardiac and neuronal cells.
UNIT II: MOLECULAR BIOPHYSICS	Macromolecular structure: Protein structure – amino acids, peptide bonds, primary, secondary, tertiary and quaternary structures of proteins Nucleic acid structure: nucleosides and nucleotides, RNA structure, DNA structure and conformation. Special Bio-macromolecules: Metalloproteins, nucleoproteins, ribozymes, chaperons and prions.
UNIT III: MEMBRANE AND NEURO BIOPHYISCS	Models membranes - Biological membranes and dynamics – Membrane Capacitors – Transport across cell and organelle membranes – Ion channels. Nervous system: Organization of the nervous system –Membrane potential – Origins of membrane potential - Electrochemical potentials – Nernst equation – Goldman equation.
UNIT IV: RADIATION BIO PHYSICS	X-Ray: Effects on bio-macromolecules – Gamma Radiation: Molecular effects of gamma radiation, Radiation effects on nucleic acids and membranes, Effects on cell and organelles – UV radiation: Effects on bio-macromolecules and proteins – Radiation hazards and protection – use of radiations in cancer.

UNIT V: PHYSICAL METHODS IN BIOLOGY	Spectroscopy: UV-Visible absorption spectrophotometry - Optical
	Rotatory Dispersion (ORD) – Structure Determination: X-ray Crystallography, Electron spin resonance (ESR) and biological applications. Chromatography: Thin layer chromatography (TLC), Gas liquid chromatography (GLC) – Centrifugation: Differential centrifugation, density gradient centrifugation. Electrophoresis: Gel electrophoresis, polyacrylamide gel electrophoresis.
Learning activity	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. The cell: A molecular approach, Geoffrey M. Cooper, ASM P					
	2013.					
	2. Biophysics, VasanthaPattabhi, N. Gautham, Narosa Publishing, 2009					
TEXT BOOKS	3. Biophysics, P. S. Mishra VK Enterprises, 2010.					
	Biophysics, M. A Subramanian, MJP Publishers, 2005.					
	5. Bioinstrumentation, L. Veerakumari, MJP Publishers, 2006.					
	1. Chemical Biophysics by Daniel A Beard (Cambridge University Press,					
	2008).					
	2. Essential cell biology by Bruce Albert et al (Garland Science)					
	3. Biophysics, W. Hoppe, W. Lohmann, H. Markl and H. Ziegler.					
REFERENCE	Springer Verlag, Berlin (1983).					
BOOKS	4. Membrane Biophysics by Mohammad Ashrafuzzaman, Jack A.					
	Tuszynski, (Springer science & business media).					
	5. Biological spectroscopyby Iain D. Campbell, Raymond A. Dwek					
	1. General Bio: http://www.biology.arizona.edu/DEFAULT.html					
WEB SOURCES	2. Spectroscopy: <u>http://www.cis.rit.edu/htbooks/nmr/inside.htm</u>					
	3. Electrophoresis: <u>http://learn.genetics.utah.edu/content/labs/gel/</u>					
	4. Online biophysics programs: <u>http://mw.concord.org/modeler/</u>					
	5. <u>https://blanco.biomol.uci.edu/WWWResources.html</u>					

Elective List 2 – NONLINEAR DYNAMICS

I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	NONLINEAR DYNAMICS	ELECTIVE				3	4	75

Pre-Requisites

Basics of Numerical methods and Differential equations, Fundamentals of linear and nonlinear waves, and Basics of communication systems

- > To school the students about the analytical and numerical techniques of nonlinear dynamics.
- > To make the students understand the concepts of various coherent structures.
- > To train the students on bifurcations and onset of chaos.
- > To educate the students about the theory of chaos and its characterization.
- > To make the students aware of the applications of solitons, chaos and fractals.

UNITS	Course Details			
	Linear waves-ordinary differential equations(ODEs)-Partial differential			
UNIT I:	equations(PDEs)- Methods to solve ODEs and PDEs Numerical			
GENERAL	methods – Linear and Nonlinear oscillators-Nonlinear waves-Qualitative			
	features			
UNIT II-	Linear and Nonlinear dispersive waves - Solitons – KdB equation – Basic			
NON LINEAR	theory of KdB equation Introduction to synergetics - examples from			
WAVES	Physics, Chemistry, Biology, Computer Science, Economics, Ecology, and			
	Sociology.			
UNIT III:	Ubiquitous soliton equations – AKNS Method, Backlund transformation,			
COHERENT	Hirotabilinearization method, Painleve analysis - Perturbation methods-			
STRUCTURES	Solitons in Optical fibres - Applications.			
UNIT IV:	One dimensional flows – Two dimensional flows – Phase plane – Limit cycles – Simple bifurcations – Discrete Dinamical system – Strange			
BIFURCATIONS				
AND ONSET OF	attractors – Routes to chaos			
CHAOS				
	Soliton based communication systems - Solition based computation -			
UNIT V	Synchronization of chaos – Chaos based communication – Cryptography			
APPLICATIONS	– Image processing – Stochastic – Resonance – Chaos based computation			
	– Time Series analysis.			
	Expert Lectures, Online Seminars - Webinars on Industrial			
Learning activity	Interactions/Visits, Competitive Examinations, Employable and			
- ·	Communication Skill Enhancement, Social Accountability and Patriotism			

