

THIRUVALLUVAR UNIVERSITY SERKKADU, VELLORE-632115

M.Sc. BIO TECHNOLOGY

SYLLABUS

FROM THE ACADEMIC YEAR 2023 - 2024

P13

TANSCHE R	REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK FOR POSTGRADUATE EDUCATION
Programme	M.Sc. BIO-TECHNOLOGY
Programme Code	
Duration	PG – 2 YEARS
Programme	PO1: Problem Solving Skill
Outcomes	Apply knowledge of Management theories and Human Resource practices
(Pos)	to solve business problems through research in Global context.
	PO2: Decision Making Skill
	Foster analytical and critical thinking abilities for data-based decision-
	making.
	PO3: Ethical Value
	Ability to incorporate quality, ethical and legal value-based perspectives to
	all organizational activities.
	PO4: Communication Skill
	Ability to develop communication, managerial and interpersonal skills.
	PO5: Individual and Team Leadership Skill
	Capability to lead themselves and the team to achieve organizational goals.
	PO6: Employability Skill
	Inculcate contemporary business practices to enhance employability skills
	in the competitive environment.
	PO7: Entrepreneurial Skill
	Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society
	Succeed in career endeavors and contribute significantly to society.
	PO 9 Multicultural competence
	Possess knowledge of the values and beliefs of multiple cultures and
	a global perspective.
	PO 10: Moral and ethical awareness/reasoning
D	Ability to embrace moral/ethical values in conducting one's life.
Programme	PSO1 – Placement
Specific	To prepare the students who will demonstrate respectful engagement with
Outcomes	others' ideas, behaviors, beliefs and apply diverse frames of reference to
(PSOs)	decisions and actions.
	PSO 2 - Entrepreneur To create effective entrepreneurs by enhancing their critical thinking,
	problem solving, decision making and leadership skill that will facilitate
	startups and high potential organizations.
	PSO3 – Research and Development
	Design and implement HR systems and practices grounded in research that
	comply with employment laws, leading the organization towards growth
	and development.
	PSO4 – Contribution to Business World
	To produce employable, ethical and innovative professionals to sustain in
	the dynamic business world.
	PSO 5 – Contribution to the Society
	To contribute to the development of the society by collaborating with
	stakeholders for mutual benefit.
	אמאטווטוענוא וטו ווועועמו טכווכווו.

Semester-I	Credit	Hours	Semester-II	Credit	Hours	Semester-III	Credit	Hours	Semester-IV	Credit	Hours
1.1. Core-I	4	5	2.1. Core-IV	3	4	3.1. Core-VII	5	6	4.1. Core-XI	5	6
1.2 Core-II	4	5	2.2 Core-V	4	4	3.2 Core- VIII	5	6	4.2 Core-XII	5	6
1.3 Core – III	3	5	2.3 Core – VI	4	4	3.3 Core – IX	5	6	4.3 Project with viva voce	7	10
1.4 Core practical I	3	5	2.4 Core practical II	3	4	3.4 Core – X	4	6	 4.4. Elective - VI (Industry / Entrepreneurship) 20% Theory 80% Practical 	3	4
1.5 Discipline Centric Elective -I	3	5	2.5 Discipline Centric Elective – III	3	4	3.5 Discipline Centric Elective - V	3	3	4.5 Skill Enhancement course / Professional Competency Skill	2	4
1.6 Generic Elective-II:	3	5	2.6 Generic Elective -IV:	3	4	3.6 NME II	2	3	4.6 Extension Activity	1	
			2.7 NME I	2	4	3.7 Internship/ Industrial Activity	2				
			Human Rights	2	2						
			MOOC course	2	-						
	20	30		26	30		26	- 30		23	30
				20		Credit Points -95	20				

Template for P.G., Programmes

Choice Based Credit System (CBCS), Learning Outcomes Based Curriculum Framework (LOCF) Guideline Based Credits and Hours Distribution System for all Post – Graduate Courses including Lab Hours

Part	List of Courses	Credits	No. of Hours
	Core – I	4	5
	Core – II	4	5
	Core – III	3	5
	Core practical – I	3	5
	Elective – I	3	5
	Elective – II	3	5
		20	30

Semester-II List of Courses Credits Part No. of Hours Core – IV 3 4 Core – V 4 4 Core – VI 4 4 Core practical – II 3 4 Elective – III 3 4 Elective – IV 3 4 Skill Enhancement Course [SEC] – I (NME) 2 4 2 Human Rights 2 MOOC course 2 26 30

Second Year – Semester – III					
Part	List of Courses	Credits	No. of Hours		
	Core – VII	5	6		
	Core – VIII	5	6		
	Core – IX	5	6		
	Core (Industry Module) – X	4	6		
	Elective – V	3	3		
	Skill Enhancement Course - II	2	3		
	Internship / Industrial Activity [Credits]	2	-		
		26	30		

Part	List of Courses	Credits	No. of Hours
	Core – XI	5	6
	Core – XII	5	6
	Project with VIVA VOCE	7	10
	Elective – VI (Industry Entrepreneurship)	3	4
	Skill Enhancement Course – III / Professional Competency Skill	2	4
	Extension Activity	1	-
		23	30

Total 95 Credits for PG Courses

Learning Outcomes based approach to Curriculum Planning:

The Learning Outcomes based approach to Curriculum planning aims to factor in on the aptitude, interests and strengths of the students during their progress through the coursework and at the same time focus on overall student attainment. The main objective of the learning outcomes based framework is to better equip the students in their pursuit of knowledge, with the required employability skills, innovation in research and entrepreneurship skills. The course is so designed with practical work that will help students to apply their theoretical knowledge in experimenting and exploring. The curriculum envisions that the student, once graduates as specialists in a discipline, have an important role to play in the newer developments and innovations in the future in the subject for the advancement of the discipline.

Graduate Attributes in Biotechnology:

Graduate attributes are the high-level qualities, skills and understandings that a student should gain as a result of the learning and experiences. They equip students and graduates for lifelong personal development, learning and to be successful in society. Students will be equipped to be active citizens both nationally and globally. The students graduating in biotechnology should also develop excellent communication skills both in the written as well as spoken language which are a must for them to pursue higher studies from some of the best and internationally acclaimed universities and research institutions spread across the globe. The graduate attributes reflect both disciplinary knowledge and understanding, generic skills, including global competitiveness all students in different academic fields of study should acquire/attain and demonstrate. Some of the characteristic attributes that a graduate should demonstrate are as follows

- Leadership Readiness
- Moral and ethical awareness/reasoning.
- Multicultural Competence.
- Life–long Learning.
- Communication Skills.
- Critical thinking.
- Problem-solvingng.
- Research-related skills.
- Scientific reasoning.
- Self-directed learning.
- Disciplinary knowledge.

Qualification Descriptors:

Upon successful completion of the course, the students receive an M.Sc. degree in Biotechnology. Biotechnology postgraduates of this department are expected to branch out into different paths of seeking advanced research-based knowledge, professional employment, or entrepreneurship that they find fulfilling. They will be able to demonstrate knowledge as well as skills in diverse fields of Biotechnology. This will provide a foundation, which shall help them to embark on research careers by attaining doctoral positions in coveted institutions, as well as securing employment in research projects in industry or institutes. Besides research, they can get suitable teaching positions in Colleges and Universities as Assistant professors after qualifying National Eligibility Test (NET). It is expected that besides the skills specific to the discipline, the wider life skills of analysis, logical reasoning, scientific aptitude, communication skills, research and life ethics, and

moral values will be inculcated in the students. The list below provides a synoptic overview of possible career paths provided by postgraduate training in Biotechnology:

- Biotechnology entrepreneurship
- Patents and Law
- Scientific Writing and Editing
- Document preparation and publication
- Research
- Industry
- Teaching
- Administration and Policy Making
- Scientific Communication

Teaching-learning process

The Learning Outcomes-Based Approach to curriculum planning and transaction requires that the teaching-learning processes are oriented towards enabling students to attain the defined learning outcomes relating to the courses within a programme. The outcome-based approach, particularly in the context of undergraduate studies, requires a significant shift from teacher-centric to learner-centric pedagogies, and from passive to active/participatory pedagogies. Planning for teaching therein becomes critical. Every programme of study lends itself to a well-structured and sequenced acquisition of knowledge and skills. Practical skills, including an appreciation of the link between theory and experiment, will constitute an important aspect of the teaching-learning process. Teaching methods, guided by such a framework, may include:

 \checkmark Classroom Teaching for intensely information-based topics. This is a very regular feature of all the courses in Biotechnology.

 \checkmark **PowerPoint slides** for topics that involve information and use of PowerPoint presentations are also made whenever the lectures are to be summarized in a crisp and pointwise manner to highlight salient/important conclusions from the topics.

 \checkmark Classroom Discussions are a regular feature while teaching. The students are drawn into impromptu discussions by the teacher during the process of teaching.

✓ **Video Displaying**, both real-time and animations, are used for topics that require 3D dimensional viewing of the biological mechanisms to drive the point home. These have proved to be very helpful while teaching concepts of molecular biology like DNA replication, transcription and translation.

 \checkmark Model Making is also used especially for understanding and building a perception of the students.

✓ **Laboratory Practical** are an integral part of every course included in the PG programme in Biotechnology. The is also a daily affair for PG students of Biotechnology.

✓ **Problem Solving** is encouraged during the laboratory work.

✓ **Group Activity** as well as discussions with the laboratory supervisor/ among the students themselves/ Mentor is also encouraged during laboratory work.

 \checkmark **Project Work** is included in the programme where students work individually or in groups to design experiments to solve/answer a problem suggested by the Mentor or identified by the students in consultation with the Mentor. The students are mentored regularly during the duration of the project.

 \checkmark Presentations by the Students are regularly done. The students are mentored in the presentation of data, interpretation of data and articulation with the students/teachers/Research Scholars during their presentation.

 \checkmark Presentations by Experts in different specialties of Biotechnology are arranged to broaden the horizons of the students.

 \checkmark Interaction with Experts is also encouraged during/after presentations to satisfy/ignite the curiosities of the students related to developments in the different areas of Biotechnology.

 \checkmark Visit to Industries/Laboratories related to Biotechnology like fermentation, food, pharmaceuticals; diagnostics etc. are organized to acquaint the students with real-life working environments of the professional biotechnologist with a view to broadening their perspective on the subject of Biotechnology.

Assessment methods

The students of PG Biotechnology program must achieve the desired results in terms of the learning outcomes to be professionally sound and competitive in a global society. Achieving the desired learning outcomes is also imperative in terms of job employment leading to a happy and prosperous individual further leading to a happy and prosperous family and thereby a happy and prosperous society or nation. The assessment tasks are pivotal to getting authentic feedback for the teaching-learning process and mid-course corrections and further improvements in the future. The assessment tasks are carried out at various stages of the duration of the PG Biotechnology programme like Mid-term assessments, End-term assessments, Semester examinations, Regular assessments, viva-voce, etc. The assessment tasks are listed below:-

 \checkmark Short-Answer Questions during term and semester examinations are used to assess the ability of the student to convey his thoughts in a coherent way where prioritization of the information in terms of their significance is tested.

✓ **Problem Solving questions** are generally given during the laboratory work.

 \checkmark Surprise Quizzes are regularly used during continuous assessment while the teaching-learning process is continuing which prepares the student to quickly recall information or quickly analyze a problem and come up with proper solutions.

 \checkmark Impromptu Opinions on biotechnological problems are sought from student during regular teaching-learning which help them to think quickly in a given context. This help build their ability to come up with solutions to problems that the students might not have confronted previously.

 \checkmark **Data Interpretation** is also another assessment task that is used to develop the analytical skills of the students. This assessment is used during laboratory work as well as during project work.

✓ Analytical Skills are assessed during work related to several experiments like enzyme kinetics, growth of bacteria and Bacteriophages, and mutation frequencies.

 \checkmark **Paper/ Project presentations** are used to assess the articulation skills of the student. These are carried out both during the duration of the teaching-learning processes as well as during end-Semester examinations.

 \checkmark **Report Writing** is used to assess the keenness of the students for details related to Biotechnology while visiting laboratories/industries as students invariably are required to submit a report after such visits.

 \checkmark Assignment Writing is used to assess the writing abilities of the students during midterm vacations.

 \checkmark Viva-voce during the laboratory working hours and during laboratory, examinations are used to assess the overall knowledge and intelligence of the students.

Key Words:

Biotechnology, Teaching, Learning outcomes, Curriculum, Curriculum Framework, Programme outcomes, Course outcomes, PG Programme, Postgraduate programme, Teaching-learning processes, Assessment Tasks, Evaluation Tasks, Online Courses, MOOCS, SWAYAM, UGC, India, Higher Education Institutions.

	Course		rs	its	Exam	Max. Marks	
S .No.	Components	Name of Course	Inst. Hours	Credits		CIA	External
1	Core Paper-1	Biochemistry	5	4	3	25	75
2	Core Paper-2	Molecular Genetics	5	4	3	25	75
3	Core Paper-3	Molecular Cell Biology	5	3	3	25	75
4	Core practical	(A) Biochemistry	5	3	4	25	75
	- 1	(B) Molecular Genetics					
		(C) Molecular Cell					
		biology					
5	Elective -I	Bioinstrumentation	5	3	3	25	75
6	Elective-II	Enzymology	5	3	3	25	75
	Total Credits : 20						

3. COURSE OF STUDY AND SCHEME OF EXAMINATIONS: FIRST SEMESTER

SECOND SEMESTER

	Course		t. Irs	lits	Exam	Max. Marks	
S. No.	Components	Name of Course	Inst. Hours	Credits	HRS	CIA	External
7	Core Paper-4	Microbiology	4	3	3	25	75
8	Core Paper-5	Plant and Animal Biotechnology	4	4	3	25	75
9	Core Paper-6	Genetic Engineering	4	4	3	25	75
10	Core practical - 2	(A) Microbiology(B) Plant and AnimalBiotechnology(C) Genetic Engineering	4	3	4	25	75
11	3	Regulatory affairs and Industrial standards (or) Pharmaceutical Biotechnology	4	3	3	25	75
12	Elective Paper- 4	Environmental Biotechnology	4	3	3	25	75
	Skill Enhancement I	Tissue Engineering	4	2	3	25	75
14		Human Rights	2	2	3	25	75
		MOOC course	-	2	3		100
		Total	30	26			

THIRD SEMESTER

			. S	its		Max	. Marks
S. No.	Course			Credits	Exam	CIA	External
	Components	Name of Course	Inst. Hours	Cr	HRS		
15	Core Paper-7	Bioinformatics	6	5	3	25	75
16	Core Paper-8	Immunology	6	5	3	25	75
17	Core Paper-9	Bioprocess Technology	6	5	3	25	75
18	Core Paper-10	Practical – III	6	4		25	75
	Practical-III	(A) Bioinformatics			4		
		(B) Immunology					
		(C) Bioprocess Technology					
19	Elective Paper-5	Nano Biotechnology (OR)	3	3	3	25	75
		Molecular Developmental					
		Biology					
	Skill	Gene Manipulation Technology	3	2	3	25	75
	Enhancement II						
21	**Internship	Internship in Industries to					
		Biotechnology	0	2	-	-	100
		Field (food / clinical trial/					
		dairy/ aqusciences,					
		pharmaceutical)					
		CSIR/DBT/DST research					
		laboratories					
		Total	30	26			

FOURTH SEMESTER

			. S	Credits	n		. Marks
S. No.	Course Components	Name of Course	Inst. Hours		Exam hrs	CIA	External
22	Core Paper-11	Research Methodology	6	5	3	25	75
23	Core Paper-12	Biostatistics	6	5	3	25	75
24	Project Work & Vive Voce	Dissertation	10	7		60	*240
	Elective - VI Industry / Entrepreneurship 20% Theory 80% Practical	Industrial Effluent Treatment / Biofertilizers and Organic Farming/ Bioentrepreneurship	4	3	3	25	75
		Stem Cell Biology (or) Bioethics, Human Rights and Social Issues	4	2	3	25	75
		Total	30	23			

* 40-work book, 150 Dissertation+ 50- Viva

FIRST SEMESTER

Core Paper-1 BIOCHEMISTRY

Paper – 1					
Title of the paper	Title of the paperBIOCHEMISTRYSubject code:				
Category of the	Year	Semester	Credits		
course					
Core Paper	1^{st}	1^{st}	4		

Learning Objectives:

The paper imparts a thorough knowledge on the basics of all the Biochemical concepts, Metabolic reactions and its regulation. The student will get to understand the core concepts of metabolism and physiological processes of the body in both healthy and disease state.

