

THIRUVALLUVAR UNIVERSITY SERKKADU, VELLORE-632115

M.SC., CHEMSITRY

SYLLABUS

FROM THE ACADEMIC YEAR 2023 – 2024

CONTENTS

1.		Preamble
2.		Structure of Course
3.		Learning and Teaching Activities
4.		Tutorial Activities
5.		Laboratory Activities
6.		Field Study Activities
7.		Assessment Activities
	7.1	Assessment principles
	7.2	Assessment Details
8.		Teaching methodologies
9.		Faculty Course File
10.		Template for PG Programme in Chemistry
11.		Template for Semester
12.		Instructions for Course Transaction
13.		Testing Pattern
14.		Different Types of Courses
15.		Elective Courses (ED from other Department Experts)
16.		Skill Development Courses
17.		Institution-Industry-Interaction

18. Model Syllabus

TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK FOR POSTGRADUATE EDUCATION						
Programme	M. Sc., Chemistry					
Programme Code						
Duration	PG – 2YEARS					
Programme	PO1: Problem Solving Skill					
Outcomes (Pos)	Apply knowledge of Management theories and Human Resource					
	practices to solve business problems through research in Global context.					
	PO2: Decision Making Skill					
	Foster analytical and critical thinking abilities for data-based decision-making.					
	PO3: Ethical Value					
	Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.					
	PO4: Communication Skill					
	Ability to develop communication, managerial and interpersonal skills.					
	PO5: Individual and Team Leadership Skill					
	Capability to lead themselves and the team to achieve organizational goals.					
	PO6: Employability Skill					
	Inculcate contemporary business practices to enhance employability skills in the competitive environment.					
	PO7: Entrepreneurial Skill Equip with skills and competencies to become an entrepreneur					
	PO8: Contribution to Society					

	Succeed in career endeavors and contribute significantly to society.				
	PO 9 Multicultural competence				
	Possess knowledge of the values and beliefs of multiple cultures and				
	a global perspective.				
	PO 10: Maral and othical awaranass/reasoning				
	Ability to embrace moral/ethical values in conducting one's life.				
Programme	PSO1 – Placement				
Specific Outcomes	To prepare the students who will demonstrate respectful engagement				
(PSOs)	with others' ideas, behaviors, beliefs and apply diverse frames of				
	reference to decisions and actions.				
	PSO 2 - Entrepreneur				
	To create effective entrepreneurs by enhancing their critical thinking,				
	problem solving, decision making and leadership skill that will				
	facilitate startups and high potential organizations.				
	PSO3 – Research and Development				
	Design and implement HR systems and practices grounded in				
	research that comply with employment laws, leading the organization				
	towards growth and development.				
	PSO4 – Contribution to Business World				
	To produce employable, ethical and innovative professionals to				
	sustain in the dynamic business world.				
	PSU 5 – Contribution to the Society				
	stakeholders for mutual benefit.				

Template for P.G., Programmes

Semester-I	Credit	Hours	Semester-II	Credit	Hours	Semester-III	Credit	Hours	Semester-IV	Credi t	Hours
1.1. Core-I	5	7	2.1. Core-IV	5	6	3.1. Core-VII	5	6	4.1. Core-XI	5	6
1.2 Core-II	5	7	2.2 Core-V	5	6	3.2 Core-VIII	5	6	4.2 Core-XII	5	6
1.3 Core – III	4	6	2.3 Core – VI	4	6	3.3 Core – IX	5	6	4.3 Project with viva voce	7	10
1.4 Discipline Centric Elective -I	3	5	2.4 Discipline Centric Elective – III	3	4	3.4 Core – X	4	6	4.4Elective - VI (Industry / Entrepreneurship)20% Theory 80% Practical	3	4
1.5 Generic Elective-II:	3	5	2.5 Generic Elective -IV:	3	4	3.5 Discipline Centric Elective - V	3	3	4.5 Skill Enhancement course / Professional Competency Skill	2	4
			2.6 NME I	2	4	3.6 NME II	2	3	4.6 Extension Activity	1	
						3.7 Internship/ Industrial Activity	2	-			
	20	30		22	30		26	30		23	30
	Total Credit Points -91										

Choice Based Credit System (CBCS), Learning Outcomes Based Curriculum Framework (LOCF) Guideline Based Credits and Hours Distribution System for all Post – Graduate Courses including Lab Hours

Part	List of Courses	Credits	No. of Hours
	Core – I	5	7
	Core – II	5	7
	Core – III	4	6
	Elective – I	3	5
	Elective – II	3	5
		20	30

Semester-II						
Part	List of Courses	Credits	No. of Hours			
	Core – IV	5	6			
	Core – V	5	6			
	Core – VI	4	6			
	Elective – III	3	4			
	Elective – IV	3	4			
	Skill Enhancement Course [SEC] - I	2	4			
		22	30			

Second Year – Semester – III						
Part	List of Courses	Credits	No. of			
			Hours			
	Core – VII	5	6			
	Core – VIII	5	6			
	Core – IX	5	6			
	Core (Industry Module) – X	4	6			
	Elective – V	3	3			
	Skill Enhancement Course - II	2	3			
	Internship / Industrial Activity [Credits]	2	-			
		26	30			

Semester-IV					
Part	List of Courses	Credits	No. of		
			Hours		
	Core – XI	5	6		
	Core – XII	5	6		
	Project with VIVA VOCE	7	10		
	Elective – VI (Industry Entrepreneurship)	3	4		
	Skill Enhancement Course – III / Professional Competency Skill	2	4		
	Extension Activity	1	-		
		23	30		

Total 91 Credits for PG Courses

6

2. Structure of Course

Course Code		Cours	se Name		Credits	
Lecture Hours: (L) per week		Tutorial Hours : (T) per week	Lab Practice Hours: (P)per	week	Total: (L+T+P) per week	
Course Category :		Year & Semester:		Admis	sion Year:	
Pre-requisite						
Links to other Course	S					
Learning Objectives:	(for teach	ners: what they have	to do in the class	/lab/fiel	ld)	
Course Outcomes: (fo	r students	: To know what they	are going to lear	rn)		
CO1:						
CO2:						
CO3:						
CO4:						
CO5:						
Recap: (not for examin	nation) M	otivation/previous le	cture/ relevant p	ortions	required for the	
course) [This is done d	luring 2 Tu	utorial hours)				
Units	Contents	8			Required Hours	
Ι					15	
Π					15	
III					15	
IV					15	
V					15	
Extended Professional	Question	s related to the above	e topics, from va	rious		
Component (is a part	competiti	ive examinations Ul	PSC / TRB / N	ET /		
ofinternal component	UGC –					
only, Not to	CSIR / G	ATE / TNPSC / othe	ers to			
	be solved	l(To be discussed du	ring the			
	Tutorial l	hour)				

be includedin						
the						
External Examination						
question						
paper)						
Skills acquired from	Knowledge, Problem Solving, Analytical ability,					
the	Professional Competency, Professional					
course	Communication and Transferrable Skill					
Learning Resources:						
Recommende	d Texts					
Reference Books						
Web resource	s					
Board of Studies Date:						

3. Learning and Teaching Activities

3.1 Topic wise Delivery method

Hour Count	Торіс	Unit	Mode of Delivery

3.2 Work Load

The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

Activity	Quantity	Workload periods
Lectures	60	60
Tutorials	15	15
Assignments	5	5
Cycle Test or similar	2	4
Model Test or similar	1	3
University Exam	1	3
	Total	90 periods

Tutorial Activities

Tutorial Count	Торіс

4. Laboratory Activities

5. Field Study Activities

6. Assessment Activities

6.1 Assessment Principles:

Assessment for this course is based on the following principles

- 1. Assessment must encourage and reinforce learning.
- 2. Assessment must measure achievement of the stated learning objectives.
- 3. Assessment must enable robust and fair judgments about student performance.
- 4. Assessment practice must be fair and equitable to students and give them the opportunity demonstrate what they learned.
- 5. Assessment must maintain academic standards.