	1. M.Lakshmanan and S.Rajasekar, Nonlinear Dynamics: Integrability,
	Chaos and Patterns.Springer, 2003.
	2. A.Hasegawa and Y.Kodama, Solitons in Optical Communications.
	Oxford Press, 1995.
	3. Drazin, P. G. Nonlinear Systems. Cambridge University Press,
TEVT DOOLG	2012. ISBN: 9781139172455.
IEAT BOOKS	4. Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems
	and Chaos. Springer, 2003. ISBN: 9780387001777.
	5. Strogatz, Steven H. Nonlinear Dynamics and Chaos: With
	Applications to Physics, Biology, Chemistry, and Engineering.
	Westview Press, 2014. ISBN: 9780813349107.
	1. G.Drazin and R.S.Johnson. Solitons: An Introduction. Cambridge
	University Press, 1989.
	2. M.Lakshmanan and K.Murali. Chaos in Nonlinear Oscillators.
REFERENCE	World Scientific, 1989.
BOOKS	3. S.Strogatz. Nonlinear Dynamics and Chaos. Addison Wesley, 1995.
	4. Hao Bai-Lin, Chaos (World Scientidic, Singapore, 1984).
	5. Kahn, P. B., Mathematical Methods for Scientists & Engineers
	(Wiley, NY, 1990)
	1. https://www.digimat.in/nptel/courses/video/108106135/L06.html
	2. http://digimat.in/nptel/courses/video/115105124/L01.html
WEB SOURCES	3. https://www.digimat.in/nptel/courses/video/108106135/L01.html
	4. <u>http://complex.gmu.edu/neural/index.html</u>
	5. <u>https://cnls.lanl.gov/External/Kac.php</u>

Elective - List 2 – ADVANCED MATHEMATICAL PHYSICS

I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	ADVANCED MATHEMATICAL PHYSICS	ELECTIVE				3	4	75

Pre-Requisites
Good knowledge in basic mathematics
Learning Objectives
> To educate and involve students in the higher level of mathematics and mathematical
methods relevant and applicable to Physics.

UNITS	Course Details
UNIT I: DISCRETE GROUPS	Definition of a group, subgroup, class, Lagrange's theorem, invariant subgroup, Homomorphism and isomorphism between two groups. Representation of a group, unitary representations, reducible and irreducible representations Schur's lemmas, orthogonality theorem, character table, reduction of Kronecker product of representations, criterion for irreducibility of a representation.
UNIT II: CONTINUOUS GROUPS	Infinitesimal generators, Lie algebra; Rotation group, representations of the Lie algebra of the rotation group, representation of the rotation group, D-matrices and their basic properties. Addition of two angular momenta and C.G. coefficients, Wigner-Eckart theorem.
UNIT III: SPECIAL UNITARY GROUPS	Definition of unitary, unimodular groups $SU(2)$ and $SU(3)$. Lie algebra of $SU(2)$. Relation between $SU(2)$ and rotation group. Lie algebra of $SU(3)$ -Gellmann's matrices. Cartan form of the $SU(3)$. Lie algebra, roots and root diagram for $SU(3)$. Weights and their properties, weight diagrams for the irreducible representations 3.3^* -, $6,6$ 8, 10 and 10 of $SU(3)$.
UNIT IV: TENSORS	Cartesian vectors and tensors illustration with moment of inertia, conductivity, dielectric tensors. Four vector in special relativitity, vectors and tensors under Lorentz transformations, Illustration from physics. Vectors and tensors under general co-ordinate transformations, contravariant and covariant vectors and tensors, mixed tensors; tensor algebra, addition, subtraction, direct product of tensors, quotient theorem, symmetric and antisymmetric tensors.
UNIT V: TENSOR CALCULUS	Parallel transport, covariant derivative, affine connection. Metric tensor. Expression for Christoffel symbols in terms of and its derivatives (assuming D $g = 0$. Curvature tensor, Ricci tensor and Einstein tensor. Bianchi identities, Schwarzschild solution to the Einstein equation G=0.

Learning activity	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism					
TEXT BOOKS	 A. W.Joshi, Group Theory for Physicists D.B.Lichtenberg, Unitary Symmetry and Elementary Particles E.Butkov, Mathematical Physics J.V.Narlikar, General Relativity & Cosmology R. Geroch, Mathematical Physics, The University of Chicago press (1985). 					
REFERENCE BOOKS	 M.Hamermesh <i>Group Theory</i> M.E.Rose: Elementary Theory of Angular Momentum Georgi : Lie Groups for Physicists E.A.Lord: Tensors, Relativity & Cosmology P. Szekeres, A course in modern mathematical physics: Groups, Hilbert spaces and differential geometry, Cambridge University Press. 					
WEB SOURCES	 https://vdoc.pub/documents/unitary-symmetry-and-elementary-particles- c4qsfejthkc0 https://physics.iith.ac.in/HEP_Physics/slides/poplawskitalk.pdf https://www.hindawi.com/journals/amp/ https://projecteuclid.org/journals/advances-in-theoretical-and- mathematical-physics https://www.springer.com/journal/11232 					

Elective - List 3 – ADVANCED SPECTROSCOPY

I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	ADVANCED SPECTROSCOPY	ELECTIVE				3	4	75

Pre-Requisites

Basic knowledge of group theory, abstract thinking ability, lasers, chemical bonds and molecular structures

- Helps students understand and appreciate spectroscopy as a sufficiently broad field in which many sub disciplines exist.
- > Make them appreciate each of these specific techniques with numerous implementations.
- To realize the progress in this field that is rapid, resulting in improved instrument capabilities and an ever-widening range of applications.
- To apply group theory in spectroscopy to shed light on molecular symmetry and determine important physical parameters.