Course outcomes:

At the end of the Course, the Student will be able to:

CO-1	To understand the basics of pH and related principles and carbohydrate metabolism.
CO-2	To provide basic knowledge about lipid metabolism and related significance.
CO-3	To enlighten the students on Bio-energetics and Biological oxidation pathways.
CO-4	To update the knowledge on Amino acids and Protein.
CO-5	To assess and appraise the role of Nucleic acids.

SYLLABUS CORE PAPER-1 BIOCHEMISTRY				
Unit	Content	Hours	COs	Cognitive
				level
I	pH, pK . acid, base .Buffers- Henderson- Haselbach equation, biological buffer system –Phosphate buffer system, protein buffer system, bicarbonate buffer system, amino acid buffer system and Hb buffer system. Water, Carbohydrates: Nomenclature, classification, structure, chemical and physical properties of carbohydrates. Metabolisms: glycogenesis, glycogenolysis, gluconeogenesis, pentose phosphate pathway	15	CO1	K1&k2
п	Lipids: Nomenclature, classification, structure, chemical and physical properties of fatty acids. Metabolisms: biosynthesis of fatty acids, triglycerols, phospholipids, glycol lipids. Cholesterol biosynthesis, bile acids and salt formation. Eicosanoids, sphingolipids and steroid hormones.	15	CO2	K1,K2 & K3
III	Bioenergetics – Concept of energy, Principle of thermodynamics, Relationship between standard free energy and Equilibrium constant, ATP as universal unit of free energy in Biological systems. Biological oxidation: Electron transport chain, oxidative phosphorylation, glycolysis, citric acid cycle, cori.s cycle, glyoxalate pathway. Oxidation of fatty acids- mitochondrial and peroxisomal β-oxidation, alpha and beta oxidation, oxidation of unsaturated and odd chain fatty acids, ketone bodies.	15	CO3	K1,K2 & K3
IV	Amino acids and Protein: Nomenclature, Classification, structure, chemical and physical properties of amino acids and	15	CO4	K1,K2 & K3

	proteins. Metabolisms: Biosynthesis of amino acids. Degradation of proteins, nitrogen metabolisms and carbon skeleton of amino acids. Over all in born error metabolisms			
v	Nucleic acids: Nomenclature, Classification, structure, chemical and physical properties of purine and pyrimidines. In de novo and salvage synthesis of purines, pyrimidine bases, nucleosides and nucleotides. Catabolisms of purines and pyrimidines bases. Synthetic analogues of nitrogenous bases	15	CO5	K1,K2 & K3

Reference books:

- Philip Kuchel, Simon Easterbrook-Smith, Vanessa Gysbers, Jacqui M. Matthews, 2011. Schaum.s Outline of Biochemistry, Third Edition (Schaum.s Outline Series), McGraw-Hill.
- Sathyanarayana.U and U.Chakrapani., 2011. Biochemistry. Books and Allied private limited, Kolkata.
- Jeremy M. Berg, John L. Tymoczko, Lubert Stryer, 2010. Biochemistry, Seventh Edition, W. H. Freeman.
- Albert Lehninger, David L. NelsonVoet Donald, Judith G.Voet and Charlotte W.Pratt., 2008. Principles of Biochemistry. John Wiley and sons, Inc., New Jersey.
- Michael M. Cox, 2008. Lehninger Principles of Biochemistry, Fifth Edition, W. H. Freeman publishers.

Useful web sites:

- mcdb-webarchive.mcdb.ucsb.edu/.../biochemistry/.../website-tourf.htm
- www.biochemweb.org/
- http://golgi.harvard.edu/biopages.html
- webarchive.mcdb.ucsb.edu/sears/biochemistry/info/website-

Core Paper-2 MOLECULAR GENETICS						
	Paper – 2					
Title of the paper	Title of the paper MOLECULAR GENETICS Subject code:					
Category of the	Year	Semester		Credits		
course						
Core Paper	1^{st}	1	st	4		

Learning outcome:

The paper imparts a thorough knowledge on the basics of all the Genetics concepts, molecules and its regulation. The student will get to understand the core concepts of molecules and genetics.

Course outcomes:

At the end of the Course, the Student will be able to:

CO-1	To acquire good knowledge about the molecular mechanisms of gene expression and understand the theories behind the organization and functions of genetic
	material in the living world.
CO-2	Identify and distinguish genetic regulatory mechanisms at different levels and
	explain the processes behind mutations and other genetic changes and study various
	chromosomal abnormalities.
CO-3-	Make the students understand different range of DNA damage and range of their
	tools for their detection an.
CO-4	Learn the concepts of the transposons and their applications.
CO-5	Detects the Allele frequencies and genotype frequencies in populations and
	describe the concepts behind the theory of evolution

	SYLLABUS CORE PAPER-2 MOLECULAR GENETICS				
Unit	Content	Hours	COs	Cognitive level	
Ι	Genes and chromosomes, Colinearity of Genes and Proteins, Genetic code, Identification of DNA as the genetic material. The complexity of eukaryotic genome (introns, exons, repetitive DNA sequence, gene duplication and pseudogenes). DNA markers -VNTR, STR, microsatellite, SNP and their detection techniques	15	CO1	K1,K2 & K3	
п	Replication of DNA, Gene expression and regulation in prokaryotes and eukaryotes. Mutation: Spontaneous and virus induced mutation, Radiation induced mutation. Ionizing radiation, UV radiation. Chromosomal Abnormalities and associated genetic diseases, Techniques in the study of chromosomes and their applications, Recombination – models	15	CO2	K1,K2 &K3	
ш	DNA Damage and Repair-Internal and external agents causing DNA damages. DNA damages (Oxidative damages, Depurinations, Depyrimidinations, O6-methylguanines, Cytosine deamination, single and double strand breaks). Mechanisms of DNA damage (transition, transversion, frameshift, nonsense mutations). Repair mechanisms (Photo reactivation, excision repair, mismatch repair, post replication repair, SOS repair). Discovery: Early experiments of McClintock in maize. Insertion sequences in prokaryotes.	15	CO3	K1,K2 &K3	

	Complex transposons (ex. Tn3, Tn5, Tn9 and Tn10). Mechanisms, control consequences and application of transposition by simple and complex elements			
IV	Allele frequencies and genotype frequencies, Random mating population, Hardy-Weinberg principle, complications of dominance, special cases of random mating – multiple alleles, different frequencies between sexes (autosomal and X-linked) inbreeding, genetics and evolution, random genetic drift, Karyotyping and usefulness of chromosomes in understanding Genetic variation, Genetics of eukaryotes gene linkage and chromosome mapping.	15	CO4	K1 &K2
V	Extrachromosomal heredity: Biology of Plasmids, their discovery, types and structure of F.RTH. <i>col</i> factors and Ti – Replication and partitioning, Incompatibility and copy number control-natural and artificial plasmid transfer and their applications- Human Genome Project, Genomics and Modern methodologies in understanding genome.	15	CO5	K1,K2 & K3

References:

- Principles of Genetics- 8th Edition, Gardner, Simmons and Snustad, 2002.
- The Cell- A Molecular Approach. 3rd Edition. Geoffrey M. Cooper, Robert E. Hausman, 2003.
- Genetics- Kavitha B. Ahluwalia, New Age International Pvt Ltd and Publishers, New Delhi, 2010
- Genetics P.S Verma and A.K Agarwal (Rack 3, Central Library)
- Robert Brooker.2011. Genetics- Analysis and Principles. 4th edition. McGraw Hill.
- Leland Hartwell,Leroy Hood, Michael Goldberg, Ann Reynolds, Lee Silver,2010.Genetics: From Genes to Genomes, 4th Edition, McGraw Hill.
- Rastogi Smita and Neelam Pathak.,2010. Genetic Engineering, Oxford University Press, New Delhi. (Rack 3, Central Library)
- Watson, Hopkins, Roberts, Steitz, Weiner, 2004. Molecular Biology of Genes, 4th Edition.
- DNA markers Protocols, applications and overviews Anolles G. C. & Gresshoff P. M. Wiley-Liss
- Molecular markers in Plant Genetics and Biotechnology Vienne De. D. Science Publishers
- Genetics of Population Hedrick P.W. Jones & Bartlett 4 Principle of Population Genetics Hartl D. L. and Clark A. G. Sinauer Associates

Core Paper-3 MOLECULAR CELL BIOLOGY

Paper – 3				
Title of the paper	MOLECULAR CELL Subject code:			
	BIOLOGY		-	
Category of the	Year	Sem	ester	Credits
course				
Core Paper	1^{st}	1	st	3

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the Cell biology concepts, molecules and its regulation. The student will get to understand the core concepts of molecules and cell biology.

CO-1	To understanding of the molecular machinery of living cells and the principles that
	govern the structures of macromolecules and their participation in molecular
	recognition.
CO-2	Identify the structures and purposes of basic components in prokaryotic and
	eukaryotic cells and their molecular mechanism
CO-3-	Demonstrate knowledge and understanding of the principles and basic mechanisms
	of nuclear envelope and its functions.
CO-4	Understand the metabolic pathways and the process of transmission of extracellular
	signals
CO-5	Demonstrate the operation of various microscopes and microtomy in the laboratory

	SYLLABUS CORE PAPER-3 MOLECULAR CELL BIOLOGY				
Unit	Content	Hours	COs	Cognitive level	
I	Introduction to cell Biology- Basic properties of cells-Cellular dimension-Size of cells and their composition-Cell origin and Evolution (Endosymbiotic theory)–Microscopy- Light Microscopy, Electron Microscopy, Application of Electron Microscopy in cell biology, Phase Contrast Microscopy, Fluorescence Microscopy, Flow Cytometry and FRET .Organelles of the eukaryotic cell and its functions; Biomembranes - structural organization, transport across membrane (Passive, Active and Bulk transport); Cell-Cell adhesion- Cell junctions (Tight junctions, gap junctions, desmosomes, adherens); Extra cellular matrix (ECM)- components and role of ECM in growth	15	CO1	K1,K2 &K3	
П	Structure of Nucleic acids, Genome organization in Eukaryotes, DNA Replication, Transcription, Translation and post translational Modification. Synthesis, sorting and trafficking of proteins: site of synthesis of organelle and membrane proteins – transport of secretary and membrane proteins across ER – post- translational modification in RER – transport to mitochondria, nucleus, chloroplast and peroxisome - protein glycosylation – mechanism and regulation of vesicular transport – golgi and	15	CO2	K1,K2 &K3	

	post-golgi sorting and processing – receptor mediated endocytosis; Synthesis of membrane lipids.			
ш	Nucleus: Nuclear envelope – Nuclear pore complexes-nuclear matrix – organization of chromatin – supercoiling, linking number, twist - nucleosome and high order of folding and organization of chromosome(Solenoid and Zigzag model)- Global structure of chromosome –(Lamp brush and polytene chromosomes).	15	CO3	K1,K2 &K3
IV	Molecular basis of eukaryotic cell cycle, Regulation and cell cycle check points; Programmed cell death (Apoptosis); Cell- Cell signaling-signaling molecules, types of signaling, signal transduction pathways (GPCR-cAMP, IP3, RTK, MAP Kinase, JAK-STAT, Wnt Pathway).	15	CO4	K1, K2 & K3
v	Cancer Biology: Multistage cancer development Mitogens, carcinogens, oncogenes and proto-oncogenes, tumor suppressor genes-Rb, p 53, Apoptosis and significance of apoptosis.	15	CO5	K1,K2 & K3

References

- Karp, G., 2009, Cell and Molecular Biology, Sixth edition, John Wiley & Sons, New York.
- David E.Sadva., 2009. Cell biology organelles structure and function, CBS publishers and distributors, New Delhi.
- Prakash S. Lohar, 2009. Cell and Molecular Biology.
- Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, 2007., Molecular Biology of the Cell, Fifth edition. Garland Science.
- Lodish,H., Berk, A., Zipursky, S.L., Matsudaira, P., Kaiser, A., Krieger, Scott and Darnell, J. 2007. Molecular Cell Biology. Media Connected, sixth edition. W.H.Freeman and Company
- Geoffrey.M.Cooper, Robert.E.Hausman.2007.The Cell-A Molecular Approach, Fourth edition. Sinauer Associates. •
- Luiz Carlos Uchoa, Janqueira, Jose, Carneiro. 2005. Basic HistologyText and Atlas. McGraw-Hill Professional.
- Paul A, 2001, Text Book Of Cell And Molecular Biology 2edition Niyogi Books •
- T.Fleming. 2002. Cell interactions: A practical approach Second edition.
- Alberts B, Molecular Cell Biology. 8. Casimeris et al., Lewin's cells. Jones and Bartlett.
- Plopper, Principles of cell Biology. Jones and Bartlett.
- Gartner, Cell Biology and Histology. LWW.
- Pollard et al., Cell Biology. Sounders.
- Copper, The Cell a Molecular approach. Sinauer

Core practical-I (Biochemistry, Molecular Genetics & Molecular Cell biology)

Paper – 4					
Title of the paper	PRACTICA	AL-I	Subject co	de:	
	(Biochemistry, Molecu	alar Genetics &			
	Molecular Cell	biology)			
Category of the	Year	Semester	:	Credits	
course					
Core Practical	1 st	1 st		3	

Learning Outcome:

The practical will establish a basic study skills on the subject and will improve the student's ability to calculate and improve their practical skill and knowledge.