6.2 Assessment Details:

Assessment Item	Distributed Due Date	Weightage	Cumulative
			Weightage
Assignment 1	3 rd week	2%	2%
Assignment 2	6 th Week	2%	4%
Cycle Test – I	7 th Week	6%	10%
Assignment 3	8 th Week	2%	12%
Assignment 4	11 th Week	2%	14%
Cycle Test – II	12 th Week	6%	20%
Assignment 5	14 th Week	2%	22%
Model Exam	15 th Week	13%	35%
Attendance	All weeks as per the	5%	40%
	Academic Calendar		
University Exam	17 th Week	60%	100%

CONTENTS

- a. Academic Schedule
- b. Students Name List
- c. Time Table
- d. Syllabus
- e. Lesson Plan
- f. Staff Workload
- g. Course Design(content, Course Outcomes(COs), Delivery method, mapping of COs with Programme Outcomes(POs), Assessment Pattern in terms of Revised Bloom's Taxonomy)
- h. Sample CO Assessment Tools.
- i. Faculty Course Assessment Report(FCAR)
- j. Course Evaluation Sheet
- k. Teaching Materials(PPT, OHP etc)
- 1. Lecture Notes
- m. Home Assignment Questions
- n. Tutorial Sheets
- o. Remedial Class Record, if any.
- p. Projects related to the Course
- q. Laboratory Experiments related to the Courses
- r. Internal Question Paper
- s. External Question Paper
- t. Sample Home Assignment Answer Sheets
- u. Three best, three middle level and three average Answersheets
- v. Result Analysis (CO wise and whole class)
- w. Question Bank for Higher studies Preparation (GATE/Placement)
- x. List of mentees and their academic achievements

Illustration – I Credit Distribution for PG Programme in Chemistry M.Sc. Chemistry

	First Year Semester-I	Credit	Hours per week (L/T/P)
Part A	CC1 – Organic Reaction Mechanism-I	5	7
	CC2 – Structure and Bonding in Inorganic Compounds	5	7
	CC3 – Organic Chemistry Practical	4	6
	Elective I (Generic / Discipline Specific) (One from Group A) Pharmaceutical Chemistry/Nanomaterials and Nanotechnology	3	5(4L + 1T)
	Elective II (Generic / Discipline Specific) (One from Group B) Electrochemistry/Molecular Spectroscopy	3	5(4L + 1T)
	Total	20	30

Consolidated Table for Credits Distribution

	Category of	Credits	Number	Number of	Total	Total Credits
	Courses	for	of	Credits in each	Credits	for the
		each	Courses	Category of		Programme
		Course		Courses		
	Core	4	12	48		
	Project with	3	1	3		
PART A						
	Industry	3	1	3		
	aligned	5	1	5	72	
	Programmes-				12	
	Elective					
	(Generic and	3	6	18		
	Discipline					
	Centric)					
PART B	Skill					80
(i)	Enhancement					(CGPA)
	(Term paper					(00171)
	and Seminar					
	& Generic /					
	Discipline -	2	4	8	8	
	Centric Skill					
	Courses)					
	(Internal					
	Assessment					
	Only)					
PART B	Ability	2	4	8		
(ii)	Enhancement					
(11)	(Soft skill)				10	
	Summer	1	2	2	10	11
(iii)	Internship					(Non CGPA)
PART C	Extension	1	1	1	1	
	Activity					
						91

7. Template for Semester

Code	Category	Category Title of the Paper Marks		KS	Duration	Credits
			(Max	100)	for UE	
			CIA	UE	-	
Semester	r–I					I
Part A	Core I		25	75	3 Hrs	4
	Core II		25	75	3 Hrs	4
	Core III		25	75	3 Hrs	4
	Elective I	Elective-I (Choose one from Group-A)	25	75	3 Hrs	3
	Elective II	Elective-I I (Choose one from Group-B)	25	75	3 Hrs	3
Part B	Skill Enhancement Course -SEC 1	(Choose One from group G)	Intern	al Asse	essment	2
	Ability Enhancement Course (AECC 1)	Soft Skill I	Perfor assess	rmance sment	based	2
Semest	ter-II					
Part A	Core IV		25	75	3 Hrs	4
	Core V		25	75	3 Hrs	4
	Core VI		25	75	3 Hrs	4
	Elective III	Elective-III (Choose one from Group-C)	25	75	3 Hrs	3
	Elective IV	Elective-IV (Choose one from Group-D)	25	75	3 Hrs	3
Part B	Skill Enhancement Course -SEC 2	(Choose one from Group-G)	Intern	al Asse	essment	2
	Ability Enhancement Course (AECC 2)	Soft Skill II	Perfor assess	rmance sment	based	2

Semes	ter-III					
Part A	Core VII		25	75	3 Hrs	4
	Core VIII		25	75	3 Hrs	4
	Core IX		25	75	3 Hrs	4
	Elective / ED V	Elective-VI /ED-V	25	75	3 Hrs	3
		(Choose one from				
		Group-E)				
	Core Industry	ED-IV	25	75	3 Hrs	3
	Module	(Choose from				
		outside the				
		Department)				
Part B		1 /				
	Skill based	Assignment of problem	by the	facult	v	2
	(Term paper and	Lecture -I (by the stude	ent)	25%	, ,	
	Seminar)	Lecture-II (by the stude	ent)	25%		
	,	Lecture-III (by the stud	ent)	25%		
		Submission of a write-u	ıp (10-	-15 pag	es using	
		LaTeX)		25%	_	
		Marks / Grade Point/ L	etter G	rade as	per the	
		Regulation)			-	
	Ability	Soft Skill III	Perfo	rmance	e based	2
	Enhancement		asses	sment		
	Course (AECC 3)					
	Internship / Indust	rial - Vacation Activity				2
Semeste	r-IV		1			
Part A	Core X		25	75	3 Hrs	4
	Core XI		25	75	3 Hrs	4
	Core XII		25	75	3 Hrs	4
	Project with viva		25	75	3 Hrs	3
	voce XIII					
	Elective VI	Elective-VI	25	75	3 Hrs	3
		(Choose one from				
	C1 '11	$\frac{\text{Group} - F}{P + C}$	T 4	1.4		2
Part B	Skill Enhancement	Professional Competency Skill	Intern	nal Ass	essment	2
	Course -SEC 4	Enhancement Course				
	Ability	Soft Skill IV	Perfo	rmance	e based	2
	Enhancement		asses	sment		-
	Course (AECC4)			21110111		
Part C	Extension	Performance based asse	essmen	t		1
	Activity					
				Т	otal Credits	91

Elective Courses

Courses are grouped (Group A to Group F) so as to include topics from Pure Chemistry (PC), Applied Chemistry (AC) and Industrial Components (IC) like pharmaceutical industries, Polymer labs courses for flexibility of choice by the stakeholders / institutions.

Semester I: Elective I and Elective II

Elective I to be chosen from Group A and Elective II to be chosen from Group B

Group A: (PC/AC/IC)

- 1. Pharmaceutical Chemistry
- 2. Electrochemistry

Group B:(PC/AC/IC)

- 1. Nanomaterials and Nanotechnology
- 2. Molecular Spectroscopy

Semester II: Elective III & Elective IV

Elective III to be chosen from Group C and Elective IV to be chosen

from Group DGroup C:(PC/AC/IC)

- 1. Medicinal Chemistry
- 2. Green Chemistry

Group D :(PC/AC/IC)

- 1. Bioinorganic Chemistry
- 2. Material Science

Semester III: Elective V

Elective V to be chosen from Group E.

Group E: (PC/AC/IC)

- 1. Pharmacognosy and Phytochemistry
- 2. Biomolecules and Heterocyclic compounds

Semester IV: Elective VI

Elective VI to be chosen from Group F.

Group F:(PC/AC/IC)

- 1. Chemistry of Natural products
- 2. Polymer Chemistry

Skill Enhancement Courses

Skill Enhancement Courses are chosen to keep in pace with the latest developments in the academic / industrial front and provides flexibility of choice by the stakeholders / institutions.

Group G (Skill Enhancement Courses) SEC:(Practical based paper)

- Computational Chemistry
- ➢ 3D printing in Chemistry
- Preparation of Consumer products
- Chemistry in everyday life
- Cosmetic Chemistry
- > Origin lab
- Industrial Chemistry
- Research Tools and Techniques

Ability Enhancement Courses

Soft Skill courses

Extra Disciplinary Courses for other Departments (not for Mathematics students)

Students from other Departments may also choose any one of the following as

Extra DisciplinaryCourse.