UNITS	CourseDetails
	Group axioms –subgroup, simple group, Abelian group, cyclic group, order of
	a group, class- Lagrange's theorem statement and proof - Symmetry
UNITI:	operations and symmetry elements - Application: construction of group
MOLECULAR	multiplication table (not character table) for groups of order 2, 3, cyclic group
SPECTROSCOPY	of order 4, noncyclic group of order 4 – reducible and irreducible
AND GROUP	representations- Unitary representations – Schur's lemmas – Great
THEORY	orthogonality theorem - point group -Simple applications : Symmetry
	operations of water and ammonia- Construction of character table for C_{2v}
	(water) and C _{3v} (ammonia) molecules
	Lasers as Spectroscopy Light sources – Special Characteristics of Laser
UNITII:	emission- ultra short pulses- laser cooling -Single and multi-mode lasers-
LASER	Laser tenability- Fluorescence spectroscopy with lasers- Laser Raman
SPECTROSCOPY	Spectroscopy – Non-linear Spectroscopy – Applications of Laser
	Spectroscopy in medical fields, materials science research
	Basic idea of Mossbauer spectroscopy - Principle- Mossbauer effect-
UNITIII:	Recoilless emission and absorption- Chemical shift -Effect of electric and
MOSSBAUER	magnetic fields – hyperfine interactions- instrumentation-Applications:
SPECTROSCOPY	understanding molecular and electronic structures

UNIT IV: XRAY PHOTOELECTRO N SPECTROSCOPY	rinciple – XPS spectra and its interpretation- ECSA-EDAX- other forms of TPS – chemical shift - Applications : - stoichiometric analysis- electronic tructure- XPES techniques used in astronomy, glass industries, paints and in iological research						
UNIT V: MOLECULAR MODELLING	etermination of force constants- force field from spectroscopic data-normal bordinate analysis of a simple molecule (H2O) – analyzing thermodynamic inctions, partition functions, enthalpy, specific heat and related parameters om spectroscopic data- molecular modelling using data from various bectroscopic studies						
Learning activity	pert Lectures, Online Seminars - Webinars on Industrial cractions/Visits, Competitive Examinations, Employable and nmunication Skill Enhancement, Social Accountability and Patriotism						
TEXT BOOKS	 William Kemp, 2019, Organic Spectroscopy (2nd Edition) MacMillan, Indian Edition. C N Banwell and McCash, 1994, Fundamentals of Molecular Spectroscopy, 4th Edition, Tata McGraw–Hill, New Delhi. D.N. Satyanarayana, 2001, Vibrational Spectroscopy and Applications, New Age International Publication. B.K. Sharma , 2015, Spectroscopy, Goel Publishing House Meerut. J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal Society of Chemistry, RSC, Cambridge. 						
REFERENCE BOOKS	 Demtroder. W, Laser Spectroscopy: Basic concepts and Instrumentation, SpringerLink. B. P. Straughan and S. Walker, 1976, Spectroscopy Vol.I., Chapman and Hall, New York. J L McHale, 2008, Molecular Spectroscopy, Pearson Education India, New Delhi. David. L. Andrews, Introduction to Laser Spectroscopy, Springer, 2020 Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7th Edition) New Age International Publishers. 						
WEB SOURCES	 Fundamentals of Spectroscopy - Course (nptel.ac.in) http://mpbou.edu.in/slm/mscche1p4.pdf https://onlinecourses.nptel.ac.in/noc20_cy08/preview https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy- introduction-XCWRu https://serc.carleton.edu/research_education/geochemsheets/techniques/ mossbauer.html 						

Elective - List 3 – MICROPROCESSOR 8085 AND MICROCONTROLLER 8051

I/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	MICROPROCESSOR 8085 AND MICROCONTROLLER 8051	ELECTIVE				3	4	75

Pre-Requisites
Knowledge of number systems and binary operations
Learning Objectives
> To provide an understanding of the architecture and functioning of microprocessor 8085A
and to the methods of interfacing I/O devices and memory to microprocessor
> To introduce 8085A programming and applications and the architecture and instruction