Course outcomes:

On successful completion of the course the students will be able to

CO 1	(K2) Illustrate basic biochemistry procedures
CO 2	(K3) study the methods of estimation of biomolecules
CO 3	(K4) isolate & Analyze DNA, RNA & protein
CO 4	(K5) critically analyze the isolated biomolecules
CO 5	(K5) evaluate the quality and purity of DNA, RNA & Protein

	SYLLABUS CORE PAPER-4 PRACTICAL-I				
Unit	Content	Hours	COs	Cognitive	
				level	
Α	 (A) Biochemistry - Practical Basic calculations in Biochemistry - Normality, Molarity, Molality percent solutions (v/v, w/v). Calibration of pH meter Transition interval of commonly used pH indicators Preparation of biological buffer - phosphate buffer Estimation of Proteins by Lowry's method/Biuret method/Bradford method Estimation of RNA by orcinol method Estimation of Carbohydrate by Anthrone method Separation of sugars by Paper Chromatography Separation of sugars by Thin layer chromatography Separation of sugars by Thin layer chromatography Gel permeation chromatography 	25	CO1 CO2 CO3 CO4 CO5	K3 & K4	
В	 (B) Molecular Genetics - Practical 1. Isolation of DNA from bacteria 2. Isolation of DNA from plants 3. Isolation of DNA from animal tissue 	25	CO1 CO2 CO3 CO4	K3,K4 &K5	

	 4. Isolation of DNA from blood 5. Plasmid DNA isolation. 6. Agarose gel electrophoresis of DNA 7. Isolation of RNA 8. Radiation induced genetic damage assessment 9. Chemical induced genetic damage assessment. 		CO5	
С	 (C) Molecular Cell Biology -Practical Introduction to Microtome and types Microtomy-Fixation of tissue Microtomy -Embedding Microtomy-Sectioning of tissue H&E Staining of tissues Histochemical staining to localize proteins Histochemical staining to localize carbohydrates Histochemical staining to localize lipids. Subcellular fractionation and marker enzyme detection (mitochondria). Giant chromosome studies in Chironomous larvae Meiotic study in flower bud sand cockroach or grasshopper 	25	CO1 CO2 CO3 CO4 CO5	K3,K4 & K5

Elective Paper-1 BIOINSTRUMENTATION

Paper – 5							
Title of the paper	Title of the paper BIOINSTRUMENTATION Subject code:						
Category of the	Year	Semester		Credits			
course	course						
Elective Paper	1^{st}	1	st	3			

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the instrumentation concepts, in biology. The student will get to understand the core concepts of biological instruments and their principles.

Course outcomes:

At the end of the Course, the Student will be able to:

CO-1	Introduction and various types of Microscopic techniques
CO-2	Impart understanding on centrifugation instruments and techniques
CO-3-	Separation of Biomolecules
CO-4	Analytical methods on Spectroscopic Analysis
CO-5	Understand the application and Detection on Bioinstrumentation

	SYLLABUS ELECTIVE PAPER-1 BIOINSTRUMENTATION				
Unit	Content	Hours	COs	Cognitive	
				level	
I	Microscopic Techniques: Principles and Applications: Compound, Light, Stereo, Phase Contrast, Fluorescent Microscopy, Scanning and Transmission Electron Microscopy, Scanning Electron Microscopy, Atomic Force Microscopy, Confocal Microscopy, FRET and Flow Cytometry.	15	CO1	K1 & K2	
п	Centrifugation: Principle and Applications of various types of centrifugation, Sedimentation Coefficient, Svedberg unit, RCF, Density Gradient Centrifugation. Chromatography Techniques: Principle and Application of Paper Chromatography, TLC, Gel Filtration Chromatography, Ion Exchange Chromatography, Affinity Chromatography, GC & HPLC.	15	CO2	K1, K2,K3	
ш	Electrophoretic Techniques: Principle and Application of Agarose Gel Electrophoresis, 2D-gel Electrophoresis, PAGE- NATIVE & SDS PAGE, Iso-electric Focusing, High resolution Electrophoresis, Immuno Electrophoresis (Immunofixation EP,), ELISA, RIA, Southern, Northern and Western Blotting. Electro blotting, PCR and RT-PCR, Microarray (DNA, Proteins)	15	CO3	K1, K2 & K3	
IV	Spectroscopic Techniques: Theory and Application of UV and Visible Spectroscopy, Fluorescence Spectroscopy, Mass Spectroscopy, IR Spectroscopy NMR, ESR, Atomic Absorption Spectroscopy, X- ray Spectroscopy, Laser Spectroscopy and Raman Spectroscopy	15	CO4	K1,K2 & K3	
V	Radio-isotopic Techniques: Introduction to Radioisotopes, Uses and their Biological Applications, Radioactive Decay – Types	15	CO5	K1,K2 & K3	

and Measurement, Principles and Applications of GM Counter, Solid and Liquid Scintillation Counter, Autoradiography, RIA,		
Radiation Dosimetry, Health effects of Radiations.		

Reference books

- M.H. Fulekar and Bhawana Pandey Bioinstrumentation, Wiley
- Keith Wilson, John Walker, 2010. Principles and Techniques of Biochemistry and Molecular Biology (7th Edition), Cambridge University Press •
- David L. Nelson, Michael M. Cox. Menninger (2008). Principles of Biochemistry, Fifth edition W. H. Freeman, New York. •
- Experiments in Biochemistry: A Hands-On Approach by Shawn O. Farrell, Ryan T. Ranallo, Paperback: 324 pages, Publisher: Brooks Cole. 20 •
- Metzler D.E. 2001, the chemical reactions of living cells –Academic Press. 2nd edition.
- Stryer L,1999, Biochemistry-W.H. Freeman & Company, New York. 1. 4th edition
- L.Veerakumari (2006) Bioinstrumentation MJP Publisher Kindle edition
- Jefrey. M., Backer el al., 1996. Biotechnology- A Laboratory Course. Academic Press, New York.
- Holcapek, M., Byrdwell, Wm. C. 2017. Handbook of Advanced Chromatography /Mass Spectrometry Techniques, Elsevier

Elective Paper-II ENZYMOLOGY

Paper – 6					
Title of the paperENZYMOLOGYSubject code:					
Category of the	Year	Sem	ester	Credits	
course	course				
Elective Paper	1^{st}	1	st	3	

Learning Outcome:

The subject imparts knowledge on the fundamentals of enzyme structure and its kinetics. The student will be provided with a basic knowledge and understanding about the functions of enzyme as well as the industrial application of enzymes.

CO-1	(K2) Explain the basics of enzyme nomenclature and properties
CO-2	(K3) Classify and Cognize the native and immobilized enzyme
CO-3	(K4) Examine the equations of steady state kinetics
CO-4	(K5) Assess extraction and downstream processing of enzymes
CO-5	(K6) Compile the uses of enzymes and design enzymes for Industrial
	and Clinical application

	SYLLABUS ELECTIVE PAPER-2 ENZYMOLOGY					
Unit	Content	Hours	COs	Cognitive		
				level		
I	Introduction to enzymes, Classification, nomenclature and general properties like effects of pH, substrate and temperature on enzyme catalysed reactions. Extraction Isolation and purification of enzymes by precipitation, centrifugation, chromatography and electrophoresis and liquid-liquid extraction methods	15	CO1 CO5	K3 & K5		
П	Kinetics of catalysed reaction : Single substrate reactions, bisubstrate reactions, concept of Michaelis - Menten, Briggs Haldane relationship, Determination and significance of kinetic constants, Limitations of Michaelis-Menten Kinetics, line weaver burk plot, Hanes wolf equation, Eadie hoofstee equation ,Inhibition of enzyme activity	15	CO1 CO2 CO5	K3 & K5		

III	Enzyme catalysis: enzyme specificity and the concept of active site, determination of active site. Stereospecificity of enzymes. Mechanism of catalysis: Proximity and orientation effects, general acid-base catalysis, concerted acid - base catalysis, nucleophilic and electrophilic attacks, catalysis by distortion, metal ion catalysis	15	CO1 CO3	K3 & K4
IV	Theories on mechanism of catalysisMechanism of enzymes action: mechanism of action of lysozyme, chymotrypsin, carboxypeptidase and DNA polymerase. Multienzymes system, Mechanism of action and regulation of pyruvate dehydrogenase and fatty acid synthetase complex	15	CO1 CO4	K3, K4 & K6
V	Coenzyme action. Enzyme regulation: General mechanisms of enzyme regulation, Allosteric enzymes, sigmoidal kinetics and their physiological significance, Symmetric and sequential modes for action of allosteric enzymes. Reversible and irreversible covalent modification of enzymes, Immobilized enzymes and their industrial applications.Clinical and industrial applications of enzymes, Enzyme Engineering	15	CO1 CO5	K3,K4, K5 & K6
Referen	ce Books			
 Nicholas C.Price and Lewis Stevens., 2010. Fundamentals of Enzymology. Oxford University Press, New Delhi Lehninger, Nelson and Cox, 2005, Principles of Biochemistry - 4th edition, WH Freeman and 				
 Company, New York, USA Principles of Biochemistry with human focus - Garrett and Grisham, 2002, Harcourt College Publishers, Orlando, Florida, USA. 				

- Geoffrey L, Zubay, Biochemistry -, 1998, 4th edition. 23
- Donald Voet, Judith Voet and Pratt, 1995, Fundamentals of Biochemistry, 2nd edition.
- Harper.s Biochemistry Murray et al, 2000, 25th edition, Appleton and Lange Publishers.
- Enzymes Trevor Palmer 2002.

Useful Websites

- www.lsbu.ac.uk/biology/enztech/
- www.lsbu.ac.uk/biology/enzyme/
- http://www.aetlted.com/tech/applications.html

SECOND SEMESTER Core Paper-4 MICROBIOLOGY

Paper – 7					
Title of the paperMICROBIOLOGYSubject code:					
Category of the	Year	Semester		Credits	
course	course				
Core Paper	1^{st}	2	nd	3	

Learning Outcome:

To provide a comprehensive knowledge on taxonomy and microbial diversity, growth, their harmful effects and beneficial role of microorganisms in agriculture and environment

CO-1	To understand the major discoveries of microbiology and describe microbial
	diversity, Microbial growth and metabolism.
CO-2	To provide basic knowledge about microbial culture, identification of microbes,
	principle and working of microscopes and sterilization techniques
CO-3	To enlighten the students on host microbe interaction and Epidemiology of
	microbial disease
CO-4	To update the knowledge on epidemic and pandemic diseases.
CO-5	To assess and appraise the role of novel microbes in environment and integrate them
	in specific innovative approaches.

	SYLLABUS CORE PAPER-4 MICROBIOLOGY				
Unit	Content	Hours	Cos	Cognitive	
I	History and microbial taxonomy: Major discoveries related to the field of microbiology: Antony Von Leeuwenhoek, Louis Pasteur, Robert Koch and Edward Jenner. Microbial taxonomy: Bacteria, viruses, fungi, algae and protozoa, Microbial diversity: Biovars, Serovars and Prions, Microbial growth and metabolism: Microbial growth: Growth curve, factors affecting growth, Microbial metabolism-	15	CO1 CO2	level K1,K2 &K3	
Π	 Methanogenesis, acetogenesis and auxotrophs Microbial culture, identification, and control: Growth media and types – culturing techniques: Streaking method, Pure culture techniques: Serial dilution and plating methods, Staining methods - Principles and types of staining (simple and differential). Identification of bacteria – Biochemical – IMViC, 16s rRNA sequencing. Microscopy: principles and applications of Bright field, florescent and Scanning electron microscopes. Microbial growth control: Physical Methods – Heat, Filtration, Low Temperatures, High Pressure, Desiccation, Osmotic Pressure, Radiation; Chemical Methods. 	15	CO2 CO3 CO5	K2,K3,K5	
III	Host microbe interaction and Epidemiology: Human microbiome; Skin, Gastrointestinal tract, Oral cavity, Lung.	10	CO1 CO3	K1,K2,K3	

	Symbiotic relationship of microbes: Symbiosis, Mutualism, Parasitism, Commensalism and endophyte. Epidemiology of microbes: causes, types and transmission of epidemic, endemic and pandemic diseases		CO4	
IV	Microbial Diseases: General characteristics, pathogenesis, laboratory diagnosis and control measures of Pandemic and Epidemic diseases: Tuberculosis, Leprosy, Cholera, Typhoid, COVID-19, Yellow Fever, Flu, AIDS, Ebola, Zika Virus, Small Pox, Dengue, Chickungunya, Malaria, filariasis, Candidiasis, superficial mycosis	10	CO4 CO5	K4 &K5
V	Agricultural and Environmental Microbiology: Biological nitrogen fixation, free living, symbiotic nitrogen fixation, mechanism of Nitrogen, Biofertilizers- types and applications; Rhizosphere effect. Biogeochemical cycles-Carbon, Nitrogen, Sulphur and Phosphorous; Methanogenic bacteria Extremphiles- Thermophiles Acidophiles, Halophiles and alkalophiles; Biotechnological application of extremophiles	10	CO1 CO2 CO3	K4 & K5

References

- Joanne Willey, Linda Sherwood, Christopher J. Woolverton, (2017). Prescott's Microbiology, (10th edition), McGraw-Hill Education, ISBN: 978-1259281594.
- Maheshwari D K, Dubey R C 2013. A Textbook of Microbiology.4th Edn S Chand Publishing India.
- Ananthanarayan and Paniker's (2017) Textbook of Microbiology, (10th edition), The Orient Blackswan, ISBN: 978-9386235251.
- Benson HJ. (1999). Microbiological Applications: A Laboratory manual in General Microbiology, 7th Edition, McGraw Hill. 5
- Managing epidemics- Key facts about major deadly diseases, World Health Organization (WHO) 2018.
 9. O'Flaherty, Vincent & Collins, Gavin & Mahony, Thérèse. (2010). Environmental Microbiology, Second Edition. 10.1002/9780470495117.ch11.
- Agriculture Microbiology, 2016. E-Course Developed By TNAU (ICAR)

Web Sources

- https://www.who.int/emergencies/diseases/managing-epidemics-interactive.pdf ISBN 978-92-4-156553-0. https://doi.org/10.3389/fmicb.2020.631736
- https://www.agrimoon.com/wp-content/uploads/AGRICULTURAL-Microbiology.pdf.

PLANT AND ANIMAL BIOTECHNOLOGY							
	Paper – 8						
Title of the paper	PLANT AND AN	IMAL	Subject co	de:			
	BIOTECHNOLO	OGY	_				
Category of the	Year	Semester		Credits			
course							
Core Paper	1 st	2	nd	4			

Core Paper-5 PLANT AND ANIMAL BIOTECHNOLOGY

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the biotechnological application on plant and animals. The student will get to understand the core concepts of biotechnology.

CO-1	To impart theoretical knowledge on various techniques of plant biotechnology like
	tissue culture, plant genetic transformation and their application in industries.
CO-2	Importance of secondary metabolites and production in plants.
CO-3	To develop concepts, principles and processes in animal biotechnology.
CO-4	Concept and different types in Animal Cell Culture and animal cell lines.
CO-5	Use of molecular biology techniques genetically engineer the animals to improve sustainability, productivity and suitability for pharmaceutical and industrial applications.