ED-I: Chemistry for

Life Sciences

ED-II: Chemical

conservation

ED-III: Chemistry in food

preservation

ED-IV: Chemistry for Social

studies

ED-V: Chemistry in consumer products

Courses	Lecture	Tutorial	Lab Practice	Total
	Hrs	hrs		hrs
Core	75	15		90
Electives	75	15		90
ED	75	15		90
Lab Practice Courses	-	15	75	90
Project	20		70	90

8. Instructions for Course Transaction

9. Testing

Pattern

(25+75)

13.1Interna

l

Assessment

Theory Course: For theory courses there shall be three tests conducted by the faculty concerned and the average of the best two can be taken as the Continuous Internal Assessment (CIA) for a maximum of 25 marks. The duration of each test shall be one / one and a half hour.

Computer Laboratory Courses: For Computer Laboratory Oriented Courses, there shall be twotests in Theory part and two tests in Laboratory part. Choose one best from Theory part and other best from the two Laboratory part. The average of the best two can be treated as the CIA for a maximum of 25 marks. The duration of each test shall be one / one and a half hour.

There is no improvement for CIA of both theory and laboratory, and, also for University EndSemester Examination.

14. Different Types of Courses

(i) Core Courses (Illustrative)

- 1. Organic Reaction mechanism I & II
- 2. Structure and bonding in Inorganic compounds
- 3. Organic Chemistry Practical
- 4. Physical Chemistry-I & II
- 5. Inorganic Chemistry Practical
- 6. Organic synthesis and Photochemistry
- 7. Coordination Chemistry-I & II
- 8. Physical Chemistry Practical
- 9. Analytical Instrumentation technique practical

(ii) Elective Courses (ED within the Department Experts) (Illustrative)

- 1. Pharmaceutical Chemistry
- 2. Nanomaterials and Nanotechnology
- 3. Electrochemistry
- 4. Molecular Spectroscopy
- 5. Medicinal Chemistry
- 6. Green Chemistry
- 7. Pharmacognosy and Phytochemistry
- 8. Biomolecules and Heterocyclic compounds
- 9. Bio inorganic Chemistry
- 10. Material Science
- 11. Chemistry of Natural products
- 12. Polymer chemistry

(iii)Elective Courses (ED from other Department Experts)

(iv) Skill Development Courses

(v) Institution-Industry-Interaction (Industry aligned Courses)

Programmes /course work/ field study/ Modelling the Industry Problem/

Statistical Analysis /Commerce-Industry related problems / MoU with

Industry and the like activities.

TANSCHE REGU	LATIONS ON LEARNING OUTCOMES-BASED CURRICULUM MEWORK FOR UNDERGRADUATE EDUCATION
Programme	M.Sc.
Programme Code	
D di	
Duration	2 years for PG
Programme	PO1: Problem Solving Skill
Outcomes (Pos)	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context
	PO2: Decision Making Skill
	Foster analytical and critical thinking abilities for data-based decision-making.
	PO3: Ethical Value
	Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.
	PO4: Communication Skill
	Ability to develop communication, managerial and interpersonal skills.
	PO5: Individual and Team Leadership Skill Capability to lead themselves and the team to achieve organizational goals.
	PO6: Employability Skill Inculcate contemporary business practices to enhance employability skills in the competitive environment.
	PO7: Entrepreneurial Skill Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society
	Succeed in career endeavors and contribute significantly to society.
	PO 9 Multicultural competence Possess knowledge of the values and beliefs of multiple cultures and a global perspective.
	PO 10: Moral and ethical awareness/reasoning Ability to embrace moral/ethical values in conducting one's life.
Programme	PSO1 – Placement
Specific Outcomes	To prepare the students who will demonstrate respectful engagement
(PSOs)	with others' ideas, behaviors, beliefs and apply diverse frames of
	reference to decisions and actions.
	PSO 2 Entropropour
	To create effective entrepreneurs by enhancing their critical thinking
	problem solving decision making and leadership skill that will
	facilitate startups and high potential organizations.

PSO3 – Research and Development Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.
PSO4 – Contribution to Business World To produce employable, ethical and innovative professionals to sustain in the dynamic business world.
PSO 5 – Contribution to the Society To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

15. Syllabus for different Courses of M.Sc. Chemistry

Title of the	ORGANIC	REACTION	ME	CHANISM -	- I		
Course							
Paper No.	Core I						
Category	Core	Year	Ι	Credits	4	Course	
		Semester	Ι			Code	
Instructional	Lecture	Tutorial	Lat	Practice		Total	
hours per	4	1	-			5	
week							
Prerequisites	Basic conce	pts of organic	chem	istry			
Objectives of	To understa	and the feasib	ility	and the me	chani	ism of various	s organic
the course	reactions.						
	To compre	shend the tec	hniq	ues in the	dete	ermination of	reaction
	mechanisms	5.					
	To underst	and the conce	ept o	of stereoche	mistr	y involved in	organic
	compounds		.1	1: 00			
	To correlate	e and appreciat	e the	differences	invol	ved in the varie	ous types
	of organic r	eaction mechai	nisms	s.	.1		c ·
	10 design	reasible synt	inetic	routes 101	the	preparation	of organic
C	compounds.		4	in ation of D			Desetion
Course	UNII-I: IV	lethods of De	term	ination of F	(eacti	on Mechanish	n: Reaction
Outline	intermediates. The transition state, Reaction coordinate diagrams,						
	nostulate Methods of determining machanism, non linetic methods						
	product analysis determination of intermediates isolation detection and						
	tranning Cross over experiments isotonic labelling isotone effects and						
	stereo chei	nical evidenc	es. 1	Cinetic met	hods	- relation o	f rate and
	mechanism Effect of structure on reactivity. Hammett and Taft equations						
	Linear free energy relationship, partial rate factor, substituent and reaction						
	constants.						
	UNIT-II: Aromatic and Alinhatic Electronhilic Substitution				•		
	Aromaticity	: Aromaticity	/ in	benzenoid	, no	n-benzenoid,	heterocyclic
	compounds	and annulenes	. Arc	omatic electr	ophil	ic substitution:	Orientation
	and reactiv	vity of di- a	ind	polysubstitut	ted p	ohenol, nitrob	enzene and
	halobenzene	e. Reactions	inv	olving nitr	ogen	electrophiles	: nitration,
	nitrosation	and diazoniun	n cou	pling; Sulpl	hur e	lectrophiles: s	ulphonation;
	Halogen ele	ctrophiles: chl	orina	tion and broi	ninat	ion; Carbon ele	ectrophiles:
	Friedel-Cra	fts alkylation,	acy	lation and	aryla	ation reactions	s. Aliphatic
	electrophilie	e substitution N	Mech	anisms: SE2	and	SEi, SE1- Me	chanism and
	evidences.						
	UNIT-III:	Aromatic and	Alip	hatic Nucle	ophil	ic Substitution	1: Aromatic
	nucleophilio	substitution:	M	chanisms -	- SN	Ar, SN1 and	d Benzyne
	mechanisms	s - Evidences	- Re	activity, Eff	ect o	f structure, lea	iving group
	and attacking	ng nucleophile	. Re	actions: Oxy	gen a	and Sulphur-n	ucleophiles,

	Bucherer and Rosenmund reactions, von Richter, Sommelet- Hauser and
	Smiles rearrangements. SN1, ion pair, SN2 mechanisms and evidences. Aliphatic nucleophilic substitutions at an allylic carbon, aliphatic trigonal carbon and vinyl carbon.SN1, SN2, SNi, and SE1 mechanism and evidences.
	UNIT-IV: Stereochemistry-I: Introduction to molecular symmetry and chirality – axis, plane, centre, alternating axis of symmetry. Optical isomerism due to asymmetric and dissymmetric molecules with C, N, S based chiral centres. Optical purity, prochirality, enantiotopic and diastereotopic atoms, groups, faces, axial and planar chirality, chirality due to helical shape, methods of determining the configuration. Racemic modifications: Racemization by thermal, anion, cation, reversible formation, epimerization, mutarotation. D, L system, Cram's and Prelog's rules: R, S notations, proR, proS, side phase and re phase Cahn-Ingold-Prelog rules, absolute and relative configurations. Configurations of allenes, spiranes, biphenyls, cyclooctene, helicene, binaphthyls, exo-cyclic alkylidene-cycloalkanes. Asymmetric synthesis, destruction.
	UNIT-V: Stereochemistry-II: Conformation and reactivity of acyclic systems, intramolecular rearrangements, neighbouring group participation, chemical consequence of conformational equilibrium. Stability of five and six-membered rings: mono-, di- and polysubstituted cyclohexanes, conformation and reactivity in cyclohexane systems. Fused and bridged rings: bicyclic, poly cyclic systems, decalins and Brett's rule. Optical rotation and optical rotatory dispersion, conformational asymmetry, ORD curves, octant rule, configuration and conformation.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.
Recommended Text	 J. March and M. Smith, Advanced Organic Chemistry, 5th edition, John-Wiley and Sons.2001. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959. P.S.Kalsi, Stereochemistry of carbon compounds, 8th edition, New Age International Publishers, 2015. P. Y. Bruice, Organic Chemistry, 7th edn, Prentice Hall, 2013. J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2nd edition, Oxford University Press, 2014.

