

THIRUVALLUVAR UNIVERSITY

SERKKADU, VELLORE-632115

M.Sc. PHYSICS

SYLLABUS

FROM THE ACADEMIC YEAR 2023 - 2024

M.Sc PHYSICS

Preamble

The curriculum for the P.G. Physics for universities and colleges is revised as per Learning Outcomes- based Curriculum Framework (LOCF). The learner centric courses are designed to enable the students to progressively develop a good understanding of the concepts of various domains in physics. Significant modification is the inclusion of the courses to equip students to face challenges in industries and make them employable. Skill development in different spheres and confidence building are given a special focus.

TANSCHE	REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM
	FRAMEWORK FOR POSTGRADUATE EDUCATION
Programme	M. Sc., Physics
Programme	
Code	
Duration	PG – 2YEARS
	PO1: Problem Solving Skill
	Apply knowledge of Management theories and Human Resource practices to
	solve business problems through research in Global context.
	PO2: Decision Making Skill
	Foster analytical and critical thinking abilities for data-based decision-making.
	PO3: Ethical Value
	Ability to incorporate quality, ethical and legal value-based perspectives to all
	organizational activities.
	PO4: Communication Skill
Programme	Ability to develop communication, managerial and interpersonal skills.
Outcomes	PO5: Individual and Team Leadership Skill
(POs)	Capability to lead themselves and the team to achieve organizational goals.
(1 03)	PO6: Employability Skill
	Inculcate contemporary business practices to enhance employability skills in the
	competitive environment.
	PO7: Entrepreneurial Skill
	Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society
	Succeed in career endeavors and contribute significantly to society.
	PO 9 Multicultural competence
	Possess knowledge of the values and beliefs of multiple cultures and
	a global perspective.
	PO 10: Moral and ethical awareness/reasoning
	Ability to embrace moral/ethical values in conducting one's life.

PSO1 – Placement

To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions

PSO 2 - Entrepreneur

To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.

PSO3 – Research and Development

Design and implement HR systems and practices grounded in research that complies with employment laws, leading the organization towards growth and development.

Programme Specific Outcomes (PSOs)

PSO4 – Contribution to Business World

To produce employable, ethical and innovative professionals to sustain in the dynamic business world.

PSO 5 – Contribution to the Society

To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

PSO 6 Students will utilize e-resources, digital tools and techniques for widening their knowledge base.

PSO 7 Students gain exposure to programming language and skills.

PSO 8 Student will appreciate the interplay of mathematics, physics and technology.

PSO 9 Students will develop adequate knowledge and skills for employment and entrepreneurship.

PSO 10 An awareness of civic and ecological duties as good citizens and importance of human values will be inculcated in students

Template for PG Programme

Semester-I	Cre dit	Semester-II	Cre dit	Semester-III	Cre dit	Semester-IV	Cre dit
1.1. Core-I	4	2.1. Core-IV	4	3.1.Core-VII	4	4.1 Core-XI	4
1.2 Core-II	4	2.2 Core-V	4	3.2Core-VIII	4	4.2 Core -XII	3
1.3 Core – III	3	2.3 Core– VI	3	3.3Core– IX	4	4.3 Project with viva voce	7
Core Practical	3	Core Practical	3	Core Practical	3	Core Practical	3
1.4 Elective -I	3	2.4 Elective –III	3	3.4 Core-X	4	4.4 Elective -VI Industry/ Entrepreneurship - 20% Theory 80% Practical	3
1.5 Elective –II	3	2.5 Elective-IV	3	3. 5 Elective -V	3	4.5 Skill Enhancement Course–4 (Professional Competency Skill)	2
-	-	2. 6 Skill Enhancement Course – I	2	3. 6 Skill Enhancement Course -2	2	4.6 Extension Activity	1
-	-	Compulsory - Human Rights	2	3.7 Internship/ Industrial Activity	2	-	-
		MOOC	2	-	-	-	-
Total	20		26		26		23
						Total Credit Points	95

Component wise Credit Distribution

Credits	Sem I	Sem II	Sem III	Sem IV	Total
Part A Core	14	14	19	17	64
Part B Elective (i) Discipline Centric	3	3	3	3	12
(ii) Generic	3	3	-	-	6
(iii) Summer Internship / Industrial Training	-	-	2	-	2
Part C Skill Enhancement	-	2	2	2	6
Compulsory Paper – Human Rights	-	2	-	-	2
MOOC	-	2	-	-	2
Extension Activity	-	-	-	1	1
Total	20	26	26	23	95

METHOD OF EVALUATION (both Theory & Practical)

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

M. Sc DEGREE COURSE IN PHYSICS COURSE STRUCTURE

FIRST SEMESTER

COURSE		SLI	HRS	Hrs		AX RKS
COMPONENTS	NAME OF THE COURSE	CREDITS	INST]	Exam	CIA	EXT.
Core - I	Paper 1- Mathematical Physics	4	6	3	25	75
Core - II	Paper 2 - Classical Mechanics and Relativity	4	5	3	25	75
Core - III	Paper 3 - Linear and Digital ICs and Applications	3	5	3	25	75
Core - IV	Practical I- Analog and Digital Experiments	3	6	6	25	75
Elective -I	Choose any one from Semester I Elective	3	4	3	25	75
Elective-II	Choose any one from Semester I Elective	3	4	3	25	75
	Total	20	30			

SECOND SEMESTER

COURSE	NAME OF THE COADS	SLI	HRS	Hrs		AX RKS
COMPONENTS	NAME OF THE COURSE	CREDITS	INST.	Exam	CIA	EXT
Core -V	Statistical Mechanics	4	5	3	25	75
Core -VI	Quantum Mechanics –I	4	5	3	25	75
Core –VII	Electromagnetic Theory	3	5	3	25	75
Core - VIII	Practical II – General Experiments	3	5	6	25	75
Elective- III	Choose any one from Semester II Elective	3	3	3	25	75
Elective – IV	Choose any one from Semester II Elective	3	3	3	25	75
SEC - I	Renewable Energy and Energy harvesting	2	2	3	25	75
Compulsory	Human Rights	2	2	3	25	75
Compulsory	MOOC*	2	-	-		
	Total	26	30			

*MOOC – OOC / SWAYAM / NPTEL – Online course (Subject related) shall be for duration at least 4 weeks. The course shall be completed within third semester (ie, before the beginning of Fourth semester)

THIRD SEMESTER

COURSE		S	HRS	IRS	MA	AX RKS
COMPONEN TS	NAME OF COURSE	CREDITS	INST. HI	EXAM HRS	VIO	EXT
Core - IX	Quantum Mechanics –II	5	5	3	25	75
Core - X	Condensed Matter Physics	5	5	3	25	75
Core – XI	Numerical Methods and Computer Programming – Theory	5	6	3	25	75
Core-XII	Practical III- Advanced Experiments	4	6	6	25	75
Elective – V	Choose any one from Semester III Elective	3	4	3	25	75
SEC - II	Electrical circuit network skills	2	4	3	25	75
Internship/ Ind. Activity	Internship / Industrial Activity**	2	-	-	-	-
	Total	26	30			

^{**}Internship will be carried out during the summer vacation of the first year and marks will be included in the Third Semester Marks Statement.

FOURTH SEMESTER

COURSE		L	HRS	S M		AX ARKS
COMPONENTS	NAME OF COURSE	CREDITS	INST. HRS	EXAM HRS	CIA	EXT.
Core - XIII	Nuclear and Particle Physics	5	5	3	25	75
Core -XIV	Spectroscopy	5	5	3	25	75
Core - XV	Practical IV: Computational Programming and Simulation (Python / C)	3	6	6	25	75
Core - XVI	Project with Viva-Voce	4	6	3	25	75
Elective - VI	Choose any one from Semester IV Elective (Industry / Entrepreneurship) 20% Theory 80% Practical	3	4	3	25	75
SEC - III	Choose any one from Semester IV - SEC 3A/ SEC3B	2	4	3	25	75
Extension Activity	Extension Activity	1	-	-		
	Total	23	30			

ELECTIVE PAPERS – Semester I (Choose any Two)

- 1. Energy Physics
- 2. Crystal Growth and Thin films
- 3. Materials Science
- 4. Bio Physics
- 5. Non-linear Dynamics
- 6. Advanced Mathematical Physics

ELECTIVE PAPERS –Semester II (Choose any Two)

- 1. Plasma Physics
- 2. General Relativity and Cosmology
- 3. Advanced Optics
- 4. Physics of Nano Science and Technology
- 5. Medical Physics
- 6. Characterization of Materials

ELECTIVE PAPERS –Semester III (Choose any One)

- 1. Astrophysics
- 2. Quantum Field Theory
- 3. Microprocessor 8085 and Microcontroller 8051

ELECTIVE PAPERS –Semester IV (Choose any One)

INDUSTRY ORIENTED ELECTIVE (IOE)

- 1. Solar Energy Utilization
- 2. Advanced Spectroscopy
- 3. Analysis of Crystal Structures
- 4. Solid Waste Management
- 5. Sewage and Waste Water Treatment and Reuse
- 6. Digital Communication
- 7. Communication Electronics
- 8. Sensors Based Embedded Systems for IOT

(Note: Institutions can also frame such IOE courses more suitable for their locality)

Skill Enhancement Courses

SEMESTER II – Renewable Energy and Energy harvesting

SEMESTER III - Electrical circuit network Skills

SEMESTER IV – (a) Basic Instrumentation Skills (or)

(b) Computational Physics

Paper-1 - MATHEMATICAL PHYSICS I YEAR - I SEMESTER

S	Subject Code	Subject Name	Category	L	Т	P	Credits	Marks	
23	SPPH11	MATHEMATICAL PHYSICS	Core	6		-	4	75	

Pre-Requisites

Knowledge of Vectors, Matrices, Complex analysis, Fourier and Laplace transforms and differential equations.

Learning Objectives

- > To equip students with the mathematical techniques needed for understanding theoretical treatment in different courses taught in their program
- To extend their manipulative skills to apply mathematical techniques in their fields
- To help students apply Mathematics in solving problems of Physics

UNITS	Course Details
UNIT I: LINEAR VECTOR SPACE	Basic concepts – Definitions- examples of vector space – Linear independence – Scalar product- Orthogonality – Gram-Schmidt orthogonalization procedure – linear operators – Dual space- ket and bra notation – orthogonal basis – change of basis – Isomorphism of vector space – projection operator –Eigen values and Eigen functions – Direct sum and invariant subspace – orthogonal transformations and rotation
UNIT II: COMPLEX ANALYSIS	Review of Complex Numbers -de Moivre's theorem-Functions of a Complex Variable- Differentiability -Analytic functions- Harmonic Functions- Complex Integration- Contour Integration, Cauchy – Riemann conditions – Singular points – Cauchy's Integral Theorem and integral Formula -Taylor's Series - Laurent's Expansion- Zeros and poles – Cauchy's Residue theorem – evaluation of definite integrals.
UNIT III: MATRICES	Types of Matrices and their properties, Rank of a Matrix -Conjugate of a matrix - Adjoint of a matrix - Inverse of a matrix - Hermitian and Unitary Matrices - Trace of a matrix- Transformation of matrices - Characteristic equation - Eigen values and Eigen vectors - Cayley–Hamilton theorem –Diagonalization
UNITIV: FOURIER & LAPLACE TRANSFORMS	Definitions -Fourier transform and its inverse - Transform of Gaussian function and Dirac delta function -Fourier transform of derivatives - Cosine and sine transforms - Convolution theorem. Application: Diffusion equation: Flow of heat in an infinite and in a semi - infinite medium - Wave equation: Vibration of an infinite string and of a semi - infinite string. Laplace transform and its inverse - Transforms of derivatives and integrals — Differentiation and integration of transforms - Dirac delta functions - Application - Laplace equation: Potential problem in a semi - infinite strip
UNITV: DIFFERENTIAL EQUATIONS	Second order differential equation- Sturm-Liouville's theory - Series solution

	Generating function - Rodrigue formula - Orthogonality properties - Dirac delta					
	function- One dimensional Green's function and Reciprocity theorem -Sturm					
	Liouville's type equation in one dimension & their Green's function.					
DDOFFSSIONAL	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism					
COMPONENTS	Competitive Examinations, Employable and Communication Skill Enhancement, Social					
COMPONENTS	Accountability and Patriotism					

	1. George Arfken and Hans J Weber, 2012, Mathematical Methods for Physicists–A
	Comprehensive Guide (7th edition), Academic press
	2. P.K. Chattopadhyay, 2013, <i>Mathematical Physics</i> (^{2nd} edition), New Age, New Delhi.
	3. Satyaprakash, <i>Mathematical Physics</i> - Sultan Chand & sons, New Delhi, 2016
TEXT	4. B.D.Gupta, <i>Mathematical Physics</i> (4 th edition) 2009, Vikas Publishing House, New
BOOKS	Delhi.
	2. 11. 11. 2 455 4114 21. 1141114 + 411114, 1141116 114116 114116 114116 114116 114116 114116 114116 114116 114
	S. Chand & Company Pvt. Ltd., New Delhi.
	1. E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern, New Delhi,
	2. D. G. Zill and M. R. Cullen, 2006, <i>Advanced Engineering Mathematics</i> , 3rd Ed. Narosa,
	New Delhi.
REFERENCE	3. S. Lipschutz, 1987, <i>Linear Algebra</i> , Schaum's Series, McGraw - Hill, New York 3. E.
BOOKS	Butkov, 1968, Mathematical Physics Addison - Wesley, Reading, Massachusetts.
DOOKS	4. P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition, Affiliated EastWest
	New Delhi.
	5. C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering Mathematics, 6th Edition,
	International Edition, McGraw-Hill, New York
	1. www.khanacademy.org
	2. https://youtu.be/LZnRlOA1 2I
WEB	3. http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath
SOURCES	4. https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_RYTEU27vS_SIED5
	6gNjVJGO2qaZ
	5. https://archive.nptel.ac.in/courses/115/106/115106086/

At the end of the course the student will be able to:

CO1	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them	K1, K2					
	Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration.						
	Analyze characteristics of matrices and its different types, and the process of diagonalization.	K4					
	Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology						
	To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems						
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate							

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program out comes (PO) and program specific

outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

	PSO ₁	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

Paper-2 - CLASSICAL MECHANICS AND RELATIVITY	I YEAR - I SEMESTER
--	---------------------

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
23PPH12	CLASSICAL MECHANICS AND RELATIVITY	Core	5			4	75

	Pre-Requisites								
	➤ Knowledge of fundamentals of mechanics, Foundation in mathematical methods.								
	Learning Objectives								
1	To understand fundamentals of alassical machanias								

- To understand fundamentals of classical mechanics.
- To understand Lagrangian formulation of mechanics and apply it to solve equation of motion.
- To understand Hamiltonian formulation of mechanics and apply it to solve equation of motion.
- To discuss the theory of small oscillations of a system.

 To learn the relativistic formulation of mechanics of a system.

UNITS	Course Details
UNIT I: PRINCIPLES OF CLASSICAL MECHANICS	Mechanics of a single particle – mechanics of a system of particles – conservation laws for a system of particles – constraints – holonomic & non-holonomic constraints – generalized coordinates – configuration space – transformation equations – principle of virtual work.
UNIT II: LAGRANGIAN FORMULATION	D'Alembert's principle – Lagrangian equations of motion for conservative systems – applications: simple pendulum, spherical pendulum, compound pendulum, Linear harmonic oscillator, Atwood's machine and projectile motion.
UNIT III: HAMILTONIAN FORMULATION	Phase space – cyclic coordinates – Generalised momentum (conjugate / canonical), conservation of linear and angular momentum – Hamiltonian function – Hamilton's canonical equations of motion – applications: (i) simple pendulum (ii) one dimensional simple harmonic oscillator (iii) motion of particle in a central force field.
UNIT IV: SMALL OSCILLATIONS	Stable and unstable equilibrium, Formulation of the problem: Lagrange's equation of small oscillations — transformation to normal coordinates — frequencies of normal modes — The parallel pendulum -linear triatomic molecule.
UNIT V: RELATIVITY	Inertial and non-inertial frames – Lorentz transformation equations – length contraction and time dilation – relativistic addition of velocities – Einstein's mass-energy relation – Minkowski's space – four vectors – position, velocity, momentum, acceleration and force in for vector notation and their transformations
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	 J. C. Upadhyaya, <i>Classical Mechanics</i>, Himalaya Publshing. Co. New Delhi. Gupta Kumar Sharma, <i>Classical Mechanics</i>, Pragati Prakashan, Meerut, 2004
TEXT BOOKS	3. R.Resnick, 1968, Introduction to Special Theory of Relativity, Wiley Eastern, New
	Delhi.
	4. N. C. Rana and P.S. Joag, Classical Mechanics - Tata McGraw Hill, 2001
	1. H. Goldstein, 2002, Classical Mechanics, 3rd Edition, Pearson Edu.
	2. R. G. Takwala and P.S. Puranik, Introduction to Classical Mechanics – Tata – McGraw
REFERENCE	Hill, New Delhi, 1980.
BOOKS	3. K. R. Symon,1971, <i>Mechanics</i> , Addison Wesley, London.
DOOKS	4. S. N. Biswas, 1999, <i>Classical Mechanics</i> , Books & Allied, Kolkata.
	5. T.W.B. Kibble, Classical Mechanics, ELBS.
	6. Greenwood, Classical Dynamics, PHI, New Delhi.
	1. <a classical-mechanics-j-c-upadhyay-2014-editionpdf-pdf-free.html"="" href="http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanics_Goldstein_Classical_Mechanics_G</th></tr><tr><th></th><td>s_optimized.pdf</td></tr><tr><th>WEB</th><td>2. https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-2014-editionpdf-pdf-free.html
SOURCES	3. https://nptel.ac.in/courses/122/106/122106027/
SOURCES	4. https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-iii-fall-2014/lecture-
	notes/
	5. https://www.britannica.com/science/relativistic-mechanics

At the end of the course the student will be able to:

CO1	Understand the fundamentals of classical mechanics.	K2						
	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of	К3						
	motion of physical systems.	110						
	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of							
	motion of physical systems.	K3, K5						
CO4	Analyze the small oscillations in systems and determine their normal modes of oscillations.	K4, K5						
CO5	Understand and apply the principles of relativistic kinematics to the mechanical systems.	K2, K3						
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate							

MAPPING WITH PROGRAM OUTCOMES:

•						` / '		` ′		` '
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	2	2
CO2	2	3	3	3	2	2	2	3	2	2
CO3	2	3	3	3	2	2	2	3	2	2
CO4	2	3	3	3	2	2	2	3	2	2
CO5	2	3	3	3	2	2	2	3	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	2

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks	
23PPH13	LINEAR AND DIGITAL ICs AND APPLICATIONS	Core	5			3	75	

	Pre-Requisites
K	Knowledge of semiconductor devices, basic concepts of digital and analog electronics
	Learning Objectives
	To introduce the basic building blocks of linear integrated circuits

- To introduce the basic building blocks of linear integrated circuits.
- To teach the linear and non-linear applications of operational amplifiers.
- To introduce the theory and applications of PLL.
 To introduce the concepts of waveform generation and introduce one special function ICs.
- > Exposure to digital IC's

UNITS	Course Details
UNIT I: INTEGRATED	Introduction, Classification of IC's, basic information of Op-Amp 741 and
CIRCUITS AND	its features, the ideal Operational amplifier, Op-Amp internal circuit and
OPERATIONAL	Op-Amp. Characteristics and parameters, Inverting and and Non-inverting
AMPLIFIER	amplifier, adder, subtraction, average, differentiator and Integrator.
UNIT II: APPLICATIONS OF OP-AMP	LINEAR APPLICATIONS OF OP-AMP: Solution to simultaneous equations and differential equations, Instrumentation amplifiers, V to I and I to V converters. NON-LINEAR APPLICATIONS OF OP-AMP: Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider, Comparators, Schmitt trigger, Multivibrators, Triangular and Square waveform generators.
UNIT III: ACTIVE FILTERS & TIMER AND PHASE LOCKED LOOPS	ACTIVE FILTERS: Introduction, Butterworth filters – 1st order, 2nd order low pass and high pass filters, band pass, band reject and all pass filters. TIMER AND PHASE LOCKED LOOPS: Introduction to IC 555 timer, description of functional diagram, monostable and astable operations and applications, Schmitt trigger, PLL - introduction, basic principle, phase detector/comparator, voltage controlled oscillator (IC 566), low pass filter, monolithic PLL and applications of PLL
UNIT IV: VOLTAGE REGULATOR & D to A AND A to D CONVERTERS	VOLTAGE REGULATOR: Introduction, Series Op-Amp regulator, IC Voltage Regulators, IC 723 general purpose regulators, Switching Regulator. D to A and A to D CONVERTERS: Introduction, basic DAC techniques - weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A to D converters -parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC, DAC and ADC Specifications.
UNIT V:	COMBINATIONAL CIRCUITS USING TTL 74XX ICs: Study of logic
COMBINATIONAL	gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC
CIRCUITS USING	7485), Decoder(IC74138, IC74154), BCD to 7-segment decoder (IC7447),

TTL 74XX ICs &	Encoder (IC74147), Multiplexer (IC74151), Demultiplexer (IC 74154).							
SEQUENTIAL	SEQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops (IC 7474,							
CIRCUITS USING	IC7473), Shift Registers, Universal Shift Register (IC74194), 4-bit							
TTL 74XX ICs	asynchronous binary counter (IC7493).							
PROFESSIONAL	Expert Lectures, Online Seminars - Webinars on Industrial							
COMPONENTS	Interactions/Visits, Competitive Examinations, Employable and							
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism							

	1. D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated Circuit, 4th edition, New
	Age International Pvt.Ltd.,NewDelhi,India
TEXT	2. Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated Circuits, 4th edition,
BOOKS	Prentice Hall / Pearson Education, NewDelhi.
	3. V. Vijayendran, 2008, Introduction to Integrated electronics (Digital & Analog),
	S. Viswanathan Printers & Publishers Private Ltd, Reprint. V.
	1. B.L.Theraja and A.K.Theraja, 2004, A textbook of electrical technology, S.Chand & Co
	2. V.K.Mehta and Rohit Mehta, 2008, Principles of Electronics, S. Chand & Co, 12th
DEFEDENCE	Edition.
REFERENCE	3. Malvino and Leach (2005), Digital Principles and Applications 5th Edition, Tata
BOOKS	McGraw Hill, New Delhi
	4. Floyd, Jain (2009), <i>Digital Fundamentals</i> , 8th edition, Pearson Education, New Delhi.
	5. Integrated Electronics, Millman & Halkias, Tata McGraw Hill, 17th Reprint (2000)
	1. https://nptel.ac.in/course.html/digital circuits/
	2. https://nptel.ac.in/course.html/electronics/operational amplifier/
WEB	3. https://www.allaboutcircuits.com/textbook/semiconductors/chpt-7/field-effect-
SOURCES	controlled-thyristors/
	4. https://www.electrical4u.com/applications-of-op-amp/
	5. https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/

At the end of the course the student will be able to:

CO1	Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems	K1, K5						
	Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits.	K3						
CO3	Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it.	K1, K3						
CO4	Learn about various techniques to develop A/D and D/A converters.	K2						
CO5	Acquire the knowledge about the CMOS logic, combinational and sequential circuits	K1, K4						
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate								

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	2	2	3	3	3	2

CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

Paper 4 - PRACTICAL I ANALOG & DIGITAL EXPERIMENTS | I YEAR- I SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
23PPPH16	PRACTICAL I-ANALOG & DIGITAL EXPERIMENTS	Core			6	3	75

Pre-Requisites

➤ Knowledge and hands on experience of basic general and electronics experiments of Physics

Learning Objectives

- To observe the applications of FET and UJT.
- > To study the different applications of operational amplifier circuits.
- To learn about Combinational Logic Circuits and Sequential Logic Circuits
- To study the applications of Timer IC

Course Details

(Minimum of Twelve Experiments from the list)

- 1. Construction of (a) Relaxation oscillator using UJT (2N2646),
 - (b) FET as amplifier using (BFW10/BFW11) Frequency response curve.
- 2. To study (a) The important electrical characteristics of IC 741 (i/p and o/p impedance, Voltage Gain, CMRR). (b) V-I Characteristics of different colours of LED.
- 3. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- 4. Study of attenuation characteristics of phase shift network and design of phase shift oscillator using Op-Amp.
- 5. Construction of Schmidt triggers circuit using IC 741 for a given hysteresis (both AC & DC Mode) Application as squarer.
- 6. Construction of square wave and triangular wave generator using IC741
- 7. Construction of pulse generator using the IC741–Application as frequency divider
- 8. Study of (a) Arithmetic operations using IC 7483- 4-bit binary addition & subtraction and (b) Arithmetic Logic Unit using IC 74181.
- 9. Construction of current to voltage and voltage to current conversion using IC741.
- 10. Realization of analog to digital converter(ADC) using 4-bit DAC and synchronous counter IC74193
- 11. Construction of Schmidt trigger circuit using IC 555 for a given hysteresis (both AC & DC Mode)– Application As Squarer
- 12. Construction of pulse generator using the IC 555-Application as frequency divider
- 13. Study of 4-bit binary Up / Down counters, Ring counter and Johnson counter-IC 7476/IC 7473
- 14. IC 7490 as scalar /Modulus counter and seven segment display using IC 7447 / IC 7448
- 15. Solving simultaneous equations IC 741/ IC LM 324
- 16. Op-Amp-Active filters: Low pass, High pass and band pass filters (2ndorder) Butter worth filter
- 17. Construction of Op-Amp-4 bit D/A converter (Binary weighted and R-2R Ladder type)
- 18. Construction of square wave generator using IC 555-Study of VCO
- 19. Study of asynchronous parallel 4-bit binary Up/Down counter using IC 7493
- 20. Construction of multiplexer and demultiplexer using ICs.

	1. R.Srinivasan K.R Priolkar, Kit Developed for doing experiments in Physics-
	Instruction manual, Indian Academy of Sciences.
TEXT	2. S. Poornachandra, B.Sasikala, Electronic Laboratory Primer a design approach,
BOOKS	Wheeler Publishing, New Delhi.
	3. K ANavas <i>Electronic lab manual Vol I</i> , Rajath Publishing.
	4. K ANavas, <i>Electronic lab manual Vol II</i> , PHI eastern Economy Edition
	1. Ramakanth A Gaykwad, Op-Amp and linear integrated circuit, Eastern Economy
REFERENCE	Edition.
	2. R.S. Sirohi, A course on experiment with He-Ne Laser, John Wiley & Sons (Asia)
BOOKS	Pvt. Ltd.
	3. Kuriachan T.D, Syam Mohan, <i>Electronic lab manual Vol II</i> , Ayodhya Publishing.