	SYLLABUS CORE PAPER-5 PLANT AND ANIMAL BIOTECHNOLOGY					
Unit	Content	Hours	COs	Cognitive		
				level		
I	Introduction of plant tissue culture, composition of media, Micropropagation, organogenesis, somatic embryogenesis, haploid and triploid production, protoplast isolation and fusion, hybrid and cybrid, synthetic seed production. Secondary metabolites in plants - Phytochemicals- Glycosides and Flavonoids; Anthocyanins and Coumarins - Lignans, Terpenes, Volatile oils and Saponins; Carotenoids and Alkaloids: biogenesis, therapeutic applications	15	CO1 CO5	K1,K2 &K3		
п	Transgenic plants: rDNA Technology; Gene transfer methods - electroporation and particle gun bombardment. Agrobacterium, Ti plasmid vector. Theory and techniques for the development of new genetic traits, conferring resistance to biotic and abiotic. Plant engineering towards the development of enriched food products, plant growth regulators; Molecular Marker aided breeding: RFLP maps, Linkage analysis,	15	CO1 CO2 CO5	K1,K2 & K5		
ш	Animal health disease diagnosis, hybridoma technique, monoclonal antibodies, application of probes for disease diagnosis of existing and emerging animal diseases. Oral vaccines, DNA Vaccines in animal disease. Cell culture: primary and established culture; organ culture; tissue culture	10	CO1 CO3 CO5	K4 & K5		
IV	Disaggregation of tissue and primary culture; cell separation, cell synchronization, cryo preservation. Scaling up of animal cell culture, cell line and cloning micromanipulation and cloning, somatic cell cloning. Karyotyping; measuring	10	CO4 CO5	K2,K3,K4 & K5		

	parameters for cell growth, measurement of cell death, apoptosis and its determination, cytotoxicity assays			
V	Application of animal cell culture: in vitro testing of drugs, production of human and animal viral vaccines and pharmaceutical proteins. Transgenic animals: Production and application; transgenic animals in livestock improvement, transgenic animals as model for human diseases; Stem Cells- Properties, Types, Therapy, Prospects and Ethics in stem cell research.	10	CO5	K3,K4 & K6

Reference Books

- Razdan. M. K., 2011. Plant tissue culture. Oxford and IBH publishing Company Pvt. Ltd, New Delhi.
- Chawla. H. S., 2010. Introduction to plant biotechnology. Oxford and IBH publishing company pvt. Ltd, New delhi.
- Ian Freshney, 2010. Culture of animal cells. 6th edition, Wiley-Blackwell publishers.
- Slater, 2008. Plant Biotechnology: The Genetic manipulation of plants, Second Edition, Oxford University Press, USA.
- J.D.Watson, Gillman, J.Witknowski and M.Zoller, 2006. Recombinant DNA. 3rd ed.
- W.H.Freeman. 26 K. Dass. 2005, Text book of Biotechnology, Second Edition, Wiley Dreamtech, India (P) Ltd.
- H.Kreuzer & A.Massey. 2001. Recombinant DNA and Biotechnology: A guide for teachers Second Edition. ASM press, Washington.
- M.Sudhir. 2000. Applied Biotechnology & Plant Genetics. Dominant publishers & Distributors.
- Genetic Engineering of Animals by (Ed) A.Puhler, VCH Publishers, Weinheim, FRG, 1993.
- Animal Cell culture Practical approach. Ed. John R.W.Masters, Oxford.2004.
- Concepts in Biotechnology D. Balasubramaniam, Bryce, Dharmalingam, Green, Jayaraman Univ. Press, 1996

Core Paper-6 GENETIC ENGINEERING

Paper – 9					
Title of the paper	GENETIC ENGINE	EERING	Subject coo	de:	
Category of the	Year	Semester		Credits	
course					
Core Paper	1^{st}	2	nd	4	

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the biotechnological application on plant and animals. The student will get to understand the core concepts of biotechnology.

CO-1	Understanding the basic steps of gene cloning and the role of enzymes and
	vectors responsible for gene manipulation, transformation and genetic
	engineering.
CO-2	Getting detailed knowledge of gene transfer methods and identifying suitable
	hosts for cloning.
CO-3	Acquiring theoretical knowledge in the techniques, tools, and application and
	safety measures of genetic engineering.
CO-4	Describes the genome mapping and sequencing and methods for gene therapy.
CO-5	Elucidate different techniques involved in genetic engineering

	SYLLABUS CORE PAPER-6 GENETIC ENGINEERING					
Unit	Content	Hours	COs	Cognitive level		
I	Gene cloning. Genetic engineering tools. Nucleic acid manipulating enzymes. Promoters, Selectable markers and reporters used in rDNA technology. Restriction digestion, Ligation, Transformation, Selection of Recombinants. Construction of gene libraries	10	CO1	K1,K2, K5		
II	E.Coli vectors - pBR322 and its derivatives; Cloning vectors for gram negative bacteria - ColE1, p15A, R1, IncPa, pSC101; Lambda bacteriophage vectors, filamentous phages, Cosmids, Phasmids, Phagemids. Cloning in gram-positive bacteria (Bacillus subtilis)	10	CO2	K2,K3, K4		
ш	Cloning in yeast <i>Saccharomyces cerevisae</i> . Life cycle and types of vectors; Eukaryotic vectors. SV40 (molecular genetics and expression); Specialized cloning vector for cDNA; Synthesis of specific RNA in vitro; Vectors for cloning promoters and terminators; vectors with adjustable copy number	10	CO4	K3,K4 &K6		
IV	Nucleic acid hybridization techniques; Molecular probes (Types of probes and its construction); probe labeling. Nick translation, End labeling and Random primer labeling. Polymerase chain reaction and its variants; DNA fingerprinting; DNA sequencing first generation sequencing methods (Maxam and Gilbert sequencing, Sangers Dideoxy sequencing, Pyrosequencing, PCR based sequencing and	15	CO4	K3,K4,K5 & K6		

	hybridization sequencing).Second generation sequencing methods			
v	Site directed mutagenesis; DNA microarray; chromosome walking and jumping. Molecular techniques in prenatal diagnosis gene therapy, knockout mice and Flavr savr tomato, Pharmaceutical products (Vaccine, Humulin, etc), Crop improvement. Pesticide resistance, herbicide resistance, transgenic animals and GM foods.	15	CO5	K3,K4,K5 & K6

Reference Books:

- T.A. Brown, 2010. Gene cloning and DNA analysis: An introduction, 6th edition, Wiley-Blackwell.
- Sandy B.Primrose and Richard Twyman, 2006. Principles of Gene Manipulation and genomics, 7th edition, Wiley-Blackwell.
- Lewin, 2009. Genes X, 10th edition, Jones & Barlett Publishers
- Raymond Rodriguez and David T.Denhart 2003.Vectors, A survey of molecular cloning vectors and their uses
- Errst-L. Winnacker 1987. From genes to clones. Introduction to Gene Technology,
- Ed. David V. Geoddel 2002.Gene Expression technologies. Methods in enzymology (Vol.185)
- William Wu, Michael J.Welsh, Peter B.Kaufrmar, Helen H.Zhang 2001. Methods in Gene Biotechnology

Core Practical - 2 (Microbiology, Plant and Animal Biotechnology & Genetic Engineering)

Paper – 10						
Title of the paper	PRACTICAL-II (Mica Plant and Animal Biot		Subject co	de:		
1 1	& Genetic Engine		5			
Category of the	Year	Sem	ester	Credits		
course						
Core Paper	1^{st}	2	nd	3		

Learning Outcome:

The practical will establish a basic study skill on the subject and will improve the student's ability to have a hands on experience on the above core subjects.

CO-1	(K2) Isolate and identify microbes from various sources.
CO-2	(K3) Characterize microbes.
CO-3	(K4) Examine Plant and Animal cells and their functions
CO-4	(K5) Assess extracted DNA, RNA and protein for rDNA technology
CO-5	(K6) to study cloning tools

SYLLABUS CORE PAPER PRACTICAL-II					
Unit	Content	Hours	COs	Cognitive level	
A	 (A) Microbiology-Practical Isolation and Enumeration of bacteria from soil Isolation and Enumeration of bacteria from water Isolation and Enumeration of bacteria from air Isolation and Enumeration of bacteria from plant surface. Isolation of bacteria from root nodules, Isolation of pure culture of Aspergillus niger, Isolation of pure culture of Streptomyces. Gram staining and morphological characterization of microbes. Determination of growth curve of bacteria – E.coli Biochemical characterization - catalase, oxidase, urease, coagulase, Starch Hydrolysis test Test for H2S production or TSI agar test Antibiotic sensitivity test Demonstration I6srRNA sequencing 	20	CO1 CO2 CO3 CO4 CO5	K,.K2, K3, K4, K5 & K6	
В	 (B) Plant and Animal Biotechnology - Practical: 1. Preparation of MS medium stock solution –Macro salt, Micro salt, Vitamin, growth regulator 2. Surface sterilization of various explants – leaf, shoot, root, seed. 3. Generation of Callus from any two explants (leaf, root, 	20	CO1 CO2 CO3 CO4 CO5	K3,K4 & K5	

	bud and shoot apex)			
	4. Maintenance of callus culture.			
	5. Anther culture			
	6. Pollen culture			
	7. Embryo culture.			
	7. Isolation of plant protoplast			
	8. Protoplast viability test.			
	9. Localization of nucleus using nuclear stain.			
	10. Introduction to Animal Cell culture: Procedure for			
	handling cells and medium.			
	11. Cleaning and sterilization of glassware and plastic			
	tissue culture flasks			
	12. Preparation of tissue culture media			
	13. Trypsinization of established cell culture.			
	14. Cell counting and viability - staining of cells (a) Vital			
	Staining (Trypan blue)			
	Isolation And Culture Of Splenocytes			
	(C) Genetic Engineering - Practical			
	1. Preparation of plasmid DNA by alkaline lysis method.			
	2. Agarose gel electrophoresis			
	3. Methylene blue DNA staining			
	4. Elution of DNA from agarose gel.		CO1	
	5. Restriction enzyme digestion.		CO1 CO2	
С	6. Ligation.	20	CO2 CO3	K3,K4
C	7. Competent cell preparation	20	CO3 CO4	&K5
	8. RAPD		CO4 CO5	
	9. RFLP		COS	
	10. Amplification of DNA - PCR			
	11. Determination of molecular weight of DNA			
	Demonstration:			
	RT-PCR for COVID-19			

Elective Paper-III REGULATORY AFFAIRS AND INDUSTRIAL STANDARDS

Paper – 11							
Title of the paper	REGULATORY AFFA	AIRS AND	Subject	code:			
	INDUSTRIAL STANI	DARDS					
Category of the	Year	Semeste	er	Credits			
course							
Elective Paper	1^{st}	2^{nd}		3			

Learning Outcome:

The subject imparts knowledge on the fundamentals of regulatory requirement in industries. The student will be provided with a basic knowledge and understanding about the regulatory affairs based on biotechnological industry requirements.

Course outcomes:

CO-1	Elucidate the basic requirements of establish laboratory for testing samples as per the regulatory body's requirements			
CO-2	Describe the Scientific, technical knowledge about various food preservation techniques			
CO-3	Describe the basic concepts of packing of food materials, various parameters observed during packaging			
CO-4	Describe the testing of food materials and identifying of microbial food contaminant			
CO-5	Explain the basic of food safety management system, good manufacturing practice and good hygienic practices			

SYLLABUS | ELECTIVE PAPER-3 | REGULATORY AFFAIRS AND INDUSTRIAL STANDARDS

SIANDARDS						
Unit	Content	Hours	COs	Cognitive		
				level		
Ι	Planning, Organisation and setting of Food testing laboratory and laboratory safety Understand the requirements for setting up a laboratory for the legal defensibility of analytical data. The ideal structure design, environment, layout for microbiological testing and Air handling etc., Introduction about accreditation, Different accreditation bodies (NABL, APLAC, ILAC), Requirements for ISO/IEC 17025:2017, documentation, Laboratory safety: Personnel and laboratory hygiene, emergency planning, general hazards in a food laboratory, safety equipment, storage of chemicals, acids, flammables etc, handling and biological spills and waste disposal.	10	CO1	K2,K3,K4		
п	Principles of Food Preservation technology Heat: Principles of Heat transfer, Blanching, Pasteurization, Heat sterilization, thermal extrusion, cooking. Water Removal: Forms of Water in Foods, Sorption of water in foods, Water activity, drying and evaporation technology. Temperature reduction: Chilling, Freezing, Radiation: Ionizing Radiation, Microwave, Use of chemicals: Class-I & Class-II	15	CO2	K2 & K3		

			1	· · · · · · · · · · · · · · · · · · ·
	preservatives, smoke other chemical additives, New non- thermal methods: High hydrostatic pressure, modified atmosphere, high intensity pulsed electric fields, intense pulsed light, oscillating magnetic fields, hurdle technology, ultrasonic and ohmic heating etc.			
III	Principles of Food Packaging technology Different packaging materials used for food packaging and their properties including barrier properties, strength properties, optical properties: Glass, metals, paper, plastics, biodegradable and edible films and coatings aseptic packaging and combinations, Selection of packaging material and design for various food commodities including fresh produce (Fruits and vegetables), milk and milk products (dairy), cereal, pulses, oil, meat, fish, poultry, water and processed foods, Evaluation of quality and safety of packaging materials- different testing procedures, Function of packaging: Protective packaging and active packaging smart and intelligent packaging, Newer packaging technologies-CAP/MAP packaging aseptic processing and packaging, irradiated packaging, retort pouch and microwaveable packaging.	15	CO3	K2,K3 & K4
IV	Food Microbiology and testing Sources of microorganisms in food chain (raw materials, water, air, equipment etc) and microbiological quality of foods, Microbial growth characteristics: Reproduction and growth (fission, generation time optimum growth, growth curve etc). Microbial growth in foods: intrinsic (pH, Moisture content, oxidation-reduction potential, nutrient content, antimicrobial constituents and extrinsic parameters (temperature of storage, relative humidity of environment, presence and concentration of gases in the environment, Thermal destruction of microorganisms: Thermal death time, D Value, Z- Value, F-Value, thermal death time curve, 12 D Concept, Microbial food spoilage and food borne diseases, food pathogens, bacillus <i>cereus and other bacillus species, campylobacter, clostridium species, Enterobacteriaceae, E. coli, listeria monocytogens, salmonella, shigella, staphylococcus aureus, vibrio species, yersinia enterocolitica, fungi, virus etc., Methods for the Microbiological examination of foods: Sampling activity and sampling plan, pure culture isolation: streaking, serial dilution and plating, cultivation, maintenance and preservation/stocking of pure culture, Observation of Indicator organisms: Direct examination, enumeration methods, plate count, MPN, biochemical test, Rapid methods detection of specific organisms.</i>	10	CO4	K2,K3,K4
V	HACCP and Food safety management systems:ISO 22000: Importance of implementing a HACCP system andhow it can be applied to various products. Prerequisiteprograms, HACCP principles, some limitation of HACCP foodsafety objective (FSO). Food safety audits: Managementreview, audit certification and importance. Good	10	CO5	K2,K3 & K6

	manufacturing practices (GMP), Good hygienic practices (GHP), Food safety plan, food safety management risk				
	analysis. Traceability food products recall and sanitation.				
Referen	nces:				
• ISO	ISO 9001, Quality management systems – Requirements				
• ISO	ISO 17034 General requirements for the competence of reference material producers				
• ISO	• ISO/IEC 17043 Conformity assessment – General requirements for proficiency testing.				
• Foo	d safety standards authority regulation 2011.				

Elective Paper- III PHARMACEUTICAL BIOTECHNOLOGY

Paper – 11								
Title of the paper	PHARMACEUT	ICAL	Subject co	de:				
	BIOTECHNOLO	OGY	-					
Category of the	Year	Sem	ester	Credits				
course								
Elective Paper	1^{st}	2	nd	3				

Learning Outcome:

The subject imparts knowledge on the fundamentals of pharmaceutical biotechnology. The student will be provided with a basic knowledge and understanding about the pharmaceutical products produced based on biotechnological methods and its biomedical applications.