sets of microcontroller 8051

UNITS	Course Details
	Instruction set - Addressing modes - Programming techniques -
UNIT I:8085	Memory mapped I/O scheme- I/O mapped I/O scheme - Memory
PROGRAMMING,	and I/O interfacing- Data transfer schemes - Interrupts of 8085 -
PERIPHERAL	Programmable peripheral interface (PPI) - Control group and
DEVICES AND THEIR	control word- Programmable DMA controller - Programmable
INTERFACING	interrupt controller - Programmable communication interface -
	Programmable counter /interval timer.
UNIT II:	Seven segment display interface - Interfacing of Digital to Analog
8085 INTERFACING	converter and Analog to Digital converter - Stepper motor
APPLICATIONS	interface - Measurement of electrical quantities -Voltage and
	current) Measurement of physical quantities (Temperature an
	strain).
	Introduction – Features of 8051 – 8051 Microcontroller Hardware:
UNIT III:	Pin-out 8051, Central Processing Unit (CPU), internal RAM,
8051	Internal ROM, Register set of 8051 - Memory organization of
MICROCONTROLLER	8051 – Input/Output pins, Ports and Circuits – External data
HARDWARE	memory and program memory: External program memory,
	External data memory.
	Addressing modes - Data moving (Data transfer) instructions:
UNIT IV: 8051	Instructions to Access external data memory, external ROM /
INSTRUCTION SET	program memory, PUSH and POP instructions, Data exchange
AND ASSEMBLY	instructions $-$ Logical instructions: byte and bit level logical
LANGUAGE	instructions Logical instructions. Oyu and oit level logical

PROGRAMMING	operations, Rotate and swap operations - Arithmetic instructions:
	Flags, Incrementing and decrementing, Addition, Subtraction,
	Multiplication and division, Decimal arithmetic – Jump and CALL
	instructions: Jump and Call program range, Jump, Call and
	subroutines – Programming.
	8051 Interrupts – Interrupt vector table – Enabling and disabling an
	interrupt – Timer interrupts and programming – Programming
UNIT V:	external hardware interrupts – Serial communication interrupts and
	programming – Interrupt priority in the 8051 : Nested interrupts,
PROGRAMMING	Software triggering of interrupt. LED Interface Seven segment
AND INTERFACING	display interface- Interfacing of Digital to Analog converter and
TOEXTERNAL	Analog to Digital converter - Stepper motor interface -
WORLD	Measurement of electrical quantities – Voltage and current)
	Measurement of physical quantities(Temperature an strain).
	Expert Lectures, Online Seminars - Webinars on Industrial
	Interactions/Visits, Competitive Examinations, Employable and
Learning activity	Communication Skill Enhancement, Social Accountability and
	Patriotism
	 A. NagoorKani, Microprocessors & Microcontrollers, RBA Publications (2009). A. P. Godse and D. A. Godse, Microprocessors, Technical
	Publications, Pune (2009).
	3. Ramesh Gaonkar, Microprocessor Architecture, Programming
TEXT BOOKS	(2013)
	4. B. Ram. Fundamentals of Microprocessors & Microcontrollers.
	DhanpatRai publications New Delhi (2016).
	5. V. Vijayendran, 2005, Fundamentals of Microprocessor-8085",
	3rd Edition S.Visvanathan Pvt, Ltd.
	1. Douglas V. Hall, Microprocessors and Interfacing programming
	2 Muhammad Ali Mazidi Janica GillispiaMazidi Rolin D
	Mckinlay. The 8051 Microcontroller and Embedded Systems.
	Pearson Education (2008).
	3. Barry B. Brey, 1995, The Intel Microprocessors 8086/8088,
REFERENCE BOOKS	80186, 80286, 80386 and 80486, 3rd Edition, Prentice- Hall of
	India, New Delhi.
	4. J. Uffrenbeck, "The 8086/8088 Family-Design, Programming
	Prentice-Hall of India New Delhi
	5. W. A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors:
	Programming, Interfacing, Software, Hardware and
	Applications", Prentice-Hall of India, New Delhi.

	1. <u>https://www.tutorialspoint.com/microprocessor/microprocessor_8085_architec</u>
WED	ture.html
WEB SOUDC	2. http://www.electronicsengineering.nbcafe.in/peripheral-mapped-io-interfacing/
SOURC	3. https://www.geeksforgeeks.org/programmable-peripheral-interface-8255/
Еð	4. http://www.circuitstoday.com/8051-microcontroller
	5. https://www.elprocus.com/8051-assembly-language-programming/

Elective - List 3 - CHARACTERIZATON OFI/II YEAR - SECOND/THIRDMATERIALSSEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	CHARACTERIZATON OF MATERIALS	ELECTIVE				3	4	75

Pre-Requisites

Fundamentals of Heat and Thermodynamics, Basics of Optical systems, Microscopic systems, Electrical measurements and Fundamentals of Spectroscopy.

- To make the students learn some important thermal analysis techniques namely TGA, DTA, DSC and TMA.
- To make the students understand the theory of image formation in an optical microscope and to introduce other specialized microscopic techniques.
- To make the students learn and understand the principle of working of electron microscopes and scanning probe microscopes.
- To make the students understand some important electrical and optical characterization techniques for semiconducting materials.
- To introduce the students the basics of x-ray diffraction techniques and some important spectroscopic techniques.