At the end of the course the student will be able to:

CO1	Improve the analytical and observation ability in Physics Experiments	K3, K5						
CO2	Conduct experiments on applications of FET and UJT	K4						
CO3	Analyze various parameters related to operational amplifiers.	K4						
CO4	Understand the concepts involved in arithmetic and logical circuits using IC's	K2						
CO5	Acquire knowledge about Combinational logic circuits and Sequential logic circuits	K1						
CO6	Analyze the applications of counters and registers	K4						
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate							

MAPPING WITH PROGRAM OUTCOMES:

1										1
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3

CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

Paper 5 - STATISTICAL MECHANICS	I YEAR - II SEMESTER
---------------------------------	----------------------

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	STATISTICAL MECHANICS	Core	5			4	75

Pre-Requisites

Knowledge of Laws of thermodynamics, phase transition, entropy, ensembles, partition function, classical and quantum statistics, thermal equilibrium, Brownian motion

Learning Objectives

- 1. To acquire the knowledge of thermodynamic potentials and to understand phase transition in thermodynamics
- 2. To identify the relationship between statistic and thermodynamic quantities
- 3. To comprehend the concept of partition function, canonical and grand canonical ensembles
- 4. To grasp the fundamental knowledge about the three types of statistics
- 5. To get in depth knowledge about phase transitions and fluctuation of thermodynamic properties that vary with time

LINIUM	C D (II				
UNITS	Course Details				
UNIT I: PHASE TRANSITIONS	Thermodynamic potentials, Maxwells relations, chemical potential - Phase Equilibrium - Gibb's phase rule - Phase transitions and Ehrenfest's classifications - Third law of Thermodynamics. Order parameters - Landau's theory of phase transition -critical indices - scale transformation and dimensional analysis.				
UNIT II:	Foundations of statistical mechanics –micro and macro states of a				
STATISTICAL MECHANICS AND	system - Micro canonical ensemble - Phase space - Entropy -				
THERMODYNAMICS	Connection between statistics and thermodynamics – Entropy of an				
THERMODYNAMICS	ideal gas using the micro canonical ensemble - Entropy of mixing and Gibb's paradox.				
UNIT III:	Trajectories and density of states - Liouville's theorem - Canonical				
CANONICAL AND	and grand canonical ensembles - Partition function - Calculation of				
GRAND CANONICAL ENSEMBLES	statistical quantities - Energy and density fluctuations.				
UNIT IV: CLASSICAL	Density matrix - Statistics of ensembles - Statistics of indistinguishable				
AND QUANTUM	particles - Maxwell-Boltzmann statistics - Fermi-Dirac statistics -				
STATISTICS	Ideal Fermi gas – Degeneracy - Bose-Einstein statistics - Plank radiation formula - Ideal Bose gas - Bose-Einstein condensation.				
UNIT V:	Cluster expansion for a classical gas - Virial equation of state - Calculation of the first Virial coefficient in the cluster expansion -				
REAL GAS,	Ising model - Mean-field theories of the Ising model in three, two and				
ISING MODEL AND	one dimensions - Exact solutions in one dimension. Correlation of				
FLUCTUATIONS	space-time dependent fluctuations - Fluctuations and transport				
	phenomena - Brownian motion - Langevin's theory - Fluctuation-dissipation theorem - The Fokker-Planck equation				

PROFESSIONAL COMPONENTS

Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. S. K. Sinha, 1990, Statistical Mechanics, Tata McGraw Hill, New Delhi.
	2. SathyaPrakash and J.P Agarwal, <i>Statistical Mechanics</i> , 7 th Edition, KedarNath
	andRam Nath& Co, Meerut, 1994
	3. B. K. Agarwal and M. Eisner, 1998, <i>Statistical Mechanics</i> , Second Edition New Age
	International, New Delhi.
TEXT	4. J. K. Bhattacharjee, 1996, <i>Statistical Mechanics</i> : An Introductory Text, Allied
BOOKS	Publication, New Delhi.
	5. F. Reif, 1965, Fundamentals of Statistical and Thermal Physics, McGraw -Hill, New
	York.
	6. M. K. Zemansky, 1968, <i>Heat and Thermodynamics</i> , 5 th edition, McGraw-Hill New
	York.
	1. R. K. Pathria, 1996, Statistical Mechanics, 2 nd edition, Butter WorthHeinemann,
	New Delhi.
REFERENCE	2. L. D. Landau and E. M. Lifshitz, 1969, <i>Statistical Physics</i> , Pergamon Press, Oxford.
BOOKS	3. K. Huang, 2002, Statistical Mechanics, Taylor and Francis, London
	4. W. Greiner, L. Neiseand H.Stoecker, <i>Thermodynamics and Statistical Mechanics</i> ,
	Springer Verlang, New York.
	1. https://byjus.com/chemistry/third-law-of-thermodynamics/
WEB	2. https://web.stanford.edu/~peastman/statmech/thermodynamics.html
	3. https://en.wikiversity.org/wiki/Statistical_mechanics_and_thermodynamics
SOURCES	4. https://en.wikipedia.org/wiki/Grand_canonical_ensemble
	5. https://en.wikipedia.org/wiki/Ising_model

COURSE OUTCOMES:

At the end of the course the student will be able to:

CO1	To examine and elaborate the effect of changes in thermodynamic quantities on the states of matter during phase transition	K5
	C I	
CO2	To analyze the macroscopic properties such as pressure, volume, temperature, specific heat,	
	elastic moduli etc. using microscopic properties like intermolecular forces, chemical bonding,	
	atomicity etc.	K4
	Describe the peculiar behaviour of the entropy by mixing two gases	
	Justify the connection between statistics and thermodynamic quantities	
CO3	Differentiate between canonical and grand canonical ensembles and to interpret the relation	K1
	between thermodynamical quantities and partition function	KI
CO4	To recall and apply the different statistical concepts to analyze the behaviour of ideal Fermi	
	gas and ideal Bose gas and also to compare and distinguish between the three types of	K4, K5
	statistics.	
CO5	To discuss and examine the thermodynamical behaviour of gases under fluctuation and also	К3
	using Ising model	N3
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

Paper 6 - QUANTUM MECHANICS – I	I YEAR - II SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	QUANTUM MECHANICS – I	Core	5			4	75

Pre-Requisites Knowledge of Newton's laws of motion, Schrodinger's equation, integration, differentiation. Learning Objectives

- > To develop the physical principles and the mathematical background important to quantum mechanical descriptions.
- > To describe the propagation of a particle in a simple, one-dimensional potential.
- > To formulate and solve the Schrodinger's equation to obtain eigenvectors and energies for particle in a three-dimensional potential.
- > To explain the mathematical formalism and the significance of constants of motion, and see their relation to fundamental symmetries in nature
- > To discuss the Approximation methods like perturbation theory, Variational and WKB methods for solving the Schrödinger equation.

TINITEC	C D + 11
UNITS	Course Details
	Interpretation of the wave function – Time dependent Schrodinger equation –
UNIT I:	Time independent Schrodinger equation – Stationary states – Ehrenfest's
BASIC	theorem – Linear vector space – Linear operator – Eigen functions and Eigen
FORMALISM	Values - Hermitian Operator - Postulates of Quantum Mechanics -
	Simultaneous measurability of observables – Uncertainty relation
UNIT II:ONE	Square – well potential with rigid walls – Square well potential with finite
&THREE-	walls - Square potential barrier - Alpha emission - Bloch waves in a
DIMENSIONAL	periodic potential – Kronig-penny square–well periodic potential – Linear
ENERGY EIGEN	harmonic oscillator: Operator method – Particle moving in a spherically
VALUE	symmetric potential – System of two interacting particles – Hydrogen atom –
PROBLEMS	Rigid rotator
	Dirac notation - Equations of motions - Schrodinger representation -
UNIT III:	Heisenberg representation – Interaction representation – Coordinate
GENERAL	representation – Momentum representation – Symmetries and conservation
FORMALISM	laws – Unitary transformation – Parity and time reversal
UNIT IV:	Time independent perturbation theory for non-degenerate energy levels –
APPROXIMATION	Degenerate energy levels – Stark effect in Hydrogen atom – Ground and
	excited state – Variation method – Helium atom – WKB approximation –
METHODS	Connection formulae (no derivation) – WKB quantization – Application to
	simple harmonic oscillator.
UNIT V:	Eigenvalue spectrum of general angular momentum – Ladder operators and
ANGULAR	their algebra-Matrix representation-Spin angular momentum-Addition of
MOMENTUM	angular momenta-CG Coefficients-Symmetry and anti-symmetry of wave
	functions–Pauli's exclusion principle.

PROFESSIONAL
COMPONENTS

Expert Lectures, Online Seminars-Webinars on Industrial Interactions / Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics, 2 nd
	edition(37th Reprint), Tata McGraw-Hill, New Delhi, 2010.
	2. G. Aruldhas, <i>Quantum Mechanics</i> , 2nd edition, Prentice Hall of India, New Delhi, 2009.
(DEX/D	3. David J Griffiths, <i>Introduction to Quantum Mechanics</i> . 4th edition, Pearson, 2011.
TEXT	4. SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Edition, S.Chand&
BOOKS	Co., New Delhi, 1982.
	5. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications,
	4 th Edition, Macmillan, India, 1984.
	1. E. Merzbacher, <i>Quantum Mechanics</i> , 2nd Edition, John Wiley and Sons, New York,
	1970.
	2. V. K. Thankappan, <i>Quantum Mechanics</i> , 2nd Edition, Wiley Eastern Ltd, New
REFERENCE	Delhi, 1985.
	3. L. D. Landau and E. M. Lifshitz, <i>Quantum Mechanics</i> , 1st edition, Pergomon Press,
BOOKS	Oxford, 1976.
	4. S. N. Biswas, <i>Quantum Mechanics</i> , Books and Allied Ltd., Kolkata, 1999.
	5. V. Devanathan, <i>Quantum Mechanics</i> , 2nd edition, Alpha Science International Ltd,
	Oxford, 2011.
	1. http://research.chem.psu.edu/lxjgroup/download_files/chem565-c7.pdf
WEB	2. http://www.feynmanlectures.caltech.edu/III_20.html
	3. http://web.mit.edu/8.05/handouts/jaffe1.pdf
SOURCES	4. https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory_Lectures/Lecture_ 1.pdf
	5. https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.pdf
1	5. https://tileory.pir/sico.intalionester.ac.aix/ xian/qin/chapters.par

COURSE OUTCOMES:

At the end of the course the student will be able to:

Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics	K1, K5
Is able to apply and analyze the Schrodinger equation to solve one dimensional problems and three dimensional problems	K3, K4
Can discuss the various representations, space time symmetries and formulations of time evolution	K1
Can formulate and analyze the approximation methods for various quantum mechanical problems	K4, K5
To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting.	K3, K4
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	;

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3

CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

Paper 7 - ELECTROMAGNETIC THEORY I YEAR - II SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	ELECTROMAGNETIC THEORY	Core	5			3	75

Pre-Requisites

Knowledge of different coordinate systems, Laplace's equation, conducting & non-conducting medium, basic definitions in magnetism, propagation of electromagnetic waves, plasma

Learning Objectives

- > To acquire knowledge about boundary conditions between two media and the technique of method of separation of variables
- ➤ To understand Biot Savart's law and Ampere's circuital law
- > To comprehend the physical ideas contained in Maxwell's equations, Coulomb & Lorentz gauges, conservation laws
- > To assimilate the concepts of propagation, polarization, reflection and refraction of electromagnetic waves
- > To grasp the concept of plasma as the fourth state of matter

UNITS	Course Details
UNIT I: ELECTROSTATICS	Boundary value problems and Laplace equation – Boundary conditions and uniqueness theorem – Laplace equation in three dimension – Solution in Cartesian and spherical polar coordinates – Examples of solutions for boundary value problems. Polarization and displacement vectors - Boundary conditions - Dielectric sphere in a uniform field – Molecular polarizability and electrical susceptibility – Electrostatic energy in the presence of dielectric – Multipole expansion.
UNIT II: MAGNETOSTATICS	Biot-Savart's Law - Ampere's law - Magnetic vector potential and magnetic field of a localized current distribution - Magnetic moment, force and torque
UNIT III: MAXWELL EQUATIONS	Faraday's laws of Induction - Maxwell's displacement current - Maxwell's equations - Vector and scalar potentials - Gauge invariance - Wave equation and plane wave solution- Coulomb and Lorentz gauges - Energy and momentum of the field - Poynting's theorem - Lorentz force - Conservation laws for a system of charges and electromagnetic fields.
UNIT IV: WAVE PROPAGATION	Plane waves in non-conducting media - Linear and circular polarization, reflection and refraction at a plane interface - Waves in a conducting medium - Propagation of waves in a rectangular wave guide. Inhomogeneous wave equation and retarded potentials - Radiation from a localized source - Oscillating electric dipole
UNIT V:	The Boltzmann Equation - Simplified magneto-hydrodynamic equations -

ELEMENTARY	Electron plasma oscillations - The Debye shielding problem - Plasma						
PLASMA PHYSICS	confinement in a magnetic field - Magneto-hydrodynamic waves - Alfven						
	waves and magnetosonic waves.						
PROFESSIONAL	Expert Lectures, Online Seminars - Webinars on Industrial						
COMPONENTS	Interactions/Visits, Competitive Examinations, Employable and						
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism						

	1 DICCCC I I I I C FI I I C 2002 2 T T I C D C T I I I C
	1. D.J.Griffiths, <i>Introduction to Electrodynamics</i> , 2002, 3 rd Edition, Prentice-Hall of
	India, New Delhi.
	2. J. R. Reitz, F. J. Milford and R. W. Christy, 1986, Foundations of Electromagnetic
TEXT	Theory, 3 rd edition, Narosa Publishing House, New Delhi.
BOOKS	3. J. D. Jackson, 1975, Classical Electrodynamics, Wiley Eastern Ltd. New Delhi.
	4. J. A. Bittencourt, 1988, Fundamentals of Plasma Physics, Pergamon Press, Oxford.
	5. Gupta, Kumar and Singh, Electrodynamics, S.Chand & Co., New Delhi
	1. W. Panofsky and M. Phillips, 1962, Classical Electricity and Magnetism, Addison
	Wesley, London.
	2. J. D. Kraus and D. A. Fleisch, 1999, <i>Electromagnetics with Applications</i> , 5 th Edition,
DEFEDENCE	WCB McGraw-Hill, New York.
REFERENCE	3. B. Chakraborty, 2002, <i>Principles of Electrodynamics</i> , Books and Allied, Kolkata.
BOOKS	4. P. Feynman, R. B. Leighton and M. Sands, 1998, The Feynman Lectures on Physics,
	Vols. 2, Narosa Publishing House, New Delhi.
	5. Andrew Zangwill, 2013, Modern Electrodynamics, Cambridge University Press,
	USA.
	1. http://www.plasma.uu.se/CED/Book/index.html
	2. http://www.thphys.nuim.ie/Notes/electromag/frame-notes.html
WEB	3. http://www.thphys.nuim.ie/Notes/em-topics/em-topics.html
SOURCES	4. http://dmoz.org/Science/Physics/Electromagnetism/Courses_and_Tutorials/
	5. https://www.cliffsnotes.com/study-guides/physics/electricity-and-
	magnetism/electrostatics

At the end of the course the student will be able to:

_						
CO1	Solve the differential equations using Laplace equation and to find solutions for boundary	K1 K5				
	lvalue problems	ĺ ′				
CO2	Use Biot-Savart's law and Ampere circuital law to find the magnetic induction & magnetic	V) V2				
	vector potential for various physical problems	K2, K3				
CO3	Apply Maxwell's equations to describe how electromagnetic field behaves in different media	K3				
CO4	Apply the concept of propagation of EM waves through wave guides in optical fiber					
	communications and also in radar installations, calculate the transmission and reflection	K3, K4				
	coefficients of electromagnetic waves					
COS	Investigate the interaction of ionized gases with self-consistent electric and magnetic fields	K5				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate						

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	3	1	3

CO2	3	3	3	1	2	2	3	3	1	3
CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	2	2	3	3	1	3
CO2	3	3	3	1	2	2	3	3	1	3
CO3	3	3	3	1	2	2	3	3	1	3
CO4	3	3	3	1	2	2	3	3	1	3
CO5	3	3	3	1	2	2	3	3	1	3

Paper 8 - PRACTICAL II GENERAL EXPERIMENTS I YEAR - II SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	PRACTICAL II GENERAL EXPERIMENTS	Core			5	3	75

Pre-Requisites

➤ Knowledge and handling of basic general and electronics experiments of Physics

Learning Objectives

- To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- ➤ To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.

Course Details

(Minimum of Twelve Experiments from the list)

- 1. Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes-Cornu's Method
- 2. Determination of Young's modulus and Poisson's ratio by Elliptical fringes Cornu's Method
- 3. Determination of Viscosity of the given liquid Meyer's disc
- 4. Measurement of Coefficient of linear expansion- Air wedge Method
- 5. B-H loop using Anchor ring.
- 6. Determination of Thickness of the enamel coating on a wire by diffraction
- 7. Determination of Rydberg's Constant Hydrogen Spectrum
- 8. Thickness of air film FP Etalon
- 9. Thickness of LG Plate
- 10. Measurement of Band gap energy- Thermistor
- 11. Determination of Specific charge of an electron Thomson's method.
- 12. Determination of e/m Millikan's method
- 13. Determination of Wavelength, Separation of wavelengths Michelson Interferometer
- 14. GM counter Characteristics and inverse square law.
- 15. Measurement of Conductivity Four probe method.
- 16. Measurement of wavelength of Diode Laser / He Ne Laser using Diffraction grating.
- 17. Determination of Stefan's constant of radiation from a hot body
- 18. Measurement of Susceptibility of liquid Quincke's method
- 19. Arc spectrum: Copper
- 20. Molecular spectra AlO band.
- 21. Miscibility measurements using ultrasonic diffraction method
- 22. Determination of Numerical Apertures and Acceptance angle of optical fibers using Laser Source.
- 23. Measurement of Dielectricity Microwave test bench
- 24. Interpretation of vibrational spectra of a given material
- 25. Determination of I-V Characteristics and efficiency of solar cell

TEXT	1. Gupta and Kumar, Practical Physics, PragatiPrakasan
BOOKS	2. R.Srinivasan K.R Priolkar, Kit Developed for doing experiments in Physics
BOOKS	Instruction manual, Indian Academy of Sciences
	1. D.Chattopadhayay, C.R. Rakshit, An advanced course in Practical Physics
DEFEDENCE	New Central Book Agency Pvt. Ltd
REFERENCE BOOKS	2. S.P Singh, Advanced Practical Physics, Pragati Prakasan
BOOKS	3. R.S. Sirohi, A course on experiment with He-Ne Laser, John Wiley & Sons
	(Asia) Pvt.ltd.

At the end of the course the student will be able to:

CO1	Understand the strength of material using Young's modulus	K2					
CO2	Acquire knowledge of thermal behavior of the materials	K1					
CO3	Understand theoretical principles of magnetism through the experiments.	K2					
CO4	Acquire knowledge about arc spectrum and applications of laser	K1					
CO5	Improve the analytical and observation ability in Physics Experiments	K4					
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate						

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	S	S	2	2	2	3	3
CO2	2	2	S	S	S	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	S	S	2	2	2	3	3
CO7	2	2	S	S	S	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

Paper 9 - QUANTUM MECHANICS – II II YEAR - III SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks	
	QUANTUM MECHANICS – II	Core	5			5	75	

Pre-Requisites

Knowledge of postulates of Quantum mechanics, properties of Hermitian operators, ladder operators, degeneracy, angular momentum techniques and commutation rules

Learning Objectives

- Formal development of the theory and the properties of angular momenta, both orbital and spin
- > To familiarize the students to the crucial concepts of scattering theory such as partial wave analysis and Barn approximation.
- Time-dependent Perturbation theory and its application to study of interaction of an atom with the electromagnetic field
- To give the students a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and related concepts
- > To introduce the concept of covariance and the use of Feynman graphs for depicting different interactions

<u> </u>											
UNITS	Course Details										
UNIT 1:	Scattering amplitude – Cross sections – Born approximation and its validity –										
	Scattering by a screened coulomb potential – Yukawa potential – Partial										
SCATTERING	wave analysis – Scattering length and Effective range theory for s wave –										
THEORY	Optical theorem – Transformation from centre of mass to laboratory frame.										
	Time dependent perturbation theory – Constant and harmonic perturbations –										
UNIT II:	Fermi Golden rule – Transition probability Einstein's A and B Coefficients –										
PERTURBATION	Adiabatic approximation – Sudden approximation – Semi – classical										
THEORY	reatment of an atom with electromagnetic radiation – Selection rules for ipole radiation										
UNIT III:	Klein – Gordon Equation – Charge And Current Densities – Dirac Matrices –										
RELATIVISTIC	irac Equation – Plane Wave Solutions – Interpretation Of Negative Energy										
QUANTUM	States – Antiparticles – Spin of Electron – Magnetic Moment Of An Electron										
MECHANICS	Due To Spin										
UNIT IV:	Covariant form of Dirac Equation – Properties of the gamma matrices –										
DIRAC	Traces – Relativistic invariance of Dirac equation – Probability Density –										
EQUATION	Current four vector – Bilinear covariant – Feynman's theory of positron										
	(Elementary ideas only without propagation formalism)										
UNIT V:	Classical fields – Euler Lagrange equation – Hamiltonian formulation –										
CLASSICAL	Noether's theorem – Quantization of real and complex scalar fields –										
FIELDS &SECOND	Creation, Annihilation and Number operators – Fock states – Second										
QUANTIZATION	Quantization of K-G field.										
DDOEECCIONAT	Expert Lectures, Online Seminars - Webinars on Industrial										
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and										
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism										

	1. P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics,2nd							
	Edition, Tata McGraw-Hill, New Delhi, 2010.							
	2. G. Aruldhas, Quantum Mechanics, 2nd Edition, Prentice-Hall of India,							
	NewDelhi,2009							
TEXT	3. L. I. Schiff, Quantum Mechanics, 3rd Edition, International Student Edition,							
BOOKS	McGraw-Hill Kogakusha, Tokyo, 1968							
DOOKS	V. Devanathan, Quantum Mechanics, 1st Edition, Narosa Publishing House, New							
	Delhi, 2005.							
	5. NouredineZettili, Quantum mechanics concepts and applications, 2nd Edition,							
	Wiley, 2017							
	1. P. A. M. Dirac, The Principles of Quantum Mechanics, 4th Edition,Oxford							
	University Press, London, 1973.							
	2. B.K.Agarwal & HariPrakash, <i>Quantum Mechanics</i> , 7th reprint, PHI Learning Pvt.							
	Ltd., New Delhi, 2009.							
REFERENCE	3. Deep Chandra Joshi, Quantum Electrodynamics and Particle							
BOOKS	Physics, 1 st edition, I.K. International Publishing house Pvt. Ltd., 2006							
	4. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4th							
	Edition, Macmillan India, New Delhi.							
	5. E. Merzbacher, <i>Quantum Mechanics</i> , 2nd edition, John Wiley and Sons, New York,							
	1970							
	1. https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/lecture							
	notes/MIT8_05F13_Chap_09.pdf							
WEB	2. http://www.thphys.nuim.ie/Notes/MP463/MP463_Ch1.pdf							
SOURCES	3. http://hep.itp.tuwien.ac.at/~kreuzer/qt08.pdf							
	4. https://www.cmi.ac.in/~govind/teaching/rel-qm-rc13/rel-qm-notes-gk.pdf							
	5. https://web.mit.edu/dikaiser/www/FdsAmSci.pdf							

At the end of the course the student will be able to:

	Familiarize the concept of scattering theory such as partial wave analysis and Born approximation	K1						
	Give a firm grounding in relativistic quantum mechanics, with emphasis on Dirac equation and related concepts	K2						
	Discuss the relativistic quantum mechanical equations namely, Klein-Gordon and Dirac equations and the phenomena accounted by them like electron spin and magnetic moment	K1,K4						
CO4	Introduce the concept of covariance and the use of Feynman graphs for depicting different	K1,						
	interactions	K3						
CO5	Demonstrate an understanding of field quantization and the explanation of the scattering matrix.	K5						
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate							

MAPPING WITH PROGRAM OUTCOMES:

		-								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	3	3	3	3
CO3	3	2	2	3	3	2	3	3	3	3
CO4	2	1	1	3	3	1	2	2	3	3
CO5	2	1	1	3	3	2	2	2	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	3	3	3
CO2	3	3	2	3	3	3	3	3	3	3
CO3	3	2	2	3	3	2	3	3	3	3
CO4	2	1	1	3	3	1	2	2	3	3
CO5	2	1	1	3	3	2	2	2	3	3

	Paper 10 - CONDENSED MATTER PHYSICS	II YEAR - III SEMESTER
--	-------------------------------------	------------------------

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	CONDENSED MATTER PHYSICS	Core	5			5	75

Pre-Requisites								
Basic knowledge of atomic physics, quantum mechanics and statistical mechanics.								
Learning Objectives								

- To describe various crystal structures, symmetry and to differentiate different types of bonding.
- To construct reciprocal space, understand the lattice dynamics and apply it to concept of specific heat.
- To critically assess various theories of electrons in solids and their impact in distinguishing solids.
- > Outline different types of magnetic materials and explain the underlying phenomena.
- Elucidation of concepts of superconductivity, the underlying theories relate to current areas of research.

UNITS	Course Details
UNIT I: CRYSTAL PHYSICS	Types of lattices - Miller indices - Symmetry elements and allowed rotations - Simple crystal structures - Atomic Packing Factor- Crystal diffraction - Bragg's law - Scattered Wave Amplitude - Reciprocal Lattice (sc, bcc, fcc). Structure and properties of liquid crystals. Diffraction Conditions - Laue equations - Brillouin zone - Structure factor - Atomic form factor - Inert gas crystals - Cohesive energy of ionic crystals - Madelung constant - Types of crystal binding (general ideas).
UNIT II: LATTICE DYNAMICS	Lattice with two atoms per primitive cell - First Brillouin zone - Group and phase velocities - Quantization of lattice vibrations - Phonon momentum - Inelastic scattering by phonons - Debye's theory of lattice heat capacity - Thermal Conductivity - Umklapp processes.
UNIT III: THEORY OF METALS AND SEMICONDUCTORS	Free electron gas in three dimensions - Electronic heat capacity - Wiedemann-Franz law - Band theory of metals and semiconductors - Bloch theorem - Kronig-Penney model - Semiconductors - Intrinsic carrier concentration - Temperature Dependence - Mobility - Impurity conductivity - Impurity states - Hall effect - Fermi surfaces and construction - Experimental methods in Fermi surface studies - de Hassvan Alphen effect .
UNIT IV: MAGNETISM	Diamagnetism - Quantum theory of paramagnetism - Rare earth ion - Hund's rule - Quenching of orbital angular momentum - Adiabatic demagnetization - Quantum theory of ferromagnetism - Curie point - Exchange integral - Heisenberg's interpretation of Weiss field - Ferromagnetic domains - Bloch wall - Spin waves - Quantization - Magnons - Thermal excitation of magnons - Curie temperature and susceptibility of ferrimagnets - Theory of anti-ferromagnetism - Neel temperature.