CO-1	Explain the basic components of pharmaceutical and biotechnology industry and
	methods and applications of biosensor
CO-2	Describe the Scientific, technical and economic aspects of vaccine & rDNA
	technology
CO-3	Describe the basic concepts of protein Engineering, therapeutic proteins and enzyme
	immobilization techniques
CO-4	Describe the concepts of hybridoma technology, microbial biotransformation and
	microbial bio-transformed products
CO-5	Explain the basic components of somatic gene therapy, Xeno-transplantation and
	fermenter and bio safety methods

S	SYLLABUS ELECTIVE PAPER-3 PHARMACEUTICAL BIOTECHNOLOGY					
Unit	Content	Hours	COs	Cognitive level		
I	Introduction to concepts and technologies in pharmaceutical biotechnology and industrial applications, Biosensors- Working and applications of biosensors in pharmaceutical Industries; Pharmacology and Ethnopharmacology: Scope, applications and Importance.	10	CO1	К1		
п	Scientific, technical and economic aspects of vaccine research and development, Preparation of bacterial vaccines, toxoids, viral vaccine and antitoxins, Storage conditions and stability of vaccines, Application of rDNA technology and genetic engineering in the production of: (i) Interferon (ii) Vaccines - hepatitis- B (iii) Hormones – Insulin, Brief introduction to Protein Engineering.	15	CO2	K3 & K4		
ш	Hybridoma technology - Production, Purification and Applications, Formulation of biotech products - Rituximab, Introduction to Microbial biotransformation and applications, Study of the production of – penicillins, citric acid, Vitamin B12, Glutamic acid and Griseofulvin Somatic gene therapy, Xenotransplantation in pharmaceutical biotechnology, Large scale production fermenter design and its various controls, Bio safety in pharmaceutical industry	15	CO3	K2		

IV	Pharmacological activity of Plant drugs, Plant Chemicals in modern pharmacology; biochemistry and pharmacology of atropine, caffeine, ephedrine, opioids, synthetic substitutes for therapeutically active plant constituents; drug improvement by structure modification and bio-transformation. Criteria for pharmacological evaluation of drugs.	10	CO4	K2 & K4
V	Clinical Pharmacology, Drug therapy, Mechanism of drug action, Therapeutic efficacy, Therapeutic index, tolerance, dosage forms and routes of drug administration, factors affecting drug action; Adverse Drug reactions and drug poisoning-classification and causes of ADR; principle clinical manifestations and treatment of ADR, General principles of management of drug poisoning; antidotes, classisfication of drugs.	10	CO5	K1,K2 &K5

Reference Books:

- Harbans lal, 2011. Pharmaceuticals biochemistry. CBS Publishers and distributors Pvt. Ltd, Chennai.
- Carlos A. Guzmán and Giora Z. Feuerstein, 2009. Pharmaceutical Biotechnology, 1st edition, Springer.
- Daniel Figeys (Ed.). 2005. Industrial Proteomics: Applications for Biotechnology and Pharmaceuticals. Wiley, John & Sons, Incorporated.
- Kayser, O and Muller R.H.. 2004. Pharmaceutical Biotechnology Drug Discovery and Clinical Applications. WILEY-VCH
- Leon Shargel, Andrew B. C. Yu, Susanna Wu-Pong, and Yu Andrew B. C. 2004. Applied Biopharmaceutics & Pharmacokinetics. McGraw-Hill Companies
- Stefania Spada, Garywalsh. 2004. Directory of approved biopharmaceutical
- Gary Walsh. 2003. Biopharmaceutical, Biochemistry & Biotechnology.
- Heinrich Klefenz. 2002. Industrial pharmaceutical biotechnology.
- Thomas Lengauer (Ed.). 2002. Bioinformatics from Genomes to Drugs. Volume I& II. Wiley-VCH.
- John F. Corpenter (editor), Mark C. Manning. 2002. Rational Design of stable formulation Theory and Practice (Pharmaceutical Biotechnology). Plenum, US. Ist edition.
- D.I.A. Crommelin, et al., 2002. Pharmaceutical Biology. Amazon prime publications.
- Werner Kalow, Urs A Meyer and Rachel F. Tyndale. 2001.
- Pharmacogenomics. CPL press.

Useful Websites:

- https://tugasakhirsttifbogor.files.wordpress.com/2018/08/pharmaceutical-biotechnology.pdf
- http://library.nuft.edu.ua/ebook/file/Gad2007.pdf
- https://oasis.iik.ac.id:9443/library/repository/a932eb462c49885a2c72755977036b81.pdf

Elective Paper- IV ENVIRONMENTAL BIOTECHNOLOGY

Paper – 12								
Title of the paper	ENVIRONMEN	TAL	Subject co	de:				
	BIOTECHNOLO	OGY	_					
Category of the	Year	Sem	ester	Credits				
course								
Elective Paper	1^{st}	2	nd	3				

Learning Outcome:

The subject imparts knowledge on the fundamentals of ecology and pollution. The student will be provided with a basic knowledge and understanding about the functions of ecosystem and reduction of pollution by biotechnological tools.

Course outcomes:

On successful completion of the course the students will be able to

CO-1	(K2) explain various waste management methods
CO-2	(K3) classify potential methods of biodegrading organic pollutants.
CO-3	(K4) examine the techniques involved in remediation of polluted environments
CO-4	(K5) assess types of pollution & its control
CO-5	(K6) compile biotechnological approaches to degrade xenobiotic compounds

SYLLABUS ELECTIVE PAPER-4 ENVIRONMENTAL BIOTECHNOLOGY					
Unit	Content	Hours	COs	Cognitive	
				level	
I	Environment: Basic concepts and issues; Environmental Pollution: Types of pollution & its control strategies -Air pollution, Soil pollution, Water pollution & Radioactive	10	CO1	K2	
	pollution. Environmental management and Conservation, Environmental Laws & Agencies involved in conservation.	10	CO5	112	
п	Biofilm Kinetics: Completely mixed biofilm reactor-Soluble microbial products and inert biomass-Special-case biofilm solution. Reactor types:- batch reactor - continuous-flow stirred-tank reactor- Plug-flow reactor. Engineering design of reactors- Reactors in series	15	CO1 CO2 CO5	K3	
ш	Waste water management, source of waste water, Waste water treatment- physical, chemical and biological treatment. Microbiology of Waste water; Aerobic and anaerobic process, BOD and COD.	10	CO3	K4	
IV	Toxicity: Types and Test for evaluating Toxicity. Biosensors, Biomonitoring of toxic materials .Biomagnification, Biomining and Biofuels	10	CO4	K5	
V	Bioremediation; <i>In-situ and Ex-situ</i> Bioremediation of contaminated soils and waste land; Microbiology of degradation of Xenobiotics in environment; Pesticides, Surfactants, Degradative plasmids. Solid waste: Composting, Vermiculture and methane production.	15	CO5	K6	
 Reference Books: Gareth M. Evans, Gareth G. Evans, Judy Furlong 2011 					

- Environmental biotechnology: theory and application John Wiley & Sons, Ltd. West Sussex, UK
- M. Moo-Young, W.A. Anderson, A.M. Chakrabarty, 2010. Environmental Biotechnology: Principles and Applications. Springer.
- M. H. Fulekar, 2010 Environmental Biotechnology, by Science Publishers Department of Life Sciences, University of Mumbai, India,
- Stanley E. Manahan, 2009. Environmental Chemistry, Ninth Edition, CRC Press.
- Environmental chemistry 5th edition by A.K.De. 1997.
- Bruce E. Rittmann and Perry L. McCarty. 2001. Environmental Biotechnology : Principles and applications. McGraw Hill, Newyork.
- Ahmed N, Qureshi, F.M. and Khan, O.Y. 2001.Industrial and Environmental Biotechnology. Horizon Press.
- Ahmed N, Qureshi, F.M. and Khan, O.Y. 2001.Industrial and Environmental Biotechnology. Horizon Press.

Useful Websites:

- lbewww.epfl.ch/LBE/Default_E.htm
- <u>http://lbe.epfl.ch</u>

Extra disciplinary subject for other department students TISSUE ENGINEERING

Paper – 13								
Title of the paper	TISSUE ENGINE	ERING	Subject co	de:				
Category of the	Year	Sem	ester	Credits				
course								
Extra disciplinary	1^{st}	2	nd	2				
subject								

Learning Outcome:

The subject imparts knowledge on the fundamentals of tissue and its function. The student will be provided with a basic knowledge and understanding about the functions of tissue and its biomedical applications.

Course Outcome:

CO-1	Understand the basics of Basics of Tissue Engineering
CO-2	Apply the knowledge to create tissue culture methods
CO-3	Acquire adequate knowledge in the use of tissue in medical application
CO-4	Evaluate the benefits of Tissue Engineering & Pharmaceutical Products
CO-5	Analyze the importance of applications of tissue engineering

SYLLABUS EXTRA DISCIPLINARY SUBJECT TISSUE ENGINEERING					
Unit	Content	Hours	Cos	Cognitive	
				level	
Ι	Basic biology of tissue engineering: The basis of growth and differentiation-morphogenesis and tissue engineering	10	CO1	K4 & K5	
II	In vitro control of tissue development-Growth factors-Tissue engineering bioreactors- In vitro synthesis of Tissue and organs- Organotypic and histotypic engineered tissues. 3D cell culture-Tissue assembly in microgravity	15	CO2	K3 & K5	
III	Biomaterials in tissue engineering-Scaffolds, extracellular matrix, polymers and nanocomposites. Approaches to transplanting engineered cells	10	CO3	K1,K2,K3 & K4	
IV	Bioartificial pancrease, Hepat assist liver support system, Artificial Womb, Heamatopoietic system: Red blood cell substitutes, Renal replacement devices	10	CO4	K2, K3, K4, K5	
V	Structural tissue engineering-Bone regeneration through cellular engineering, Skin tissue engineering, Brain implants-Neural stem cells, Periodontal applications	15	CO5	K2,K3,K4 & K6	

Reference Books:

- Sylvia, S. Mader, 2011, Human Biology, Twelfth edition, Mc Graw Hill, USA.
- Robert P. Lanaza, Robert Langer and Joseph Vacanti, 2007. Principles of Tissue Engineering. Third edition Academic Press.
- Micklem.H.S., Loutit John.F., 2004, Tissue grafting and radiation, Academic Press, New York..
- Penso.G., Balducci.D., 2004.Tissue cultures in biological research, Elsevier, Amsterdam
- Cecie Starr, 1996, Biology, Third edition, Wordsworth, America.

Useful Websites:

• <u>www.nuigalway.ie/anatomy/tissue_engineering.htm</u>

THIRD SEMESTER Core Paper- 7 BIOINFORMATICS

Paper – 15							
Title of the paperBIOINFORMATICSSubject code:							
Category of the	Year	Semester		Credits			
course							
Core Paper	2^{nd}	3	rd	5			

Learning Outcome:

The paper imparts a thorough knowledge of the basics of bioinformatics tools. The student will get to understand the core concepts of in Silico biological research.

CO-1	To get introduced to the basic concepts of Bioinformatics and its
	significance in Biological data analysis.
CO-2	Describe the history, scope and importance of Bioinformatics and role of
	internet in Bioinformatics.
CO-3	Explain about the methods to characterize and manage the different types
	of Biological data.
CO-4	Classify different types of Biological Databases.
CO-5	Introduction to the basics of sequence alignment and analysis

	SYLLABUS CORE PAPER-7 BIOINFORMATICS					
Unit	Content	Hours	COs	Cognitive level		
I	Introduction to bioinformatics, Database concepts, Protein and nucleotide databases- NCBI, EMBL, UniProt, PIR; Information retrieval from biological databases- Entrez. Biological Data- types of Sequences, Sequencing methods- DNA, Protein. Big data analysis - DNA/RNA/protein sequence or structure ,data, gene expression data, protein- protein interaction (PPI) data, pathway data and gene ontology (GO) data	20	CO1	K1 & K2		
п	Sequence alignment- Importance of Sequence alignment, Components- match, mismatch, similarity, scoring an alignment- PAM and Blosum matrices, gap penalty, protein vs DNA alignments, Pairwise alignment- Dot-matrix alignment, Dynamic programming- Global and local alignment algorithms, multiple sequence alignment- progressive alignment and Iterative alignment algorithms, consensus sequence, patterns and profiles- PSI- Blast, Database searching: Pairwise alignment based rigorous algorithm (Smith and Waterman) and Heuristic algorithms (FASTA and Blast). Bioinformatics for phylogenetic analysis	20	CO2	K2,K3 & K5		
Ш	Bioinformatics for genome, EST Clustering and analyses, Gene prediction in prokaryotic and eukaryotic genomes, Regulatory sequence analysis, Bioinformatics for Genome maps and markers, Tandem repeat in gene prediction,	20	CO3	K2 & K5		

	Bioinformatics for understanding Genome variation- Mutation			
	database. Bioinformatics for micro array designing and			
	transcriptional profiling. DNA to Protein; Protein Structure-			
	Primary, secondary structure, Tertiary.			
	The protein structure database and the PDBSum- PDB, SCOP, CATH, DALI and HSSP; Molecular visualization			
	tools. Rasmol, Chime and Spdbviewer. Structure analysis		CO4	
IV	tools. VAST and DALI, Structural biology - Homology	15	04	K4 & K5
	modeling, Fold Recognition; Transmembrane topology			
	prediction, Bioinformatics for metabolic reconstruction-			
	KEGG database			
	Medical application of Bioinformatics. Disease genes, Drug			
	Discovery Steps in drug discovery. Target Identification.			
	Target Validation. QSAR. Preclinical pharmacology and			K3,K4 &
V	toxicology. ADMET. Drug designing. Rational drug design	15	CO5	кз,к4 а Кб
	(Computer aided drug design). Ligand based approach- High-		COS	NU
	throughput and virtual screening of ligands. Target based			
	approach			
Defense	nee Doolyn			

Reference Books:

- DassanayakeS.Ranil, Y.I.N. Silva Gunawardene, 2011. Genomic and Proteomic Techniques, Narosa Publishing House Pvt. Ltd, New Delhi.
- Thiagarajan B, Rajalakshmi.P.A., 2009. Computational Biology, MJP publishers, Chennai.
- BosuOrpita, SimminderKaurThukral, 2007. Bioinformatics Databases, Tools and Algorithms, Oxford University press, New Delhi.
- Rastogi.S.C, Mendiratta.N, Rastogi.P, 2004. Bioinformatics methods and applications, Prentice-Hall of India private limited, New Delhi.
- Lohar s. Prakash, 2009. Bioinformatics, MJP Publishers, Chennai.
- Stephen misener and Stephen A. Krawetz., 2000. Bioinformatics methods and protocols, Humana press Inc, New Jersey.
- Durbin.R, S.Eddy, A.Krogh and G.Mitchison, 1998. Biological sequence analysis, Cambridge university press, Cambridge.

Core Paper-8 IMMUNOLOGY

Paper – 16							
Title of the paper	IMMUNOLOO	GY	Subject coo	de:			
Category of the	Year	Sem	ester	Credits			
course							
Core Paper	2^{nd}	31	rd	5			

Learning Outcome:

The paper imparts a thorough knowledge on the basics of immunology. The student will get to understand the core concepts of immune systems and their non-specific and specific mechanisms, vaccine, etc.