UNITS	Course details
UNIT I THERMAL ANALYSIS	Introduction – thermogravimetric analysis (TGA) – instrumentation – determination of weight loss and decomposition products – differential thermal analysis (DTA)- cooling curves – differential scanning calorimetry (DSC) – instrumentation – specific heat capacity

	measurements – determination of thermomechanical parameters.		
	Optical Microscopy: optical microscopy techniques – Bright field		
UNIT II MICROSCOPIC	staining microscopy - phase contrast microscopy – differential		
METHODS	microscopy digital holographic microscopy - oil immersion		
	objectives - quantitative metallography - image analyzer.		
UNIT III ELECTRON SEM, EDAX, EPMA, TEM: working principle and Instrume			
MICROSCOPY AND	sample preparation –Data collection, processing and analysis- Scanning		
SCANNING PROBE tunnelingmicroscopy (STEM) - Atomic force microscopy (
MICROSCOPY	Scanning new field optical microscopy.		

UNIT IV ELECTRICAL METHODS AND OPTICAL CHARACTERISATION	Two probe and four probe methods- van der Pauw method – Hall probe and measurement – scattering mechanism – C-V characteristics – Schottky barrier capacitance – impurity concentration – electrochemical C-V profiling – limitations. Photoluminescence – light – matter interaction – instrumentation – electroluminescence – instrumentation – Applications.
	Principles and instrumentation for UV-Vis-IR, FTIR spectroscopy, Raman spectroscopy, ESR, NMR, NQR, XPS, AES and SIMS-
UNIT V	proton induced X-ray Emission spectroscopy (PIXE) -Rutherford
X-RAY AND	Back Scattering (RBS) analysis-application - Powder diffraction -
SPECTROSCOPIC	Powder diffractometer -interpretation of diffraction patterns -
METHODS	indexing - phase identification - residual stress analysis - Particle
	size, texture studies - X-ray fluorescence spectroscopy - uses.
	Expert Lectures, Online Seminars - Webinars on Industrial
T • <i>J</i> •• <i>J</i>	Interactions/Visits, Competitive Examinations, Employable and
Learning activity	Communication Skill Enhancement, Social Accountability and
	Patriotism

TEXT BOOKS	 R. A. Stradling and P. C. Klipstain. Growth and Characterization of semiconductors. Adam Hilger, Bristol, 1990. J. A. Belk. Electron microscopy and microanalysis of crystalline materials. Applied Science Publishers, London, 1979. Lawrence E. Murr. Electron and Ion microscopy and Microanalysis principles and Applications. Marcel Dekker Inc., New York, 1991 D. Kealey and P. J. Haines. Analytical Chemistry. Viva Books Private Limited, New Delhi, 2002. Li, Lin, Ashok Kumar Materials Characterization Techniques Sam Zhang; CRC Press,(2008).
REFERENCE BOOKS	 Cullity, B.D., and Stock, R.S., "Elements of X-Ray Diffraction", Prentice- Hall, (2001). Murphy, Douglas B, Fundamentals of Light Microscopy and Electronic Imaging, Wiley-Liss, Inc. USA, (2001).

	3. Tyagi, A.K., Roy, Mainak, Kulshreshtha, S.K., and Banerjee, S., Advanced				
	Techniques for Materials Characterization, Materials Science Foundations				
	(monograph series), Volumes $49 - 51$, (2009). Volumes $49 - 51$, (2009).				
	4. Wendlandt, W.W., Thermal Analysis, John Wiley & Sons, (1986).				
	5. Wachtman, J.B., Kalman, Z.H., Characterization of Materials,				
	ButterworthHeinemann, (1993)				
	1. https://cac.annauniv.edu/uddetails/udpg_2015/77.%20Mat%20Sci(AC).pdf				
WFB 2. <u>http://www.digimat.in/nptel/courses/video/113106034/L11.htm</u>					
	3. https://nptel.ac.in/courses/104106122				
SUURCES	4. https://nptel.ac.in/courses/118104008				
	5. https://www.sciencedirect.com/journal/materials-characterization				

Elective - List 3 – MEDICAL PHYSICSI/II YEAR – SECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	MEDICAL PHYSICS	ELECTIVE				3	4	75

Pre-Requisites				
Fundamentals of physiological concepts, Basics of instruments principle,				
Learning Objectives				
To understand the major applications of Physics to Medicine				
> To study the aid of different medical devices such as X-ray machines, gamma camera,				
accelerator and nuclear magnetic resonance.				
> To outline the principles of Physics of different medical radiation devices and their modern				
advances, especially in medical radiation therapy and different applications in medical				

- physics.
- \succ To introduce the ideas of Radiography.
- > To form a good base for further studies like research.

UNITS	CourseDetails
UNIT I: X-RAYS AND	Electromagnetic Spectrum – Production of X-Rays – X-Ray Spectrum – Bremsstrahlung – Characteristic X-Ray – X-Ray Tubes – Coolidge Tube – X-
TRANSDUCERS	Ray Tube Design – Thermistors – photo electric transducers – Photo voltaic cells – photo emissive cells –Photoconductive cells– piezoelectric transducer