	Experimental facts: Occurrence - Effect of magnetic fields - Meissner						
	effect – Critical field – Critical current - Entropy and heat capacity - Energy						
	gap - Microwave and infrared properties - Type I and II Superconductors.						
UNIT V:	Theoretical Explanation: Thermodynamics of super conducting						
Superconductivity	transition - London equation - Coherence length – Isotope effect - Cooper						
	pairs – Bardeen Cooper Schrieffer (BCS) Theory – BCS to Bose–Einstein						
	Condensation (BEC) regime - Josephson tunneling - DC and AC						
	Josephson effects - High temperature Superconductors – SQUIDS.						
DDOEECCIONAI	Expert Lectures, Online Seminars - Webinars on Industrial						
PROFESSIONAL COMPONENTS	Interactions/Visits, Competitive Examinations, Employable and						
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism						

	1. C. Kittel, 1996, <i>Introduction to Solid state Physics</i> , 7 th Edition, Wiley, New York.					
	2. Rita John, <i>Solid State Physics</i> , Tata Mc-Graw Hill Publication.					
	3. A. J. Dekker, Solid State Physics, Macmillan India, New Delhi.					
TEXT	4. M. Ali Omar, 1974, Elementary Solid State Physics – Principles and Applications,					
BOOKS	Addison - Wesley					
	5. H.P. Myers, 1998, <i>Introductory Solid State Physics</i> , 2 nd Edition, Viva Book, New					
	Delhi.					
	1. J. S. Blakemore, 1974, Solid state Physics, 2 nd Edition, W.B. Saunder, Philadelphia					
	2. H. M. Rosenburg, 1993, <i>The Solid State</i> , 3 rd Edition, Oxford University Press, Oxford.					
	3. J. M. Ziman, 1971, Principles of the Theory of Solids, Cambridge University Press,					
REFERENCE	London.					
BOOKS	4. C.Ross-Innes and E. H. Rhoderick, 1976, <i>Introduction to Superconductivity</i> , Pergamon,					
	Oxford.					
	5. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice-Hall of India, New					
	Delhi.					
	1. http://www.physics.uiuc.edu/research/electronicstructure/389/389-cal.html					
WEB	2. http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/index.html					
	3. https://www.britannica.com/science/crystal					
SOURCES	4. https://www.nationalgeographic.org/encyclopedia/magnetism/					
	5. https://www.brainkart.com/article/Super-Conductors_6824/					

COURSE OUTCOMES: At the end of the course, the student will be able to:

At the cha of the course, the statent will be able to:								
CO1	Student will be able to list out the crystal systems, symmetries allowed in a system and also the diffraction techniques to find the crystal structure	K 1						
COI	the diffraction techniques to find the crystal structure	111						
CO2	Students will be able to visualize the idea of reciprocal spaces, Brillouin Zone and their	K1 K2						
CO2	extension to band theory of solids.	K1, K2						
CO3	Student will be able to comprehend the heat conduction in solids	K3						
CO4	Student will be able to generalize the electronic nature of solids from band theories.	K3, K4						
CO5	Student can compare and contrast the various types of magnetism and conceptualize the idea	K5						
	of superconductivity.	KJ						
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	2	2	2	2	2	2	2
CO2	3	2	3	2	3	2	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	2	2	2	2	2	2	2	2	2	3
CO5	2	2	2	2	2	2	2	2	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	2	2	2	2	2	2	2
CO2	3	2	3	2	3	2	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	2	2	2	2	2	2	2	2	2	3
CO5	2	2	2	2	2	2	2	2	2	3

Paper 11 - NUMERICAL METHODS AND COMPUTER	II YEAR - III SEMESTER
PROGRAMMING -Theory	

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	NUMERICAL METHODS AND COMPUTER PROGRAMMING -Theory	Core	6			5	75

Pre-Requisites					
Prior knowledge on computer and basic mathematics					
Learning Objectives					
> To make students to understan	d different numerical approaches to solve a problem.				
To understand the basics of pr	ogramming				

UNITS	Course Details			
UNIT I: SOLUTIONS OF EQUATIONS	Zeros or Roots of an equation - Non-linear algebraic equation and transcendental equations - Zeros of polynomials —Roots of polynomials, nonlinear algebraic equations and transcendental equations using Bisection and Newton-Raphson methods — Convergence of solutions in Bisection and Newton-Raphson methods — Limitations of Bisection and Newton-Raphson methods.			
UNIT II: LINEAR SYSTEM OF EQUATIONS	Simultaneous linear equations and their matrix representation—Inverse of a Matrix – Solution of simultaneous equations by Matrix inversion method and its limitations – Gaussian elimination method – Gauss Jordan method – Inverse of a matrix by Gauss elimination method – Eigen values and eigenvectors of matrices – Direct method - Power method and Jacobi Method to find the Eigen values and Eigen vectors.			
UNIT III: INTERPOLATION AND CURVE FITTING Interpolation with equally spaced points - Newton forw backward interpolation - Interpolation with unevenly spaced Lagrange interpolation - Curve fitting - Method of least so Fitting a polynomial.				
UNIT IV: DIFFERENTIATION, INTEGRATION & SOLUTION OF DIFFERENTIAL EQUATIONS	Simpson's rule – Error estimates – Gauss-Legendre, Gauss-Laguerre, Gauss-Hermite and Gauss-Chebyshev quadrature—solution of ordinary differential equations – Euler and RungaKutta methods.			
UNIT V: PROGRAMMING WITH C	Flow-charts – Integer and floating point arithmetic expressions – Built-in functions – Executable and non-executable statements – Subroutines and functions – Programs for the following computational methods: (a) Zeros of polynomials by the bisection method, (b) Zeros of polynomials/non-linear equations by the Newton-Raphson method, (c) Newton's forward and backward interpolation, Lagrange Interpolation, (d) Trapezoidal and Simpson's Rules, (e) Solution of first order			

	differential equations by Euler's method.								
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism								

	1.	V.Rajaraman, 1993, Computer oriented Numerical Methods, 3rd Edition. PHI, New Delhi
	2.	M.K. Jain, S.R. Iyengar and R. K. Jain, 1995, Numerical Methods for Scientific and
		Engineering Computation, 3 rd Edition, New Age Intl, New Delhi
	3.	S.S. Sastry, Introductory Methods of Numerical analysis, PHI, New Delhi
TEXT	4.	F.Scheid, 1998, <i>Numerical Analysis</i> , 2 nd Edition, Schaum's series, McGraw Hill, New York
BOOKS	5.	John M. Stewart, Python for Scientists, Cambridge University Press, UK, ISBN 978-1-
		107-06139-2
	6.	E. Balagurusamy, Problem solving and Python Programming, McGraw Hill Education
		(India) Pvt Ltd.,
	1.	S. D. Conte and C. de Boor, 1981, Elementary Numerical analysis-an algorithmic
		approach, 3 rd Edition, McGraw Hill
	2.	B.F. Gerald, and P. O. Wheatley, 1994, Applied Numerical analysis, 5th Edition, Addison-
		Wesley, MA.
	3.	, , , , , , , , , , , , , , , , , , ,
REFERENCE		York.
BOOKS	4.	S. S. Kuo, 1996, Numerical Methods and Computers, Addison-Wesley.
	5.	V. Rajaraman, <i>Programming in Programming in C</i> , PHI, New Delhi
	6.	Hans Petter Langtangen, A Primer on Scientific Programming with Python, 2 nd Edition,
		Springer.
	7.	Ashok Namdev Kamthane, Problem solving and Python Programming, McGraw Hill
		Education (India) Pvt, Ltd.,
	1.	https://www.scribd.com/doc/202122350/Computer-Oriented-Numerical-Methods-by-V-
		<u>RajaRaman</u>
WEB	2.	https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/referencespapers.aspx?ref
SOURCES		erenceid=1682874
SOURCES	3.	https://nptel.ac.in/course/122106033/
	4.	https://nptel.ac.in/course/103106074/
	5.	https://onlinecourses.nptel.ac.in/noc20_ma33/preview

COURSE OUTCOMES: At the end of the course, the student will be able to:

110	ine end of the educate, the student will be usic to	
CO	Recall the transcendental equations and analyze the different root finding methods. Understand	
	the basic concept involved in root finding procedure such as Newton Raphson and Bisection	K1, K2
	methods, their limitations.	
CO	Relate Simultaneous linear equations and their matrix representation Distinguish between various	K5
	methods in solving simultaneous linear equations.	_
CO.	Understand, how interpolation will be used in various realms of physics and Apply to some	V2 V2
	simple problems Analyze the newton forward and backward interpolation	K2, K3
CO ₂	Recollect and apply methods in numerical differentiation and integration. Assess the trapezoidal	K3,
	and Simson's method of numerical integration.	K4
CO:	Understand the basics of C-programming and conditional statements.	K2
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	1	1	2	3	2	2	3
CO2	3	2	3	1	1	2	3	2	2	3
CO3	3	2	3	1	1	2	3	2	2	3
CO4	3	2	3	1	1	2	3	2	2	3
CO5	3	2	3	1	1	2	3	2	2	3

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	1	1	2	3	2	2	3
CO2	3	2	3	1	1	2	3	2	2	3
CO3	3	2	3	1	1	2	3	2	2	3
CO4	3	2	3	1	1	2	3	2	2	3
CO5	3	2	3	1	1	2	3	2	2	3

Paper 12 - PRACTICAL III ADVANCED EXPERIMENTS II YEAR - III SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	PRACTICAL III - ADVANCED EXPERIMENTS	Core			6	4	75

	Pre-Requisites									
Know	Knowledge and handling of general and experiments of Physics,									
	Learning Objectives									
> To understand the theory and working of Microprocessor, Microcontroller and their applications										
▶ -	To use microprocessor and Microcontroller in different applications									

Course Details

(Minimum of **Twelve** Experiments from the list)

- 1. Determination of Thickness of air film. Solar spectrum Hartmann's formula. Edser and Butler fringes.
- 2. Determination of Solar constant
- 3. Determination of velocity and compressibility of a liquid using ultrasonic Interferometer
- 4. Determination of Diffraction pattern of light with circular aperture using Diode / He-Ne laser.
- 5. Determination of Thickness of thin film. Michelson Interferometer
- 6. Measurement of Magnetic Susceptibility Guoy's method
- 7. GM counter Absorption coefficient Maximum range of β rays
- 8. GM counter Feather's analysis: Range of Beta rays
- 9. Study the beam divergence, spot size and intensity profile of Diode / He-Ne laser.
- 10. Determination of Refractive index of liquids using diode Laser / He-Ne Laser
- 11. Arc spectrum Iron.
- 12. Molecular spectra CN bands
- 13. Determination of Planck Constant LED Method
- 14. B-H curve using CRO
- 15. Hall Effect in Semiconductor. Determine the Hall coefficient, carrier concentration and carrier mobility
- 16. ALP of (a) 8-bit and 16 bit Multiplication and Division using microprocessor 8085,
 - (b) Interfacing of seven segment display using microprocessor 8085
- 17. (a) Clock program- 12/24 hours- six digits Decimal Counters using microprocessor 8085.
 - (b) Interfacing of LED Binary and BCD up/down counters using microprocessor 8085.
- 18. (a) Sum of a set of N data (8-bit number) and search of an element in an array using 8085.
 - (b) Interfacing of 8-bit R-2R ladder DAC (IC 741) through 8255.
- 19. (a) Code conversion-8-bit number: (a) Binary to BCD (b) BCD to Binary using microprocessor 8085
 - (b) Interfacing using DAC with IC $0800\,$ Wave form generation Square, Triangular and Saw tooth wave using microprocessor $8085\,$
- 20. (a) Addition of multi byte numbers using microprocessor 8085

- (b) Interfacing of DC stepper motor clockwise, anti-clockwise, required angle and wiper action using microprocessor 8085
- 21. (i) 8 bit Addition, subtraction, multiplication and division using Microcontroller 8051
 - (ii) Ascending/descending order Linear sort using microcontroller 8051.
- 22. (i) Block transfer using 8051 microcontroller.
 - (ii) Interfacing of HEX keyboard using microcontroller 8051.

	1.	Gupta and Kumar, <i>Practical Physics</i> , Pragati Prakasan
	2.	K ANavas, Electronic lab manual Vol I, Rajath Publishing
	3.	Douglas V. Hall, Microprocessors and Interfacing programming and Hardware, Tata Mc
TEXT BOOKS		Graw Hill Publications (2008)
TEAT BOOKS	4.	V.Vijayendran, 2005, Fundamentals of Microprocessor-8085, 3rd Edition S.Visvanathan
		Pvt, Ltd.
	5.	Muhammad Ali Mazidi The 8051 Microcontroller and Embedded Systems, 2 nd Edition,
		Pearson Ltd.
	1.	S.P Singh, Advanced Practical Physics, Pragati Prakasan
REFERENCE	2.	R.S. Sirohi, A course on experiment with He-Ne Laser, John Wiley & Sons (Asia) Pvt. ltd
BOOKS	3.	Kuriachan T.D, Syam Mohan, Electronic lab manual Vol II, Ayodhya Publishing
	4.	S. Malarvizhi, Microprocessor and Its Application - Anuradha Agencies Publications

At the end of the course, the student will be able to:

	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	
CO5	Acquire knowledge about the interfacing 8051 microcontroller with various peripherals.	K1,K4
CO4	Acquire knowledge about the interfacing peripherals with 8085 microprocessor.	K1, K4
CO3	Understand the structure and working of 8085 microprocessor and apply it.	K1, K3
CO2	Appreciate the applications of Microprocessor programming	К3
CO1	Develop the programming skills of Microprocessor	K5

MAPPING WITH PROGRAM OUTCOMES:

	-									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	2	2	1	3	2
CO2	2	1	3	3	3	2	2	1	3	2
CO3	3	3	1	3	3	2	2	1	3	2
CO4	3	3	3	3	3	2	2	1	3	2
CO5	3	3	3	3	3	2	2	1	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	1	3	2
CO2	2	1	3	3	3	2	2	1	3	2
CO3	3	3	1	3	3	2	2	1	3	2
CO4	3	3	3	3	3	2	2	1	3	2
CO5	3	3	3	3	3	2	2	1	3	2

Paper 13 -	NUCLEAR AND PARTICLE PHYSICS	II YEAR - IV SEMESTER							
Subject Code	Subject Name	Category	L	Т	P	Credits	Marks		
	NUCLEAR AND PARTICLE PHYSICS	Core	5			5	75		

	Pre-Requisites				
Knowledge	Knowledge of basic structure of atom and nucleus.				
	Learning Objectives				

- > Introduces students to the different models of the nucleus in a chronological order
- Imparts an in-depth knowledge on the nuclear force, experiments to study it and the types of nuclear reactions and their principles
- Provides students with details of nuclear decay with relevant theories
- > Exposes students to the Standard Model of Elementary Particles and Higgs boson

UNITS	Course Details
UNIT I: NUCLEAR MODELS	Liquid drop model – Weizacker mass formula – Isobaric mass parabola – Mirror Pair - Bohr Wheeler theory of fission – shell model – spin-orbit coupling – magic numbers – angular momenta and parity of ground states – magnetic moment – Schmidt model – electric Quadrapole moment - Bohr and Mottelson collective model – rotational and vibrational bands.
UNIT II: NUCLEAR FORCES	Nucleon – nucleon interaction – Tensor forces – properties of nuclear forces – ground state of deuteron – Exchange Forces - Meson theory of nuclear forces – Yukawa potential – nucleon-nucleon scattering – effective range theory – spin dependence of nuclear forces - charge independence and charge symmetry – isospin formalism.
UNIT III: NUCLEAR REACTIONS	Kinds of nuclear reactions – Reaction kinematics – Q-value – Partial wave analysis of scattering and reaction cross section – scattering length – Compound nuclear reactions – Reciprocity theorem – Resonances – Breit Wigner one level formula – Direct reactions - Nuclear Chain reaction – four factor formula.
UNIT IV: NUCLEAR DECAY	Beta decay – Continuous Beta spectrum – Fermi theory of beta decay – Comparative Half-life –Fermi Kurie Plot – mass of neutrino – allowed and forbidden decay — neutrino physics – Helicity - Parity violation - Gamma decay – multipole radiations – Angular Correlation - internal conversion – nuclear isomerism – angular momentum and parity selection rules.
UNIT V: ELEMENTARY PARTICLES	Classification of Elementary Particles – Types of Interaction and conservation laws – Families of elementary particles – Isospin – Quantum Numbers – Strangeness – Hypercharge and Quarks –SU (2) and SU (3) groups-Gell Mann matrices – Gell Mann Okuba Mass formula-Quark Model. Standard model of particle physics – Higgs boson.
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	D. C. Tayal – <i>Nuclear Physics</i> – Himalaya Publishing House (2011)
	K. S. Krane – <i>Introductory Nuclear Physics</i> – John Wiley & Sons (2008)
	R. Roy and P. Nigam – <i>Nuclear Physics</i> – New Age Publishers (1996)
TEXT	S. B. Patel - Nuclear Physics - An introduction - New Age International Pvt Ltd
BOOKS	Publishers (2011)
	S.Glasstone-Source Book of Atomic Energy -Van Nostrand Reinhold Inc., U.S 3rd
	Revised edition (1968)
	L.J. Tassie-The Physics of elementary particles-Prentice Hall Press 1973.
	H.A. Enge - Introduction to Nuclear Physics - Addison Wesley, Publishing
REFERENCE	Company. Inc. Reading. New York, (1974).
BOOKS	Kaplan – <i>Nuclear Physics</i> – 1989 – 2nd Ed. – Narosa (2002)
DOOKS	Bernard L Cohen – Concepts of Nuclear Physics – McGraw Hill Education (India)
	Private Limited; 1 edition (2001)
	B.L. Cohen, 1971, Concepts of Nuclear Physics, TMCH, New Delhi.
	http://bubl.ac.uk/link/n/nuclearphysics.html
	http://www.phys.unsw.edu.au/PHYS3050/pdf/Nuclear_Models.pdfhttp://www.schol
	arpedia.org/article/Nuclear_Forces
WEB	https://www.nuclear-power.net/nuclear-power/nuclear-reactions/
SOURCES	http://labman.phys.utk.edu/phys222core/modules/m12/nuclear_models.html
	$\underline{https://www.ndeed.org/EducationResources/HighSchool/Radiography/radioactive defeating} \\$
	<u>cay.html</u>

At the end of the course, the student will be able to:

	conversion.	K1, K5
	Demonstrate knowledge of fundamental aspects of the structure of the nucleus,	K2, K3
	radioactive decay, nuclear reactions and the interaction of radiation and matter.	ĺ
	Use the different nuclear models to explain different nuclear phenomena and the concept	К3
	of resonances through Briet-Weigner single level formula	110
CO4	Analyze data from nuclear scattering experiments to identify different properties of the	K3, K4
	nuclear force.	105, 104
CO5	Summarize and identify allowed and forbidden nuclear reactions based on conservation	K5
	laws of the elementary particles.	133
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2
CO4	3	3	2	3	2	3	2	2	3	3
CO5	3	3	2	3	2	3	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2

CO4	3	3	2	3	2	3	2	2	3	3
CO5	3	3	2	3	2	3	2	3	3	3

Paper 14- SPECTROSCOPY	II YEAR - IV SEMESTER
------------------------	-----------------------

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	SPECTROSCOPY	Core	5			5	75

Pre-Requisites

Thorough understanding of electromagnetic spectrum, mathematical abilities, knowledge of molecules, their structure, bond nature, physical and chemical behaviour

Learning Objectives

- To comprehend the theory behind different spectroscopic methods
- To know the working principles along with an overview of construction of different types of spectrometers involved
- To explore various applications of these techniques in R & D.
- > Apply spectroscopic techniques for the qualitative and quantitative analysis of various chemical compounds.
- Understand this important analytical tool

UNITS	Course Details
UNIT I: MICROWAVE SPECTROSCOPY	Rotational spectra of diatomic molecules - Rigid Rotor (Diatomic Molecules)- reduced mass – rotational constant - Effect of isotopic substitution - Non rigid rotator – centrifugal distortion constant- Intensity of Spectral Lines- Polyatomic molecules – linear – symmetric asymmetric top molecules - Hyperfine structure and quadrupole moment of linear molecules - Instrumentation techniques – block diagram-Information Derived from Rotational Spectra -Stark effect- Problems.
UNIT II: INFRA-RED SPECTROSCOPY	Vibrations of simple harmonic oscillator–zero-point energy- Anharmonic oscillator–fundamentals, overtones and combinations-Diatomic Vibrating Rotator- PR branch–PQR branch- Fundamental modes of vibration of H ₂ O and CO ₂ -Introduction to application of vibrational spectra- IR Spectrophotometer Instrumentation (Double beam Spectrometer–Fourier Transform Infrared Spectroscopy-Interpretation of vibrational spectra–remote analysis of atmospheric gases like N ₂ O using FTIR by National Remote Sensing Centre (NRSC), India– other simple applications
UNIT III: RAMAN SPECTROSCOPY	Theory of Raman Scattering - Classical theory – molecular polarizability – polarizability ellipsoid - Quantum theory of Raman effect - rotational Raman spectra of linear molecule - symmetric top molecule – Stokes and anti-stokes line- SR branch -Raman activity of H_2O and CO_2 Mutual exclusion principle-determination of N_2O structure -Instrumentation technique and block diagram - structure determination of planar and non-planar molecules using IR and Raman techniques - FT Raman spectroscopy- SERS
UNIT IV: RESONANCE	Nuclear and Electron spin-Interaction with magnetic field-Population of Energy levels-Larmor precession-Relaxation times-Double resonance-Chemical shift and its measurement-NMR of Hydrogen nuclei-Indirect Spin -

SPECTROSCOPY	Spin Interaction—interpretation of simple organic molecules -Instrumentation techniques of NMR spectroscopy – NMR in Chemical industries - MRI Scan Electron Spin Resonance: Basic principle—Total Hamiltonian(Direct Dipole-Dipole interaction and Fermi Contact Interaction)—Hyperfine Structure (Hydrogen atom) - Medical applications of ESR
UNIT V: UV- SPECTROSCOPY	Origin of UV spectra - Laws of absorption –Lambert Beer law -molar absorptivity – transmittance and absorbance - Color in organic compounds-Absorption by organic Molecule - Chromophores -Effect of conjugation on chromophores - Choice of Solvent and Solvent effect - Absorption by inorganic systems - Instrumentation - double beam UV-Spectrophotometer - Simple applications
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. C N Banwell and E M McCash, 1994, Fundamentals of Molecular Spectroscopy, 4th Edition
	Tata McGraw–Hill, New Delhi.
	2. G.Aruldhas, 1994, Molecular Structure and Molecular Spectroscopy, PHI, New Delhi
	3. D.N. Satyanarayana, 2001, Vibrational Spectroscopy and Applications, New Age
TEXT BOOKS	International Publication.
	4. B.K. Sharma, 2015, <i>Spectroscopy</i> , Goel Publishing House Meerut.
	5. Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7th Edition), New Age International
	Publishers.
	1. J L McHale, 2008, <i>Molecular Spectroscopy</i> , Pearson Education India, New Delhi.
	2. J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal Society of Chemistry
REFERENCE	RSC, Cambridge.
BOOKS	3. B.P.Straughan and S.Walker, 1976, <i>Spectroscopy Vol.I</i> , Chapman & Hall, New York
	4. K.Chandra, 1989, Introductory Quantum Chemistry, Tata McGraw Hill, New Delhi.
	5. Demtroder.W, Laser Spectroscopy:Basic concepts and Instrumentation, Springer Link.
	1. https://www.youtube.com/watch?v=0iQhirTf2PI
WED	2. https://www.coursera.org/lecture/spectroscopy/introduction-3N5D5
WEB	3. https://www.coursera.org/lecture/spectroscopy/infrared-spectroscopy-8jEee
SOURCES	4. https://onlinecourses.nptel.ac.in/noc20_cy08/preview
	5. https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy-introduction-XCWRu

At the end of the course the student will be able to:

CO1	Understand fundamentals of rotational spectroscopy, view molecules as elastic rotors and interpret	K2					
	their behavior. Able to quantify their nature and correlate them with their characteristic properties.	K2					
CO2	Understand the working principles of spectroscopic instruments and theoretical background of IR						
	spectroscopy. Able to correlate mathematical process of Fourier transformations with	K2, K3					
	instrumentation. Able to interpret vibrational spectrum of small molecules.						
CO3	Interpret structures and composition of molecules and use their knowledge of Raman	K5					
	Spectroscopy as an important analytical tool	KJ					
CO4	Use these resonance spectroscopic techniques for quantitative and qualitative estimation of a	K4					
	substances	IX+					
CO5	Learn the electronic transitions caused by absorption of radiation in the UV/Vis region of the	K1, K5					
	electromagnetic spectrum and be able to analyze a simple UV spectrum.	K1, K3					
K1 - I	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate						

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	3	3	3	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

Paper - 15 - Practical – IV - COMPUTATIONAL PROGRAMMING AND SIMULATION (Python /C)

II YEAR - IV SEMESTER

Subject Code	Subject Name	Categor y	L	Т	P	Credits	Marks
	Practical-IV COMPUTATIONAL PROGRAMMING AND SIMULATION (PYTHON / C)	Core			6	3	75

Pre-Requisites

- ➤ Basic knowledge in differential equation and linear algebra
- Basic knowledge of operating system and computer fundamentals.

Learning Objectives

- The aim and objective of the course on Computational Practical is to familiarize the of M.Sc. students with the numerical methods used in computation and programming using any language such as Python / C
- To equipe the computational skill using various mathematical tools.
- To apply the software tools to explore the concepts of physical science.
- To approach the real time activities using physics and mathematical formulations.