Course outcomes:

At the end of the course the students will be able to

CO-1	(K2) Illustrate various mechanisms that regulate immune responses and
	maintain tolerance
CO-2	(K3) describe key events and cellular players in antigen presentation,
	and how the nature of the antigen will shape resulting effector responses
CO-3	(K4) learn the concepts of cellular and molecular processes that
	represents the human immune system.
CO-4	(K5) elucidate the role of immunological regulation and tolerance at a
	cellular and molecular level
CO-5	(K6) compile concepts on immunological principles and diagnosis

	SYLLABUS CORE PAPER-8 IMMUNOLOGY					
Unit	Content	Hours	COs	Cognitive level		
I	History and overview of the immune system. Types of immunity - innate, acquired, passive and active, self vs non- self-discrimination. Physiology of immune response: HI and CMI specificity and memory. Cells and organs of the immune system .Lymphoid tissue, origin and development. Hematopoiesis and differentiation of lymphocytes	20	CO1	K1 & K2		
п	Lymphocyte-sub-populations of mouse and man. APC cells, lymphokines, Phagocytic cells, macrophage, dendritic cells, K and NK Cells. Nature and biology of antigens, epitopes, paratopes, haptens, adjuvents. Immunoglobulins- structure, distribution and function. Immunoglobulin super family Isotypic, Allotypic and Idiotypic variants, generation of antibody diversity	20	CO2	K2,K3 & K5		
III	Monoclonal antibody production and its applications. Types of vaccine and vaccination schedule. Role of MHC antigens in immune responses, Structure and function of class I and class II MHC molecules. MHC antigens in transplantation and HLA tissue typing. Transplantation immunology- immunological basis of graft rejection, clinical transplantation and Immunosuppressive therapy. Tumour Immunology - Tumour antigen, Immune response to tumours	20	CO3	K2 & K5		

IV	Effector mechanisms in immunity - macrophage activation, cell mediated cytotoxicity, cytotoxicity assay. Hypersensitivity reactions and types. The complement system, mode of activation, classical and alternate pathway, biological functions of C proteins	10	CO4	K4 & K5
V	Immunotechniques- Principle and Applications: Immuno diffusion, Immuno fluorescence, In-situ localization technique - FISH and GISH. RIA and ELISA, FACS, Western blot, ELISPOT assay. Agglutination tests. VDRL test.Purification of antibodies, Quantification of immunoglobulin by RID, EID and nephelometry, CMI techniques and Immunotherapy.	20	CO5	K3,K4 & K6

Reference Books:

- Peter J. Delves, Seamus J. Martin, Dennis R. Burton, Ivan M. Roitt, 2011.
- Roitt.s Essential Immunology, 12 edition, Wiley-Blackwell. USA.
- Kannan. I., 2010. Immunology. MJP Publishers, Chennai.
- Abbas, A.K., A.H.L. Lichtman and S.Pillai, 2010. Cellular and MolecularImmunology. 6th Edition. Saunders Elsevier Publications, Philadelphia.
- SeemiGarhat Bashir, 2009. Text Book of Immunology, PHI LearningPvt. Ltd. New Delhi.
- Thomas J. Kindt, Barbara A. Osborne and Richard A. Goldsby, 2006.Kuby Immunology, 6th edition, W. H. Freeman & Company.
- Nandini Shetty, 1996, Immunology: introductory textbook I. NewAge International, New Delhi.

Useful Websites:

- www.library.csusm.edu/course guides/biology
- www.immunologylink.com
- http://www.wiley.com/college/bio/karp12791/weblinks.html

Core Paper-9 BIOPROCESS TECHNOLOGY

Paper – 17								
Title of the paper BIOPROCESS TECHNOLOGY Subject code:								
Category of the	Year	Semester		Credits				
course	course							
Core Paper	2^{nd}	3	rd	5				

Learning Outcome:

The paper imparts a thorough knowledge on the basics of bioprocess and industrial fermentation. The student will get to understand the core concepts of fermentation and its commercial application.

Course outcomes:

The student will learn about the:

CO-1	(K2) Outline the basis of Bioprocess Engineering
CO-2	(K3) Relate reactors in fermentation
CO-3	(K4) Differentiate fermentation processes
CO-4	(K5) Assess Scale up and Scale down
CO-5	(K6) Compile the output of fermentation processes

SYLLABUS CORE PAPER-9 BIOPROCESS TECHNOLOGY					
Unit	Content	Hours	COs	Cognitive	
				level	
Ι	Introduction to fermentation. General requirements of fermentation. Microbial growth kinetics of batch and continuous culture. Solid substrate, slurry fermentation and its application. Microbial cell culture. Immobilization of cells and enzymes.	20	CO1	K1 & K2	
II	Types of bioreactors: Submerged reactors, surface reactors, mechanically agitated reactors, non-mechanically agitated reactors. Design of fermenters. Production of citric acid, penicillin and insulin. Isolation and improvement of Industrially important Micro-organisms, Media for Industrial fermentation and Sterilization.	20	CO2	K2,K3 & K5	
III	Introduction to bioproducts and bioseparation. Primary recovery process: Cell disruption methods. Cell lysis and Flocculation: Osmotic and mechanical methods of lysis. Flocculation by electrolysis; polymorphic flocculation. Precipitation methods. Filtration: Principles, Conventional, Crossflow filtration. Sedimentation: Principles, Sedimentation coefficients. Extraction Principles, Liquid liquid extraction, aqueous two phase extraction, supercritical fluid extraction.	20	CO3	K2 & K5	
IV	Down Stream Processing: Chromatography Techniques, Membrane separation, ultrafiltration. Drying .Principles and operation of vacuum dryer, shelf dryer, rotary dryer, freezer and spray dryer. Crystallization and Whole broth processing.	20	CO4	K4 & K5	
V	Aerobic and anaerobic fermentation processes and their	10		K3,K4 &	

of commercially in metabolites, Effluent	of biotechnology industry. Production portant primary and secondary Treatment and Fermentation	CO5	K6
Economics.			

Reference Books:

- Min-tzeLiong, 2011. Bioprocess Sciences and Technology. NovaScience Pub Inc.
- Michael L.Shuler, FikretKargi. 2003. Bioprocess Engineering. PHIpublishers.
- P.A.Belter, E.L.Cursler, and W.S.Hu. 1988.Bioseparation: Downstream processing for Biotechnology. John Wiley and sons.
- R.G. Harrison, P.Todd, SR.Rudge and D.P. Petrides. 2003.Bioseparation science and engineering. Oxford Press.

Useful Websites:

- www.wildfermentation.com/John Schollar and BenedikteWatmore, Practical Fermentation-a technicalguide
- web.mit.edu/professional/short.../fermentation_technology.html

Core Paper-10 Practical-3 (Bioinformatics, Immunology & Bioprocess Technology)

x	
0	

0								
Paper – 1								
	Practical-3 (Bioinfo	rmatics,						
Title of the paper	Immunology & Bioprocess		Subject co	de:				
	Technology)							
Category of the	Year Semes		ester	Credits				
course								
Core Paper	2^{nd}	3	rd	4				

Learning Outcome:

The practical will establish a basic study skill on the subject and will improve the student's ability to calculate and improve their practical skill and knowledge.

CO-1	(K2) to learn the Bioinformatics tools for sequence retrieval and
	alignment
CO-2	(K3) to apply the learned tools for various applications
CO-3	(K4) to isolate, identify & enumerate immune cells
CO-4	(K5) to learn the technique of immunodiagnostics
CO-5	(K6) to study upstream & downstream techniques

	SYLLABUS CORE PAPER-10 PRACTICAL-III						
Unit	Content	Hours	COs	Cognitive level			
A	 (A) Bioinformatics-practical Sequence retrieval from Genbank Sequence retrieval from Uniprot. Sequence identity search- Sequence similarity search using BLAST Sequence similarity search using FASTA Sequence similarity search using PSI BLAST Sequence similarity search using PHI- BLAST. Pattern Search (Domains & Motifs) using Pfam ORF gene Search - Genscan Pair-wise global sequence alignment using EBI-EMBOSS Needleman Wunsch tool Pair-wise local sequence alignment using EBI-EMBOSS Smith Waterman tool Multiple sequence alignment using EBI-CLUSTALW2. PHYLOGENY- Phylogenetic tree using PHYLIP. Molecular visualization of proteins using RASMOL. Docking of small molecule with protein structure using Hex software. 	30	CO1 CO2 CO3 CO4 CO5	K1, K2, K3, K4 &K5			
В	(B) Immunology - practical1. Lymphocyte separation and identification2. Determination of lymphocyte viability by trypan blue	30	CO1 CO2 CO3	K2,K3,K4			

	method		CO4	
	3. Preparation of serum and plasma		CO5	
	4. Electrophoretic profile of human serum in native PAGE		000	
	5. Preparation of cellular antigen – human RBC			
	6. Preparation of antigen-adjuvent mixture for production of			
	polyclonal antibody			
	7. Isolation of IgG molecule from serum			
	8. Immunodiagnostics: CRP			
	9. Immunodiagnostics: ASO			
	10. Immunodiagnostics: Widal			
	11. Immunodiagnostics: RA			
	12. Immunodiagnostics: Blood grouping and typing			
	13. Immunodiagnostics: hCG			
	14. ELISA			
	15. Radial Immunodiffusion			
	16. Ouchterlony Immunodiffusion			
	17. Rocket electrophoresis			
	18. Counter current immunoelectrophoresis.			
	(C) Bioprocess Technology - Practical			
	1. Parts and design of fermenter			
	2. Foaming and antifoaming agents			
	3. Media preparation and sterilization			
	4. Isolation of industrially important microorganisms for			
	microbial processes.		CO1	
	5. Conservation of Bacteria by Lyophilization.		CO2	K2,K3,K4
С	6. Production and estimation of protease	30	CO3	& K5
	7. Production and estimation of amylase.		CO4	a no
	8. Production of wine using grapes		CO5	
	9. Production of penicillin			
	10. Determination of penicillin activity			
	11. Citric acid production			
	12. Use of alginate for cell immobilization.			
	13. Aqueous Two Phase Extraction of enzymes			

Elective Paper-V NANO BIOTECHNOLOGY

Paper – 19								
Title of the paper NANO BIOTECHNOLOGY Subject code:								
Category of the	Year	Semester		Credits				
course	course							
Elective Paper	2^{nd}	3	rd	3				

Learning Outcome:

The subject imparts knowledge on the fundamentals of nanoparticles. The student will be provided with a basic knowledge and understanding about the role of nanoparticles in biotechnology.

CO-1	Understand the bases for Introduction to Nanotechnology
CO-2	To impart understanding on Nanoparticle based Drug Delivery.
CO-3	Fabrication of nanomaterials for bone tissue grafting
CO-4	Methods of Nanofabrication
CO-5	Understand the application of Nanotechnology

	SYLLABUS ELECTIVE PAPER- V NANO BIOTE	CHNOL	OGY	
Unit	Content	Hours	COs	Cognitive
				level
I	Introduction to Nanotechnology- Scientific revolution, Feynman's vision, Classification of nanobiomaterials -Types of nanomaterials – nanoparticles, nanotubes, nanowires, Nanofibers, Size decendent variation in the properties of Nanomaterials, Nature's Nanophenomena.	9	CO1	K1
II	Preparation of Nanomaterials, Top down and bottom up approaches, Biosynthesis, Nanobiomaterials- Polymer, Ceramic, Metal based Nanobiomaterials, Carbon based Nanomaterials, DNA based Nanostructures, Protein based Nanostructures, Quantum dots, Magnetic Nanoparticles, Nanofibres, Hydrogels, Films and Scaffolds.	9	CO2	K4
ш	Application of Nanomaterials in Bone substitutes and Dentistry, Food and Cosmetic applications, Bio-sensors and Bioremediation, Nanomaterials for anti-microbial coating – medical implants and paints, Application of Nanotechnology in textile industry.	9	CO3	K1 & K5
IV	Nanomaterials for diagnosis and therapy, Implications of drug delivery, Nano-carriers for application in medicine, , Drug release mechanism, Targeted Drug Delivery using nanocarriers, Nanoparticle technologies for cancer therapy and diagnosis, Magnetic nanoparticles for imaging and Hyperthermia.	9	CO4	K2
V	Nanotoxicology, Portals of Entry of the nanoparticles into the Human Body, Bio-toxicity of Nanoparticles, Nanoparticles in Mammalian systems and Health threats, Biological response and cellular interaction of implant materials and scaffolds,	9	CO5	К5

Risk assessn	nent and Safety Reg	ulation of nanoparti	cles.			
				<u>.</u>		
Reference Books:	G G1					
		Mjp publication. 201				
		geckeler, Hiroyuki N		•		
		ering. T.Laurencin,			C press	. 2012.
		ls. Francis D souza,	Karl M. Kac	lish.		
	ic publishing co. pt					
Materials of th	e Future, Humana					
Chad A. Mirki Applications,		Niemeyer, 2007. Na	nobiotechno	logy II: N	More Co	oncepts and
• Challa S.S.R.H Verlag Gmbh		Biologicals and pha	rmaceutical	nanomat	erials, V	Viley-VCH
	006. Nanobiotechn Iorizon Bioscience	ology in Molecualr	Diagnostic	s: Curren	nt Tech	niques and
	M., Mirkin, C.A. (H Wiley-VCH, Weinh	Eds). 2004. Nanobio eim.	technology	Concepts	, Applie	cations and
	ziolek, Shashi P.K. f Nanomaterials :	arna, J malthew Ma	uro and Ric	hard A.V	aia. 200	05 Defense
Springer HandThe Chemistry	book of Nanotechn of Nanomaterials:	ology- Ed. by B. Bh Synthesis, Propertie iley-VCH Verlag (20	s and Applic	-	- ·	
	-	sis and therapy, Cha y, Mansoor M. Ami		•	CH, 200	7.
		orizions Biosciences				
	: An introduction	to synthesis, prope		pplicatio	n, Diet	er Vollath
	ncin and Lakshmi S Press taylor& Frat	. Nair, Nanotechnolo icis Group.	ogy and Tiss	sue Engir	eering 7	Гhe
• Introduction	to Nanoscience a	nd Nanotechnology uis, Tibbals, H. F., I	,	,		
• Assessing Nar	oparticle Risks to I	Iuman Health, Guru	murthy Ram	nachandra	an, Eles	vier, 2011.
Nanotechnolog	gy: Environmental	Health and safety, R	isks, Regula	tion and	Manage	ment,
Matthew Hull	and Diana Bowman	n, Elsevier, 2010.				
• Nanotechnolog	gy: Health and Env	ronmental Risks, Jo	Anne Shatk	tin, CRC	Press, 2	013
J seful Websites: http://www.zyvex.co	om/nano www.fda.g	ov/nanotechnologv/	www.nature	e.com/nn	ano/	
<u></u>	<u></u>	e , nanoteennoiogy				

Elective Paper-V MOLECULAR DEVELOPMENTAL BIOLOGY

Paper – 19						
Title of the paper MOLECULAR Subject code:						
	DEVELOPMENTAL	BIOLOGY				
Category of the	Year	Semester		Credits		
course						
Elective Paper	2^{nd}	$3^{\rm rd}$		3		

Learning Outcome:

The subject imparts knowledge on the fundamentals of developmental biology. The student will be provided with a basic knowledge and understanding about the molecular aspects of developmental biology.