1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A					
and B, 5 th edition, Kluwer Academic / Plenum Publishers, 2007.					
2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.					
3. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.					
4. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw					
Hill, 2000.					
5. I. L. Finar, Organic chemistry, Vol-1 & 2, 6 th edition, Pearson					
Education Asia, 2004.					
1.https://sites.google.com/site/chemistryebookscollection02/home/organic-					
<u>chemistry/organic</u>					
2. <u>https://www.organic-chemistry.org/</u>					

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able

CLO1: To recall the basic principles of organic chemistry.

CLO2: To understand the formation and detection of reaction intermediates of organic reactions.

CLO3: To predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.

CLO4: To apply the principles of kinetic and non-kinetic methods to determine the mechanism of reactions.

CLO5: To design and synthesize new organic compounds by correlating the stereochemistry of organic compounds.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	М	S	S	S	S	М	S	S	S	S
CO 5	M	S	Μ	S	S	Μ	S	M	S	S
Strong	- 3	<u> </u>		<u> </u>	Me	 edium-2	<u> </u>	<u> </u>	1	Low-1

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Level of Correlation between PSO's and CO's

3 – Strong	g, 2 –	- Medium,	1	-	Low
------------	--------	-----------	---	---	-----

	Methods of Evaluation					
	Continuous Internal Assessment Test					
Internal	Assignments	25 Marks				
Evaluation	Seminars					
	Attendance and Class Participation					
External Evaluation	End Semester Examination	75 Marks				
	Total	100 Marks				
Methods of Assessment						
Recall (K1)	ecall (K1) Simple definitions, MCQ, Recall steps, Concept definitions.					
Understand/	MCO True/False Short assaure Concent explanations short summary or					
Comprehend	overview	xpranations, short summary of				
(K2)						
Application	Suggest idea/concept with examples, sugg	gest formulae, solve problems,				
(K3)	Observe, Explain.					
Analyza (KA)	Problem-solving questions, finish a procedure in many steps,					
Analyze (K4)	Differentiate between various ideas, Map l	knowledge.				
Evaluate (K5)	Longer essay/ Evaluation essay, Critique of	or justify with pros and cons.				
Create (K6)	Check knowledge in specific or offbeat si	tuations, Discussion, Debating				
Create (K0)	or Presentations.					

In order to avoid pull the score down of each PO, it is suggested that the usage L-Low (1) to the minimum.

The S, M, L is based on the course outcome. The mapping is based on the revised Bloom's Taxonomy Verbs used to describe your course outcome.

- Remember and Understanding Lower level
- Apply and Analyze Medium Level
- Evaluate and Create Strong Level

Title of the	STRUC	FURE AND	BO	NDING I	N INO	DRGANIC CO	MPOUNDS			
Course										
Paper No.	Core II									
Category	Core	Year	Ι	Credits	4	Course				
		Semester	Ι			Code				
Instructional	Lecture	Tutorial	Lal	b Practice	;	Total				
hours per week	4	1	-			5				
Prerequisites	Basic con	icepts of In	orga	nic Chem	istrv	I				
Objectives of the	To deterr	nine the str	uctur	al propert	ties of	f main group c	compounds and			
course	clusters.						-			
	To gain	fundamenta	ıl kn	owledge	on th	e structural as	spects of ionic			
	crystals			0			1			
	To famili	arize variou	s diff	fraction an	d mic	rosconic techni	aues			
	To study	the effect of	² noir	nt defects a	and lir	re defects in jor	vic crystals			
	To evalua	the the struct	nral	aspects of	solide		ne erystais.			
Course Outline	UNIT-I:	Structure of	fmai	n groun co	mnoi	nds and cluster	rs [.] VB theory –			
	Effect of	lone nair a	nd e	lectronega	tivity	of atoms (Ben	t's rule) on the			
	accomptent	r of the m		los. Struc	turo	of giliantag	applications of			
		geometry of the molecules; Structure of silicates - applications of								
	Pauling	Pauling's rule of electrovalence - isomorphous replacements in silicates								
	– ortho, meta and pyro silicates – one dimensional, two dimensional									
	and three-dimensional silicates. Structure of silicones, Structural and									
	bonding features of B-N, S-N and P-N compounds; Poly acids – types,									
	examples	s and struct	ures;	Borane c	luster	: Structural fea	atures of closo,			
	nido, ara	chano; carb	orane	es, hetero	and n	netalloboranes;	Wade's rule to			
	predict th	e structure	of Bo	orane clust	er; m	ain group cluste	ers			
	UNIT-II	: Solid stat	e che	emistry –	I: Ior	nic crystals: Pag	cking of ions in			
	simple, 1	nexagonal a	nd c	ubic close	e pac	king, voids in	crystal lattice,			
	Radius ra	tio, Crystal	syste	ems and B	ravais	s lattices, Symm	netry operations			
	in crystal	s, glide pla	nes a	and screw	axis;	point group an	nd space group;			
	Solid sta	ate energet	ics:	Lattice e	energy	v – Born-Lan	de equation -			
	Kapustin	ski equation	, Ma	delung coi	nstant	•				
	UNIT-II	I: Solid stat	te ch	emistry –	II: S	tructural feature	es of the crystal			
	systems:	Rock salt,	zinc	blende &	wurt	zite, fluorite an	nd anti-fluorite,			
	rutile and	anatase, ca	dmiu	ım iodide	and n	ickel arsenide; S	Spinels -normal			
	and inve	rse types an	id pe	rovskite s	tructu	ires. Crystal Gi	rowth methods:			
	From me	lt and solu	tion	(hydrother	rmal,	sol-gel method	ls) – principles			
	and									
	examples					1 1 1 37	1:00			
		: Techniq	ues i	n solid s	tate	chemistry: X-1	ray diffraction			
	technique	: Bragg's	law,	Powder d		tion method –	Principle and			
	Instrume	ntation; Int	erpre	tation of	AKL	data, Phase	purity, lattice			
	constants	calculation	n; Sj	ystematic	abse	nce of reflect	ions; Electron			
	Flootror	microscor		difformer	insti a ha	tween option	and alastrar			
	microsco	microscop	y — nrina	unterenc		totion compliant	and electron			
	microsco	py, meory,	princ	ipie, instr	umen	iation, sampling	g memods and			

	applications of SEM and TEM.						
	UNIT-V: Band theory and defects in solids						
	Band theory – features and its application of conductors, insulators and						
	semiconductors, Intrinsic and extrinsic semiconductors; Defects in						
	crystals – point defects (Schottky, Frenkel, metal excess and metal						
	deficient) and their effect on the electrical and optical property, laser						
	and phosphors: Linear defects and its effects due to dislocations						
Extended	Questions related to the above tonics from various competitive						
Professional	examinations LIPSC / TRB / NET/ LIGC-CSIR / GATE /TNPSC others						
Component (is a	to be solved						
part of internal	(To be discussed during the Tutorial hours)						
component only,	(10 00 allowing the 1 merine hours)						
Not to be included							
in the external							
examination							
question paper)							
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional						
from this course	Competency, Professional Communication and Transferable skills.						
Recommended	1. A R West, Solid state Chemistry and its applications, 2ndEdition						
Text	(Students Edition), John Wiley & Sons Ltd., 2014.						
	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,						
	Himalaya Publishing House, 2001.						
	5. L Smart, E Moore, Solid State Chemistry – An Introduction, 4						
	Luluoli, CKC Pless, 2012. A. K. F. Purcell and I. C. Kotz, Inorganic Chemistry: W.B. Saunders						
	4. K. F. Fulcen and J. C. Kotz, morganic chemistry, w.D. Saunders						
	5 J. E. Huheev, E. A. Keiter and R. L. Keiter. Inorganic Chemistry:						
	4th ed.: Harper and Row: NewYork, 1983.						
Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and						
	Models in Inorganic Chemistry, 3rd Ed, 1994.						
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd						
	edition, Wiley Publication, 2013.						
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid State						
	Chemistry, 2 nd Edition, Cambridge University Press, 199.						
	4. T. Moeller, Inorganic Chemistry, A Modern Introduction; John						
	Wiley: New York, 1982.						
	J. D. F. Shriver, P. W. Atkins and U.H. Langiord; Inorganic Chamistry: 3rd ed : Oxford University Press, London, 2001						
Wabsita and	https://ocw.mit.edu/courses/3-091_introduction_to_solid_state_chemistry						
e-learning source	fall-2018/video_galleries/lecture-videos/						
c-icai ining source	<u>1411-2010/v1000_ganorios/rooture-vide05/</u>						

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able

CO1: Predict the geometry of main group compounds and clusters.