Course Details

(Minimum of Twelve Experiments from the list)

- 1. Lagrange interpolation with Algorithm, Flow chart and output.
- 2. Newton forward interpolation with Algorithm, Flow chart and output.
- 3. Newton backward interpolation with Algorithm, Flow chart and output.
- 4. Curve-fitting: Least squares fitting with Algorithm, Flow chart and output.
- 5. Numerical integration by the trapezoidal rule with Algorithm, Flow chart and output.
- 6. Numerical integration by Simpson's rule with Algorithm, Flow chart and output.
- 7. Numerical solution of ordinary first-order differential equations by the Euler method with Algorithm, Flow chart and output.
- 8. Numerical solution of ordinary first-order differential equations by the Runge- Kutta method with Algorithm, Flow chart and output.
- 9. Finding Roots of a Polynomial Bisection Method -
- 10. Finding Roots of a Polynomial Newton Raphson Method -
- 11. Solution of Simultaneous Linear Equation by Gauss elimination method.
- 12. Solution of Ordinary Differential Equation by Euler
- 13. Runge Kutta Fourth Order Method for solving first order Ordinary Differential Equations
- 14. Newton's cotes formula
- 15. Trapezoidal rule
- 16. Simpson's 1/3 rule
- 17. Simpson's 3/8 rule
- 18. Boole's rule
- 19. Gaussian quadrature method (2 point and 3 point formula)
- 20. Giraffe's root square method for solving algebraic equation

	1. John Mathews & Kurtis Fink, <i>Numerical methods using Matlab</i> – Prentice Hall, New								
	Jersey 2006								
	2. M.K. Venkataraman, Numerical methods in Science and Engineering - National								
TEXT BOOKS	Publishing Co. Madras, 1996								
	3. V. Rajaraman, <i>Computer Oriented Numerical Methods</i> , 3 rd EdPrentice-Hall, New Delhi.								
	, 1								
	Engineering Computation, 3 rd Ed. New Age International, New Delhi.								
	5. S.S. Sastry, <i>Introductory Methods of Numerical Analysis</i> , PHI, New Delhi.								
	6. John M. Stewart, <i>Python for Scientists</i> , Cambridge University Press, UK, ISBN 978-1-107-								
	06139-2								
	7. E. Balagurusamy, <i>Problem solving and Python Programming</i> , McGraw Hill Education								
	(India) Pvt Ltd.,								
	1. S.D. Conte and C. de Boor, 1981, Elementary Numerical Analysis, An Algorithmic								
	Approach, 3rd Ed., International Ed. (McGraw-Hill).								
	2. B.F. Gerald and P.O. Wheately, 1994, <i>Applied Numerical Analysis</i> , 5th Edition, Addison								
	Wesley, Reading, MA.								
	3. B. Carnahan, H.A. Luther and J.O. Wikes, 1969, <i>Applied Numerical Methods</i> (Wiley, New								
REFERENCE	York.								
BOOKS	4. S.S. Kuo, 1996, Numerical Methods and Computers, Addison - Wesley, London.								
	5. V. Rajaraman, <i>Programming in Programming in C</i> , PHI, New Delhi.								
ļ	6. Hans Petter Langtangen, A Primer on Scientific Programming with Python, 2 nd Edition,								
	Springer.								
	7 Ashok Namdev Kamthane, <i>Problem solving and Python Programming</i> , McGraw Hill								
	Education (India) Pvt, Ltd.,								

COURSE OUTCOMES:At the end of the course the student will be able to:

	the that of the course the statent will be able to:						
CO1	Program with the Python / C	K1					
CO2	Use various numerical methods in describing/solving physics problems.	K4					
CO3	Solve problem, critical thinking and analytical reasoning as applied to scientific problems.	K5					
CO4	To enhance the problem-solving aptitudes of students using various numerical methods.	K5					
CO5	To apply various mathematical entities, facilitate to visualise any complicate tasks.	K3					
	Process, analyze and plot data from various physical phenomena and interpret their	K4					
	meaning						
CO7	Identify modern programming methods and describe the extent and limitations of	K1					
	computational methods in physics						
CO8	Work out numerical differentiation and integration whenever routine are not applicable.	K5					
CO9	Apply various interpolation methods and finite difference concepts.	K4					
	Understand and apply numerical methods to find out solution of algebraic equation using						
CO10	different methods under different conditions, and numerical solution of system of	K1, K4					
	algebraic equation.						
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate							

MAPPING WITH PROGRAM OUTCOMES:

I		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
	CO1	2	2	2	3	3	2	2	2	3	3
Ī	CO2	2	2	3	3	3	2	2	3	3	3

CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	PROJECT AND VIVA-VOCE	Core				4	75

Preamble

The concept of introducing the project will help the student community to learn and apply the principles of Physics and explore the new research avenues.

In the course of the project the student will refer books, Journals or collect literature / data bythe way of visiting research institutes/ industries. He/she may even do experimental /theoretical work in his/her college and submit a dissertation report with a minimum of 40 pages not exceeding 50 pages.

Format for Preparation of Dissertation

The sequence in which the dissertation should be arranged and bound should be as follows

- 1. Cover Page and title Page
- 2. Declaration
- 3. Certificate
- 4. Abstract (not exceeding one page)
- 5. Acknowledgement (not exceeding one page)
- 6. Contents (12 Font size, Times new Roman with double line spacing)
- 7. List of Figures/ Exhibits/Charts
- 8. List of tables
- 9. Symbols and notations
- 10. Chapters
- 11. References

Distribution of marks for Dissertation: (Internal: 25+External: 75 = 100 Marks)

External: 75 Marks - Distribution

(a) For Organization and presentation of Thesis	- 40 marks
(b) For the novelty /Social relevance	-10 marks
(c) Viva voce - Preparation & Presentation of work	- 10 marks
- Response to questions	-10 Marks
(d) Participation / Presentation of paper in the National or	
State level Seminar/Conference/ Workshop/publication	- 5 marks

ELECTIVE PAPERS

Elective - 1. ENERGY PHYSICS I YEAR- I SEMESTE				TER	2		
Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	ENERGY PHYSICS	Elective	4	1	1	3	75

Pre-Requisites		
Knowledge of conventional energy resources		
Learning Objectives		
To learn about various renewable energy sources.		

- > To know the ways of effectively utilizing the oceanic energy.
- > To study the method of harnessing wind energy and its advantages.
- To learn the techniques useful for the conversion of biomass into useful energy.
 To know about utilization of solar energy.

UNITS	Course Details
UNIT I: INTRODUCTION TO ENERGY SOURCES	Conventional and non-conventional energy sources and their availability–prospects of Renewable energy sources– Energy from other sources–chemical energy–Nuclear energy– Energy storage and distribution.
UNIT II: ENERGY FROM THE OCEANS	Energy utilization—Energy from tides—Basic principle of tidal power—utilization of tidal energy — Principle of ocean thermal energy conversion systems.
UNIT III: WIND ENERGY SOURCES	Basic principles of wind energy conversion–power in the wind–forces in the Blades– Wind energy conversion–Advantages and disadvantages of wind energy conversion systems (WECS) - Energy storage–Applications of wind energy.
UNIT IV: ENERGY FROM BIOMASS	Biomass conversion Technologies— wet and dry process— Photosynthesis - Biogas Generation: Introduction—basic process: Aerobic and anaerobic digestion — Advantages of anaerobic digestion—factors affecting bio digestion and generation of gas- bio gas from waste fuel— properties of biogas-utilization of biogas.
UNIT V: SOLAR ENERGY SOURCES	Solar radiation and its measurements—solar cells: Solar cells for direct conversion of solar energy to electric powers—solar cell parameter—solar cell electrical characteristics— Efficiency—solar water Heater —solar distillation— solar cooking—solar greenhouse — Solar pond and its applications.
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. G.D.Rai, Non–convention sources of, 4 th edition, Khanna publishers, New Delhi.
	2. S. Rao and Dr. ParuLekar, Energy technology.
TEXT	3. M.P. Agarwal, Solar Energy, S. Chand and Co., New Delhi (1983).
BOOKS	4. Solar energy, principles of thermal collection and storage by S.P.Sukhatme,
	2 nd edition, Tata McGraw-Hill Publishing Co. Lt., New Delhi (1997).
	5. Energy Technology by S.Rao and Dr.Parulekar.
	1. Renewable energy resources, John Twidell and Tonyweir, Taylor and Francis group,
	London and New York.
	2. Applied solar energy, A.B.MeinelandA.P.Meinal
REFERENCE	3. John Twidell and Tony Weir, Renewable energy resources, Taylor and Francis group,
BOOKS	London and New York.
DOOKS	4. Renewal Energy Technologies: A Practical Guide for Beginners C.S. Solanki-PHI
	Learning
	5. Introduction to Non-Conventional Energy Resources -Raja et. al., Sci. Tech
	Publications
	1. https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&printable=1
WEB	2. https://www.nationalgeographic.org/encyclopedia/tidal-energy/
SOURCES	3. https://www.ge.com/renewableenergy/wind-energy/what-is-wind-energy
SOURCES	4. https://www.reenergyholdings.com/renewable-energy/what-is-biomass/
	5. https://www.acciona.com/renewable-energy/solar-energy/

At the end of the course, the student will be able to:

CO1	To identify various forms of renewable and non-renewable energy sources	K1			
	Understand the principle of utilizing the oceanic energy and apply it for practical	K2			
	applications.	112			
CO3	Discuss the working of a windmill and analyze the advantages of wind energy.	K3			
CO4	Distinguish aerobic digestion process from anaerobic digestion.	K3,K4			
CO5	Understand the components of solar radiation, their measurement and apply them to utilize	K2.K5			
	solar energy.	112,113			
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;				

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

Elective -- 2. CRYSTAL GROWTH AND THIN FILMS I YEAR - I SEMESTER

Subj Cod	Subject Name	Category	L	Т	P	Credits	Marks	
	CRYSTAL GROWTH AND THIN FILMS	Elective	4			3	75	

	Pre-Requisites
Fundamentals of Crystal Physics	
	Learning Objectives

- > To acquire the knowledge on Nucleation and Kinetics of crystal growth
- > To understand the Crystallization Principles and Growth techniques
- > To study various methods of Crystal growth techniques
- > To understand the thin film deposition methods
- > To apply the techniques of Thin Film Formation and thickness Measurement

UNITS	Course Details
UNIT I: CRYSTAL GROWTH KINETICS	Basic Concepts, Nucleation and Kinetics of growth Ambient phase equilibrium - super saturation - equilibrium of finite phases equation of Thomson - Gibbs - Types of Nucleation - Formation of critical Nucleus - Classical theory of Nucleation - Homo and heterogeneous formation of 3D nuclei - rate of Nucleation - Growth from vapour phase solutions, solutions and melts - epitaxial growth - Growth mechanism and classification - Kinetics of growth of epitaxial films
UNIT II: CRYSTALLIZATION PRINCIPLES	Crystallization Principles and Growth techniques Classes of Crystal system - Crystal symmetry - Solvents and solutions - Solubility diagram - Super solubility - expression for super saturation - Metastable zone and introduction period - Miers TC diagram - Solution growth - Low and high temperatures solution growth - Slow cooling and solvent evaporation methods - Constant temperature bath as a Crystallizer.
UNIT III: GEL, MELT AND VAPOUR GROWTH	Gel, Melt and Vapour growth techniques Principle of Gel techniques - Various types of Gel - Structure and importance of Gel - Methods of Gel growth and advantages - Melt techniques - Czochralski growth - Floating zone - Bridgeman method - Horizontal gradient freeze - Flux growth - Hydrothermal growth - Vapour phase growth - Physical vapour deposition - Chemical vapour deposition - Stoichiometry.
UNIT IV: THIN FILM DEPOSITION METHODS	Thin film deposition methods of thin film preparation, Thermal evaporation, Electron beam evaporation, pulsed LASER deposition, Cathodic sputtering, RF Magnetron sputtering, MBE, chemical vapour deposition methods, Sol Gel spin coating, Spray pyrolysis, Chemical bath deposition.

UNIT V: THIN FILM FORMATION	Thin Film Formation and thickness Measurement Nucleation, Film growth and structure - Various stages in Thin Film formation, Thermodynamics of Nucleation, Nucleation theories, Capillarity model and Atomistic model and their comparison. Structure of Thin Film, Roll of substrate, Roll of film thickness, Film thickness measurement - Interferometry, Ellipsometry, Micro balance, Quartz Crystal Oscillator techniques.
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions / Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crystal Growth
	and Epitaxy (2004) 2nd edition
TEXT	2. A. Goswami, Thin Film Fundamentals (New Age, New Delhi, 2008)
	3. M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution"
BOOKS	4. 4. D. Elwell and H. J. Scheel, "Crystal Growth from High Temperature Solution"
	5. Heinz K. Henish, 1973, "Crystal Growth in Gels", Cambridge University Press. USA.
	1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986)
REFERENCE	2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes".
	3. P.SanthanaRaghavan and P. Ramasamy, "Crystal Growth Processes" KRU Publications.
BOOKS	4. H.E.Buckley,1951, Crystal Growth, John Wiley and Sons, New York
	5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London.
	1. https://www.youtube.com/playlist?list=PLbMVogVj5nJRjLrXp3kMtrIO8kZl1D1Jp
WEB	2. https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7KeTLUuBu3WF
	3. https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA53CMKFHPSi9m
SOURCES	4. https://www.youtube.com/playlist?list=PLXHedI-xbyr8xIl_KQFs_R_oky3Yd1Emw
	5 https://www.electrical4u.com/thermal-conductivity-of-metals/

At the end of the course, the student will be able to:

CO1	Acquire the Basic Concepts, Nucleation and Kinetics of crystal growth	K1						
CO2	Understand the Crystallization Principles and Growth techniques	K2, K4						
CO3	Study various methods of Crystal growth techniques	К3						
CO4	Understand the Thin film deposition methods	K2						
CO5	Apply the techniques of Thin Film Formation and thickness Measurement	K3, K4						
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	1	2	1	3	2	2	2	2
CO2	3	3	1	3	1	2	3	2	2	1
CO3	3	2	1	3	1	2	3	3	3	1
CO4	3	2	1	2	1	2	3	3	3	1
CO5	2	3	3	3	1	3	3	3	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	1	2	1	3	2	2	2	2
CO2	3	3	1	3	1	2	3	2	2	1
CO3	3	2	1	3	1	2	3	3	3	1
CO4	3	2	1	2	1	2	3	3	3	1
CO5	2	3	3	3	1	3	3	3	3	2

								_
Subject Code	Subject Name	ıtegory	L	Т	P	redits	Tarks	

I YEAR - I SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	MATERIALS SCIENCE	Elective	4			3	75

	Pre-Requisites								
	Basic knowledge on different types of materials								
	Learning Objectives								
>	To gain knowledge on optoelectronic materials								

Elective - 3. MATERIALS SCIENCE

- > To learn about ceramic processing and advanced ceramics
- > To understand the processing and applications of polymeric materials
- > To gain knowledge on the fabrication of composite materials
- > To learn about shape memory alloys, metallic glasses and nanomaterials

UNITS	Course details
UNIT I: OPTO ELECTRONIC MATERIALS	Importance of optical materials – properties: Band gap and lattice matching – optical absorption and emission – charge injection, quasi-Fermi levels and recombination – optical absorption, loss and gain. Optical processes in quantum structures: Inter-band and intra-band transitions Organic semiconductors. Light propagation in materials – Electro-optic effect and modulation, electro-absorption modulation – exciton quenching.
UNIT II CERAMIC MATERIALS	Ceramic processing: powder processing, milling and sintering – structural ceramics: zirconia, alumina, silicon carbide, tungsten carbide – electronic ceramics – refractories – glass and glass ceramics
UNIT III POLYMERIC MATERIALS	Polymers and copolymers – molecular weight measurement – synthesis: chain growth polymerization – polymerization techniques – glass transition temperature and its measurement – viscoelasticity – polymer processing techniques – applications: conducting polymers, biopolymers and high temperature polymers.
UNIT IV COMPOSITE MATERIALS	Particle reinforced composites – fiber reinforced composites – mechanical behavior – fabrication methods of polymer matrix composites and metal matrix composites – carbon/carbon composites: fabrication and applications.
UNIT V: NEW	Shape memory alloys: mechanisms of one-way and two-way shape memory effect, reverse transformation, thermo-elasticity and pseudo-elasticity,

MATERIALS	examples and applications -bulk metallic glass: criteria for glass formation and stability, examples and mechanical behavior - nanomaterials: classification, size effect on structural and functional properties, processing and properties of Nano crystalline materials, single walled and multi walled carbon nanotubes
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars-Webinars on Industrial Interactions /Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. Jasprit Singh, Electronic and optoelectronic properties of semiconductor structures, Cambridge University Press, 2007
	2. P. K. Mallick. Fiber-Reinforced Composites. CRC Press, 2008.
TEXT	3. V. Raghavan, 2003, Materials Science and Engineering, 4 th Edition, Prentice-Hall
BOOKS	India, New Delhi(For units 2,3,4 and 5)
DOORS	4. G.K. Narula, K.S. Narula and V.K. Gupta, 1988, Materials Science, Tata McGraw-
	Hill
	5. M. Arumugam, 2002, Materials Science, 3 rd revised Edition, Anuratha Agencies
	1. B. S. Murty, P. Shankar, B. Raj, B. B. Rath and J. Murday. Textbook of Nanoscience
	and Nanotechnology. Springer- Verlag, 2012.
	2. K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki (Eds). Shape Memory and
	Super Elastic Alloys: Technologies and Applications. Wood head Publishing
DEFEDENCE	Limited, 2011.
REFERENCE	3. Lawrence H. VanVlack, 1998. Elements of Materials Science and Engineering, 6 th
BOOKS	Edition, Second ISE reprint, Addison-Wesley.
	4. H. Iabch and H. Luth, 2002, Solid State Physics – An Introduction to Principles of
	Materials Science, 2 nd Edition, Springer.
	5. D. Hull & T. W. Clyne, An introduction to composite materials, Cambridge
	University Press, 2008.
	1. https://onlinecourses.nptel.ac.in/noc20_mm02/preview
	2. https://nptel.ac.in/courses/112104229
WEB	3. https://archive.nptel.ac.in/courses/113/105/113105081
SOURCES	4. https://nptel.ac.in/courses/113/105/113105025/
	https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_Modules_(Mate
	rials Science)/Electronic Properties/Lattice Vibrations

At the end of the course, the student will be able to:

CO1 A	cquire knowledge on optoelectronic materials	K1
CO ₂ B	e able to prepare ceramic materials	К3
CO ₃ B	e able to understand the processing and applications of polymeric materials	K2, K3
CO ₄ B	e aware of the fabrication of composite materials	K5
CO ₅ B	e knowledgeable of shape memory alloys, metallic glasses and nanomaterials	K1
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	2	2	2	2	1	2	3
CO2	2	3	3	2	2	2	2	1	2	2
CO3	2	3	2	2	2	2	2	2	2	2
CO4	1	3	2	3	2	3	2	2	2	2
CO5	2	3	2	2	2	2	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	2	2	2	2	1	2	3
CO2	2	3	3	2	2	2	2	1	2	2
CO3	2	3	2	2	2	2	2	2	2	2
CO4	1	3	2	3	2	3	2	2	2	2
CO5	2	3	2	2	2	2	2	2	2	2

Elective - 4. BIO PHYSICS	I Year – I SEMESTER
---------------------------	---------------------

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	BIO PHYSICS	ELECTIVE	4			3	75

Pre-Requisites				
Fundamental concepts of Physics and Biology				
Learning Objectives				

- > To understand the physical principles involved in cell function maintenance.
- > To understand the fundamentals of macromolecular structures involved in propagation of life.
- > To understand the biophysical function of membrane and neuron.
- > To understand various kinds of radiation and their effects on living system and to know the hazards posed by such radiations and the required precautions.
- > To understand the physical principles behind the various techniques available for interrogating biological macromolecules.

UNITS	Course Details					
	Architecture and Life Cycle of cells - Organelles of Prokaryotic and					
UNIT I:	Eukaryotic cell – Cell size and shape – Fine structure of Prokaryotic and					
CELLULAR	Eukaryotic cell organization - Compartment & assemblies membrane					
BIOPHYSICS	system – Extracellular matrix - Molecular mechanisms of Vesicular traffic -					
	Electrical activities of cardiac and neuronal cells.					
	Macromolecular structure: Protein structure – amino acids, peptide bonds,					
UNIT II:	primary, secondary, tertiary and quaternary structures of proteins					
MOLECULAR	Nucleic acid structure: nucleosides and nucleotides, RNA structure, DNA					
BIOPHYSICS	structure and conformation.					
DIOTHIBICS	Special Bio-macromolecules: Metalloproteins, nucleoproteins, ribozymes,					
	chaperons and prions.					
	Models membranes - Biological membranes and dynamics - Membrane					
UNIT III:	Capacitors - Transport across cell and organelle membranes - Ion					
MEMBRANE	channels.					
AND NEURO	Nervous system: Organization of the nervous system –Membrane potential					
BIOPHYISCS	- Origins of membrane potential - Electrochemical potentials - Nernst					
	equation – Goldman equation.					
	X-Ray: Effects on bio-macromolecules – Gamma Radiation: Molecular					
UNIT IV:	effects of gamma radiation, Radiation effects on nucleic acids and					
RADIATION BIO	membranes, Effects on cell and organelles – UV radiation: Effects on bio-					
PHYSICS	macromolecules and proteins – Radiation hazards and protection – use of					
	radiations in cancer.					
UNIT V:	Spectroscopy: UV-Visible absorption spectrophotometry – Optical					
PHYSICAL	Rotatory Dispersion (ORD) – Structure Determination: X-ray					
METHODS IN	Crystallography, Electron spin resonance (ESR) and biological					

BIOLOGY	applications. Chromatography: Thin layer chromatography (TLC), Gas					
	liquid chromatography (GLC) – Centrifugation: Differential centrifugation,					
	density gradient centrifugation. Electrophoresis: Gel electrophoresis,					
	polyacrylamide gel electrophoresis.					
DDOEECCIONAL	Expert Lectures, Online Seminars - Webinars on Industrial					
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and					
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism					
	,					
	1. Biophysics, VasanthaPattabhi, N. Gautham, Narosa Publishing, 2009					
	2. The cell: A molecular approach, Geoffrey M. Cooper, ASM Press, 2013.					
TENT DOOKS	3. Biophysics, P. S. Mishra VK Enterprises, 2010.					
TEXT BOOKS	4. Biophysics, M. A Subramanian, MJP Publishers, 2005.					
	5. Bioinstrumentation, L. Veerakumari, MJP Publishers, 2006.					
	1. Chemical Biophysics by Daniel A Beard (Cambridge University Press, 2008).					
	2. Essential cell biology by Bruce Albert et al (Garland Science)					
DEFEDENCE	3. Biophysics, W. Hoppe, W. Lohmann, H. Markl and H. Ziegler. Springer					
REFERENCE	Verlag, Berlin (1983).					
BOOKS	4. Membrane Biophysics by Mohammad Ashrafuzzaman, Jack A. Tuszynski,					
	(Springer science & business media).					
	5. Biological spectroscopyby Iain D. Campbell, Raymond A. Dwek					
	1. General Bio: http://www.biology.arizona.edu/DEFAULT.html					
	2. Spectroscopy: http://www.cis.rit.edu/htbooks/nmr/inside.htm					
WEB SOURCES	3. Electrophoresis: http://learn.genetics.utah.edu/content/labs/gel/					

At the end of the course, the student will be able to:

CO1	Understand the structural organization and function of living cells and should able to apply the cell signaling mechanism and its electrical activities.	K2, K3				
CO2	Comprehension of the role of biomolecular conformation to function.	K1				
	Conceptual understanding of the function of biological membranes and also to understand the functioning of nervous system.	1				
CO4	To know the effects of various radiations on living systems and how to prevent ill effects of radiations.	K1, K5				
	Analyze and interpret data from various techniques viz., spectroscopy, crystallography, chromatography etc.,	K4				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

4. Online biophysics programs: http://mw.concord.org/modeler/

5. https://blanco.biomol.uci.edu/WWWResources.html

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	1	2	1	3	3	2
CO2	3	3	3	2	1	2	1	3	3	2
CO3	3	3	3	3	1	1	2	3	3	2

CO4	3	3	3	2	1	1	2	3	3	3
CO5	3	3	3	3	1	1	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	1	2	1	3	3	2
CO2	3	3	3	2	1	2	1	3	3	2
CO3	3	3	3	3	1	1	2	3	3	2
CO4	3	3	3	2	1	1	2	3	3	3
CO5	3	3	3	3	1	1	2	3	3	3

Elective - 5. NONLINEAR DYNAMICS

I YEAR – I SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	NON LINEAR DYNAMICS	Elective	4			3	75

Pre-Requisites

Basics of Numerical methods and Differential equations, Fundamentals of linear and nonlinear waves, and Basics of communication systems

Learning Objectives

- To school the students about the analytical and numerical techniques of nonlinear dynamics.
- To make the students understand the concepts of various coherent structures.
- To train the students on bifurcations and onset of chaos.
- To educate the students about the theory of chaos and its characterization.
- To make the students aware of the applications of solitons, chaos and fractals.

UNITS	Course Details						
UNIT I: GENERAL	Linear waves-ordinary differential equations(ODEs)-Partial differential equations(PDEs)- Methods to solve ODEs and PDEs Numerical methods – Linear and Nonlinear oscillators-Nonlinear waves-Qualitative features						
UNIT II: NON LINEAR WAVES	Linear and Nonlinear dispersive waves - Solitons – KdB equation – Basic heory of KdB equation — Introduction to synergetics – examples from Physics, Chemistry, Biology, Computer Science, Economics, Ecology, and Sociology.						
UNIT III: COHERENT STRUCTURES	Ubiquitous Soliton equations – AKNS Method, Backlund transformation, Hirotabilinearization method, Painleve analysis - Perturbation methods-Soliton in Optical fibres - Applications.						
UNIT IV: BIFURCATIONS AND ONSET OF CHAOS	One dimensional flow – Two dimensional flows – Phase plane – Limit cycles – Simple bifurcations – Discrete Dynamical system – Strange attractors – Routes to chaos.						
UNIT V APPLICATIONS	Soliton based communication systems – Soliton based computation – Synchronization of chaos – Chaos based communication – Cryptography – Image processing – Stochastic – Resonance – Chaos based computation – Time Series analysis.						
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism						

	1. M.Lakshmanan and S.Rajasekar, Nonlinear Dynamics: Integrability, Chaos and
	Patterns.Springer, 2003.
TEXT	2. A.Hasegawa and Y.Kodama, Solitons in Optical Communications. Oxford Press, 1995.
BOOKS	3. Drazin, P. G. Nonlinear Systems. Cambridge University Press, 2012. ISBN: 9781139172455.