Course outcomes:

CO-1	Illustrate the structure and function of developmental biology, Gametogenesis
CO-2	Discuss basic fertilization process of animals
CO-3	Demonstrate the functions of embryonic development process
CO-4	Illustrate the organ development of vertebrate animals
CO-5	Demonstrate the impact of gene in developmental biology and developmental disorders

SYI	LABUS ELECTIVE PAPER-5 MOLECULAR DEVELOP	MENTA	L BIO	LOGY
Unit	Content	Hours	COs	Cognitive level
I	Definition and scope of developmental biology. Gametogenesis - Spermatogenesis and Oogenesis. Structure of Sperm and oocyte. Instructive and permissive interactions, competence, epithelial - mesenchymal interactions. Important signaling pathways in vertebrate development	9	CO1	K1,K2 & K5
II	Fertilization - Definition, mechanism of fertilizatiom in mammal & sea urchin. Types of fertilization. Nieuwkoop center, Molecular role of organizer	9	CO2	K4
III	Cleavage in Xenopus, Chick and mammals, Regulation of cleavage cycle. Morphogenetic movements, Gastrulation in Xenopus, Chick and mammals. Fate Maps	9	CO3	K3
IV	Vertebrate Development: Formation of the neural tube, myogenesis, and hematopoiesis. Mechanism of vertebrate eye development	9	CO4	K2
V	Drosophila Maternal effect genes, induction at single cell level - differentiation of photoreceptors in ommatidia. Developmental disorders Spina bifida, Anenecephaly, and craniorachischis, Cyclopia, Thanotrophic dysplasia	9	CO5	K1 & K4

Reference Books:

- Scott F.Gilbert, 2010. Developmental Biology, 9th edition, Sinauer Associates Inc.
- Subramoniam, T. 2002. Developmental Biology. 1st edition. Narosa publications.
- Richard M.Twynman, 2001 Developmental Biology. (2 nd edition), Viva Publications, New Delhi.

Useful Websites:

sackler.tufts.edu/.../Cell-Molecular-and-Developmental-Biology www.devbio.com/

Extra disciplinary subject for other department students (Non Major Elective II) GENE MANIPULATION TECHNOLOGY

Paper – 20						
Title of the paper	e paper GENE MANIPULATION Subje			de:		
	TECHNOLOO	GΥ	_			
Category of the	Year	Semester		Credits		
course						
Extra disciplinary	1^{st}	2	nd	2		
subject						

Learning Outcome:

After studying this course, students will be able to:

- To understand more about the science that underlies the development of genetically modified organisms and in particular how gene transfer is brought about
- To know something of the potential benefits and uncertainties associated with gene transfer and the high levels of technical ingenuity involved
- To understand more the science that underpins the development of Golden Rice and understand why the usefulness of this product has proved so contentious.

CO-1	Understand the basics of Basics of Gene Manipulation Technology
CO-2	Apply the knowledge to create Constructions of DNA Libraries
	Constructions of DNA Libraries.
CO-3	Acquire adequate knowledge in the use of Genome Sequencing and
	Transcriptomics
CO-4	Evaluate the benefits of Protein Engineering & Pharmaceutical Products
CO-5	Analyse the importance of Gene Cloning & Applications of Gene Cloning

SYL	LABUS NON MAJOR ELECTIVE II GENE MANIPULA	TION T	ECHNO	DLOGY
Unit	Content	Hours	COs	Cognitive
				level
I	Basics of Gene Manipulation Technology-Restriction Enzymes-Cutting and Joining Reactions-Vectors-Selection of Recombinants- Agarose Gel Electrophoresis-Southern Blotting- Hybridization-Autoradiography-PCR- Native Page- SDS-Page-2D Gel Electrophoresis- Western Blotting.	9	CO1	K2,K4 &K5
II	Constructions of DNA Libraries- Vectors Used In the Construction of CDNA and Genomic DNA Libraries- Chromosome Walking- Positive Selection and Subtractive Hybridization- Preparation Of (BAC/YAC Library).	9	CO2	K1,K3,K5
ш	Genome Sequencing and Transcriptomics- Sanger's Sequencing, Whole Genome Shot gun Sequencing- Comparative Genome Sequencing- Transcriptome Analysis- DNA Microarray- Expression of Recombinant Proteins.	9	CO3	K1,K2,K3 &K4
IV	Protein Engineering & Pharmaceutical Products- Site Directed Mutagenesis- Protein Analysis- Therapeutic Protein- Vaccines.	9	CO4	K2,K3 &K4
V	Applications of Gene Cloning- creating Transgenic Animals	9	CO5	K2,K3

	and Plants- Reporter Genes- Animal Cloning, Gene	&K4	
	expression in plants- Biosafety and Bioethics.		
Refer	ences:		
٠	An Introduction Gene Cloning And Manipulation- Howe.C		
٠	Molecular Cloning: A Laboratory Manua l (3- Volume Set)- Sambrook J. et al.		
٠	T.A. Brown 1995. Gene Cloning and Introduction.		
٠	Thiel 2002. Biotechnology Nucleic Acids to Protein: A Laboratory Project. Tata	mcgraw.Hill	
٠	Desmond S. T. Nicholl, an Introduction To Genetic Engineering 3 rd Edition.	-	
• R. W. Old & S.B. Primrose, Principles Of Gene Manipulation, Fifth Edition, Blackwell			
	Science		
•	Genetic Engineering Principles And Methods By Setlow, Jane K. (VOLUME 24)	

- Genetic Engineering Principles And Methods By Setlow, Jane K. (VOLUME 24)
- Bernard R Glick and Jack .J. Pasternack, 1994, Molecular Biotechnology, ASM Press.

INTERNSHIP

Paper – 21						
Title of the paperINTERNSHIPSubject code:						
Category of the	Year	Semester		Credits		
course						
Paper	1^{st}	2	nd	2		

Learning Outcome: To gain hands on training and expertise in handling sophisticated instruments and acquire in depth knowledge in their applications.

Course outcomes:

The student will learn to

CO-1	(K2) understand working principles and the techniques of various processes
CO-2	(K3) apply standard operating procedures followed in industries
CO-3	(K3) prepare to face challenges & gain confidence in the field of study.
CO-4	(K5) critically assess the utilization of sophisticated instruments and
	expensive consumables
CO-5	(K6) develop work ethics to be followed in a scientific laboratory

FOURTH SEMESTER Core Paper-11 RESEARCH METHODOLOGY

Paper – 22						
Title of the paper RESEARCH METHODOLOGY Subject code:						
Category of the	Year	Semester		Credits		
course						
Core Paper	2^{nd}	4	th	5		

Learning Outcome:

The paper imparts a thorough knowledge on the basics of academic research. The student will get to understand the core concepts of methodologies & ethics to pursue research.

CO-1	Understand the bases for research
CO-2	To know about research proposal and dissertation writing.
CO-3	To know about Statistical application in research
CO-4	To know about office tools used in research
CO-5	To know about search engines.

	SYLLABUS CORE PAPER-11 RESEARCH METHODOLOGY					
Unit	Content	Hours	COs	Cognitive		
				level		
I	Research Methodology - An Introduction: Meaning of Research, Objectives of Research, Types of Research, Research Approaches, Importance of knowing how research is done, Research Process, Criteria of good research. Defining the Research Problem; Research Design; Sampling Design; Methods of Data Collection; Processing and Analysis of Data; Sampling Fundamentals	20	CO1	K1		
II	Review of literature, Writing the Research Report (Thesis and publications): Components of research report - Title, Authors, Addresses, Abstract, Keywords, Introduction, Materials and Methods, Results, Discussion, Summary, Acknowledgements and Bibliography	20	CO2	K2 &K6		
ш	Standard Deviation- T test. Analysis of Variance components (ANOVA) for fixed effect model; Total, treatment and error of squares, Degrees of freedom, Confidence interval; ANOVA for random effects model, Estimation of variance components, Model adequacy checking. Two factor Factorial Design, Basic definitions and principles, main effect and interaction, response surface and contour plots, General arrangement for a two factor factorial design	20	CO3	К3		
IV	Spreadsheet Tool: Introduction to spreadsheet application, features and functions, Using formulas and functions, Data storing, Features for Statistical data analysis, Generating charts/ graph and other features. Presentation Tool: Introduction to presentation tool, features and functions, Creating presentation, Customizing presentation, Showing	20	CO4	K1 & K4		

	presentation. Tools used may be Microsoft Power Point, Open Office or similar tool					
v	Web Search: Introduction to Internet, Use of Internet and WWW, Using search engine like Google, Yahoo, Pubmed, Science direct, Scopus etc, and Using advanced search techniques	10	CO5	K1 & K2		
Defense						

Reference Books:

- Montgomery, Douglas C. (2007), 5/e, Design and Analysis of Experiments, (Wiley India).
- Montgomery, Douglas C. & Runger, George C. (2007), 3/e, Applied Statistics & Probability for Engineers (Wiley India).
- Kothari C.K. (2004), 2/e, Research Methodology- Methods and Techniques (New Age International, New Delhi).
- Krishnaswamy, K.N., Sivakumar, Appa Iyer and Mathiranjan M. (2006), Management Research Methodology; Integration of Principles, Methods and Techniques (Pearson Education, New Delhi).
- The complete reference Office Xp Stephan L. Nelson, Gujulia Kelly (TMH).
- Basic Computer Science and Communication Engineering R. Rajaram (SCITECH).

Useful Websites

- www.ask.com/Methodology+Research
- www.qmethod.org/

Core Paper-12 BIOSTATISTICS

Paper – 23						
Title of the paperBIOSTATISTICSSubject code:						
Category of the	Year	Sem	ester	Credits		
course						
Core Paper	2^{nd}	4	th	5		

Learning Outcome:

The paper imparts a thorough knowledge on the basics of all the statistical concepts, in biology. The student will get to understand the core concepts of computation principles for the data analysis.

Course outcomes:

At the end of the Course, the Student will be able to:

CO-1	To understand the major Methods of collection & presentation of data
CO-2	To provide basic knowledge about methods of analysis of variance
CO-3	To enlighten the students about the methods of setting hypothesis and calculation of
	errors.
CO-4	To update the knowledge on Tests of significance for large and small samples.
CO-5	To assess and appraise the role of novel microbes in environment and integrate them
	in specific innovative approaches.

SYLLABUS CORE PAPER-12 BIOSTATISTICS						
Unit	Content	Hours	COs	Cognitive level		
I	Statistics – Scope –collection, classification, tabulation of Statistical Data – Diagrammatic representation – graphs – graph drawing – graph paper – plotted curve –Sampling method and standard errors –random sampling – use of random numbers –expectation of sample estimates – means – confidence limits – standard errors – variance. Measures of central tendency – measures of dispersion – skewness, kurtosis, moments	20	CO1 CO2 CO3	K1,K2,K3 & K4		
п	Correlation and regression – correlation table – coefficient of correlation – Z transformation – regression – relation between regression and correlation. Probability – Markov chains applications – Probability distributions – Binomial (Gaussian distribution) and negative binomial, compound and multinomial distributions – Poisson distribution	20	CO1 CO2 CO5	K1,K2,K3 & K4		
III	Normal distribution – graphic representation.– frequency curve and its characteristics –measures of central value, dispersion, coefficient of variation and methods of computation – Basis of Statistical Inference – Sampling Distribution – Standard error – Testing of hypothesis – Null Hypothesis –Type I and Type II errors	20	CO1 CO4 CO5	K1,K2,K3 & K4		
IV	Tests of significance for large and small samples based on Normal, t, z distributions with regard to mean, variance,	20	CO1 CO2	K1,K2,K3 & K4		

	proportions and correlation coefficient – chi-square test of goodness of fit – contingency tables – c2 test for independence of two attributes – Fisher and Behrens 'd' test – 2×2 table – testing heterogeneity – r X c table – chi-square test in genetic experiments – partition X 2 – Emerson's method		CO3	
V	Tests of significance –t tests – F tests – Analysis of variance – one way classification – Two way classification, CRD, RBD, LSD. Spreadsheets – Data entry –mathematical functions – statistical function – Graphics display – printing spreadsheets – use as a database word processes – databases – statistical analysis packages graphics/presentation packages	10	CO1 CO2 CO4 CO5	K1,K2,K3 & K4

References Books:

- Veer bala Rastogi. 2011. Fundamentals of Biostatistics. Ane books Pvt Ltd, Chennai.
- Rosner, B (2005), "Fundamentals of Biostatistics", Duxbury Press.
- Warren,J; Gregory,E; Grant,R (2004), "Statistical Methods in Bioinformatics",1st edition, Springer
- Milton,J.S.(1992),. "Statistical methods in the Biological and Health Sciences", 2nd edition ,Mc Graw Hill,
- Sundar Rao P. S.S., Jesudian G. & Richard J. (1987), "An Introduction to
- Biostatistics", 2nd edition,. Prestographik, Vellore, India,.
- Zar, J.H. (1984) "Bio Statistical Methods", Prentice Hall, International Edition

Useful Websites:

- www.statsoft.com/textbook/ biosun1.harvard.edu/
- www.bettycjung.net/Statsites.htm
- www.ucl.ac.uk/statistics/biostatistics

Core Paper-13					
Paper – 24					
Title of the paper	Subject code:				
Category of the course	Year	Semester	Credits		
Project with viva voce	2^{nd}	4 th	7		

Learning Outcome:

The paper imparts a thorough knowledge on the basics of academic research. The student will get to understand the core concepts of pursuing research.

Elective Paper - VI
INDUSTRIAL EFFLUENT TREATMENT

Paper – 25						
Title of the paper INDUSTRIAL EFFLUENT TREATMENT Subject code						
Category of the course	Year	Semester	Credits			
Elective Paper VI	2^{nd}	4 th	3			

Learning Outcome:

The paper imparts a thorough knowledge on the basics of academic research. The student will get to understand the core concepts of methodologies & ethics to pursue research.

CO-1	Ability to plan minimization of industrial wastes
CO-2	Ability to design facilities for the processing and reclamation of industrial waste water.
CO-3	Understand the design and working principle of various treatment methods.
CO-4	Manage sewage and industrial effluent issues.
CO-5	Develop the critical thinking on management of hazardous waste.

S	YLLABUS ELECTIVE PAPER VI INDUSTRIAL EFFLUE	ENT TRI	EATM	SYLLABUS ELECTIVE PAPER VI INDUSTRIAL EFFLUENT TREATMENT						
Unit	Content	Hours	COs	Cognitive						
				level						
I	Types of industrial wastes –Biodegradable industrial waste and Non – biodegradable industrial waste. Sources of wastes - municipal, medical, agriculture, industry, electronic, construction and demolition. Characteristics of industrial wastes – effects of industrial effluents on air, land, water and land. Environmental legislations related to prevention and control of industrial effluents and hazardous wastes.	15	CO1	K1						
II	Sources, Characteristics, waste treatment flow sheets for selected industries such as Textiles, Tanneries, Pharmaceuticals, Dairy, Sugar, Paper, distilleries, Refineries, fertilizer.	15	CO2	K2 &K6						
ш	Effluent Treatment Plant – Need, design, mechanism, level of treatment – primary, secondary and tertiary, advanced technology for tannery treatment - ETP Process Design for a typical tannery industry.	10	CO3	К3						
IV	Microbial degradation of plastics, oil, metals – biotechnological methods for management of pollution – atmospheric CO2 reduction – sewage treatment – immobilized	10	CO4	K1 & K4						

	cells in the management of pollution.				
	Hazardous wastes - types - sources - effects; management -				
V	Membrane filtration, Nano-filtration - Physico chemical	10	CO5	K1 & K2	
	treatment – solidification – incineration – Secured landfills				
Books f	for Study:				
1. Rao I	M. N. & Dutta A. K. —Wastewater Treatmentl, Oxford – IBH Pub	lication,	1995.		
2. Ecke	2. Eckenfelder W.W. Jr., —Industrial Water Pollution Controll, McGraw Hill Book Company, New				
Delhi, 2000.					
3. Patw	3. Patwardhan. A.D., Industrial Wastewater Treatment, Prentice Hall of India, New Delhi 2010.				
4. Wast	4. Wastewater Treatment by M. N. Rao and A. K. Datta–Oxford I. B. H publishers				
5. Indus	5. Industrial Wastewater Management, Treatment and Disposal (WEF – MOP – FD3) McGraw Hill,				
2008.					