UNIT II:					
BLOOD	Introduction $-\Box$ sphygmomanometer $-$ Measurement of heart rate $-$ basic principles of electrocardiogram (ECG). Basic principles of electro				
PRESSURE	neurography (ENG) – Basic principles of magnetic resonance imaging (MR)				
MEASUREMENTS	neurogruphy (Er(G) - Busic principies of magnetic resonance magning (Wite).				
	Radiation Units – Exposure – Absorbed Dose – Rad to Gray – Kera Relative				
UNIT III:	Biological Effectiveness –Effective Dose – Sievert (Sv) – Inverse Square Law				
RADIATION	- Interaction of radiation with Matter - Linear Attenuation Coefficient -				
PHYSICS	HYSICS Radiation Detectors –Thimble Chamber – Condenser Chambers – Geige Counter – Scintillation Counter				
UNIT IV:	Radiological Imaging – Radiography – Filters – Grids – Cassette – X-Ray				
MEDICAL	Film – Film processing – Fluoroscopy – Computed Tomography Scanner –				
IMAGING	Principal Function – Display – Mammography – Ultrasound Imaging –				
PHYSICS	Magnetic Resonance Imaging – Thyroid Uptake System – Gamma Camera				
	(Only Finciple, Function and display)				
UNITV:	Principles of Radiation Protection – Protective Materials – Radiation Effects –				
RADIATION	Somatic – Genetic Stochastic and Deterministic Effect – Personal Monitoring				
PROTECTION	Devices – TLD Film Badge – Pocket Dosimeter				
	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,				
Learning activity	Competitive Examinations, Employable and Communication Skill				
	Enhancement, Social Accountability and Patriotism				
	1. Dr.K.Thayalan , Basic Radiological Physics, Jayapee Brothers Medical				
	Publishing Pvt. Ltd. New Delhi, 2003.				
	2. Curry, Dowdey and Murry, Christensen's Physics of Diagnostic				
	Radiology: -LippincotWilliams and Wilkins, 1990.				
	3. FM Khan, <i>Physics of Radiation Therapy</i> , William and Wilkins, 3rd ed,				
TEXT BOOKS	2003.				
	4. D. J. Dewhurst, An Introduction to Biomedical Instrumentation, 1st ed,				
	Elsevier Science, 2014.				
	5. R.S. Khandpur, Hand Book of Biomedical Instrumentations, 1st ed, TMG,				
	New Delhi, 2005.				
	1. Muhammad Maqbool, An Introduction to Medical Physics, 1st ed,				
	Springer International Publishing, 2017.				
	2. Daniel Jirák, FrantišekVítek, Basics of Medical Physics, 1st ed, Charles				
	University, Karolinum Press, 2018				
REFERENCE	3. Anders Brahme, Comprehensive Biomedical Physics, Volume 1, 1st ed,				
BOOKS	Elsevier Science, 2014.				
	4. K. Venkata Ram, Bio-Medical Electronics and Instrumentation, 1st ed,				
	Galgotia Publications, New Delhi, 2001.				
	5. John R. Cameron and James G. Skofronick, 2009, Medical Physics, John				
	Wiley Interscience Publication, Canada, 2nd edition.				

	1.	https:nptel.ac.in/courses/108/103/108103157/
	2.	https://www.studocu.com/en/course/university-of-technology-
		sydney/medical-devices-and-diagnostics/225692
WEB SOURCES	3.	https://www.technicalsymposium.com/alllecturenotes_biomed.html
	4.	https://lecturenotes.in/notes/17929-note-for-biomedical-instrumentation-
		bi-by-deepraj-adhikary/78
	5.	https://www.modulight.com/applications-medical/

Elective - List 3 – SOLID WASTE	I/II YEAR – SECOND/THIRD
MANAGEMENT	SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	SOLID WASTE MANAGEMENT	ELECTIVE				3	4	75

Pre-Requisites		
Basic knowledge of solid waste and its type		
Learning Objectives		
To gain basic knowledge in solid waste management procedures		
To gain industry exposure and be equipped to take up a job.		
To harness entrepreneurial skills.		
To analyze the status of solid waste management in the nearby areas		

- To analyze the status of solid waste management in the nearby areas.
- To analyze the status of solid waste managements.
 To sensitize the importance of healthy practices in waste managements.

UNITS	Course Details
UNIT I:	Introduction - Definition of solid waste - Types - Hazardous Waste:
SOLID WASTE	Resource conservation and Renewal act – Hazardous Waste: Municipal
MANAGEMENT	Solid waste and non-municipal solid waste.
UNIT II: SOLID WASTE CHARACTERISTICS	Solid Waste Characteristics: Physical and chemical characteristics - SWM hierarchy - factors affecting SW generation
UNIT III:	Tools and equipment - Transportation - Disposal techniques -
TOOLS AND	Composting and land filling technique

EQUIPMENT			
UNIT IV: ECONOMIC DEVELOPMENT	SWM for economic development and environmental protection Linking SWM and climate change and marine litter.		
UNIT V: INDUSTRIAL VISIT	SWM Industrial visit – data collection and analysis - presentation		
Learning activity	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism		