	4. Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos.						
	Springer, 2003. ISBN: 9780387001777.						
	5. Strogatz, Steven H. Nonlinear Dynamics and Chaos: With Applications to Physics,						
	Biology, Chemistry, and Engineering. Westview Press, 2014. ISBN:9780813349107.						
	1. G.Drazin and R.S.Johnson. Solitons: An Introduction. Cambridge University Press,						
	1989.						
DEFEDENCE	2. M.Lakshmanan and K.Murali. Chaos in Nonlinear Oscillators. World Scientific,						
REFERENCE	1989.						
BOOKS	3. S.Strogatz. Nonlinear Dynamics and Chaos. Addison Wesley, 1995.						
	4. Hao Bai-Lin, Chaos (World Scientidic, Singapore, 1984).						
	5. Kahn, P. B., Mathematical Methods for Scientists & Engineers (Wiley, NY, 1990)						
	1. https://www.digimat.in/nptel/courses/video/108106135/L06.html						
WEB	2. http://digimat.in/nptel/courses/video/115105124/L01.html						
	3. https://www.digimat.in/nptel/courses/video/108106135/L01.html						
SOURCES	4. http://complex.gmu.edu/neural/index.html						
	5. https://cnls.lanl.gov/External/Kac.php						

At the end of the course, the student will be able to:

	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							
	chaos in cryptography, computations and that of fractals.	113, 113						
	To analyze and evaluate the applications of solutions in telecommunication, applications of	K3, K5						
CO4	Acquire knowledge about various oscillators, characterization of chaos and fractals.	K1						
CO3	Learn about simple and complex bifurcations and the routes to chaos	K1, K2						
	science and technology.	IX2						
CO2	Understand the concepts of different types of coherent structures and their importance in	K2						
	nonlinear systems.	K1, K4						
CO1	Gain knowledge about the available analytical and numerical methods to solve various	K1, K4						

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	1	2	2	2	2
CO2	3	2	2	2	2	2	2	2	2	2
CO3	2	2	2	2	2	2	2	2	2	2
CO4	2	2	2	2	2	1	2	2	2	2
CO5	1	2	2	2	2	2	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	1	2	2	2	2
CO2	3	2	2	2	2	2	2	2	2	2
CO3	2	2	2	2	2	2	2	2	2	2
CO4	2	2	2	2	2	1	2	2	2	2
CO5	1	2	2	2	2	2	2	2	2	2

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	ADVANCED MATHEMATICAL PHYSICS	Elective	4			3	75

Pre-Requisites									
Good knowledge in basic mathematics									
Learning Objectives									
➤ To educate and involve students in the higher level of mathematics and mathematical relevant and applicable to Physics.	methods								

UNITS	Course Details
UNIT I: DISCRETE GROUPS	Definition of a group, subgroup, class, Lagrange's theorem, invariant subgroup, Homomorphism and isomorphism between two groups. Representation of a group, unitary representations, reducible and irreducible representations Schur's lemmas, orthogonality theorem, character table, reduction of Kronecker product of representations, criterion for irreducibility of a representation.
UNIT II: CONTINUOUS GROUPS	Infinitesimal generators, Lie algebra; Rotation group, representations of the Lie algebra of the rotation group, representation of the rotation group, D-matrices and their basic properties. Addition of two angular momenta and C.G. coefficients, Wigner-Eckart theorem.
UNIT III: SPECIAL UNITARY GROUPS	Definition of unitary, unimodular groups SU(2) and SU(3). Lie algebra of SU(2). Relation between SU(2) and rotation group. Lie algebra of SU(3)-Gellmann's matrices. Cartan form of the SU(3). Lie algebra, roots and root diagram for SU(3). Weights and their properties, weight diagrams for the irreducible representations 3.3*-, 6,6 8, 10 and 10 of SU(3).
UNIT IV: TENSORS	Cartesian vectors and tensors illustration with moment of inertia, conductivity, dielectric tensors. Four vector in special relativitity, vectors and tensors under Lorentz transformations, Illustration from physics. Vectors and tensors under general co-ordinate transformations, contravariant and covariant vectors and tensors, mixed tensors; tensor algebra, addition, subtraction, direct product of tensors, quotient theorem, symmetric and antisymmetric tensors.
UNIT V: TENSOR CALCULUS	Parallel transport, covariant derivative, affine connection. Metric tensor. Expression for Christoffel symbols in terms of and its derivatives (assuming Dg = 0. Curvature tensor, Ricci tensor and Einstein tensor. Bianchi identities, Schwarzschild solution to the Einstein equation G=0.
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. A.W.Joshi, Group Theory for Physicists					
	2. D.B.Lichtenberg, Unitary Symmetry and Elementary Particles					
TEXT BOOKS	3. E.Butkov, Mathematical Physics					
	4. J.V.Narlikar, General Relativity & Cosmology					
	5. R. Geroch, Mathematical Physics, The University of Chicago press (1985).					
	1. M.Hamermesh <i>Group Theory</i>					
	2. M.E.Rose: Elementary Theory of Angular Momentum					
REFERENCE	3. Georgi : Lie Groups for Physicists					
BOOKS	4. E.A.Lord: Tensors, Relativity & Cosmology					
	5. P. Szekeres, A course in modern mathematical physics: Groups, Hilbert spaces and					
	differential geometry, Cambridge University Press.					
	1. https://vdoc.pub/documents/unitary-symmetry-and-elementary-particles-					
	c4qsfejthkc0					
WEB	2. https://physics.iith.ac.in/HEP_Physics/slides/poplawskitalk.pdf					
SOURCES	3. https://www.hindawi.com/journals/amp/					
	4. https://projecteuclid.org/journals/advances-in-theoretical-and-mathematical-physics					
	5. https://www.springer.com/journal/11232					

At the end of the course, the student will be able to:

CO1	CO1 Gained knowledge of both discrete and continuous groups						
CO2	CO2 Apply various important theorems in group theory						
	Construct group multiplication table, character table relevant to important branches of physics.	K5					
CO4	Equipped to solve problems in tensors	K4, K5					
CO5	CO5 Developed skills to apply group theory and tensors to peruse research						
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	1	1	2	3	2
CO3	3	3	2	1	2	2	1	2	3	2
CO4	3	3	2	2	1	2	1	2	3	2
CO5	3	3	2	2	2	1	1	2	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	1	1	2	3	2
CO3	3	3	2	1	2	2	1	2	3	2
CO4	3	3	2	2	1	2	1	2	3	2
CO5	3	3	2	2	2	1	1	2	3	2

Elective - 7. PLASMA PHYSICS I YEAR – II SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	PLASMA PHYSICS	Elective	3			3	75

Pre-Requisites

Fundamentals of Electricity and Magnetism, Electromagnetic theory, Maxwell's equation, Basic knowledge of electrical and electronics instrumentation.

Learning Objectives

- To explore the plasma universe by means of in-site and ground-based observations.
- To understand the model plasma phenomena in the universe.
- To explore the physical processes which occur in the space environment.

UNITS	Course Details
UNIT I: FUNDAMENTAL CONCEPTS OF PLASMA	Kinetic pressure in a partially ionized - mean free path and collision cross section - Mobility of charged particles - Effect of magnetic field on the mobility of ions and electrons-Thermal conductivity- Effect of magnetic field- Quasi- neutrality of plasma Debye shielding distance - Optical properties of plasma.
UNIT II:MOTION OF CHARGED PARTICLES IN ELECTRIC AND MAGNETIC FIELD	Particle description of plasma- Motion of charged particle in electrostatic field- Motion of charged particle in uniform magnetic field - Motion of charged particle in electric and magnetic fields- Motion of charged particle inhomogeneous magnetic field - Motion of charged particle in magnetic mirror confinement - motion of an electron in a time varying electric field-
UNIT III: PLASMA OSCILLATIONS AND WAVES	Introduction, theory of simple oscillations - electron oscillation in a plasma – Derivations of plasma oscillations by using Maxwell's equation - Ion oscillation and waves in a magnetic field - thermal effects on plasma oscillations - Landau damping.
UNIT IV: PLASMA DIAGNOSTICS TECHNIQUES	Single probe method - Double probe method - Use of probe technique for measurement of plasma parameters in magnetic field - microwave method - spectroscopic methodlaser as a tool for plasma diagnostics-X-ray diagnostics of plasma - acoustic method - conclusion.
UNIT V: APPLICATIONS OF PLASMA PHYSICS	Magneto hydrodynamic Generator - Basic theory - Principle of Working-Fuel in MHD Generator - Generation of Microwaves Utilizing High Density Plasma - Plasma Diode.
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. Plasma Physics-Plasma State of Matter-S.N.Sen, Pragati Prakashan, Meerut.
	2. Introduction to Plasma Physics-M. Uman
	3. Krall, N. A., and A. W. Trivelpiece. Principles of Plasma Physics. Berkeley, CA:
	San Francisco Press, 1986. ISBN: 9780911302585.
TEXT	4. Tanenbaum, B. S. Plasma Physics. New York, NY: McGraw-Hill, 1967. ISBN:
BOOKS	9780070628120.
DOORS	5. Goldston, R.J, and P.H.Rutherford. Introduction to Plasma Physics. Philadelphia,
	PA: IOP Publishing, 1995. ISBN: 9780750301831.
	6. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge, UK: Cambridge
	University Press, 2005. ISBN: 9780521675741.
	1. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York, NY: Springer,
	1984. ISBN: 9780306413322.
	2. Introduction to Plasma Theory-D.R. Nicholson
REFERENCE	3. Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc., 1971.
	ISBN: 9780126405507.
BOOKS	4. Hazeltine, R.D, and F.L.Waelbroeck. The Framework of Plasma Physics.
	Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.
	5. Huddlestone, R.H, and S.L. Leonard. Plasma Diagnostic Techniques. San Diego,
	CA: Academic Press, 1965
	1. https://fusedweb.llnl.gov/Glossary/glossary.html
WEB	2. http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html
	3. http://www.plasmas.org/
SOURCES	4. http://www.phy6.org/Education/whplasma.html
	5. http://www.plasmas.org/resources.htm

COURSE OUTCOMES: At the end of the course, the student will be able to:

CO1	Understand the collision, cross section of charged particles and to able to correlate the magnetic effect of ion and electrons in plasma state.	K1, K2						
CO2	Understand the plasma and learn the magneto-hydrodynamics concepts applied to plasma.	K2						
CO3	Explore the oscillations and waves of charged particles and thereby apply the Maxwell's equation to quantitative analysis of plasma.	K1, K3						
CO4	Analyze the different principle and techniques to diagnostics of plasma.	K2, K5						
	Learn the possible applications of plasma by incorporating various electrical and electronic instruments.	K4						
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	2	1	2	3	3
CO3	3	3	2	2	1	2	1	3	3	3
CO4	3	3	3	2	1	2	1	3	3	3
CO5	3	3	3	2	1	2	1	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	2	1	2	3	3
CO3	3	3	2	2	1	2	1	3	3	3
CO4	3	3	3	2	1	2	1	3	3	3
CO5	3	3	3	2	1	2	1	3	3	3

Elective - 8. GENERAL RELATIVITY AND COSMOLOGY I YEAR - II SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	GENERAL RELATIVITY AND COSMOLOGY	Elective	3			3	75

	Pre-Requisites					
	Skill in mathematics and mechanics					
	Learning Objectives					
Г	To give an introduction to students in the areas of general relativity and cosmology					

UNITS	Course Details
UNIT I: TENSORS	Tensors in index notation - Kronecker and Levi Civita tensors - inner and outer products - contraction - symmetric and antisymmetric tensors - quotient law - metric tensors - covariant and contravariant tensors - vectors - the tangent space - dual vectors - tensors - tensor products - the Levi-Civita tensor - tensors in Riemann spaces
UNIT II: TENSORS FIELD	Vector-fields, tensor-fields, transformation of tensors - gradient and Laplace operator in general coordinates - covariant derivatives and Christoffel connection - Elasticity: Field tensor - field energy tensor - strain tensor - tensor of elasticity- curvature tensor
UNIT III: GENERAL RELATIVITY	The space-time interval - the metric - Lorentz transformations - space-time diagrams - world-lines - proper time - energy-momentum vector - energy-momentum tensor - perfect fluids - energy-momentum conservation - parallel transport - the parallel propagator - geodesics - affine parameters - the Riemann curvature tensor - symmetries of the Riemann tensor
UNIT IV: TENSOR IN RELATIVITY	Ricci and Einstein tensors - Weyl tensor - Killing vectors - the Principle of Equivalence - gravitational red shift - gravitation as space-time curvature - the Newtonian limit - physics in curved space-time - Einstein's equations - the Weak Energy Condition - causality - spherical symmetry - the Schwarzschild metric - perihelion precession
UNIT V: COSMOLOGY	Expansion of the Universe - thermal history - and the standard cosmological model-Friedmann-Robertson-Walker type models of the Universe - Primordial inflation and the theory of cosmological fluctuations - Theory and observations of the cosmic microwave background and of the large-scale structure of the Universe-Dark matter and dark energy- theoretical questions - inflation - origin of galaxies
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	 M. R. Spiegel, Vector Analysis, Schaum's outline series, McGraw Hill, New York, 1974.
	2. James Hartle, Gravity: An introduction to Einstein's general relativity, San
	Francisco, Addison-Wesley, 2002
TEXT BOOKS	3. Sean Carroll, Spacetime and Geometry: An Introduction to General Relativity, (Addison-Wesley, 2004).
	4. Jerzy Plebanskiand Andrzej Krasinski, An Introduction to General Relativity and
	Cosmology, Cambridge University Press 2006
	5. Meisner, Thorne and Wheeler: <i>Gravitation</i> W. H. Freeman & Co., San Francisco 1973
	1. Robert M. Wald: Space, Time, and Gravity: the Theory of the Big Bang and Black
	Holes, Univ. of Chicago Press.
	2. J. V. Narlikar, <i>Introduction to Cosmology</i> , Jones &Bartlett 1983
REFERENCE	3. Steven Weinberg, <i>Gravitation and Cosmology</i> , New York, Wiley, 1972.
BOOKS	4. Jerzy Plebanski and Andrzej Krasinski, An Introduction to General Relativity and
	Cosmology, Cambridge University Press 2006
	5. R Adler, M Bazin& M Schiffer, Introduction to General Relativity
	$1. \underline{\text{http://www.fulviofrisone.com/attachments/article/486/A\%20First\%20Course\%20In}$
	%20General%20Relativity%20-%20Bernard%20F.Schutz.pdf
	2. https://link.springer.com/book/9780387406282
WEB SOURCES	3. https://ocw.mit.edu/courses/8-962-general-relativity-spring-2020/resources/lecture-
	18-cosmology-i/
	4. https://arxiv.org/abs/1806.10122
	5. https://uwaterloo.ca/applied-mathematics/future-undergraduates/what-you-can-
	<u>learn-applied-mathematics/relativity-and-cosmology</u>

At the end of the course, the student will be able to:

CO1	Skillfully handle tensors	K1				
CO2	Understanding of the underlying theoretical aspects of general relativity and cosmology	K2				
CO3	Gain knowledge on space time curvature	K1				
CO4	Equipped to take up research in cosmology	K3, K4				
CO5	Confidently solve problems using mathematical skills	K5				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	1	3	2	3	2	2	2	2
CO2	3	3	1	3	2	3	2	2	2	2
CO3	3	2	1	2	1	2	1	1	3	2
CO4	3	2	1	2	1	2	1	1	3	2
CO5	3	2	1	2	1	2	1	1	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	3	3	1	3	2	3	2	2	2	2

CO2	3	3	1	3	2	3	2	2	2	2
CO3	3	2	1	2	1	2	1	1	3	2
CO4	3	2	1	2	1	2	1	1	3	2
CO5	3	2	1	2	1	2	1	1	3	2

Elective - 9. ADVANCED OPTICS I YEAR – II SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks	
	ADVANCED OPTICS	Elective	3			3	75	

Pre-Requisites
Knowledge of ray properties and wave nature of light
Learning Objectives

- > To know the concepts behind polarization and could pursue research work on application aspects of laser
- > To impart an extensive understanding of fiber and non-linear optics
- > To study the working of different types of LASERS
- > To differentiate first and second harmonic generation
- > Learn the principles of magneto-optic and electro-optic effects and its applications

UNITS	Course Details						
**************************************	Classification of polarization – Transverse character of light waves –						
UNIT 1:	Polarizer and analyzer – Malus law – Production of polarized light –						
POLARIZATION	Polaroid – Polarization by reflection – Polarization by double refraction –						
AND DOUBLE	Polarization by scattering – The phenomenon of double refraction –						
REFRACTION	Normal and oblique incidence – Interference of polarized light: Quarter						
	and half wave plates – Analysis of polarized light – Optical activity						
UNIT II:	Basic principles –Spontaneous and stimulated emissions –Components of						
LASERS	the laser–Resonator and lasing action–Types of lasers and its applications						
21102110	-Solid state lasers - Ruby laser - Nd:YAG laser - gas lasers - He-Ne laser						
	- CO ₂ laser - Chemical lasers - HCl laser - Semiconductor laser						
	Introduction – Total internal reflection – The optical fiber – Glass fibers						
UNIT III:	- The coherent bundle - The numerical aperture - Attenuation in optical						
FIBER OPTICS	fibers – Single and multi-mode fibers – Pulse dispersion in multimode						
112211 01 1102	optical fibers – Ray dispersion in multimode step index fibers –						
	Parabolic-index fibers – Fiber-optic sensors: Precision displacement &						
	Precision vibration sensor						
UNIT IV:	Basic principles – Harmonic generation – Second harmonic generation –						
NON-LINEAR	Phase matching – Third harmonic generation – Optical mixing –						
OPTICS	Parametric generation of light – Self-focusing of light						
UNIT V:	Magneto-optical effects-Zeeman effect-Inverse Zeeman effect-Faraday						
MAGNETO-	effect –Voigt effect–Cotton-mouton effect –Kerr magneto-optic effect –						
OPTICS AND	Electro-optical effects-Stark effect-Inverse stark effect-Electric double						
ELECTRO-OPTICS	refraction –Kerr electro-optic effect–Pockels electro-optic effect						
PROFESSIONAL	Expert Lectures, Online Seminars - Webinars on Industrial						
COMPONENTS	Interactions/Visits, Competitive Examinations, Employable and						
	Communication Skill Enhancement, Social Accountability and Patriotism						

	2. B. B. Laud, 2017, Lasers and Non – Linear Optics, 3 rd Edition, New Age							
	International (P) Ltd.							
(DEX/D	AjoyGhatak, 2017, Optics, 6 th Edition, McGraw – Hill Education Pvt. Ltd.							
TEXT BOOKS	4. William T. Silfvast, 1996, Laser Fundamentals Cambridge University Press, New							
DOOKS	York							
	5. J. Peatros, Physics of Light and Optics, a good (and free!) electronic book							
	6. B. Saleh, and M. Teich, Fundamentals of Photonics, Wiley-Interscience,							
	1. F. S. Jenkins and H. E. White, 1981, Fundamentals of Optics, (4 th Edition), McGraw							
	 Hill International Edition. 							
REFERENCE	2. Dieter Meschede, 2004, Optics, Light and Lasers, Wiley – VCH, Varley GmbH.							
BOOKS	3. Lipson, S. G. Lipson and H. Lipson, 2011, Optical Physics, 4 th Edition, Cambridge							
DOOKS	University Press, New Delhi, 2011.							
	4. Y. B. Band, Light and Matter, Wiley and Sons (2006)							
	5. R. Guenther, Modern Optics, Wiley and Sons (1990)							
	1. https://www.youtube.com/watch?v=WgzynezPiyc							
WEB	2. https://www.youtube.com/watch?v=ShQWwobpW60							
SOURCES	3. https://www.ukessays.com/essays/physics/fiber-optics-and-it-applications.php							
SOURCES	4. https://www.youtube.com/watch?v=0kEvr4DKGRI							
	5. http://optics.byu.edu/textbook.aspx							

At the end of the course, the student will be able to:

CO1	Discuss the transverse character of light waves and different polarization phenomenon	K1					
	Discriminate all the fundamental processes involved in laser devices and to analyze the design and operation of the devices	K2					
	design and operation of the devices						
	Demonstrate the basic configuration of a fiber optic – communication system and advantages	K3, K4					
	advantages						
CO4	Identify the properties of nonlinear interactions of light and matter	K4					
	Interpret the group of experiments which depend for their action on an applied magnetics and electric field	K5					
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	3	3
C02	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	3	3	3	3	3
CO2	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3

	CO4	3	3	3	3	3	3	3	3	3	3
--	-----	---	---	---	---	---	---	---	---	---	---

Elective- 10 PHYSICS OF NANOSCIENCE AND	I YEAR – II SEMESTER
TECHNOLOGY	

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	PHYSICS OF NANOSCIENCE AND TECHNOLOGY	Elective	3			3	75

	Pre-Requisites
Basic knowledge in Solid State Physics	
	Learning Objectives

- Physics of Nanoscience and Technology is concerned with the study, creation, manipulation and applications at nanometer scale.
- > To provide the basic knowledge about nanoscience and technology.
- > To learn the structures and properties of nanomaterials.
- > To acquire the knowledge about synthesis methods and characterization techniques and its applications.

UNITS	Course Details				
UNITS					
UNIT I:	Fundamentals of NANO – Historical Perspective on Nanomaterial				
FUNDAMENTALS	and Nanotechnology Classification of Nanomaterials - Metal and				
OF NANOSCIENCE	Semiconductor Nanomaterials- 2D, 1D, 0D nanostructured materials				
AND TECHNOLOGY	- Quantum dots- Quantum wires- Quantum wells- Surface effects of				
AND TECHNOLOGY	nanomaterials.				
	Physical properties of Nanomaterials: Melting points, specific heat				
	capacity and lattice constant-Mechanical behavior: Elastic				
UNIT II: PROPERTIES	properties – strength – ductility - superplastic behavior - Optical				
OF	properties: Surface Plasmon Resonance – Quantum size effects -				
NANOMATERIALS	• •				
NANOWATERIALS	Electrical properties - Conductivity, Ferroelectrics and dielectrics -				
	Magnetic properties – super para magnetism – Diluted magnetic				
	semiconductor (DMS).				
UNIT III:	Physical vapour deposition - Chemical vapour deposition - sol-gel -				
SYNTHESIS AND	Wet deposition techniques - electrochemical deposition method -				
FABRICATION	Plasma arching - Electrospinning method - ball milling technique -				
FADRICATION	pulsed laser deposition -Nanolithography: photolithography.				
	Powder X-ray diffraction – X-ray photoelectron spectroscopy (XPS) -				
UNIT IV:	UV-visible spectroscopy – Photoluminescence - Scanning electron				
CHARACTERIZATION	microscopy (SEM) - Transmission electron microscopy (TEM) -				
TECHNIQUES	Scanning probe microscopy (SPM) - Scanning tunneling microscopy				
TECH VIQUES	(STM) – Vibrating sample Magnetometer.				
	Sensors: Nanosensors based on optical and physical properties -				
UNIT V:	Electrochemical sensors—Nano-biosensors. Nano Electronics:				
APPLICATIONS OF					
NANOMATERIALS	Nanobots - display screens - GMR read/write heads - Carbon				
	Nanotube Emitters – Photocatalytic application: Air purification,				

	water purification -Medicine: Imaging of cancer cells – biological tags - drug delivery - photodynamic therapy - Energy: fuel cells -
	rechargeable batteries - super capacitors.
PROFESSIONAL	Expert Lectures, Online Seminars-Webinars on Industrial Interactions
COMPONENTS	/Visits, Competitive Examinations, Employable and Communication
COMPONENTS	Skill Enhancement, Social Accountability and Patriotism

TEXT BOOKS	 A textbook of Nanoscience and Nanotechnology, Pradeep.T, Tata McGraw-Hill Publishing Co. (2012). Principles of Nanoscience and Nanotechnology, M.A.Shah, Tokeer Ahmad, Narosa Publishing House Pvt Ltd., (2010). Introduction to Nanoscience and Nanotechnology, K.K.Chattopadhyay and A.N.Banerjee, PHI Learning Pvt. Ltd., New Delhi, (2012). Nanostructured Materials and Nanotechnology, Hari Singh Nalwa, Academic Press, (2002). Nanotechnology and Nanoelectronics, D.P.Kothari, V.Velmurugan and Rajit Ram Singh, Narosa Publishing House Pvt. Ltd, New Delhi. (2018)
REFERENCE BOOKS	 Nanostructures and Nanomaterials- HuozhongGao-Imperial College Press (2004). Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley Publishing Inc. USA Nano particles and Nano structured films; Preparation, Characterization and Applications, J.H.Fendler John Wiley and Sons. (2007) Textbook of Nanoscience and Nanotechnology, B.S.Murty, et al., Universities Press. (2012) The Nanoscope (Encyclopedia of Nanoscience and Nanotechnology), Dr. Parag Diwan and Ashish Bharadwaj (2005) Vol. IV - Nanoelectronics Pentagon Press, New Delhi.
WEB SOURCES	www.its.caltec.edu/feyman/plenty.html http://www.library.ualberta.ca/subject/nanoscience/guide/index.cfm http://www.understandingnano.com http://www.nano.gov http://www.nanotechnology.com

At the end of the course, the student will be able to:

	Understand the basic of nanoscience and explore the different types of nanomaterials and should comprehend the surface effects of the nanomaterials.	K1, K2				
	Explore various physical, mechanical, optical, electrical and magnetic properties nanomaterials.	K1				
CO3	Understand the process and mechanism of synthesis and fabrication of nanomaterials.	K2, K3				
	Analyze the various characterization of Nano-products through diffraction, spectroscopic, microscopic and other techniques.	K4				
	Apply the concepts of nanoscience and technology in the field of sensors, robotics, purification of air and water and in the energy devices.	К3				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	1	1	3	3	3	3
CO2	3	3	3	2	1	1	3	3	3	3
CO3	3	3	2	2	1	1	3	3	3	3
CO4	3	3	3	2	1	1	3	3	3	3
CO5	3	3	2	2	1	1	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	3	3	3	2	1	1	3	3	3	3
CO2	3	3	3	2	1	1	3	3	3	3
CO3	3	3	2	2	1	1	3	3	3	3
CO4	3	3	3	2	1	1	3	3	3	3
CO5	3	3	2	2	1	1	3	3	3	3

Elective - 11. MEDICAL PHYSICS	I YEAR – II SEMESTER
--------------------------------	----------------------

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	MEDICAL PHYSICS	Elective	3			3	75

Pre-Requisites				
Fundamentals of physiological concepts, Basics of instruments principle,				
Learning Objectives				

- To understand the major applications of Physics to Medicine
- > To study the aid of different medical devices such as X-ray machines, gamma camera, accelerator and nuclear magnetic resonance.
- > To outline the principles of Physics of different medical radiation devices and their modern advances, especially in medical radiation therapy and different applications in medical physics.
- > To introduce the ideas of Radiography.
- > To form a good base for further studies like research.