CO2: Explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.

CO3: Understand the various types of ionic crystal systems and analyze their structural features.

CO4: Explain the crystal growth methods.

CO5: To understand the principles of diffraction techniques and microscopic techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	M	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	M	S	S	S	S	Μ	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of	Correlation	between	PSO's	s and	CO '	S
----------	--------------------	---------	-------	-------	-------------	---

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	5.0	5.0	5.0	5.0	5.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	ORGAN	IC CHEM	ISTR	Y PRAC	ГІСА	L				
Course										
Paper No.	Core III									
Category	Core	Year	Ι	Credits	4	Course				
		Semester	Ι			Code				
Instructional	Lecture	Tutorial	La	b Practice		Total				
hours per week	-	1	4			5				
Prerequisites	Basic cor	cepts of or	gani	c chemisti	ſV					
Objectives of the	To under	stand the	conc	ept of se	parati	ion, qualitativ	ve analysis and			
course	preparatio	on of organi	c cor	npounds.	1	· 1	5			
	To devel	on analytic	al ek	ill in the	hand	ling of chemi	cal reagents for			
		of him own	ar SK			airetarna a	ear reagents for			
						inxtures.	11 1			
	To analy	ze the se	parate	ed organi	c coi	mponents sys	stematically and			
	derivatize	them suita	bly.			C 1				
	lo consti	uct suitable	e exp	berimental	setup	o for the orga	inic preparations			
	involving	two stages.				1 1	1			
	10 exper	iment diffe	erent	purification	on ar	a arying tec	inniques for the			
Course Outline	LINIT L	u processing	g. and	analysia						
Course Outline		UNIT-1: Separation and analysis:								
			luies	•						
	UNIT-II:	Estimation	18:							
			. f Di	1 (1						
) Estimation	OI PI	nenol (bron	ninatic	on)				
) Estimation	101 A	thyl methyl	keton	e (iodimetry)				
		1) Estimation	n of G	lucose (red	ox)	(iounieuy)				
) Estimation	of A	scorbic aci	d (iodi	metry)				
	UNIT-II	: Two stag	e pre	eparations	5:	E ź				
	a) p-	Bromoaceta	nilid	e from ani	line					
	b) p-	Nitroaniline	e fron	n acetanili	de					
	c) 1,	3,5-Tribrom	loben	zene from	anilir	ne				
	d) A	cetyl salicyc	clic a	cid from n	nethyl	salicylate				
	e) Be	nzilic acid	from	benzoin						
	f) m-	Nitroanilin	e fror	n nitroben	zene					
	g) m	-Nitrobenzo	oic ac	id from m	ethyl	benzoate				
Extended	Questions	s related to t	the al	pove topics	s, fror	n various com	petitive			
Professional	examinat	ions UPSC	/ TRI	3 / NET/ U	JGC-(CSIR / GATE	/TNPSC others			
Component (is a	to be solv	ed								
part of internal	(To be di	scussed dur	ing tł	ne Tutorial	hour	s)				
component only,			•							
Not to be included										
in the external										
examination										
question paper)										
Skills acquired	Knowled	ge, Problem	solv	ing, Analy	rtical	ability, Profess	sional			
from this course	Competer	ncy, Profess	ional	Commun	icatio	n and Transfer	rable skills.			
Recommended	1. A R	West, Solid	state	e Chemistr	y and	its application	ns, 2ndEdition			

Text	(Students Edition), John Wiley & Sons Ltd., 2014.
	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,
	Himalaya Publishing House, 2001.
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th
	Edition, CRC Press, 2012.
Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and
	Models in Inorganic Chemistry, 3rd Ed, 1994.
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd
	edition, Wiley Publication, 2013.
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid State
	Chemistry, 2 nd Edition, Cambridge University Press, 199.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-
e-learning source	chemistry-fall-2018/video_galleries/lecture-videos/
Course Learning (when many (for Manning with DOs and DSOs)

Course Learning Outcomes (for Mapping with POs and PSOs) Students will be able:

CO1: To recall the basic principles of organic separation, qualitative analysis and preparation.

CO2: To explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.

CO3: To determine the characteristics of separation of organic compounds by various chemical reactions.

CO4: To develop strategies to separate, analyze and prepare organic compounds.

CO5: To formulate a method of separation, analysis of organic mixtures and design suitable procedure for organic preparations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	М	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3

Level of Correlation between PSO's and CO's

C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	PHARM	ACEUTIC	AL C	CHEMIST	RY							
Course												
Paper No.	Elective	[
Category	Elective	Year	Ι	Credits	4	Course						
		Semester	Ι			Code						
Instructional	Lecture	Tutorial	Lat	Practice	I	Total						
hours per week	4	1	-			5						
Prerequisites	Basic kn	owledge on	drug	s and dos	es							
Objectives of the	To unders	stand the ad	vance	ed concept	s of r	harmaceutical	l chemistry.					
course	To recall	the principl	e and	biologica	ı 1 fiinc	rtions of variou	us drugs					
	To train t	he students	to ki	now the ir	nnort	ance as well t	he consequences					
	of various	drugs	to Ki		npon		ne consequences					
	To have k	f various drugs. o have knowledge on the various analysis and techniques.										
	To famili	arize on the	drug	dosage an	nd its	structural activ	vities					
Course Outline	UNIT-I:	Physical pr	opert	ies in Pha	rmace	euticals: Physi	cal properties of					
	drug mo	JNIT-I: Physical properties in Pharmaceuticals: Physical properties of lrug molecule: physical properties. Refractive index- Definition.										
	explanation	on, formula	a, im	portance,	dete	rmination, sp	ecific & molar					
	refraction	. Optical ad	ctivit	y, rotation	- mo	nochromatic 8	& polychromatic					
	light, opti	cal activity,	angl	e of rotatio	on, sp	ecific rotation	examples,					
	measuren	nent of op	otical	activity.	Die	electric consta	ant & Induced					
	Polarizati	on- Diele	ctric	constant	exj	planation &	determination.					
	Rheology	of phar	mace	eutical sy	/stem	s: Introducti	on, Definition,					
	Applicati	ons, concep	ot of	viscosity,	New	ton's law of f	low, Kinematic,					
	Relative,	Specific, Re	educe	d & Intrin	sic vi	scosity.						
	UNIT-II:	Isotopic	Dilu	ition ana	lysis	e principle a	nd applications,					
	Neutron	activation	analy	sis: Prin	ciple,	advantages	and limitations,					
	Scintillati	on counters	: Boo	ly scannin	g. Int	roduction to						
	radiophar	maceuticals		Properties	5	of various	types of					
	radiophar	maceuticals	, R	adıo-phar	mace	uticals as	diagnostics, as					
	therapeut	cs, for rese	arch	and sterili	zatioi	n. Physico Che	emical Properties					
	and drug	action. Phys	51CO C	hemical p	roper	ties of drugs (a	a) Partition					
		(0) solud		c) surface	activ	ity, (d) degree	Introduction to					
	drug dog	a Forma	sage	anu proc		atem Definit	tion of Common					
	terms D	nuo Regule	ation	and con	trol	nharmaconoe	vias formularies					
	sources o	f drug dru	σ noi	nenclature	e roll	tes of adminis	stration of drugs					
	products.	need for a	dosa	pe form c	lassif	fication of dos	age forms. Drug					
	dosage ar	d product d	level	opment. In	trodu	iction to drug	dosage Forms &					
	Drug Del	ivery system	n – D	Definition of	of Co	mmon terms.	Drug Regulation					
	and cont	rol, pharm	acop	oeias for	mula	ries, sources	of drug, drug					
	nomencla	ture, routes	ofac	lministrati	on of	drugs product	s, need					
	for a dosa	ge form, cla	assifi	cation of d	losage	e forms.						
	UNIT-IV	: Develop	ment	t of new	dr	ugs: Introduc	ction, procedure					
	followed	in drug de	sign,	the resear	ch fo	or lead compo	ounds, molecular					
	modificat	ion of lead	comp	ounds. Str	ructur	e-Activity Rel	lationship (SAR)					
	Factors e	effecting bi	oacti	vity, reso	nance	e, inductive e	effect, isoterism,					
	bioisoster	ism, spatia	l cor	nsideration	ıs, bi	ological prop	erties of simple					
	functiona	l groups, t	heori	es of dru	g act	tivity, occupat	ncy theory, rate					