	1. Handbook of Solid Waste Management /Second Edi	tion,
	George Tchobanoglous, McGraw Hill (2002).	
	2. Prospects and Perspectives of Solid Waste Management, I	Prof.
	B BHosett, New Age International (P) Ltd (2006).	
	3. Solid and Hazardous Waste Management, Second Edition,	M.N
TEXT BOOKS	Rao, BS Publications/ BSPBooks (2020).	
	4. Integrated Solid Waste Management Engineering Principles	and
	Management, Tchobanoglous, McGraw Hill (2014).	
	5. Solid Waste Management (SWM), Vasudevan Rajaram,	PHI
	learning private limited, 2016	
	1. Municipal Solid Waste Management, Christian Ludwig, Sar	nuel
	Stucki, Stefanie Hellweg, Springer Berlin Heisenberg, 2012	
	2. Solid Waste Management Bhide A. D Indian Nati	onal
	Scientific Documentation Centre, New Delhi Edition 1	1983
DEFEDENCE	ASIN: B0018MZ0C2	
REFERENCE	3. Solid Waste Techobanoglous George; Kreith, Frank McC	Jraw
DOORS	Hill Publication, New Delhi 2002, ISBN 9780071356237	
	4. Environmental Studies Manjunath D. L. Pearson Educa	ation
	Publication, New Delhi, 20061SBN-I3: 978-8131709122	
	5. Solid Waste Management Sasikumar K. PHI learning, 1	New
	Delhi, 2009 ISBN 8120338693	
	1. <u>https://www.meripustak.com/Integrated-Solid-Waste-Managemer</u>	<u>nt-</u>
	Engineering-Principles-And-Management-Issues-125648	
	2. <u>https://testbook.com/learn/environmental-engineering-solid-</u>	-
WEB SOURCES	waste-management/	
	3. <u>https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCl</u>	<u>RA</u>
	KisA-	
	<u>gM01Vp1smAJN93CHA1sX6NuNeOKLXfQJ_jxHCOVH3</u>	<u>QXj</u>

	J1iACq30KofoaAmFsEALw_wcB
4.	https://images.app.goo.gl/tYiW2gUPfS2cxdD28
5.	https://amzn.eu/d/5VUSTDI

Elective - List 3 –SEWAGE AND WASTEI/II YEAR –WATER TREATMENT AND REUSESECOND/THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	SEWAGE AND WASTE WATER TREATMENT AND REUSE	ELECTIVE				3	4	75

Pre-Requisites			
Basic knowledge of classification of sewage and solid waste and its harmful effects.			
Learning Objectives			
To gain basic knowledge in sewage and waste water Treatment procedures			
> To gain industry exposure and be equipped to take up job.			
> To harness entrepreneurial skills.			

> To analyze the status of sewage and waste water management in the nearby areas.

> To sensitize the importance of healthy practices in waste water management.

UNITS	Course Details
UNIT I: RECOVERY & REUSE OF WATER	Recovery & Reuse of water from Sewage and Waste water: Methods of recovery: Flocculation - Sedimentation - sedimentation with coagulation - Filtration - sand filters - pressure filters - horizontal filters - vector control measures in industries - chemical and biological methods of vector eradication
UNIT II: DISINFECTION	Disinfection: Introduction to disinfection and sterilization: Disinfectant - UV radiation - Chlorination - Antisepsis - Sterilant - Aseptic and sterile - Bacteriostatic and Bactericidal - factors affecting disinfection.

UNIT III: CHEMICAL DISINFECTION	UNIT III: CHEMICAL SINFECTION Chemical Disinfection: Introduction - Theory of Chemical Disinfection Chlorination Other Chemical Methods - Chemical Disinfection Treatment Requiring - Electricity - Coagulation/Flocculation Agents as Pretreatment Disinfection By-Products(DBPs)				
UNIT IV:	Physical Disinfection: Introduction - Ultraviolet Radiation - Solar				
PHYSICAL	Disinfection - Heat Treatment - Filtration Methods - Distillation -				
DISINFECTION	Electrochemical Oxidation Water Disinfection by Microwave Heating.				
UNIT V:					
INDUSTRIAL	Industrial visit – data collection and analysis - presentation				
VISIT					
	Expert Lectures, Online Seminars - Webinars on Industrial				
Learning activity	Interactions/Visits, Competitive Examinations, Employable and				
	Communication Skill Enhancement, Social Accountability and Patriotism				

	1. Drinking water and disinfection technique, Anirudhha Balachandra. CRC press (2013)
	 Design of Water and Wastewater Treatment Systems (CV-424/434), ShashiBushan Jain Bros (2015)
	3. Integrated Water Resources Management, Sarbhukan M M, CBS
TEXT BOOKS	PUBLICATION (2013)
	4. C.S. Rao, Environmental Pollution Control Engineering, New Age International, 2007
	5. S.P. Mahajan, Pollution control in process industries, 27th Ed. Tata
	McGraw Hill Publishing Company Ltd., 2012.
	1. Handbook of Water and Wastewater Treatment Plant Operations, Eraph B. Spellman, CBC Press, 2020
	2 Wastewater Treatment Technologies MrituniayChaubey Wiley
	2. Wastewater Treatment reenhologies, wintunjayenauocy, wincy, 2021
REFERENCE	3. Metcalf and Eddy, Wastewater Engineering, 4th ed., McGraw Hill
BOOKS	Higher Edu., 2002.
	4. W. Wesley Eckenfelder, Jr., Industrial Water Pollution Control, 2nd
	Edn., McGraw Hill Inc., 1989
	5. Lancaster, Green Chemistry: An Introductory Text, 2nd edition,
	RSC publishing, 2010.
	1. <u>https://www.google.co.in/books/edition/Drinking_Water_Disinfectio</u>
	<u>nTechniques/HVbNBQAAQBAJ?hl=en</u>
	2.https://www.meripustak.com/Integrated-Solid-Waste-Management-
	Engineering-Principles-And-Management-Issues-125648?
	<u>3.https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsAC-</u>
WEB SOURCES	<u>gM0iVpismAJN93CHA1sX6NuNeOKLXfQJjxHCOVH3QXjJ1iAC</u>
	<u>q30KofoaAmFsEALw_wcB</u>
	4. <u>https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsA</u>
	<u>C-gM0iVpismAJN93CHA1sX6NuNeOKLXfQJ</u>
	jxHCOVH3QXjJ1iACq30KofoaAmFsEALw_wcB
	5. https://www.amazon.in/Design-Wastewater-Treatment-Systems-CV-