UNITS	Course Details						
UNIT I: X-RAYS AND TRANSDUCERS	Electromagnetic Spectrum – Production of X-Rays – X-Ray Spectrum – Bremsstrahlung – Characteristic X-Ray – X-Ray Tubes – Coolidge Tube – X-Ray Tube Design – Thermistors – photo electric transducers – Photo voltaic cells – photo emissive cells – Photoconductive cells – piezoelectric transducer						
UNIT II: BLOOD PRESSURE MEASUREMENTS Introduction -□sphygmomanometer - Measurement of heart principles of electrocardiogram (ECG) -Basic principles of neurography (ENG) - Basic principles of magnetic resonance improved the supplies of magne							
UNIT III: RADIATION PHYSICS	Radiation Units – Exposure – Absorbed Dose – Rad to Gray – Kera Relative Biological Effectiveness –Effective Dose – Sievert (Sv) – Inverse Square Law – Interaction of radiation with Matter – Linear Attenuation Coefficient – Radiation Detectors –Thimble Chamber – Condenser Chambers – Geiger Counter – Scintillation Counter						
UNIT IV: MEDICAL IMAGING PHYSICS	Radiological Imaging – Radiography – Filters – Grids – Cassette – X-Ray Film – Film processing – Fluoroscopy – Computed Tomography Scanner – Principal Function – Display – Mammography – Ultrasound Imaging – Magnetic Resonance Imaging – Thyroid Uptake System – Gamma Camera (Only Principle, Function and display)						
UNITV: RADIATION PROTECTION	Principles of Radiation Protection – Protective Materials – Radiation Effects – Somatic – Genetic Stochastic and Deterministic Effect – Personal Monitoring Devices – TLD Film Badge – Pocket Dosimeter						
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism						

	1. Dr.K.Thayalan ,Basic Radiological Physics, Jayapee Brothers Medical Publishing
	Pvt. Ltd. New Delhi, 2003.
	2. Curry, Dowdey and Murry, Christensen's Physics of Diagnostic Radiology: -
	LippincotWilliams and Wilkins, 1990.
TELET DOOLE	3. FM Khan, <i>Physics of Radiation Therapy</i> , William and Wilkins, 3rd ed, 2003.
TEXT BOOKS	4. D. J. Dewhurst, An Introduction to Biomedical Instrumentation, 1st ed, Elsevier
	Science, 2014.
	5. R.S. Khandpur, Hand Book of Biomedical Instrumentations, 1st ed, TMG, New
	Delhi, 2005.
	1. Muhammad Maqbool, An Introduction to Medical Physics, 1st ed, Springer
	International Publishing, 2017.
	2. Daniel Jirák, FrantišekVítek, <i>Basics of Medical Physics</i> , 1st ed, Charles University,
	Karolinum Press, 2018
REFERENCE	3. Anders Brahme, Comprehensive Biomedical Physics, Volume 1, 1st ed, Elsevier
BOOKS	Science, 2014.
	4. K. Venkata Ram, Bio-Medical Electronics and Instrumentation, 1st ed, Galgotia
	Publications, New Delhi, 2001.
	5. John R. Cameron and James G. Skofronick, 2009, Medical Physics, John Wiley
	Interscience Publication, Canada, 2nd edition.
	1. https://ptel.ac.in/courses/108/103/108103157/
	2. https://www.studocu.com/en/course/university-of-technology-sydney/medical-
	devices-and-diagnostics/225692
WEB SOURCES	3. https://www.technicalsymposium.com/alllecturenotes_biomed.html
	4. https://lecturenotes.in/notes/17929-note-for-biomedical-instrumentation-bi-by-
	deepraj-adhikary/78
	5. https://www.modulight.com/applications-medical/

At the	the of the course, the student will be able to.	
CO1	Learn the fundamentals, production and applications of X-rays.	K1
	Understand the basics of blood pressure measurements. Learn about	K2
CO2	sphygmomanometer, EGC, ENG and basic principles of MRI.	KΔ
CO3	Apply knowledge on Radiation Physics	К3
CO4	Analyze Radiological imaging and filters	K4
CO5	Assess the principles of radiation protection	K5
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

COURSE OUTCOMES:
At the end of the course, the student will be able to:

	Learn the fundamentals, production and applications of X-rays.	K1
CO2	Understand the basics of blood pressure measurements. Learn about	K2
	sphygmomanometer, EGC, ENG and basic principles of MRI.	IXZ
CO3	Apply knowledge on Radiation Physics	К3
CO4	Analyze Radiological imaging and filters	K4
CO5	Assess the principles of radiation protection	K5
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	1	2	3	3	1	3
CO2	3	3	3	2	1	2	3	3	1	3
CO3	3	3	3	2	1	2	3	3	1	3
CO4	3	3	3	2	1	2	3	3	1	3
CO5	3	3	3	1	1	2	3	3	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	1	2	3	3	1	3
CO2	3	3	3	2	1	2	3	3	1	3
CO3	3	3	3	2	1	2	3	3	1	3
CO4	3	3	3	2	1	2	3	3	1	3
CO5	3	3	3	1	1	2	3	3	1	3

Elective - 12.CHARACTERIZATON OF MATERIALS I YEAR-II SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	CHARACTERIZATON OF MATERIALS	Elective	3			3	75

Pre-Requisites

Fundamentals of Heat and Thermodynamics, Basics of Optical systems, Microscopic systems, Electrical measurements and Fundamentals of Spectroscopy.

Learning Objectives

- > To make the students learn some important thermal analysis techniques namely TGA, DTA, DSC and TMA
- > To make the students understand the theory of image formation in an optical microscope and to introduce other specialized microscopic techniques.
- > To make the students learn and understand the principle of working of electron microscopes and scanning probe microscopes.
- To make the students understand some important electrical and optical characterization techniques for semiconducting materials.
- To introduce the students the basics of x-ray diffraction techniques and some important spectroscopic techniques.

UNITS	Course details
UNIT I THERMAL ANALYSIS	Introduction – Thermo gravimetric analysis (TGA) – instrumentation – determination of weight loss and decomposition products – Differential thermal analysis (DTA) - cooling curves – Differential scanning calorimetry (DSC) – instrumentation – specific heat capacity measurements – determination of thermo mechanical parameters.
UNIT II MICROSCOPIC METHODS	Optical Microscopy: optical microscopy techniques – Bright field optical microscopy – Dark field optical microscopy – Dispersion staining microscopy - phase contrast microscopy – differential interference contrast microscopy - fluorescence microscopy - confocal microscopy - digital holographic microscopy.
UNIT III ELECTRON MICROSCOPY AND SCANNING PROBE MICROSCOPY	SEM, EDAX, EPMA and TEM: working principle and Instrumentation – sample preparation –Data collection, processing and analysis- Scanning tunneling microscopy (STEM) - Atomic force microscopy (AFM).
UNIT IV ELECTRICAL METHODS AND OPTICAL CHARACTERISATION	Two probe and four probe methods- van der Pauw method – Hall probe and measurement – scattering mechanism – C-V characteristics – Schottky barrier capacitance – impurity concentration – electrochemical C-V profiling – limitations. Photoluminescence – light – matter interaction – instrumentation – electroluminescence – instrumentation – Applications.
UNIT V X-RAY AND SPECTROSCOPIC METHODS	Principles and instrumentation for UV-Vis-IR, FTIR spectroscopy, Raman spectroscopy, ESR, NMR, NQR, XPS, AES and SIMS- Proton Induced X-ray Emission spectroscopy (PIXE) –Rutherford Back Scattering (RBS) analysis-application - Powder diffraction - Powder diffractometer - interpretation of diffraction patterns - indexing - phase identification -

	Particle size - X-ray fluorescence spectroscopy - uses.						
PROFESSIONAL	Expert Lectures, Online Seminars - Webinars on Industrial						
COMPONENTS	Interactions/Visits, Competitive Examinations, Employable and						
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism						

1. R. A. Stradling and P. C. Klipstain. Growth and Characterization of
semiconductors Adam Hilger Bristol 1990
semiconductors. Adam Hilger, Bristol, 1990. 2. J. A. Belk. Electron microscopy and microanalysis of crystalline materials. App
Science Publishers, London, 1979.
TEXT BOOKS 3. Lawrence E. Murr. Electron and Ion microscopy and Microanalysis principles a Applications. Marcel Dekker Inc., New York, 1991
4. D. Kealey and P. J. Haines. Analytical Chemistry. Viva Books Private Limited,
New Delhi, 2002.
5. Li, Lin, Ashok Kumar Materials Characterization Techniques Sam Zhang; CRC Press,(2008).
1. Cullity,B.D & Stock,R.S "Elements of X-Ray Diffraction", Prentice-Hall, (200
2. Murphy, Douglas B, Fundamentals of Light Microscopy and Electr
Imaging, Wiley-Liss, Inc. USA, (2001).
REFERENCE 3. Tyagi, A.K., Roy, Mainak, Kulshreshtha, S.K., and Banerjee, S., Advar
ROOKS Techniques for Materials Characterization, Materials Science Foundat
(monograph series), Volumes 49 – 51, (2009). Volumes 49 – 51, (2009). 4. Wendlandt, W.W., Thermal Analysis, John Wiley & Sons, (1986).
5. Wachtman, J.B., Kalman, Z.H., Characterization of Materials, Butterw
Heinemann, (1993)
1. https://cac.annauniv.edu/uddetails/udpg_2015/77.%20Mat%20Sci(AC).pdf
2. http://www.digimat.in/nptel/courses/video/113106034/L11.html
WEB SOURCES 3. https://nptel.ac.in/courses/104106122
4. https://nptel.ac.in/courses/118104008 5. https://www.sciencedirect.com/journal/materials-characterization

THE CITE	ond of the course, the student will be usic to:	
CO1	Describe the TGA, DTA, DSC and TMA thermal analysis techniques and make	K1, K3
	interpretation of the results.	
CO2	The concept of image formation in Optical microscope, developments in other specialized	K2
	microscopes and their applications.	
CO3	The working principle and operation of SEM, TEM, STM and AFM.	K2, K3
	Understood Hall measurement, four –probe resistivity measurement, C-V, I-V,	K3,
	Electrochemical, Photoluminescence and electroluminescence experimental techniques with	K4
	necessary theory.	17.4
CO5	The theory and experimental procedure for x- ray diffraction and some important	K4,K5
	spectroscopic techniques and their applications.	137,13
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	•

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	2	2	3
CO2	3	3	3	2	2	2	2	2	2	2
CO3	3	3	2	2	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	2	2	2	3	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	3	3	3	2	2	2	2	2	2	3
CO2	3	3	3	2	2	2	2	2	2	2
CO3	3	3	2	2	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	2	2	2	3	2	2	2

Elective - 13.ASTROPHYSICS	II YEAR – III SEMESTER
----------------------------	------------------------

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	ASTRO PHYSICS	Elective	4			3	75

Pre-Requisites

Fundamental knowledge about electromagnetic spectrum, wave nature of light and about the universe and the galaxy where we live in.

Learning Objectives

- To impart knowledge on the physical universe and its evolution.
- > To make the student to understand fundamental principles and techniques of astronomy and astrophysics.
- > To make the student to study electromagnetic radiation from stars, atomic spectra and classification of stars.
- > To provide information about the properties and the evolution of stars.
- > To render information about astronomical instrumentation.

UNITS	Course Details
UNIT I: OBSERVATIONAL ASTRONOMY	The electromagnetic spectrum; geometrical optics (ray diagrams, focal length, magnification etc); diffraction (resolving power, Airy disc, diffraction limit etc);telescopes (reflecting, refracting, multi wavelength)
UNIT II: PROPERTIES OF STARS	Brightness (luminosities, fluxes and magnitudes); colours (black body radiation, the Planck, Stefan-Boltzmann and Wien's laws, effective temperature, interstellar reddening); spectral types; spectral lines (Bohr model, Lyman & Balmer series etc, Doppler effect); Hertzprung-Russell diagram; the main sequence (stellar masses ,binary systems, Kepler's laws, mass-luminosity relations); distances to stars (parallax, standard candles, P-L relationships, ms-fitting etc).
UNIT III: THE LIFE AND DEATH OF STARS	Energy source (nuclear fusion, p-p chain, triple-alpha, CNO cycle, lifetime of the Sun); solar neutrinos; basic stellar structure hydro static equilibrium, equation of state; evolution beyond the main sequence; formation of the heavy elements; supernovae; stellar remnants (white dwarfs, neutron stars, black holes, degeneracy pressure, Swarszchild radius, escape velocities).
UNIT IV: GALAXIES	Constituents of galaxies; stellar populations; the interstellar medium; HII regions; 21cm line; spirals and ellipticals; galactic dynamics; galaxy rotation curves and dark matter; active galaxies and quasars.
UNIT V: COSMOLOGY	Galaxies and the expanding Universe; Hubble's Law; the age of the Universe; the Big Bang; cosmic microwave background (black body radiation);big bang nucleosynthesis (cosmic abundances, binding energies, matter & radiation); introductory cosmology (the cosmological

	principle, homogeneity and isotropy, Olber's paradox); cosmological models (critical density, geometry of space, the fate of the Universe); dark energy and the accelerating Universe.							
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism							

	1.Zeilik& Gregory, Introductory Astronomy & Astrophysics,4 th edition (Saunders College Publishing)									
	2.Morison, I., Introduction to Astronomy and Cosmology, (Wiley)									
TEXT BOOKS	3. Kutner, M.L., Astronomy: A Physical Perspective (Cambridge University Press)									
	4. Green, S.F.& Jones, M.H., An Introduction to the Sun and Stars (Cambridge									
	University Press)									
	•									
	1. Jones, M.H. & Lambourne, R.J.A., An Introduction to Galaxies & Cosmology									
	(Cambridge University Press)									
REFERENCE	2. Carroll, B.W. & Ostlie, D.A., An Introduction to Modern Astrophysics (Pearson)									
BOOKS	3. Shu,F.H.,The Physical Universe, An Introduction to Astronomy, (University									
	Science Books)									
	4. Motz,L.&Duveen,A.,The Essentials of Astronomy, (ColombiaUniversityPress)									
	1. https://www.coursera.org/courses?query=astrophysics									
	2. https://www.space.com									
WEB SOURCES	3. https://www.britanica.com									
	4. https://science.nasa.gov									
	5. https://merriam-webster.com									

CO1	Recall and understand the electromagnetic radiation from celestial objects. Analyze the wave nature of light in the form of ray diagram. Apply the knowledge of phenomenon of diffraction and asses, how diffraction limits the resolution of any system having a lens or mirror. Distinguish between reflecting and refracting telescopes and their usage.	K2
CO2	Correlate luminosity, flux and magnitude, related to the brightness of a star. Analyze the evolution of stars using HR diagram. Apply and examine the various laws related to temperature of a star. Assess the distance of stars, measured using trigonometric parallax method. Understand the position of star in the celestial sphere. Distinguish between sideral and universal time.	K3 K5
CO3	Define nuclear fusion, which is the fundamental energy source of stars. Analyze how neutrinos are born during the process of nuclear fusion in the sun. Recall and explain the CNO cycle – the main source of energy of hotter stars. Comprehend stellar evolution, including red giants, supernovas, neutron stars, pulsars, white dwarfs and black holes, using evidence and presently accepted theories	K3 K4
CO4	Remember and illustrate the structure of our Milky way galaxy. Classify the types of galaxies. Understand the presence of dark matter in the universe. Explain how quasars and active galaxies are powered by super massive black holes which produce copious luminosity.	K1 K2
CO5	Explain cosmology, a branch of astronomy that involvesthe origin and evolution of the universe, from the Big Bang to today and on into the future. Define Hubble's law of cosmic expansion. Analyze and assess the big bang nucleo synthesis universe that explains the relative	K4

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	1	2	1	3	2	1	2
CO2	3	2	3	1	2	1	3	2	1	2
CO3	3	2	3	1	2	1	3	2	1	2
CO4	3	2	3	1	2	1	3	2	1	2
CO5	3	2	3	1	2	1	3	2	1	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	1	2	1	3	2	1	2
CO2	3	2	3	1	2	1	3	2	1	2
CO3	3	2	3	1	2	1	3	2	1	2
CO4	3	2	3	1	2	1	3	2	1	2
CO5	3	2	3	1	2	1	3	2	1	2

Elective - 14. QUANTUM FIELD THEORY	II YEAR -	· III	SEN	MES	TE	R

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks	
	QUANTUM FIELD THEORY	Elective	4			3	75	Ī

Pre-Requisites
Prior exposure on fundamentals of Quantum mechanics and Special Relativity will be essential.
Learning Objectives
N. T 1 . 1 . 1

- > To school the students about the analytical and numerical techniques of nonlinear dynamics.
- > To make the students understand the concepts of various coherent structures.
- > To train the students on bifurcations and onset of chaos.
- > To educate the students about the theory of chaos and its characterization.
- > To make the students aware of the applications of solitons, chaos and fractals.

UNITS	Course Details					
UNIT I: SYMMETRY PRINCIPLES	Relativistic kinematics, relativistic waves, Klein-Gordon (KG) equation as a relativistic wave equation, treatment of the KG equation as a classical wave equation: it's Lagrangian and Hamiltonian, Noether's theorem and derivation of energy-momentum and angular momentum tensors as consequence of Poincaré symmetry, internal symmetry and the associated conserved current.					
UNIT II: QUANTIZATION OF KLEIN-GORDAN FIELD	Canonical quantization of the KG field, solution of KG theory in Schrödinger and Heisenberg pictures, expansion in terms of creation and annihilation operators, definition of the vacuum and N-particle eigenstates of the Hamiltonian, vacuum expectation values, propagators, spin and statistics of the KG quantum.					
UNIT III: QUANTIZATION OF DIRAC FIELD	Review of Dirac equation and its quantization, use of anti- commutators, creation and destruction operators of particles and antiparticles, Dirac propagator, energy, momentum and angular momentum, spin and statistics of Dirac quanta.					
UNIT IV: QUANTIZATION OF ELECTRO MAGNETIC FIELDS	Review of free Maxwell's equations, Lagrangian, gauge transformation and gauge fixing, Hamiltonian, quantization in terms of transverse delta functions, expansion in terms of creation operators, spin, statistics and propagator of the photon.					
UNIT V: PERTURBATIVE INTERACTION AT TREE LEVEL	Introduction to interacting quantum fields, Wick's Theorem, Feynman Diagram, Examples from quantum electrodynamics at the tree level: positron-electron and electron-electron scattering.					
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism					

	1. J. D. BjorkenandS. D. Drell, Relativistic Quantum Fields David
	2. An Introduction to Quantum Field Theory by M. Peskin and D. V. Schroeder
TEXT	3. Quantum Field theory: From Operators to Path Integrals, 2 nd edition by Kerson Huang
BOOKS	4. Quantum Field Theory by Mark Srednicki
	5. Quantum Field Theory by Claude Itzykson and Jean Bernard Zuber.
	1. V.B. Berestetskii, E.M. Lifshitzand L.P. Pitaevskii, Quantum Electrodynamics
	2. Introduction to the Theory of Quantized Fields by N. N. Bogoliubov and D. V. Shirkov
REFERENCE	(1959)
BOOKS	3. Quantum Field Theory by L. H. Ryder (1984)
	4. Quantum Field Theory by L. S. Brown (1992)
	5. Quantum Field Theory: A Modern Introduction by M. Kaku (1993)
	1. https://homepages.dias.ie/ydri/QFTNOTES4v2.pdf
	2. https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/referencespapers.aspx
WEB	referenceid=2605249
SOURCES	3. https://archive.nptel.ac.in/courses/115/106/115106065/
	4. http://www.nhn.ou.edu/~milton/p6433/p6433.html
	5. https://plato.stanford.edu/entries/quantum-field-theory/

At the end of the course, the student will be able to:

K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;				
CO5	Understand the concept of Feynman diagram	K2		
	how perturbation theory is used here.	K1, K3		
CO4	Summarizes the interacting field, in quantum domain, and gives a discussion on	K1 K3		
CO3	Employ the creation and annihilation operators for quantization	K5		
CO2	Enable the students to understand the method of quantization to various field	K2		
CO1	Understand the interconnection of Quantum Mechanics and Special Relativity	K1		

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	2	3	3	2	3
CO2	3	3	3	2	3	3	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	3	3	3	2	3	3	3	3	2	3
CO5	3	3	3	2	3	3	3	3	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	3	3	3	2	3	2	3	3	2	3
CO2	3	3	3	2	3	3	3	3	2	3
CO3	3	3	3	2	3	2	3	3	2	3
CO4	3	3	3	2	3	3	3	3	2	3
CO5	3	3	3	2	3	3	3	3	2	3

Elective - 15. MICROPROCESSOR 8085 AND	II YEAR – III SEMESTER
MICROCONTROLLER 8051	

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	MICROPROCESSOR 8085 AND MICROCONTROLLER 8051	Elective	4			3	75

Pre-Requisites
Knowledge of number systems and binary operations
Learning Objectives

- > To provide an understanding of the architecture and functioning of microprocessor 8085A and to the methods of interfacing I/O devices and memory to microprocessor
- > To introduce 8085A programming and applications and the architecture and instruction sets of microcontroller 8051

UNITS	Course Details
UNIT I:8085	Instruction set - Addressing modes - Memory and I/O interfacing- Data
PROGRAMMING,	transfer schemes - Interrupts of 8085 - Programmable peripheral
PERIPHERAL	interface 8255(PPI)-control word format- Programmable interrupt
DEVICES AND THEIR	controller (PIC) 8259– Programmable communication interface 8251-
INTERFACING	Programmable counter /interval timer 8253.
UNIT II: 8085 INTERFACING APPLICATIONS	Seven segment display interface - Interfacing of Digital to Analog converter and Analog to Digital converter - Stepper motor interface - Measurement of electrical quantities -Voltage and current) Measurement of physical quantities (Temperature and strain).
UNIT III: 8051 MICROCONTROLLER HARDWARE	Introduction – Features of 8051 – 8051 Microcontroller Hardware: Pin-out 8051, Central Processing Unit (CPU), internal RAM, Internal ROM, Register set of 8051 – Memory organization of 8051 – Input/Output pins, Ports and Circuits – External data memory and program memory: External program memory, External data memory.
UNIT IV: 8051 INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING	Addressing modes – Data moving (Data transfer) instructions: Instructions to Access external data memory, external ROM / program memory, PUSH and POP instructions, Data exchange instructions – Logical instructions: byte and bit level logical operations, Rotate and swap operations – Arithmetic instructions: Flags, Incrementing and decrementing, Addition, Subtraction, Multiplication and division, Decimal arithmetic – Jump and CALL instructions: Jump and Call program range, Jump, Call and subroutines

UNIT V: INTERRUPT PROGRAMMING AND INTERFACING TO EXTERNAL	8051 Interrupts – Interrupt vector table – Enabling and disabling an interrupt – Timer interrupts and programming – Programming external hardware interrupts – Serial communication interrupts and programming – Interrupt priority in the 8051: Nested interrupts, Software triggering of interrupt. LED Interface Seven segment display interface- Interfacing of Digital to Analog converter and
WORLD	Analog to Digital converter - Stepper motor interface – Hex key interface
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars-Webinars on Industrial Interactions /Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1	V.Vijayendran,2005, "Fundamentals of Microprocessor-8085", 3 rd Edition							
		S.Visvanathan Pvt, Ltd.							
	2	Ramesh Gaonkar, Microprocessor Architecture, Programming and Applications with							
TEXT		8085, Penram International Publishing (2013).							
BOOKS	3	A. NagoorKani, Microprocessors & Microcontrollers, RBA Publications (2009).							
BOOKS	4	A. P. Godse and D. A. Godse, <i>Microprocessors</i> , Technical Publications, Pune (2009).							
	5	B.Ram, Fundamentals of Microprocessors & Microcontrollers, DhanpatRai							
		publications New Delhi (2016).							
	1.	Douglas V. Hall, Microprocessors and Interfacing programming and Hardware, Tata							
REFERENCE		Mc Graw Hill Publications (2008)							
BOOKS	2.	Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. Mckinlay, The 8051							
		Microcontroller and Embedded Systems, Pearson Education (2008).							
	1.	https://www.tutorialspoint.com/microprocessor/microprocessor_8085							
		_architecture.html							
WEB	2.	http://www.electronicsengineering.nbcafe.in/peripheral-mapped-io-interfacing/							
SOURCES	3.	https://www.geeksforgeeks.org/programmable-peripheral-interface-8255/							
	4.	http://www.circuitstoday.com/8051-microcontroller							
	5.	https://www.elprocus.com/8051-assembly-language-programming/							

CO1 Gain knowledge of architecture and working of 8085 microprocessor. K1 CO2 Get knowledge of architecture and working of 8051 Microcontroller. K1 CO3 Be able to write simple assembly language programs for 8085A microprocessor. K2, K3 CO4 Able to write simple assembly language programs for 8051 Microcontroller. K3, K4 CO5 Understand the different applications of microprocessor and microcontroller. K3, K5	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						
CO2 Get knowledge of architecture and working of 8051 Microcontroller. K1 CO3 Be able to write simple assembly language programs for 8085A microprocessor. K2, K3	CO5	Understand the different applications of microprocessor and microcontroller.	K3,K 5				
CO2 Get knowledge of architecture and working of 8051 Microcontroller. K1	CO4	Able to write simple assembly language programs for 8051 Microcontroller.	K3, K4				
	CO3	Be able to write simple assembly language programs for 8085A microprocessor.	K2, K3				
CO1 Gain knowledge of architecture and working of 8085 microprocessor. K1	CO2	Get knowledge of architecture and working of 8051 Microcontroller.	K 1				
	CO1	Gain knowledge of architecture and working of 8085 microprocessor.	K1				

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	3	1	1	1	1	1
CO2	2	1	1	1	1	1	1	1	1	1

CO3	3	3	3	3	3	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1
CO5	3	3	3	3	3	1	1	1	1	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	2	3	3	3	3	1	1	1	1	1
CO2	2	1	1	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1
CO5	3	3	3	3	3	1	1	1	1	1

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	SOLAR ENERGY UTILIZATION	Elective	4			3	75

Pre-Requisites				
Basic knowledge of heat energy, way of transfer of heat, solar energy, materials types				
Learning Objectives				