	theory, induced-fit theory.
	UNIT-V: Computers in Pharmaceutical Chemistry: · Need of
	computers for chemistry. Computers for Analytical Chemists
	Introduction to computers: Organization of computers, CPU, Computer
	memory, I/O devices, information storage, software components.
	Application of computers in chemistry: Quantitative structure activity
	relationship (QSAR): Development of QSAR, drug receptor
	niteractions, the additivity of group contributions, physico-chemical
	constants, steric parameters, chelation parameters, redox potential.
	indicator-variables
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
Component only,	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Physical Chemistry- Bahl and Tuli.
Text	2. Text Book of Physical Pharmaceutics, IInd edition, Vallabh
	Prakashan C.V.S. Subramanyam.
	3. Medicinal Chemistry (Organic Pharmaceutical Chemistry), G.R. Chetwel, Himelaya Publishing house
	4 Instrumental method of Analysis: Hubert H Willard 7th edition
	5 Textbook of Pharmaceutical Chemistry by Jayshree Ghosh S
	Chand & company Ltd. Pharmaceutical Chemistry by Dr. S.
	Lakshmi, Sultan chand & Sons.
Reference Books	1. Computers in chemistry, K.V. Raman, Tata Mc.Graw-Hill, 1993.
	2. Computers for Chemists, S.K Pundir, Anshu bansal, A pragate
	prakashan., 2 nd edition, New age international (P) limited, New
	Delhi. 2 Divised Diamagna and Diamagnatical Sciences by Marting
	3. Physical Pharmacy and Pharmaceutical Sciences by Maruns, Patrick I Sinko Lippincott William and Wilkins
	F ALLIUN J. MILINO, L'IDDILLOUL, VY ILL'ALLE ALLE VY LINIUS.
	4 Cooper and Gunn's Tutorial Pharmacy 6th edition by S.I. Carter
	 Cooper and Gunn's Tutorial Pharmacy ,6th edition by S.J. Carter, CBS Publisher Ltd.
	 Cooper and Gunn's Tutorial Pharmacy ,6th edition by S.J. Carter, CBS Publisher Ltd. Ansels pharmaceutical Dosage forms and Drug Delivery System by

Wabsita and	https://www.nchi.nlm.nih.gov/books/NBK/82//7/							
website and	<u>https://www.hcol.hlm.hlm.gov/000ks/htbk+62++//</u>							
e-learning source	rning source https://training.seer.cancer.gov/treatment/chemotherapy/types.html							
Course Learning C	Dutcomes (for Mapping with POs and PSOs)							
Students will be able								
Students will be ably								
CO1: To identify th	e suitable drugs for various diseases.							
CO2: To apply the	principles of various drug action and drug design.							
CO3: To acquire the	e knowledge on product development based on SAR.							
CO4: To apply the l	knowledge on applications of computers in chemistry.							
CO5 : To synthesize	new drugs after understanding the concepts SAR.							

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	M
CO 2	М	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	М	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of	Correlati	on between	PSO's ar	nd CO's	
	PSO1	PSO2	PSO3	PSO4	

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong	, 2 − ľ	Medium	, 1	-	Low
------------	----------------	--------	-----	---	-----

Title of the	NANO MATERIALS AND NANO TECHNOLOGY							
Course								
Paper No.	Elective	[
Category	Elective	Year	Ι	Credits	4	Course		
		Semester	Ι			Code		
Instructional	Lecture	Tutorial	La	b Practice		Total		
hours per week	4	1	-			5		
Prerequisites	Basic kno	owledge of	cryst	allograph	y and	d material scie	ence	
Objectives of the	To unders	stand the co	ncept	t of nano n	nateri	als and nano te	chnology.	
course	To unders	stand the va	rious	types of n	ano n	naterials and th	neir properties.	
	To unde	rstand the	app	olications	of s	synthetically	important nano	
	materials.					5		
	To correl	ate the chara	acteri	istics of va	rious	nano material	s synthesized by	
	new techr	nologies.						
	To design	synthetic r	outes	for synthe	eticall	ly used new na	no materials.	
Course Outline	UNIT-I:	Introducti	on	of nano	mater	rials and na	notechnologies,	
	Introducti	on-role of	size	, classific	ation-	-0D, 1D, 2D,	3D. Synthesis	
	Bottom –	Up, Top–D	own,	consolida	tion	of Nano powd	ers. Features of	
	nanostruc	tures, Back	groui	nd of nano	struct	ures. Techniqu	es of synthesis	
	of nano	materials,	Tool	s of the	e na	noscience. A	applications of	
	nanomate	rials and tee	chnol	ogies.				
	UNIT-II:	Bonding a	and s	tructure o	f the	nanomaterials	, Predicting the	
	Type of	Bonding	in	a Subst	ance	crystal stru	cture. Metallic	
	nanoparti	cles. Surfac	es of	f Materials	. Nar	noparticle Size	and Properties.	
	Synthesis	Physical a	nd ch	nemical me	ethod	s - inert gas co	ondensation arc	
	discharge	laser ablat	ion of	sol-gel sol	lvothe	ermal and hydr	othermal-CVD-	
	types m	etallo orga	nic	nlasma e	nhanc	red and low	pressure CVD	
	Microwo	va accipitad of	ine,	piasilia Ci lootroohorr		with a signal and some	pressure CVD.	
	UNIT-III	: Mechani	cal p	oroperties	or n	naterials, theory	ries relevant to	
	nanomate	ai piopeitie riale adh	esior	and t	frictic	n thermal	properties of	
	nanomate	rials, aun	artic	les oold a	and si	lver metal ox	ides silica iron	
	oxide and	alumina - s	svnth	esis and pr	opert	ies	laes. sinea, non	
	UNIT-IV	: Electric	al r	properties,	Co	nductivity ar	d Resistivity,	
	Classifica	tion of Mat	erial	s based on	Cond	luctivity, mag	netic properties,	
	electronic	propertie	s o	f materia	als.	Classification	of magnetic	
	phenomer	na. Semicor	nduc	tor materia	als –	classification	-Ge, Si, GaAs,	
	SiC, GaN	, GaP, CdS	,PbS	. Identifica	ation	of materials as	s p and n –type	
	semicond	uctor-Hall	effec	t - quantu	m an	id anomalous,	Hall voltage -	
	interpreta	tion of	cha	rge carr	ier	density. Ap	oplications of	
	semicond	uctors: p-n	junct	tion as trai	nsisto	rs and rectifie	rs, photovoltaic	
	and photo	galvanic						
	cell.	NI-	.1. :	£1		••••	A	
		INano 1	inin Fora	nims, i	nanoc	composites.	Application of	
	synthesis	and prop	ertie	n neius.	Core	sites - metal	ceramic- and	
	nolvmer-	natrix com	nosite	s annlicat	ione	Characterizatio	n = SFM TFM	
	Type of nanoparti Synthesis discharge types, m Microway UNIT-III mechanic nanomate oxide and UNIT-IV Classifica electronic phenomer SiC, GaN semicond interpreta semicond and photo cell. UNIT-V: nanoparti synthesis, polymer-	Bonding cles, Surfac Physical and , laser ablat etallo orga ze assisted a cl: Mechani al propertie rials, adh rials Nanop alumina - s clectric tion of Mat propertie na. Semicon GaP, CdS uctor-Hall tion of uctors: p-n ogalvanic Nano cles in diff and prop matrix com	in es of nd ch ion, s nic, und el cal p es. To esion partic synth al p erials s o nduct s,PbS effec char junct	a Subst Materials nemical mo sol-gel, sol plasma en lectrochem properties echniques n and t les: gold a esis and properties, s based on f materia tor materia . Identifica t - quantu rge carr tion as tran films, nt fields. s. Nanocces applicat	ance s, Nar ethod: lvothe nhance nical s of n to st frictic and si copert Conce als. als – ation m an ier nsisto	crystal structure noparticle Size s - inert gas con- ermal and hydre ed, and low- synthesis. naterials, theo addy mechanic on, thermal liver, metal ox- ties nductivity magn Classification of materials as and anomalous, density. Appres and rectifies composites. -shell nanopa sites - metal- Characterization	cture. Metallic and Properties. ondensation, arc rothermal-CVD- pressure CVD. ries relevant to al properties of ides: silica, iron and Resistivity, netic properties, of magnetic -Ge, Si, GaAs, s p and n –type Hall voltage - oplications of rs, photovoltaic Application of rticles - types, , ceramic- and on – SEM, TEM	

	and AFM - principle, instrumentation and applications.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP
Text	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications,2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge
	University Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction
	to Materials Science for Engineers. 6 th ed., PEARSON Press, 2007.
Reference Books	1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP
	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications,2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge
	University Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction
	to Materials Science for Engineers. 6 th ed., PEARSON Press, 2007.
Website and	1. <u>http://xrayweb.chem.ou.edu/notes/symmetry.html</u> .
e-learning source	2. <u>http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf</u> .
Course Learning C	Dutcomes (for Mapping with POs and PSOs)
Students will be abl	e:
CO1 : To explain m	ethods of fabricating nanostructures.