Elective Paper - VI BIOFERTILIZER AND ORGANIC FARMING

Paper – 25						
Title of the paper BIOFERTILIZER AND ORGANIC Subject code: FARMING						
Category of the course	Year	Semester	Credits			
Elective Paper VI	2^{nd}	4^{th}	3			

Learning Outcome:

The paper imparts a thorough knowledge on the basics of academic research. The student will get to understand the core concepts of methodologies & ethics to pursue research.

Course outcomes:

CO-1	To understand about the importance of biofertilizer.
CO-2	To learn about the symbiotic relations of nitrogen fixers.
CO-3	To demonstrate the knowledge of ecofriendly agricultural inputs in biofertilizer
	production.
CO-4	To understand the importance of organic farming.
CO-5	Build the practical knowledge on biofertilizers and composting methods.

SYLLA	LLABUS ELECTIVE PAPER VI BIOFERTILIZER AND ORGANIC FARMING				
Unit	Content	Hours	COs	Cognitive level	
Ι	Introduction and scope of Biofertilizers. History of biofertilizers production. Types and classification of Biofertilizers.	10	CO1	K 1	
Π	Structure, characteristic features and mass Production of bacterial biofertilizers- Rhizobium, Azospirillum and Azotobacter; Cyanobacterial biofertilizers- Blue – Green algae, Nostoc.	15	CO2	K2 &K6	
III	Fungal biofertilizers- Vesicular – arbuscular Mycorrhizal Fungi (VAM Fungi). Azolla and application in rice fields. Phosphate solubilizing microbes - Isolation, characterization, mass inoculum production, field application – plant based biofertilizer – neem – animal based biofertilizer – fish	15	CO3	К3	
IV	Introduction, status, Components, Concepts, principles and applications of Organic farming – advantages and disadvantages – beneficial and non beneficial insects – common insecticides and pesticides -Production of Biogas and its applications	10	CO4	K1 & K4	
V	Green manuring and organic fertilizers, Recycling of biodegradable municipal and agricultural waste – Vermicomposting - types and method for municipal and agricultural waste – field Application	10	CO5	K1 & K2	

Books for Study:

1. Dubey, R.C., 2005 A Text book of Biotechnology S. Chand & Co, New Delhi.

2. Kumaresan, V. 2005, Biotechnology, Saras Publications, New Delhi.

3. Kannaiyan, S. (2003). Biotechnology of Biofertilizers, CHIPS, Texas.

4. Mahendra K. Rai (2005). Hand book of Microbial biofertilizers, The Haworth Press, Inc. New

York.

5. Sathe, T.V. 2004 Vermiculture and Organic Farming. Daya publishers.

6. Vayas, S.C., Vayas, S. and Modi, H.A. 1998 Bio-fertilizers and organic ¬ Farming AktaPrakashan, Nadiad.

7. Palaniappan, S.P., & Annadurai, 2016.Organic Farming: Theory and Practice, Scientific Publishers, Jodhpur

Books for Reference:

1. Bagyaraj, D.J. and A. Manjunath. 1990. Mycorrhizal symbiosis and plant growth, Univ. of Agricultural Sciences, Bangalore, India.

2. Purohit, S.S., P.R. Kothari and S.K. Mathur, 1993. Basic and Agricultural Biotechnology, Agro Botanical Pub. India.

3. Subba Rao, N. S. 1988. Biological nitrogen fixation: recent developments, Mohan Primlani for Oxford and IBH Pub. Co. (P) Ltd., India.

4. Subba Rao, N.S., G.S. Venkataraman and S. Kannaiyan 1993. Biological nitrogen fixation, ICAR Pub., New Delhi.

5. Somani, L.L., S.C. Bhandari, K.K. Vyas and S.N. Saxena. 1990. Biofertilizers, Scientific Publishers - Jodhpur.

6. Reddy, S.R., 2017. Principles of Organic Farming, Kalyani Publishers, New Delhi.

Elective Paper - VI BIOENTREPRENEURSHIP

Paper – 25							
Å							
Title of the paper BIOENTREPRENEURSHIP Subject code:							
Category of the course	Year	Semest		Credits			
Elective Paper VI 2 nd 4 th 3							

Learning Outcome:

The paper imparts a thorough knowledge on the basics of academic research. The student will get to understand the core concepts of methodologies & ethics to pursue research.

Course outcomes:

CO-1	Students will be able to identify the Biotech based companies, products, services
	and IPR
CO-2	Will understand the Business proposal for starting a company
CO-3	Will know the funding of biotech business
CO-4	Will aspire to set up Biotech enterprises
CO-5	Will analyse the Financial requirement for bioentrepreneurship

	SYLLABUS ELECTIVE PAPER VI BIOENTREPRENEURSHIP				
Unit	Content	Hours	COs	Cognitive level	
I	Innovation and bioentrepreneurship: Innovation as strategy in Biotech Companies – Biotechnology based products and services – license and protection – IPR issues in bioentrepreneurships – biosafety.	10	CO1	K1	
п	Major start-ups in Biotechnology, Concept and theories of Entrepreneurship, Entrepreneurial traits and motivation, Nature and importance of Entrepreneurs, Government schemes for commercialization of technology (eg. Biotech Consortium India Limited)	15	CO2	K2 &K6	
III	Funding of biotech business - funding for biotech in India - support mechanisms for entrepreneurship - Bioentrepreneurship efforts in India, difficulties in India experienced, organizations supporting biotech growth, areas of scope, biotech policy initiatives	15	CO3	K3	
IV	Biotech enterprises: Desirables in start-up, Setting up Small, Medium & Large scale industry, Quality control in Biotech industries, Location of an enterprise, steps for starting a small industry, incentives and subsidies, exploring export possibilities	10	CO4	K1 & K4	
V	Financial analysis: Ratio analysis, Investment process, Break even analysis, Profitability analysis, Budget and planning process.	10	CO5	K1 & K2	
Books f	process.				

Books for Study:

1. The Business of Biotechnology: From the Bench of the Street: By Richard Dana Ono Published Butterworth- Heinemann, 1991.

2. Entrepreneurship in Biotechnology: Managing for growth from start-up By Martin Gross Mann, 2003

3. Innovation and entrepreneurship in biotechnology: Concepts, theories & cases by D. Hyne & John

Kapeleris, 2006

Books for Reference:

1. Dynamics of Entrepreneurial Development and Management by Vasant Desai, Himalaya Publishing House, 2005.

2. Projects Planning Analysis, Selection, Implementation & Review by Prasannan.

3. Best Practices in Biotechnology Education: By Yali Friedman, Published by Logos Press, 2008.

SKILL ENHANCEMENT COURSE STEM CELL BIOLOGY

Paper – 26								
Title of the paper	Title of the paper STEM CELL BIOLOGY Subject code:							
Category of the Year		Sem	ester	Credits				
course								
Skill Enhancement	2^{nd}	4	th	2				
course								

Learning Outcome:

The subject imparts knowledge on the fundamentals of stem cells. The student will be provided with a basic knowledge and understanding about the application of stem cell biology.

Course Outcomes:

At the end of the Course, the Student will be able to:

CO1	To understand the major discoveries of stem cell biology
CO2	To provide basic knowledge about stem cell niche and functions
CO3	To enlighten the students on Stem cell isolation and culture techniques
CO4	To update the knowledge on Stem cell cycle
CO5	To assess and appraise Applications of Embryonic stem cells.

	SYLLABUS SKILL ENHANCEMENT COURSE STEM CELL BIOLOGY				
Unit	Content	Hours	COs	Cognitive level	
I	Stem cells - Definition, Characterization, Pluripotency, Self- renewal and differentiation. Types of stem cells- Embryonic stem cells, Adult stem cells and mesenchymal stem Cells, Adipose stem cells	15	CO1	K1	
Π	Stem cell niche, Niche specification - Drosophila germ line stem cells. Receptors, genes and markers of stem cells	10	CO2	K1 & K2	
III	Stem cell isolation and culture techniques. Characterization of stem cells	10	CO3	K3, K4	
IV	Stem cell cycle. Chromatin modification and transcriptional regulation, chromatin modifying factors, Chromosomal inactivation. JAK -STAT pathway, Ras\Raf pathway, PI3K cell signaling, p53 check points, Role of LIF pathway in cell cycle control	15	CO4	K3,K3 & K5	
V	Applications of Embryonic stem cells, Bone marrow stem cells, Adipose derived stem cells and Hematopoietic stem cells. Ethics in human stem cell research	10	CO5	K3,K4 & K5	

Reference Books:

- Stem Cell Biology, Daniel Marshak, Richard L. Gardener and David Gottlieb, Cold Spring Harbour Laboratory Press
- Stem cell biology and gene therapy, Booth C., Cell Biology International, Academic Press
- Stem Cell and Gene-Based Therapy: Frontiers in Regenerative Medicine, Alexander Battler, Jonathan Leo, Springer, STEM CELL TECHNOLOGY Syllabus - Semester First

References:

- Stem Cell Biology and Gene Therapy. Quesenberry PJ, Stein GS, eds. (£65.00.) Wiley, 1998.
- Progress in gene therapy, Volume 2,Pioneering stem cell/gene therapy trials, Roger Bertolotti, Keiya Ozawa and H. Kirk Hammond, VSP international science publishers
- Stem Cells Handbook: Stewart Sell, Humana Press; Totowa NJ, USA; Oct. 2003,
- Human Embryonic Stem Cells: The Practical Handbook by Stephen Sullivan and Chad A Cowan
- •

SKILL ENHANCEMENT COURSE BIOETHICS, BIOSAFETY, CLINICAL TRIALS, IPR & ENTREPRENEURSHIP

Paper – 26						
Title of the paper	BIOETHICS, BIOS	AFETY,	Subject co	de:		
	CLINICAL TRIALS, IPR &					
	ENTREPRENEUI	RSHIP				
Category of the	Year	Semester		Credits		
course						
Skill Enhancement	2^{nd}	4	th	2		
course						

Learning Outcome:

This course provides the guidelines and regulations governing research; evaluate ethical conduct and social responsibilities; to adhere to safe working practices; to appreciate the need for protection of human subjects; to recognize the potential harms in research and show sensitivity to cultural and ethical issues; to create a general awareness about IPR.

Course Outcome:

CO-1	Understand the basics of biosafety and bioethics and its impact on biological
	sciences and the importance of human life.
CO-2	Apply the knowledge to recognize the importance of biosafety guidelines
	and good clinical practices.
CO-3	Acquire adequate knowledge in the use of genetically modified organisms
	and its effect on human health.
CO-4	Evaluate the benefits of GM technology and importance of IPR
CO-5	Analyse the importance of protection of new knowledge and innovations and
	its role in business and entrepreneurship

SYLLABUS | SKILL ENHANCEMENT COURSE | BIOETHICS, BIOSAFETY, CLINICAL TRIALS, IPR & ENTREPRENEURSHIP

	TRIALS, II K & EIVIKEI REILEORSIII					
Unit	Content	Hours	COs	Cognitive		
				level		
Ι	Introduction to Bioethics Need for bioethics in social and cultural issues. Bioethics & GMO's Issues and concerns pertaining to Genetically modified foods & food crops, Bioethics in prenatal diagnosis, gene therapy, Organ transplantation, Xenotransplantation, regulations on field experiments and release of GMO's labeling of GM foods.	10	CO1	K2,K3 & K4		
Π	Clinical trials – – preclinical studies and clinical studies Regulations. Bioethics & Cloning Permissions and Procedures in Animal Cloning. Bioethics in the use of animals in research, human volunteers for Clinical research, Studies on Ethnic races. Ethics in patient care, Informed consent.	15	CO2	K3, K4 & K5		
III	Biosafety – Biological risk assessment. Biological agents and Hazard groups. Criteria in biological risk assessment. Guidelines for categorization of genetically modified plants for field test. Regulation, national and international guidelines of Biosafety, rDNA guidelines, Regulatory requirements for drugs and Biologics GLP. Biosafety levels. Safety equipments	10	CO3	K3,K4 & K5		

	and Biological Safety cabinets.				
IV	IPR: Introduction to Intellectual Property rights, Patenting – Factors for patentability – Novelty, Non-obviousness, Marketability. Procedures for registration of Patents. Copyright works, ownership, transfer and duration of Copyright. Renewal and Termination of Copyright. Industrial Designs - Need for Protection of Industrial Designs. Procedure for obtaining Design Protection. Infringement, Right of Goodwill, Passing Off. Trademarks - Introduction to Trademarks. Need for Protection of Trademarks. Classification of Trademarks. Indian Trademarks Law. Procedural Requirements of Protection of Trademarks	15	CO4	K4, K5 & K6	
V	Geographical Indications - Indication of Source and Geographical Indication. Procedure for Registration, Duration of Protection and Renewal. Infringement, Penalties and Remedies. Layout- Designs of Integrated Circuits: Conditions and Procedure for Registration. Duration and Effect of Registration Protection of Plant variety and Plant breeders' rights in India. Protection of traditional knowledge, Bioprospecting and biopiracy. India's new IP Policy (2016), Govt of India's steps to promote IPR. Career opportunities in IP. Entrepreneurship: Definition and importance, Characteristics and functions of an entrepreneur.	10	CO5	K4,K5 & K6	
Refere	nce Books:			L	
•	"Bioethics & Biosafety" by Sateesh MK, IK International publica	tions, 20	08		
•	USPTO Web Patent Databases at: www.uspto.gov/patft				
•	Government of India's Patents Website: patinfo.nic.in				
•	Intellectual property India: www.ipindia.nic.in				
•	"Indian Patent Law : Legal and Business Implications" by Aji	t Parulel	kar, Sari	ita D'Souza	
	Macmillan India publication, 2006				
•	"Agriculture and Intellectual Property Rights", edited by: San		V., Eve	nson, R.E.,	
	Zilberman, D. and Carlson, G.A. University Press publication, 20	03			
•	Research papers and Reports provided from time to time				
•	Ganguli P, (2001), Intellectual Property Rights, Tata Mcgraw Hill				
•	Ramesh Chandra, (2004), Issues Of Intellectual Property Rights, I			A	
•	Eloison Fini, Marcala Rini, (2000), Interfectual Freperty Rights in Agricultur				
	Biotechnology, Universities Press.	Doon 0-	Doon I	Publications	
-	Shiv Sahai Singh, (2004), Law Of Intellectual Property Rights, (p) Ltd.	Deep &	Deep I	uoncations	
•	Subbian A, Bhaskaran S, (2007), Intellectual Property Rights: He	ritage C	cience /	and Society	
	Int. Treaties, Deep & Deep Publications.	mage, S		society	
•	Elad Harison (2008). Intellectual Property Rights, Innovation a Edward Elgar Publishing Limited, UK.	and Softw	ware Te	chnologies.	