- > To impart fundamental aspects of solar energy utilization.
- To give adequate exposure to solar energy related industries
 To harness entrepreneurship skills
- > To understand the different types of solar cells and channelizing them to the different sectors of society
- > To develop an industrialist mindset by utilizing renewable source of energy

LINUTEG	C D (1)				
UNITS	Course Details				
UNIT I:	Conduction, Convection and Radiation - Solar Radiation at the				
HEAT TRANSFER &	earth's surface - Determination of solar time - Solar energy				
RADIATION ANALYSIS	measuring instruments.				
UNIT II:	Physical principles of conversion of solar radiation into heat flat				
SOLAR COLLECTORS	plate collectors - General characteristics - Focusing collector				
SOLAR COLLECTORS	systems – Thermal performance evaluation of optical loss.				
UNIT III:	Types of solar water heater - Solar heating system - Collectors and				
SOLAR HEATERS	storage tanks – Solar ponds – Solar cooling systems.				
UNIT IV:	Photo Voltaic principles – Types of solar cells – Crystalline				
	silicon/amorphous silicon and Thermo - electric conversion - process				
SOLAR ENERGY	flow of silicon solar cells- different approaches on the process-				
CONVERSION	texturization, diffusion, Antireflective coatings, metallization.				
	Use of nanostructures and nanomaterials in fuel cell technology -				
UNIT V:	high and low temperature fuel cells, cathode and anode reactions,				
NANOMATERIALS IN FUEL CELL	fuel cell catalysts, electrolytes, ceramic catalysts. Use of Nano				
APPLICATIONS	technology in hydrogen production and storage.				
	Industrial visit – data collection and analysis - presentation				
	Expert Lectures, Online Seminars - Webinars on Industrial				
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and				
COMPONENTS	Communication Skill Enhancement, Social Accountability and				
	Patriotism				

TEXT	1. So	lar energy	utilization	-G.D. Rai	–Khanna p	oublishers	– Delhi 1	1987.		
BOOKS	2. Ma	aheshwar	Sharon,	Madhuri	Sharon,	Carbon	"Nano	forms	and	
	Ap	Applications", Mc Graw-Hill, 2010.								
	3. So	teris A. Ka	alogirou,,	Solar Ener	gy Engine	eering: Pro	ocesses a	nd Syste	ems",	

	Academic Press, London, 2009										
	4. Tiwari G.N, "Solar Energy – Fundamentals Design, Modelling and										
	applications, Narosa Publishing House, New Delhi, 2002										
	5. Sukhatme S.P. Solar Energy, Tata McGraw Hill Publishing Company Ltd.,										
	New Delhi, 1997.										
REFERENCE	1. Energy – An Introduction to Physics – R.H.Romer, W.H.Freeman.(1976)										
BOOKS	2. Solar energy thermal processes – John A.Drife and William. (1974)										
	3. John W. Twidell& Anthony D. Weir, 'Renewable Energy Resources, 2005										
	4. John A. Duffie, William A. Beckman, Solar Energy: Thermal Processes,										
	4th Edition, john Wiley and Sons, 2013										
	5. Duffie, J.A., Beckman, W.A., "Solar Energy Thermal Process", John Wiley										
	and Sons,2007.										
WEB	1. https://pdfs.semanticscholar.org/63a5/a69421b69d2ce9f359bbfc86c63556										
SOURCES	f9a4fb										
	2. https://books.google.vg/books?id=l-										
	XHcwZo9XwC&sitesec=buy&source=gbs_vpt_read										
	3. www.nptel.ac.in/courses/112105051										
	4. www.freevideolectures.com										
	5. http://www.e-booksdirectory.com										

At the end of the course, the student will be able to:

CO1	Gained knowledge in fundamental aspects of solar energy utilization	K1					
CO2	Equipped to take up related job by gaining industry exposure	K3					
CO3	Develop entrepreneurial skills	K5					
CO4	Skilled to approach the needy society with different types of solar cells	K4					
CO5	Gained industrialist mindset by utilizing renewable source of energy	K2, K3					
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	ADVANCED SPECTROSCOPY	Elective	4			3	75

Pre-Requisites

Basic knowledge of group theory, abstract thinking ability, lasers, chemical bonds and molecular structures

Learning Objectives

- ➤ Helps students understand and appreciate spectroscopy as a sufficiently broad field in which many sub disciplines exist.
- Make them appreciate each of these specific techniques with numerous implementations.
- To realize the progress in this field that is rapid, resulting in improved instrument capabilities and an ever-widening range of applications.
- > To apply group theory in spectroscopy to shed light on molecular symmetry and determine important physical parameters.

LINITES	G D 4 11
UNITS	Course Details
	Group axioms –subgroup, simple group, Abelian group, cyclic group, order
	of a group, class- Lagrange's theorem statement and proof - Symmetry
UNITI:	operations and symmetry elements - Application: construction of group
MOLECULAR	multiplication table (not character table) for groups of order 2, 3, cyclic
SPECTROSCOPY	group of order 4, noncyclic group of order 4 – reducible and irreducible
AND GROUP	representations- Unitary representations - Schur's lemmas - Great
THEORY	orthogonality theorem - point group -Simple applications : Symmetry
	operations of water and ammonia- Construction of character table for C _{2v}
	(water) and C _{3v} (ammonia) molecules
	Lasers as Spectroscopy Light sources - Special Characteristics of Laser
UNIT II:	emission- ultra short pulses- laser cooling -Single and multi-mode lasers-
LASER	Laser tenability- Fluorescence spectroscopy with lasers- Laser Raman
	Spectroscopy – Non-linear Spectroscopy – Applications of Laser
	Spectroscopy in medical fields, materials science research
	Basic idea of Mossbauer spectroscopy - Principle- Mossbauer effect-
UNIT III:	Recoilless emission and absorption- Chemical shift -Effect of electric and
MOSSBAUER	magnetic fields – hyperfine interactions- instrumentation-Applications:
SPECTROSCOPY	understanding molecular and electronic structures
	Principle – XPS spectra and its interpretation- ECSA-EDAX- other forms
UNIT IV: XKAY	of XPS – chemical shift - Applications: - stoichiometric analysis- electronic
PHOTOELECTRON	structure- XPES techniques used in astronomy, glass industries, paints and
I SPRI IRUSI UPV	in biological research
	Determination of force constants- force field from spectroscopic data-
	normal coordinate analysis of a simple molecule (H2O) – analyzing

MOLECIII AD	homodynamia functions, montition functions, autholicy analisis hast an
MOLECULAR	7 1 7 1
MODELLING	
	from various spectroscopic studies
PROFESSION A	Expert Lectures, Online Seminars - Webinars on Industria
COMPONENT	Interactions/Visits, Competitive Examinations, Employable and
	Communication Skill Enhancement, Social Accountability and Patriotism
	1. William Kemp, 2019, Organic Spectroscopy (2 nd Edition) MacMillan
	Indian Edition.
	2. C N Banwell and McCash, 1994, Fundamentals of Molecular Spectroscop
	4th Edition, Tata McGraw–Hill, New Delhi.
TEXT BOOKS	3. D.N. Satyanarayana, 2001, Vibrational Spectroscopy and Application
	New Age International Publication.
	4. B.K. Sharma, 2015, <i>Spectroscopy</i> , Goel Publishing House Meerut.
	5. J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Roya
	Society of Chemistry, RSC, Cambridge.
	1. Demtroder. W, Laser Spectroscopy: Basic concepts and Instrumentation
	SpringerLink.
	2. B. P. Straughan and S. Walker, 1976, Spectroscopy Vol.I., Chapman and
REFERENCE	Hall, New York.
BOOKS	3. J L McHale, 2008, Molecular Spectroscopy, Pearson Education India, Ne
	Delhi.
	4. David. L. Andrews, Introduction to Laser Spectroscopy, Springer, 2020
	5. Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7 th Edition) Ne
	Age International Publishers.
	1. Fundamentals of Spectroscopy - Course (nptel.ac.in)
	2. http://mpbou.edu.in/slm/mscche1p4.pdf
WEB	3. https://onlinecourses.nptel.ac.in/noc20_cy08/preview
SOURCES	4. https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy-
	introduction-XCWRu
	5.

At the end of the course, the student will be able to:

CO1	Comprehend set of operations associated with symmetry elements of a molecule, apply	
	mathematical theory while working with symmetry operations. Apply mathematical theory	K1, K2
	while working with symmetry operations. To use group theory as a tool to characterize	111, 112
	molecules.	
CO2	Align with the recent advances in semiconductor laser technology combined sensitive	17.0
	spectroscopic detection techniques.	K3
CO3	Understand principle behind Mossbauer spectroscopy and apply the concepts of isomer	из из
	shift and quadrupole splitting to analyse molecules.	K2, K3
CO4	Assimilate this XPES quantitative technique and the instrumentation associated with this, as	1/2 1/4
	applied in understanding surface of materials.	K3, K4
CO5	Employ IR and Raman spectroscopic data along with other data for structural investigation	
	of molecules. Analyze thermodynamic functions and other parameters to evolve molecular	K5
	models.	
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	2	3	3	2
CO3	2	2	3	3	3	3	3	2	3	3
CO4	3	2	3	3	2	3	3	3	3	2
CO5	3	2	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	3	3	2	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	2	3	3	2
CO3	2	2	3	3	3	3	3	2	3	3
CO4	3	2	3	3	2	3	3	3	3	2
CO5	3	2	3	3	3	3	3	3	3	3

Elective: IOE - 18. ANALYSIS OF CRYSTAL STRUCTURES | II YEAR - IV SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	ANALYSIS OF CRYSTAL STRUCTURES	Elective	4			3	75

	Pre-Requisites
Fund	damentals of crystal structures, symmetry and X-Ray Diffraction techniques
	Learning Objectives

- To teach the concept of crystal structures and symmetry, and diffraction theory
- ➤ To provide students with a background to X-ray generation, scattering theory and experimental diffraction from single crystals
- To provide instruction on the methods and basis for determining low-molecular weight crystal structures using X-ray Crystallography
- > To give the students a background to the instrumentation used for powder diffraction and structure refinement using Rietveld method
- To teach the different levels of structure exhibited by proteins and nucleic acids and methods used in protein crystallography.

UNITS	Course details
CIVIIS	Unit cell and Bravais lattices - crystal planes and directions - basic
UNIT I:	symmetry elements operations - translational symmetries - point groups -
CRYSTAL	space groups - equivalent positions - Bragg's law - reciprocal lattice
LATTICE	concept -Laue conditions - Ewald and limiting spheres - diffraction
LITTICE	symmetry - Laue groups.
	X-ray generation, properties - sealed tube, rotating anode, synchrotron
	radiation - absorption - filters and monochromators Atomic scattering
UNIT II:	factor - Fourier transformation and structure factor - anomalous dispersion
DIFFRACTION	- Laue, rotation/oscillation, moving film methods- interpretation of
DITERIOR	diffraction patterns - cell parameter determination - systematic absences -
	space group determination.
	Single crystal diffractometers - geometries - scan modes - scintillation and
	area detectors -intensity data collection - data reduction - factors affecting
UNIT III:	X-ray intensities - temperature and scale factor - electron density - phase
STRUCTURE	problem - normalized structure factor - direct method fundamentals and
ANALYSIS	procedures -Patterson function and heavy atom method - structure
	refinement - least squares method - Fourier and difference Fourier
	synthesis - R factor - structure interpretation - geometric calculations -
	conformational studies - computer program packages.
	Fundamentals of powder diffraction - Debye Scherrer method -
UNIT IV:	diffractometer geometries - use of monochromators and Soller silts -
POWDER	sample preparation and data collection - identification of unknowns -
METHODS	powder diffraction files (ICDD) - Rietveld refinement fundamentals -
	profile analysis - peak shapes - whole pattern fitting - structure refinement

	procedures – auto-indexing – structure determination from powder data - new developments. Energy dispersive X-ray analysis – texture studies - crystallite size determination - residual stress analysis.
UNIT V: PROTEIN CRYSTALLO GRAPHY	Globular and fibrous proteins, nucleic acids - primary, secondary, tertiary and quaternary structures - helical and sheet structures - Ramachandran map and its significance – crystallization methods for proteins - factors affecting protein crystallization - heavy atom derivatives – methods used to solve protein structures.
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism.

	1. Azaroff, L.V., "Elements of X-Ray Crystallography", Techbooksl, New York, 1992.
	2. Blundell, T.L. and Johnson, L., "Protein Crystallography", Academic Press, New
	York, 1986.
TEXT	3. Cullity, B.D. and Stock, S.R. "Elements of X-ray Diffraction", Pearson, 2014.
BOOKS	4. H.L. Bhat, Introduction to Crystal Growth Principles and Practice CRC Press, Taylor
	& Francis Group, Boca Raton, Florida, 2015.
	5. B.R. Pamplin, Crystal Growth, Pergamon Press, Oxford, 1975.
	1. Glusker, J.P. and Trueblood, K.N. Crystal Structure Analysis: A Primer", Oxford
	University, Press, New York, 1994.
	2. Ladd, M.F.C and Palmer R, "Structure determination by X-ray Crystallography",
	Plenum Press, New York, 3rd Edition, 1993.
REFERENCE	3. Stout, G.H. and Jensen, L."X-ray Structure Determination, A Practical Guide",
BOOKS	Macmillan:,New York, 1989.
	4. Woolfson, M.M. "An Introduction to X-ray Crystallography" Cambridge University
	Press, New York, 1997.
	5. Sam Zhang, Lin Ki, Ashok Kumar, Materials Characterization Techniques, CRC
	Press, Taylor & Francis Group, Boca Raton, Florida, 2009
	1. https://archive.nptel.ac.in/courses/112/106/112106227/
	2. https://archive.nptel.ac.in/courses/104/108/104108098/
WEB	3. https://www.digimat.in/nptel/courses/video/102107086/L11.html
SOURCES	4. https://onlinecourses.nptel.ac.i
	n/noc19_cy35/preview
	5. https://nptel.ac.in/courses/104/104/104/104104011/

TAU UIIC	the of the course, the student will be usic to:					
CO1	O1 Understand crystal symmetry and reciprocal lattice concept for X-ray diffraction					
CO2	Gain a working knowledge of X-ray generation, X-ray photography with Laue, oscillation	V1 V2				
	and moving film methods, and space group determination	K1,K3				
CO3	Get an exposure to crystal structure determination using program packages	K1,K4				
CO4	Understand the instrumentation used for powder diffraction, data collection, data	vo va				
	interpretation, and structure refinement using Rietveld method	K2, K4				
CO5	Get an insight into the structural aspects of proteins and nucleic acids, crystallization of	K5				
	proteins and methods to solve protein structures	KJ				
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;					

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	2	1	2	2	2
CO2	3	3	3	2	2	2	1	2	2	2
CO3	3	3	2	2	2	2	2	2	2	2
CO4	3	2	2	2	2	2	2	2	2	2
CO5	3	2	2	2	2	2	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	3	3	3	2	3	2	1	2	2	2
CO2	3	3	3	2	2	2	1	2	2	2
CO3	3	3	2	2	2	2	2	2	2	2
CO4	3	2	2	2	2	2	2	2	2	2
CO5	3	2	2	2	2	2	2	2	2	2

Elective: IOE –19. SOLID WASTE MANAGEMENT	II YEAR –IV SEMESTER
---	----------------------

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	SOLID WASTE MANAGEMENT	Elective	4			3	75

	Pre-Requisites								
В	Basic knowledge of solid waste and its type								
	Learning Objectives								
	To gain basic knowledge in solid waste management procedures								

- To gain basic knowledge in solid waste management procedures
 To gain industry exposure and be equipped to take up a job.
- > To harness entrepreneurial skills.
- To analyze the status of solid waste management in the nearby areas.
 To sensitize the importance of healthy practices in waste managements

UNITS	Course Details						
UNIT I:	Introduction - Definition of solid waste - Types - Hazardous Waste:						
SOLID WASTE	Resource conservation and Renewal act – Hazardous Waste: Municipal						
MANAGEMENT	Solid waste and non-municipal solid waste.						
UNIT II: SOLID WASTE CHARACTERISTICS	Solid Waste Characteristics: Physical and chemical characteristics - SWM hierarchy - factors affecting SW generation						
UNIT III: TOOLS AND EQUIPMENT	Tools and equipment - Transportation - Disposal techniques - Composting and land filling technique						
UNIT IV: ECONOMIC DEVELOPMENT	SWM for economic development and environmental protection Linking SWM and climate change and marine litter.						
UNIT V: INDUSTRIAL VISIT	SWM Industrial visit – data collection and analysis - presentation						
	Expert Lectures, Online Seminars - Webinars on Industrial						
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and						
COMPONENTS	Communication Skill Enhancement, Social Accountability and						
	Patriotism						

	1. Handbook of Solid Waste Management /Second Edition, George							
	Tchobanoglous, McGraw Hill (2002).							
	2. Prospects and Perspectives of Solid Waste Management, Prof.							
	BHosett, New Age International (P) Ltd (2006).							
	3. Solid and Hazardous Waste Management, Second Edition, M.N Rao,							
TEXT BOOKS	BS Publications/ BSPBooks (2020).							
	4. Integrated Solid Waste Management Engineering Principles and							
	Management, Tchobanoglous, McGraw Hill (2014).							
	5. Solid Waste Management (SWM), Vasudevan Rajaram, PHI learning							
	private limited, 2016							

	1	Municipal Solid Waste Management, Christian Ludwig, Samuel
	1.	Stucki, Stefanie Hellweg, Springer Berlin Heisenberg, 2012
	2	Solid Waste Management Bhide A. D Indian National Scientific
	۷.	Documentation Centre, New Delhi Edition 1983 ASIN: B0018MZ0C2
	2	·
REFERENCE BOOKS	3.	Solid Waste Techobanoglous George; Kreith, Frank McGraw Hill Publication, New Delhi 2002, ISBN 9780071356237
	4	
	4.	Environmental Studies Manjunath D. L. Pearson Education
		Publication, New Delhi, 20061SBN-13: 978-8131709122
	5.	Solid Waste Management Sasikumar K. PHI learning, New Delhi,
		2009 ISBN 8120338693
	1.	https://www.meripustak.com/Integrated-Solid-Waste-Management-
		Engineering-Principles-And-Management-Issues-125648
	2.	https://testbook.com/learn/environmental-engineering-solid-waste-
		management/
WEB SOURCES	3.	https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsA-
		gM0iVpismAJN93CHA1sX6NuNeOKLXfQJ_jxHCOVH3QXjJ1iAC
		q30KofoaAmFsEALw_wcB
	4.	https://images.app.goo.gl/tYiW2gUPfS2cxdD28
	5.	https://amzn.eu/d/5VUSTDI

At the end of the course, the student will be able to:

CO1	Gained knowledge in solid waste management	K1						
CO2	Equipped to take up related job by gaining industry exposure	K5						
CO3	Develop entrepreneurial skills	K3						
CO4	Will be able to analyze and manage the status of the solid wastes in the nearby areas	K4						
CO5	Adequately sensitized in managing solid wastes in and around his/her locality	K5						
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	2	2	3
CO2	2	3	3	2	2	2	3	3	3	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	3	2	2	2	2	3	3	3	3	2
CO5	2	3	3	2	2	2	3	3	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	2	3	3	3	2	2	2	2	2	3
CO2	2	3	3	2	2	2	3	3	3	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	3	2	2	2	2	3	3	3	3	2
CO5	2	3	3	2	2	2	3	3	2	3

Elective: IOE – 20. SEWAGE AND WASTE WATER	II YEAR – IV SEMESTER
TREATMENT AND REUSE	

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	SEWAGE AND WASTE WATER	Elective	4			3	75
	TREATMENT AND REUSE	Licenve	7			3	13

Pre-Requisites		
Basic knowledge of classification of sewage and solid waste and its harmful effects.		
Learning Objectives		
To pain having beauty day in common and constructed Transfer and annual days		

- > To gain basic knowledge in sewage and waste water Treatment procedures
- To gain industry exposure and be equipped to take up job.
- > To harness entrepreneurial skills.
- > To analyze the status of sewage and waste water management in the nearby areas.
- > To sensitize the importance of healthy practices in waste water management.

UNITS	Course Details					
UNIT I: RECOVERY & REUSE OF WATER	Recovery & Reuse of water from Sewage and Waste water: Methods of recovery: Flocculation - Sedimentation - sedimentation with coagulation - Filtration - sand filters - pressure filters - horizontal filters - vector control measures in industries - chemical and biological methods of vector eradication					
UNIT II: DISINFECTION	radiation = Chlorination = Antisensis = Sterilant = Asentic and sterile					
UNIT III: CHEMICAL DISINFECTION	CHEMICAL Chlorination Other Chemical Methods - Chemical Disinfection Treatment Requiring - Electricity - Coagulation/Flocculation Agents as Pretreatment					
UNIT IV: PHYSICAL DISINFECTION UNIT V: INDUSTRIAL	Physical Disinfection: Introduction - Ultraviolet Radiation - Solar Disinfection - Heat Treatment - Filtration Methods - Distillation - Electrochemical Oxidation Water Disinfection by Microwave Heating.					
VISIT	Industrial visit – data collection and analysis - presentation Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,					
PROFESSIONAL COMPONENTS	Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism					

	1. Drinking water and disinfection technique, Anirudhha Balachandra. CRC press (2013)
	2. Design of Water and Wastewater Treatment Systems (CV-424/434),
	ShashiBushan,Jain Bros (2015)
	3. Integrated Water Resources Management, Sarbhukan M M, CBS PUBLICATION
TEXT	(2013)
BOOKS	4. C.S. Rao, Environmental Pollution Control Engineering, New Age International, 2007
	5. S.P. Mahajan, Pollution control in process industries, 27th Ed. Tata McGraw Hill
	Publishing Company Ltd., 2012.
	1. Handbook of Water and Wastewater Treatment Plant Operations, Frank. R Spellman,
	CRC Press, 2020
	2. Wastewater Treatment Technologies, MritunjayChaubey, Wiley, 2021.
REFERENCE	3. Metcalf and Eddy, Wastewater Engineering, 4th ed., McGraw Hill Higher Edu., 2002.
BOOKS	4. W. Wesley Eckenfelder, Jr., Industrial Water Pollution Control, 2nd Edn., McGraw
200110	Hill Inc., 1989
	5. Lancaster, Green Chemistry: An Introductory Text, 2nd edition, RSC publishing,
	2010.
	1. htts://www.google.co.in/books/edition/Drinking_Water_DisinfectionTechniquesHV
	bNBQAAQBAJ?hl=en
	2. https://www.meripustak.com/Integrated-Solid-Waste-Management-
	EngineeringPrinciples- And-Management-Issues-125648?
	3. https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsAC-
	gM0iVpismAJN93CHA1sX6NuNeOKLXfQJjxHCOVH3QXjJ1iACq30KofoaAmFsE
WEB	ALw_wcB
SOURCES	4. https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsACgM0iVpismAJN
SOURCES	93CHA1sX6NuNeOKLXfQJjxHCOVH3QXjJ1iACq30KofoaAmFsEALw_wcB
	5. https://www.amazon.in/DesignWastewaterTreatmentSystemsCV424/dp/B00IG2PI6K/
	ref=asc_df_B00IG2PI6K/?tag=googleshopmob21&linkCode=df0&hvadid=39701300
	4690&hvpos=&hvnetw=g&hvrand=4351305881865063672&hvpone=&hvptwo=&hv
	gmt=&hvdev=m&hvdvcmdl=&hvlocint=&hvlocphy=9061971&hvtargid=pla-
	890646066127&psc=1&ext_vrnc=hi
	oviditional in the in

At the end of the course, the student will be able to:

CO1	Gained knowledge in solid waste management	K1				
CO2	Equipped to take up related job by gaining industry exposure	K5				
CO3	Develop entrepreneurial skills	К3				
CO4	Will be able to analyze and manage the status of the solid wastes in the nearby areas	K4				
CO5	Adequately sensitized in managing solid wastes in and around his/her locality	K5				
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;					

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	3	3	2	3	2	3	2

CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	2	2	2	2	3	3	3	3	2
CO4	3	2	3	3	2	3	3	3	3	2
CO5	2	2	2	2	3	3	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	3	2	3	3	3	2	3	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	2	2	2	2	3	3	3	3	2
CO4	3	2	3	3	2	3	3	3	3	2
CO5	2	2	2	2	3	3	2	2	2	2

Elective: IOE – 21. DIGITAL COMMUNICATION II YEAR – IV SEMESTER

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	DIGITAL COMMUNICATION	Elective	4			3	75

Pre-Requisites					
Exposure to Fourier transform, pulse modulation, multiplexing, noises in communication signals					
Learning Objectives					

- ➤ To understand the use of Fourier, transform in analyzing the signals
- To learn about the quanta of transmission of information
 To make students familiar with different types of pulse modulation
- To have an in depth knowledge about the various methods of error controlling codes
- To acquire knowledge about spread spectrum techniques in getting secured communication

UNITS	Course Details				
UNIT I: SIGNAL ANALYSIS	Fourier transforms of gate functions, delta functions at the origin – Two delta function and periodic delta function – Properties of Fourier transform – Frequency shifting –Time shifting - Convolution –Graphical representation – Convolution theorem – Time Convolution theorem – Frequency Convolution theorem –Sampling theorem.				
UNIT II: INFORMATION THEORY	Communication system – Measurement of information – Coding – Bandot Code CCITT Code –Hartley Law – Noise in an information Carrying Channel- Effects of noise- Capacity of noise in a channel – Shannon Hartley theorem –Redundancy.				
UNIT III: PULSE MODULATION	Pulse amplitude modulation - natural sampling - Instantaneous sampling - Transmission of PAM Signals -Pulse width modulation - Time division multiplexing - Band width requirements for PAM Signals. Pulse Code Modulation -Principles of PCM -Quantizing noise - Generation and demodulation of PCM -Effects of noise -Companding - Advantages and application				
UNIT IV:ERROR CONTROL CODING	Introduction to Linear Block Codes, Hamming Codes, BCH Coding, RS Coding, Convolutional Coding, Coding Grain Viterbi Coding				
UNIT V:SPREAD SPECTRUM SYSTEMS	Pseudo Noise sequences, generation and Correlation properties, direct sequence spread spectrum systems, frequency HOP Systems, processing gain, anti-jam and multipath performance				
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism				