CO2: To relate the unique properties of nanomaterials to reduce dimensionality of the material.

CO3: To describe tools for properties of nanostructures.

CO4: To discuss applications of nanomaterials.

CO5: To understand the health and safety related to nanomaterial.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	Μ	S	S
CO 4	M	S	S	S	S	Μ	S	S	S	S
CO 5	М	S	M	S	S	M	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

	ELECTE	ROCHEMIS	STR	Y			
Title of the Course							
Paper No.	Elective	Ι	1	1	1	I	
Category	Elective	Year	Ι	Credits	4	Course	
		Semester	Ι			Code	
Instructional hours	Lecture	Tutorial	La	b Practice		Total	
per week	4	1	-			5	
Prerequisites	Basic kno	wledge of e	lectr	ochemistry	у		
Objectives of the	To unders	stand the be	havi	or of elect	rolyt	es in terms of	conductance,
course	ionic atmo	osphere, inte	eracti	ions.			
	To familia	arize the stru	uctur	e of the el	lectri	cal double laye	er of different
	models.						
	To compa	re electrode	s bet	ween curr	ent de	ensity and over	· potential.
	To discus	s the mecha	nism	of electro	chem	ical reactions.	I
	To highli	ght the diffe	erent	types of c	over v	voltages and its	s applications
	in electroa	analytical te	chnie	ques.		e	11
Course Outline	UNIT-I:	Ionics: Arri	neniu	is theory -	limita	ations, van't He	off factor and
	its relatio	n to colliga	tive	properties	. Dev	viation from id	leal behavior.
	Ionic ac	tivity, mea	n i	onic activ	vity	and mean id	onic activity
	coefficier	it-concept of	f ion	ic strength	n, Del	bye Huckel the	ory of strong
	electrolyt	es, activity	coef	ficient of s	strong	g electrolytes I	Determination
	of activit	y coefficien	t ioi	n solvent	and i	ion-ion inter	actions. Born
	equation.	Debye-Hu	ckel	Bjerrum	mod	lel. Derivation	1 of Debye-
	Huckel 1	imiting law	at	appreciab	le co	oncentration of	f electrolytes
	modificat	ions and	appl	ications.	Elect	trolytic condu	iction-Debye-
	Huckel (Onsager tre	eatmo	ent of st	rong	electrolyte-qu	alitative and
	quantitati	ve verifica	tion	and lir	nitati	ons. Evidence	e for ionic
	atmosphe	re. Ion assoc		on and trip	le ior	i formations.	
		Electrode-	-elec	trolyte in	terfa	ce: Interfacial	phenomena -
	Evidence	S for electric	al de	buble layer	, poi	L inpresent and no	n-polarizable
	conillory	, Electrocap	mar tro l	y phenom	ena -	Lippinann equ	
	electroph	oragia stree	uo-k	a and see	limor	tation notenti	als colloidal
	and noly	electrolytes	uiiiii) Str	g allu set	doub	la laver. Helmi	holtz Perrin
	Guov Ch	anman and	Ster	n models	ofe	lectrical doubl	e laver Zeta
	notential	apinan and and notentia	latz	n mouers zero charge	\rightarrow An	nlications and l	limitations
		• Electro	lics	of Elen	<u></u>	rv Electrode	Reactions.
	Behavior	of electro	des:	Standard		ctrodes and	electrodes at
	equilibrin	m. Anodic	an	d Cathod		urrents. condi	tion for the
	discharge	of ions. N	ernst	equation.	pola	rizable and no	on-polarizable
	electrodes	s. Model of	thre	e electrod	e sys	tem, over pote	ntial. Rate of
	electro ch	emical react	tions	: Rates	5-	, I	
	of simple	elementary	read	ctions. But	ler-V	olmer equation	n-significance
	of exchan	ge current d	lensi	ty, net cur	rent d	lensity and sym	metry factor.
	Low and	high field	appı	oximation	s. sy	mmetry factor	and transfer
	coefficier	it Tafel equa	tion	s and Tafe	l plot	S	
	UNIT-IV	: Electrodi	cs of	f Multiste	p Mu	ılti Electron S	ystem: Rates
	of multi-	step electro	ode 1	reactions,	Butle	er - Volmer e	quation for a

	multi-step reaction. Rate determining step, electrode polarization and
	depolarization. Transfer coefficients, its significance and
	determination,
	Stoichiometric number. Electro-chemical reaction mechanisms-rate
	expressions, order, and surface coverage. Reduction of I3-, Fe2+,
	and dissolution of Fe to Fe2+. Overvoltage - Chemical and electro
	chemical, Phase, activation and concentration over potentials.
	Evolution of oxygen and hydrogen at different pH. Pourbiax and
	Evan's diagrams.
	UNIT-V: Concentration Polarization, Batteries and Fuel cells:
	Modes of Transport of electro active species - Diffusion, migration
	and hydrodynamic modes. Role of supporting electrolytes.
	Polarography principle and applications. Principle of square wave
	polarography. Cyclic voltammetry- anodic and cathodic stripping
	voltammetry and differential pulse voltammetry. Sodium and
	lithium-ion batteries and redox flow batteries. Mechanism of charge
	storage: conversion and alloying. Capacitors- mechanism of energy
	storage, charging at constant current and constant voltage. Energy
	production systems: Fuel Cells: classification, alkaline fuel cells,
	phosphoric acid fuel cells, high temperature fuel cells.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC
Component (is a part	others to be solved
of internal	(To be discussed during the Tutorial hours)
component only, Not	
to be included in the	
external examination	
question paper)	
Skills acquired from	Knowledge, Problem solving, Analytical ability, Professional
this course	Competency, Professional Communication and Transferable skills.
Recommended Text	1. D. R. Crow, Principles and applications of electrochemistry,
	4 Inedition, Chapman & Hall/CKC, 2014.
	2. J. Kajarani and J.C. Kunakose, Kinetics and Mechanishi of
	2011
	2011. 2 S. Classtona, Electro chemistry, Affiliated East West Press, Put
	J. S. Olassione, Electro chemistry, Annated East-west Tress, Tvt., I td. New Delbi 2008
	A B Viswanathan S Sundaram R Venkataraman K Rengarajan
	and DS Raghavan Electrochemistry Principles and
	and 1.5. Ragnavan, Electrochemistry-Timetples and
	5 Joseph Wang Analytical Electrochemistry 2 nd edition Wiley
	2004
Reference Rooks	1 IOM Bockris and AKN Reddy Modern Electro chemistry
Reference Dooks	vol 1 and 2B Springer Plenum Press New York 2008
	2 IOM Bockris AKN Reddy and MG Aldeco Morden
	Electro chemistry vol 24 Springer Plenum Press New York
	2008
	3 Philip H Rieger Electrochemistry 2 nd edition Springer New
	York 2010
	4 L.L. Antropov. Theoretical electrochemistry. Mir Publishers

 1977. 5. K.L. Kapoor, A Text book of Physical chemistry, Macmillan, 2001. 	volume-3,
--	-----------

Website and	nd 1. <u>https://www.pdfdrive.com/modern-electrochemistry-e343332</u>						
e-learning source							

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To understand the behaviour of electrolytes in solution and compare the structures of electrical double layer of different models.