424/dp/B00IG2PI6K/ref=asc_df_B00IG2PI6K/?tag=googleshopmob
-21&linkCode=df0&hvadid=397013004690&hvpos=&hvnetw=
g&hvrand=4351305881865063672&hvpone=&hvptwo=&hvqmt=
&hvdev=m&hvdvcmdl=&hvlocint=&hvlocphy=9061971&hvtargid
=pla-890646066127&psc=1&ext_vrnc=hi

Elective - List 3 – SOLAR ENERGY	I/II YEAR – SECOND/THIRD
UTILIZATION	SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	SOLAR ENERGY UTILIZATION	ELECTIVE				3	4	75

Pre-Requisites					
Basic knowledge of heat energy, way of transfer of heat, solar energy, materials types					
Learning Objectives					
To impart fundamental aspects of solar energy utilization.					
To give adequate exposure to solar energy related industries					
To harness entrepreneurship skills					
> To understand the different types of solar cells and channelizing them to the different					
sectors of society					
> To develop an industrialist mindset by utilizing renewable source of energy					

> To develop an industrialist mindset by utilizing renewable source of energy

UNITS	Course Details
UNIT I:	Conduction, Convection and Radiation - Solar Radiation at the
HEAT TRANSFER &	earth's surface - Determination of solar time - Solar energy
RADIATION ANALYSIS	measuring instruments.
UNIT II: SOLAR COLLECTORS	Physical principles of conversion of solar radiation into heat flat plate collectors - General characteristics – Focusing collector systems – Thermal performance evaluation of optical loss.
UNIT III:	Types of solar water heater - Solar heating system - Collectors and
SOLAR HEATERS	storage tanks – Solar ponds – Solar cooling systems.
UNIT IV:	Photo Voltaic principles – Types of solar cells – Crystalline
SOLAR ENERGY	silicon/amorphous silicon and Thermo - electric conversion - process
CONVERSION	flow of silicon solar cells- different approaches on the process-

		texturization, diffusion, Antireflective coatings, metallization.		
UNIT V: NANOMATERIALS IN FUEL CELL APPLICATIONS		Use of nanostructures and nanomaterials in fuel cell technology -		
		high and low temperature fuel cells, cathode and anode reactions,		
		fuel cell catalysts, electrolytes, ceramic catalysts. Use of Nano		
		technology in hydrogen production and storage.		
		Industrial visit – data collection and analysis - presentation		
		Expert Lectures, Online Seminars - Webinars on Industrial		
Learning activity		Interactions/Visits, Competitive Examinations, Employable and		
		Communication Skill Enhancement, Social Accountability and		
		Patriotism		
TEXT	1 0.1.	energy stillestion C.D. Dei Khang and High and Delli 1007		
	I. Solar	energy utilization -G.D. Rai – Khanna publishers – Delni 1987.		
BOOKS	2. Mahe	shwar Sharon, Madhuri Sharon, Carbon "Nano forms and		
	Applications", Mc Graw-Hill, 2010.			
	3. Soteris A. Kalogirou, "Solar Energy Engineering: Processes and Systems",			
	Academic Press, London, 2009			
	4. Tiwari G.N, "Solar Energy - Fundamentals Design, Modelling and			
	applications, Narosa Publishing House, New Delhi, 2002			
	5. Sukhatme S.P. Solar Energy, Tata McGraw Hill Publishing Company Ltd.,			
	New]	Delhi, 1997.		
REFERENCE	1. Energ	gy – An Introduction to Physics – R.H.Romer, W.H.Freeman.(1976)		
BOOKS	2. Solar energy thermal processes – John A.Drife and William. (1974)			
	3. John W. Twidell& Anthony D.Weir, 'Renewable Energy Resources, 2005			
	4. John A. Duffie, William A. Beckman, Solar Energy: Thermal Processes,			
	4th Edition, john Wiley and Sons, 2013			
	5. Duffie, J.A., Beckman, W.A., "Solar Energy Thermal Process", John Wiley			
	and Sons,2007.			
WEB	1. <u>htt</u>	ps://pdfs.semanticscholar.org/63a5/a69421b69d2ce9f359bbfc86c63556		
SOURCES	<u>f9a4fb</u>			
	2. <u>htt</u>	2. <u>https://books.google.vg/books?id=l-</u>		
	2 <u>XF</u>	<u>XHcwZo9XwC&sitesec=buy&source=gbs_vpt_read</u>		
	$3. \frac{WV}{4}$	ww.freevideolectures.com		
	5. $\frac{v}{htt}$	p://www.e-booksdirectory.com		