	1. B.P. Lathi, Communication system, Wiley Eastern.						
	2. George Kennedy, <i>Electronic Communication Systems</i> , 3 rd Edition,						
	Mc Graw Hill.						
TEXT	3. Simon Haykin, <i>Communication System</i> , 3 rd Edition, John Wiley & Sons.						
BOOKS	4. George Kennedy and Davis, 1988, <i>Electronic Communication System</i> , Tata McGraw Hill 4 th Edition.						
	5. Taub and Schilling, 1991, "Principles of Communication System", Second edition						
	Tata McGraw Hill.						
	1. John Proakis, 1995, <i>Digital Communication</i> , 3 rd Edition, McGraw Hill, Malaysia.						
	2. M. K. Simen, 1999, Digital Communication Techniques, Signal Design and Detection,						
	Prentice Hall of India.						
REFERENCE	3. Dennis Roddy and Coolen, 1995, <i>Electronics communications</i> , Prentice Hall of India						
BOOKS	IV Edition.						
DOOKS	4. Wave Tomasi, 1998, "Advanced Electronics communication System" 4 th Edition						
	Prentice Hall, Inc.						
	5. M.Kulkarni, 1988, "Microwave and Radar Engineering",						
	Umesh Publications.						
	1. http://nptel.iitm.ac.in/						
WED	2. http://web.ewu.edu/						
WEB	3. http://www.ece.umd.edu/class/enee630.F2012.html						
SOURCES	4. http://www.aticourses.com/Advanced%20Topics%20in%20Digital%20Signals						
	5. http://nptel.iitm.ac.in/courses/117101051.html						

At the end of the course, the student will be able to:

CO1	Apply the techniques of Fourier transform, convolution and sampling theorems in signal processing	K1,	К3		
	Apply different information theories in the process of study of coding of information, storage and communication	К3			
	Explain and compare the various methods of pulse modulation techniques	K4			
CO4	Apply the error control coding techniques in detecting and correcting errors- able to discuss, analyze and compare the different error control coding	К3,	K4		
		K3,			
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;					

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	2	2	3
CO2	3	3	3	1	2	2	3	2	2	3
CO3	3	3	3	1	2	2	3	2	2	3
CO4	3	3	3	1	2	2	3	2	2	3
CO5	3	3	3	1	2	2	3	2	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	3	3	3	1	2	2	3	2	2	3
CO2	3	3	3	1	2	2	3	2	2	3
CO3	3	3	3	1	2	2	3	2	2	3
CO4	3	3	3	1	2	2	3	2	2	3
CO5	3	3	3	1	2	2	3	2	2	3

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	COMMUNICATION ELECTRONICS	Elective	4			3	75

Pre-Requisites
Knowledge of Regions of electromagnetic spectrum and its characteristics
Learning Objectives

- ➤ To comprehend the transmission of electromagnetic waves thorough different types of antenna and also to acquire knowledge about the propagation of waves through earth's atmosphere and along the surface of the earth
- > To gain knowledge in the generation and propagation of microwaves
- > To acquire knowledge about radar systems and its applications and also the working principle of colour television
- > To learn the working principle of fiber optics and its use in telecommunication
- To understand the general theory and operation of satellite communication systems

UNITS	Course Details
UNIT I: ANTENNAS AND WAVE PROPAGATION	Radiation field and radiation resistance of short dipole antenna- groundedantenna-ungrounded antenna-antenna arrays-broadside and end side arrays-antenna gain-directional high frequency antennas-sky wave- ionosphere- Ecles and Larmor theory- Magnento ionic theory-ground wave propagation
UNIT II: MICROWAVES	Microwave generation—multicavity Klystron-reflex klystron-magnetron travelling wave tubes (TWT) and other microwave tubes-MASER-Gunn diode-wave guides-rectangular wave guides-standing wave indicator andstanding wave ratio(SWR)
UNIT III: RADAR AND TELEVISION	Elements of a radar system-radar equation-radar performance Factors radar transmitting systems-radar antennas-duplexers-radar receivers and indicators-pulsed systems-other radar systems-colour TVtransmission and reception-colour mixing principle-colour picture tubes-Delta gun picture tube-PIL colour picture tube-cable TV, CCTV and theatre TV
UNIT IV: OPTICAL FIBER	Propagation of light in an optical fibre-acceptance angle-numerical aperture-step and graded index fibres-optical fibres as a cylindrical waveguide-wave guide equations-wave guide equations in step index fibres -fibre losses and dispersion-applications
UNIT V: SATELLITE COMMUNICATION	Orbital satellites-geostationary satellites-orbital patterns-satellite system link models-satellite system parameters-satellite system link equation link budget-INSAT communication satellites
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

TEXT BOOKS	 Handbook of Electronics by Gupta and Kumar, 2008 edition. Electronic communication systems – George Kennedy and Davis, Tata McGraw Hill, 4th edition, 1988. Taub and Schilling, principles of communication systems, second edition, Tata Mc Graw Hill (1991). M. Kulkarani, Microwave and radar engineering, UmeshPublications, 1998. Mono Chrome and colour television, R. R. Ghulathi
REFERENCE BOOKS	 Electronic communications – Dennis Roody and Coolen, Prentice Hall of India, IV edition, 1995. Wayne Tomasi, Advanced electronics communication systems, fourth edition, Prentice Hall of India, 1998 Dennis Roddy and Coolen,1995, Electronics communications, Prentice Hall of India IV Edition. Wayne Tomasi, 1998 "Advanced Electronics communication System" 4thedition, Prentice Hall of India, 1998 S. Salivahanan, N. Suersh Kumar & A. Vallavaraj, 2009, Electronic Devices and Circuits, Tata McGraw-Hill Publishing Company Limited, New Delhi, Second Edition.
WEB SOURCES	 https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/ https://www.polytechnichub.com/difference-analog-instruments-digital-instruments/ http://nptel.iitm.ac.in/ http://web.ewu.edu/ http://nptel.iitm.ac.in/

CO1	Discuss and compare the propagation of electromagnetic waves through sky and on earth's surface Evaluate the energy and power radiated by the different types of antenna	K1, K5
CO2	Compare and differentiate the methods of generation of microwaves analyze the propagation of microwaves through wave guides- discuss and compare the different methods of generation of microwaves	
	Classify and compare the working of different radar systems- apply the principle of radar in detecting locating, tracking, and recognizing objects of various kinds at considerable distances – discuss the importance of radar in military- elaborate and compare the working of different picture tube	
	Classify, discuss and compare the different types of optical fiber and also to justify the need of it-discover the use of optical fiber as wave guide	K1, K3
	Explain the importance of satellite communication in our daily life-distinguish between orbital and geostationary satellites elaborate the linking of satellites with ground station on the earth	
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (**CO**) for each course with program outcomes (**PO**) and program specific outcomes (**PSO**) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	2	1	3
CO2	3	3	3	1	2	2	3	2	1	3
CO3	3	3	3	1	2	2	3	2	1	3
CO4	3	3	3	1	2	2	3	2	1	3
CO5	3	3	3	1	2	2	3	2	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO ₁₀
CO1	3	3	3	1	2	2	3	2	1	3
CO2	3	3	3	1	2	2	3	2	1	3
CO3	3	3	3	1	2	2	3	2	1	3
CO4	3	3	3	1	2	2	3	2	1	3
CO5	3	3	3	1	2	2	3	2	1	3

Elective: IOE - 23. SENSORS BASED EMBEDDED	II YEAR-IV SEMESTER
SYSTEMS for IOT	

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	SENSORS BASED EMBEDDED SYSTEMS for IOT	Elective	4			3	75

Pre-Requisites Knowledge of types of Sensors, Embedded microcontroller ATmega328 and its IOT applications Learning Objectives

- Learn the working principles/ concepts of various types of sensors available.
- Experience the behavior of different types of sensors available in the market.
- ➤ Learn the Embedded C software & the procedure for compiling to generate the machine language Hex codes.
- ➤ Get familiar with the use of embedded micro controller ATmega328 by performing some out cum based exercises in the Lab.
- ➤ Understand the concepts of embedded systems using embedded microcontroller ATmega328 for automation& Robotic applications.
- ➤ Learn IOT concept of wireless data communication & get introduced to IOT platform ready Node MCU IC ESP 8266-12E with inbuilt wi-fi & ADC functions.

UNITS	Course Details
UNIT I: SENSORS FOR AUTOMATION	Automation-Role of Sensor / Transducer in electronic automation – Different types of energy & the suitable sensors available – The basic working principle of Optical sensor LDR, Heat sensor LM-35, IR module for invisible radiation, Ultrasonic Sensor for ultrasonic sound waves – Load cell for mechanical strain – MQ-2 / MQ-6 Gas sensors for LPG & Alcohol – Water probes & Moisture sensor & Humidity sensor HT-11.
UNIT II: EMBEDDED SYSTEM & MICROCONTROLLER ATmega 328	Embedded System concept – the role of microprocessor, microcontroller & embedded microcontroller – Special features of ATmega328- Electrically alterable ROM- FLASH Memory – Von-Newman architecture - Harvard Architecture & AVR architecture for FLASH memory.
UNIT III: LAB APPLICATIONS using ATmega328 –Practicals	Embedded C programming- Blinking of LED & Sensor based automation systems applications- Light activated Morning Alarm-Darkness activated Night lamp — Heat activated Fire Alarm-Intruder alarm & visitor counter using IR — LPG leak detector-Range finder- Message display on LCD panel.
UNIT IV: APPLICATIONS using EMBEDDED SYSTEMS	Robotics: 433 MHz RF (Transmitter/Receiver) based manual switches-controlledRobot – Android App based touch screen control Robot – Goggle App based voice control Robot- RFID controlled security system –Finger prints controlled Bio sensor for security system- cashless smart trolley – RFID based automatic

	Fastrack Toll gate control. Agriculture Automation- Automatic irrigation control for types of crops – Automatic plant growth monitoring system for exotic plants.
UNIT V: IOT APPLICATIONS USING EMBEDDED SYSTEMS	IOT Concept – IOT network Protocols & tools – wireless communication of digital data through Bluetooth – Wi-Fi – using NODE MCU ICS ESP 8266- 12E sending message to the mobile.
PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. Michael J Pont, "Embedded C", Addison-Wesley, An imprint of Pearson Education, 2002.
	2. K.V. Shibu, Introduction to Embedded Systems, McGRAW Hill Publications (2009).
TEXT BOOKS	3. Raj Kamal, Embedded Systems, TATA McGRAW Hill Publications
	(2003).
	4. Kamal, R., (2017), Internet of Things- Architecture and Design Principles,
	1E, Mcgraw Hill.
	1. Lab Manual for IOT SENSOR based Embedded Microcontroller
REFERENCE	ATmega328
	2. Workshop Lecture PPTs on: Embedded Systems, Sensors & IOT
BOOKS	3. Lecture PPTs on: IOT based Embedded Systems for Home Automation,
	Urban automation & Agriculture Farming'.
PREPARATORY	1. Misra, S., Introduction to Internet of Things, NPTEL Course Material,
COURSE	Department of Computer Science and Engineering, IIT Kharagpur,
MATERIAL FOR	https://nptel.ac.in/courses/106105166/
REFERENCE	2. Manuel – NodeMCU Lua.pdf - EINSRONIC
	3. https://www.electronicwings.com/nodemcu/nodemcu-adc-with-arduino-ide

COURSE OUTCOMES: At the end of the course, the student will be able to:

110 0110	end of the course, the student will be usic to:	
CO1	Gaining the knowledge of Sensors for automation. Specifically to understand the sensor for leakage of gas & alcohol. Also to understand the sensor for humidity.	K1, K2
CO2	Can learn the Embedded microcontroller ATmega328 and can understand the memories.	K1, K2
CO3	To develop the embedded C program for different types of sensors.	K3, K4
	To apply Robotic control applications with sensors and also automatic irrigation for agricultural crops.	K3,K4, K5
CO5	To Learn and understand the IOT concepts with networking with mobile communication.	K3, K5
	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

SKILL ENHANCEMENT COURSES

SEC 1 – RENEWABLE ENERGY AND ENERGY	I YEAR-II SEMESTER
HARVESTING	

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	RENEWABLE ENERGY AND ENERGY HARVESTING	SEC	2			2	75

Pre-Requisites	
Knowledge of Renewable energy and energy harvesting resources	
Learning Objectives	
To loom about alternate courses of energy	

- > To learn about alternate sources of energy.
- > To know the ways of effectively utilizing the solar energy.
- To study the method of harvesting wind energy and ocean energy.
 To learn the techniques useful for the conversion of hydro energy and piezo energy harvesting.
- > To know about utilization of electromagnetic energy harvesting.

UNITS	Course Details
UNIT I: Fossil fuels and Alternate Sources of energy	Fossil fuels and nuclear energy, their limitation, need of renewable energy, non-conventional energy sources. An overview of developments in Offshore Wind Energy, Tidal Energy, Wave energy systems, Ocean Thermal Energy Conversion, solar energy, biomass, biochemical conversion, biogas generation, geothermal energy tidal energy, Hydroelectricity.
UNIT II: Solar energy	Solar energy , its importance, storage of solar energy, solar pond, non convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell, absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits and sun tracking systems
UNIT III: Wind Energy harvesting & Ocean Energy	Wind Energy harvesting: Fundamentals of Wind energy, Wind Turbines and different electrical machines in wind turbines, Power electronic interfaces, and grid inter connection topologies. Ocean Energy: Ocean Energy Potential against Wind and Solar, Wave Characteristics and Statistics, Wave Energy Devices. Tide characteristics and Statistics, Tide Energy Technologies, Ocean Thermal Energy, Osmotic Power, Ocean Bio-mass
UNIT IV: Hydro Energy, Piezoelectric Energy harvesting	HydroEnergy :Hydropowerresources,hydropowertechnologies,environmen talimpact of hydro power sources, Piezoelectric Energy harvesting : Introduction, Physics and characteristics of piezoelectric effect, materials and mathematical description of piezoelectricity, Piezoelectric parameters and modeling piezoelectric generators, Piezoelectric energy harvesting applications
UNIT V: Electromagnetic Energy Harvesting	Electromagnetic Energy Harvesting : Linear generators, physics mathematical models, recent applications - Carbon captured technologies, cell, batteries, power consumption

TEXT BOOKS & REFERENCE BOOKS	 Non-conventional energy sources- G.DRai –Khanna Publishers, NewDelhi Solar energy -M PAgarwal- S Chand and Co. Ltd. Solar energy - Suhas P Sukhative Tata Mc Graw-Hill Publishing Company Ltd. Godfrey Boyle, "Renewable Energy, Power for a sustainable future", 2004, Oxford University Press, in association with The Open University. Dr.PJayakumar, Solar Energy: Resource Assessment Handbook, 2009 J. Balfour, M. Shaw and S. Jarosek, Photo voltaics, Lawrence J Good rich (USA) http://en.wikipedia.org/wiki/Renewable_energy
	Demonstration of Training modules on solar energy, wind energy, etc.
DEMONSTRATIONS AND EXPERIMENTS	Conversion of thermal energy into voltage using thermoelectric modules

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	ELECTRICAL CIRCUIT NETWORK SKILLS	SEC	4			2	75

Pre-Requisites Knowledge on Electrical connections in AC and DC mode power and its networking skill **Learning Objectives** > To introduce the basic principle of electrical circuits.

- > To learn electrical drawing symbols, colour coding and circuit designing.
- > To understand the functions of transformers and its usage.
- > To introduce the concepts of electrical protection and proper wiring

UNITS	Course Details				
UNIT I: Basic Electricity Principles & Electricity Principles & Electricity Circuits Basic Electricity Principles & Electricity Principles & Electricity Principles & Electricity Principles & Electrical Circuits Basic Electricity Principles: Voltage, Current, Resistance, and Power. Of law. Series, parallel, and series-parallel combinations. AC Electricity and Electricity. Familiarization with millimeter, voltmeter and ammeter Understanding Electrical Circuits: Main electric circuit elements and combination. Rules to analyze DC sourced electrical circuits. Current and voltage drop across the DC circuit elements. Single – phase and three – phase altern current sources. Rules to analyze AC sourced electrical circuits. Real, image and complex power components of AC source. Power factor. Saving energy money					
UNIT II: Solar energy	Electrical Drawing and Symbols: Drawing symbols. Blueprints. Reading Schematics. Ladder diagrams. Electrical Schematics. Power circuits. Control circuits. Reading of circuit schematics. Tracking the connections of elements and identify current flow and voltage drop Generators and Transformers: DC Power sources. AC/DC generators. Inductance, capacitance and impedance. Operation of transformers				
UNIT III: Electric Motors & Solid-State Devices	Electric Motors: Single-phase, three-phase & DC motors. Basic design. Interfacing DC or AC sources to control heaters & motors. Speed & power of ac motor. Solid-State Devices: Resistors, inductors and capacitors. Diode and rectifiers. Components in Series or in shunt. Response of inductors and capacitors with DC or AC sources				
UNIT IV: Electrical Protection	Electrical Protection : Relays. Fuses and disconnect switches. Circuit breakers. Overload devices. Ground-fault protection. Grounding and isolating. Phase reversal. Surge protection. Interfacing DC or AC sources to control elements (relay protection device)				
UNIT V: Electrical Wiring	Electrical Wiring: Different types of conductors and cables. Basics of wiring-Star and delta connection. Voltage drop and losses across cables and conductors. Instruments to measure current, voltage, power in DC and AC circuits. Insulation. Solid and stranded cable. Conduit. Cable trays. Splices: wire nuts,				

	crimps, terminal blocks, split bolts, and solder. Preparation of extension board		
TEXT BOOKS & REFERENCE BOOKS	 A text book in Electrical Technology – B L Theraja – S Chand &Co. A text book of Electrical Technology – A K Theraja Performance and design of AC machines-M G Say ELBS Edn 		

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	BASIC INSTRUMENTATION SKILLS	SEC	4			2	75

Pre-Requisites
Knowledge of measuring of instruments and its technical operating skill
Learning Objectives
➤ To handle the instruments with proper way with resolution and accuracy

- To gain knowledge in the handling and usage of instruments and its troubleshooting
 To learn the working principle behind the instruments

UNITS	Course Details		
UNIT I: Basic of Measurement	Basic of Measurement: Instruments accuracy, precision, sensitivity, resolution range etc. Errors in measurements and loading effects. Multimeter: Principles of measurement of dc voltage and dc current, ac voltage, ac current and resistance. Specifications of a multimeter and their significance		
UNIT II: Electronic Voltmeter	Electronic Voltmeter: Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity. Principles of voltage, measurement (block diagram only). Specifications of an electronic Voltmeter/ Multimeter and their significance. AC milli voltmeter: Type of AC millivoltmeters: Amplifier- rectifier, and rectifier- amplifier. Block diagram ac millivoltmeter, specifications and their significance		
UNIT III: Cathode Ray Oscilloscope its Use	Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only– no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance. Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working		
UNIT IV: Signal Generators and Analysis Instruments & Impedance Bridges & Q-Meters	Signal Generators and Analysis Instruments: Block diagram, explanation and specifications of low frequency signal generators. pulse generator, and function generator. Brief idea for testing, specifications. Distortion factor meter, wave analysis Impedance Bridges & Q-Meters: Block diagram of bridge. working principles of basic (balancing type) RLC bridge. Specifications of RLC bridge. Block diagram & working principles of a Q-Meter. Digital LCR bridges		
UNIT V: Digital Instruments &	Digital Instruments: Principle and working of digital meters. Comparison of analog & digital instruments. Characteristics of a digital meter. Working principles of digital voltmeter.		

Multimeter	Digital Multimeter: Block diagram and working of a digital multimeter.				
	Working principle of time interval, frequency and period measurement using				
	universal counter/ frequency counter, time - base stability, accuracy and				
	resolution				
	1. Use of an oscilloscope.				
	2. CRO as a versatile measuring device.				
The test of lab skills	3. Circuit tracing of Laboratory electronic equipment,				
will be of the	4. Use of Digital multimeter /VTVM for measuring voltages				
following test items	5. Circuit tracing of Laboratory electronic equipment,				
	6. Winding a coil / transformer.				
	7. Study the layout of receiver circuit.				
	8. Trouble shooting a circuit				
	9. Balancing of bridge				
	1. To observe the loading effect of a multimeter while measuring voltage				
Laboratory Exercises					
	2. To observe the limitations of a multimeter for measuring high				
	frequency voltage and currents.				
	3. To measure Q of a coil and its dependence on frequency, using a Q - meter.				
	4. Measurement of voltage, frequency, time period and phase angle using CRO.				
	5. Measurement of time period, frequency, average period using universal counter/ frequency counter.				
	6. Measurement of rise, fall and delay times using a CRO.				
	7. Measurement of distortion of a RF signal generator using distortion factor meter.				
	8. Measurement of R, L and C using a LCR bridge /universal bridge				
	Using a Dual Trace Oscilloscope				
Open Ended	2. Converting the range of a given measuring instrument (voltmeter,				
Experiment	ammeter)				
_					
	1. A text book in Electrical Technology – B LTheraja-S Chand and Co.				

1. A text book in Electrical Technology – B LTheraja-S Chand and Co. 2. Performance and design of AC machines – MG Say ELBS Edn. 3. Digital Circuits and systems, Venugopal, 2011, TataMcGrawHill. 4. Logic circuit design, Shimon P.Vingron, 2012, Springer. 5. Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning. 6. Electronic Devices and circuits, S.Salivahanan & N.S.Kumar, 3rdEd. 2012, Tata Mc-Graw Hill 7. Electronic circuits: Handbook of design and applications, U.Tietze, Ch.Schenk, 2008, Springer 8. ElectronicDevices,7/eThomasL.Floyd,2008,PearsonIndia

Subject Code	Subject Name	Category	L	Т	P	Credits	Marks
	COMPUTATIONAL PHYSICS	SEC	4			2	75

Pre-Requisites

- ➤ Basic knowledge in Algorithms, flow charts developing skills
- ➤ Basic knowledge of FORTRAN, LaTex Scientific programming.

Learning Objectives

- The aim and objective of the course on Computational Practical skill
- > To familiarize the scientific computation and programming using FORTRAN
- To equipe the computational skill using LaTex tools.
- To apply the software tools to explore the concepts of physical science.
- To approach the real time activities using physics and mathematical formulations.

UNITS	Course Details			
UNIT I: Introduction, Algorithms and Flowcharts	Introduction: Importance of computers in Physics, paradigm for solving physics problems for solution. Usage of linux as an Editor. Algorithms and Flowcharts: Algorithm: Definition, properties and development. Flowchart: Concept of flowchart, symbols, guidelines, types. Examples: Cartesian to Spherical Polar Coordinates, Roots of Quadratic Equation, Sum of two matrices, Sum and Product of a finite series, calculation of sin(x) as a series, algorithm for plotting (1) Lissajous figures and (2) trajectory of a projectile thrown at an angle with the horizontal			
UNIT II: Scientific Programming	Scientific Programming: Some fundamental Linux Commands (Internal and External commands). Development of FORTRAN, Basic elements of FORTRAN: Character Set, Constants and their types, Variables and their types, Keywords, Variable Declarationand concept of instruction and program. Operators: Arithmetic, Relational, Logical and Assignment Operators. Expressions: Arithmetic, Relational, Logical, Character and Assignment Expressions. FORTRAN Statements: I/O Statements (unformatted/formatted), Executable and Non-Executable Statements, Layout of Fortran Program, Format of writing Program and concept of coding, Initialization and Replacement Logic. Examples from physics problems.			
UNIT III: Control Statements	Control Statements: Types of Logic (Sequential, Selection, Repetition), Branching Statements (Logical IF, Arithmetic IF, Block IF, Nested Block IF, SELECT CASE and ELSE IF Ladder statements), Looping Statements (DO-CONTINUE, DO-ENDDO, DO-WHILE, Implied and Nested DO Loops), Jumping Statements (Unconditional GOTO, Computed GOTO, Assigned GOTO) Subscripted Variables (Arrays: Types of Arrays, DIMENSION Statement, Reading and Writing Arrays), Functions and Subroutines (Arithmetic Statement Function, Function Subprogram and Subroutine), RETURN, CALL, COMMON and EQUIVALENCE Statements), Structure, Disk I/O Statements, open a file, writing in a file, reading from a file. Examples from physics problems			

UNIT IV: Scientific word processing: Introduction to LaTeX:

Scientific word processing: Introduction to LaTeX: TeX /LaTeX word processor, preparing a basic LaTeX file, Document classes, Preparing an input file for LaTeX, Compiling LaTeX File, LaTeX tags for creating different environments, Defining LaTeX commands and environments, Changing the type style, Symbols from other languages. Equation representation: Formulae and equations, Figures and other floating bodies, Lining in columns- Tabbing and tabular environment, Generating table of contents, bibliography and citation, Making an index and glossary, List making environments, Fonts, Picture environment and colors, errors.

UNIT V: Visualization & hands on Exercises

Visualization: Introduction to graphical analysis and its limitations. Introduction to Gnuplot. importance of visualization of computational and computational data, basic Gnuplot commands: simple plots, plotting data from a file, saving and exporting, multiple data sets per file, physics with Gnuplot (equations, building functions, user defined variables and functions), Understanding data with Gnuplot

Hands on exercises:

- 1. To compile a frequency distribution and evaluate mean, standard deviation etc.
- 2. To evaluate sum of finite series and the area under a curve.
- 3. To find the product of two matrices
- 4. To find a set of prime numbers and Fibonacci series.
- 5. To write program to open a file and generate data for plotting using Gnuplot.
- 6. Plotting trajectory of a projectile projected horizontally.
- 7. Plotting trajectory of a projectile projected making an angle with the horizontally.
- 8. Creating an input Gnuplot file for plotting a data and saving the output for seeing on the screen. Saving it as an eps file and as a pdf file.
- 9. To find the roots of a quadratic equation.
- 10. Motion of a projectile using simulation and plot the output for visualization.
- 11. Numerical solution of equation of motion of simple harmonic oscillator and plot the outputs for visualization.
- 12. Motion of particle in a central force field and plot the output for visualization.

TEXT BOOKS & REFERENCE BOOKS

- 1. Introduction to Numerical Analysis, S.S.Sastry, 5thEdn. 2012, PHI Learning Pvt. Ltd.
- 2. ComputerProgramminginFortran77".V.Rajaraman (Publisher: PHI).
- 3. LaTeX-A Document Preparation System", Leslie Lamport (Second Edition, Addison -Wesley, 1994).
- 4. Gnuplot in action: understanding data with graphs, Philip K Janert, (Manning 2010)
- 5. Schaum's Outline of Theory and Problems of Programming with Fortran, S Lipsdutz and A Poe, 1986 Mc-Graw Hill Book Co.
- 6. Computational Physics: An Introduction, R. C. Verma, et al. New Age International Publishers, New Delhi(1999)

- 7. A first course in Numerical Methods, U.M.A scher and C. Greif, 2012, PHI Learning
- 8. Elementary Numerical Analysis, K.E.Atkinson, 3rdEdn. 2007, Wiley India Edition