CO2: To predict the kinetics of electrode reactions applying Butler-Volmer and Tafel equations

CO3: To study different thermodynamic mechanism of corrosion,

CO4: To discuss the theories of electrolytes, electrical double layer, electrodics and activity coefficient of electrolytes

CO5: To have knowledge on storage devices and electrochemical reaction mechanism.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	Μ	S	Μ	S	S	M	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	MOLEC	ULAR SPE	CTF	ROSCOPY	Y				
Course									
Paper No.	Elective II								
Category	Elective	Year	Ι	Credits	4	Course			
		Semester	Ι	1		Code			
Instructional	Lecture	Tutorial	Lal	Practice		Total			
hours per week	4	1	-			5			
Prerequisites	Basic kn	owledge of s	spect	roscopy		I			
Objectives of the	To under	stand the int	luen	ce of rotat	ion a	nd vibrations of	n the spectra of		
course	the polya	tomic molec	ules.						
	To study	the principle	e of l	Raman spe	ectros	copy, ESR spe	ctroscopy, EPR		
	spectrosc	opy and frag	gmen	tation patt	erns i	n Mass spectro	scopy.		
	To highli	oht the sign	nifica	ance of Fr	anck-	-Condon princi	inle to interpret		
	the select	ion rule. into	ensity	v and type	s of e	lectronic transit	tions.		
	To interp	ret the first a	and s	econd ord	er NM	AR spectra in te	erms of splitting		
	and coup	oling pattern	ns us	sing corre	lation	n techniques s	uch as COSY,		
	HETCOR	, NOESY.		e					
	To carry	out the str	uctu	ral elucida	ation	of molecules	using different		
	spectral to	echniques.							
Course Outline	UNIT-I:	Rotational	and	Raman S	pectr	roscopy: Rotat	ional spectra of		
	diatomic	and polyate	omic	molecule	s. Int	ensities of rot	ational spectral		
	lines, effe	ect of isotop	ic sul	bstitution.	Non-	rigid rotators. (Classical theory		
	of the Ra	man effect,	pola	rizability a	is a te	ensor, polarizał	oility ellipsoids,		
	quantum	theory of th	e Ra	man effec	t, Pur	re rotational Ra	aman spectra of		
	linear an	d asymmeti	ric to	op molecu	les,	Stokes and an	ti-Stokes lines.		
	Vibration	al Raman sr	oectra	a, Raman a	activit	ty of vibrations	, rule of mutual		
	exclusion	. rotational	fine	structure-	O an	d S branches.	Polarization of		
	Raman so	attered phot	ons			,			
	UNIT_II	Vibratio	nal	Snectros	conv.	Vibrations	of molecules		
	harmonic	and anhar	man moni	c oscillato	ors- v	vibrational ener	rov expression		
	energy le	vel diagram	. vib	rational w	vave 1	functions and t	heir symmetry.		
	selection	rules, ext	press	ion for	the	energies of	spectral lines.		
	computat	ion of inter	sitie	s, hot bar	nds, e	effect of isotop	vic substitution.		
	Diatomic	vibrating	rotor	, vibratio	nal-rc	otational spect	ra of diatomic		
	molecules	s, P, R ^b i	ranch	nes, break	dowr	n of the Bor	n-Oppenheimer		
	approxim	ation. Vib	atior	ns of po	lyator	nic molecules	s – symmetry		
	properties	s, overtone a	ind	•	•				
	combinat	ion frequend	cies.	Influence	of rot	ation on vibrat	ional spectra of		
	polyatomic molecule, P, Q, R branches, parallel and perpendicular								
	vibrations	s of linear ar	nd sy	mmetric to	op mo	olecules.			
	UNIT-II	I: Electro	nic	spectros	copy	: Electronic	Spectroscopy:		
	Electroni	c spectros	copy	of dia	tomic	molecules,	Frank-Condon		
	principle,	dissociatio	on a	nd pre-di	ssocia	ation spectra.	$\pi \rightarrow \pi^*, n \rightarrow \pi^*$		
	transition	s and their	selec	tion rules.	Phot	coelectron Spec	troscopy: Basic		
	principles	,		с · 1	1	1 37	1, 1,		
	photoelec	tron spect	a o	t simple	mol	ecules, X-ray	photoelectron		

	spectroscopy (XPS). Lasers: Laser action, population inversion,
	properties of laser radiation, examples of simple laser systems.
	UNIT-IV: NMR and ESR spectroscopy: Chemical shift, Mechanism
	of shielding and de-shielding. Spin systems: Simplification of complex
	spectra. Spin-spin interactions: Homonuclear coupling interactions -
	AX, AX2, AB types. Vicinal, germinal and long-range coupling-spin
	decoupling. Nuclear Overhauser effect (NOE), Factors influencing
	coupling constants and Relative intensities. 13CNMR and structural
	correlations, Satellites. ESR spectroscopy Characteristic features of
	ESR spectra, line shapes and line widths; The g value and the hyperfine
	coupling parameter (A). Interpretation of ESR spectra and structure
	elucidation of organic radicals using ESR spectroscopy; Spin orbit
	coupling and significance of g tensors, zero/non-zero field splitting,
	Kramer's degeneracy.
	UNIT-V: Mass Spectrometry, EPR and Mossbauer Spectroscopy:
	Ionization techniques- Electron ionization (EI), chemical ionization
	(CI), isotope abundance, molecular ion, fragmentation processes of
	organic molecules, deduction of structure through mass spectral
	fragmentation, high resolution. Effect of isotopes on the appearance of
	mass spectrum. EPR spectra of anisotropic systems - anisotropy in g
	value, causes of anisotropy, anisotropy in hyperfine coupling,
	hyperfine splitting caused by quadrupole nuclei. Principle of
	Mossbauer spectroscopy: Doppler shift, Isomer shift, Applications:
	Mossbauer spectra of high and low-spin Fe and Sn compounds
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.

Recommended	1.	C. N. Banwell and E. M. McCash, Fundamentals of Molecular
Text		Spectroscopy, 4 th Ed., Tata McGraw Hill, New Delhi, 2000.
	2.	R. M. Silverstein and F. X. Webster, Spectroscopic Identification
		of Organic Compounds, 6 th Ed., John Wiley & Sons, New York,
		2003.
	3	W Kemp Applications of Spectroscopy English Language Book
		Society, 1987.
	4.	D. H. Williams and I. Fleming, Spectroscopic Methods in Organic
		Chemistry, 4 th Ed., Tata McGraw-Hill Publishing Company, New
		Delhi, 1988.
	5.	R. S. Drago, <i>Physical Methods in Chemistry</i> ; Saunders:
		Philadelphia, 1992.
Reference Books	1.	P.W. Atkins and J. de Paula, <i>Physical Chemistry</i> , 7 th Ed., Oxford
		University Press, Oxford, 2002.
	2.	I. N. Levine, Molecular Spectroscopy, John Wiley & Sons, New
		York, 1974.
	3.	A. Rahman. Nuclear Magnetic Resonance-Basic Principles.
	_	Springer-Verlag, New York, 1986.
	4.	K. Nakamoto. Infrared and Raman Spectra of Inorganic and
		coordination Compounds, PartB: 5th ed., John Wiley& Sons Inc.,
		New York, 1997.
	5.	J. A. Weil, J. R. Bolton and J. E. Wertz, <i>Electron Paramagnetic</i>
		Resonance: Wiley Interscience, 1994.
Website and	1 h	ttps://onlinecourses.pptel.ac.in/noc20_cv08/preview
e-learning source	2 h	ttps://www.digimat.in/nntel/courses/video/104106122/L14 html
Course Learning ()utco	mes (for Manning with POs and PSOs)
Course Learning (Juico	mes (for mapping with 1 Os and 1 SOs)

Students will be able:

CO1: To understand the importance of rotational and Raman spectroscopy.

CO2: To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules.

CO3: To evaluate different electronic spectra of simple molecules using electronic spectroscopy.

CO4: To outline the NMR, ¹³C NMR, 2D NMR – COSY, NOESY, Introduction to ³¹P, ¹⁹F NMR and ESR spectroscopic techniques.

CO5: To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopy techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	М	S	S	S	S	М	S	S	S	S
CO 3	S	S	M	S	S	S	S	Μ	S	S
CO 4	M	S	S	S	S	Μ	S	S	S	S
CO 5	М	S	Μ	S	S	Μ	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	5.0	5.0	5.0	5.0	5.0

3 – Strong, 2 – Medium, 1 - Low
