THIRUVALLUVAR UNIVERSITY

SERKKADU, VELLORE-632115

B.Sc. MATHEMATICS

SYLLABUS

FROM THE ACADEMIC YEAR
2023-2024

CONTENTS

1. Introduction
2. Programme Outcome
3. Programme Specific Outcome
4. Value Additions to the revamped curriculum
5. Curriculum Design \&Structure of Course
6. Learning and Teaching Activities
7. Template Semester wise
8. Different Types of Courses
8.1 Core Courses
8.2 Elective Courses (Generic / Discipline Centric)
8.3 Skill Development Courses
8.4 Institution-Industry-Interaction

1. Introduction

B.Sc.Mathematics : Programme Outcome, Programme Specific Outcome and Course Outcome

Mathematics is the study of quantity, structure, space and change, focusing on problem solving, with wider scope of application in science, engineering, technology, social sciences etc. The key core areas of study in Mathematics include Algebra, Analysis (Real \& Complex), Differential Equations, Geometry, and Mechanics. The Bachelor's Degree B.Sc. Mathematics is awarded to the students on the basis of knowledge, understanding, skills, attitudes, values and academic achievements expected to be acquired by learners at the end of the Programme. Learning outcomes of Mathematics are aimed at facilitating the learners to acquire these attributes, keeping in view of their preferences and aspirations for gaining knowledge of Mathematics.

Bachelor's degree in Mathematics is the culmination of in-depth knowledge of algebra, calculus, geometry, differential equations and several other branches of Mathematics. This also leads to study of related areas like Computer science, Financial Mathematics, Statistics and many more. Thus, this programme helps learners in building a solid foundation for higher studies in Mathematics. The skills and knowledge gained have intrinsic aesthetics leading to proficiency in analytical reasoning. This can be utilised in Mathematical modelling and solving real life problems.

Students completing this programme will be able to present Mathematics clearly and precisely, make abstract ideas precise by formulating them in the language of Mathematics, describe Mathematical ideas from multiple perspectives and explain fundamental concepts of Mathematics to non-Mathematicians.

Completion of this programme will also enable the learners to join teaching profession, enhance their employability for government jobs, jobs in banking, insurance and investment sectors, data analyst jobs and jobs in various other public and private enterprises.

LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK GUIDELINES BASED REGULATIONS FOR UNDER GRADUATE PROGRAMME	
Programme:	B.Sc., MATHEMATICS
Programme Code:	
Duration:	3 years [UG]
Programme Outcomes:	PO1: Disciplinary knowledge: Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate Programme of study PO2: Communication Skills: Ability to express thoughts and ideas effectively in writing and orally; Communicate with others using appropriate media; confidently share one's views and express herself/himself; demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups. PO3: Critical thinking: Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications; formulate coherent arguments; critically evaluate practices, policies and theories by following scientific approach to knowledge development. PO4: Problem solving: Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of nonfamiliar problems, rather than replicate curriculum content knowledge; and apply one's learning to real life situations. PO5: Analytical reasoning: Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyze and synthesize data from a variety of sources; draw valid conclusions and support them with evidence and examples, and addressing opposing viewpoints. PO6: Research-related skills: A sense of inquiry and capability for asking relevant/appropriate questions, problem arising, synthesising and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions from data, establish hypotheses, predict cause-and-effect relationships; ability to plan, execute and report the results of an experiment or investigation PO7: Cooperation/Team work: Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team PO8: Scientific reasoning: Ability to analyse, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective. PO9: Reflective thinking: Critical sensibility to lived experiences, with

	self awareness and reflexivity of both self and society. PO10 Information/digital literacy: Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources; and use appropriate software for analysis of data. PO 11 Self-directed learning: Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion. PO 12 Multicultural competence: Possess knowledge of the values and beliefs of multiple cultures and a global perspective; and capability to effectively engage in a multicultural society and interact respectfully with diverse groups. PO 13: Moral and ethical awareness/reasoning: Ability toembrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstratingthe ability to identify ethical issues related to one"s work, avoid unethical behaviour such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights; appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all aspects of work. PO 14: Leadership readiness/qualities: Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team members to engage with that vision, and using management skills to guide people to the right destination, in a smooth and efficient way. PO 15: Lifelong learning: Ability to acquire knowledge and skills, including ,learning how to learn", that are necessary for participating in learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge/skill development/reskilling.

Under Graduate Programme

ProgrammeOutcomes:

PO1: Disciplinary Knowledge: Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.

PO2: Critical Thinking: Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications; formulate coherent arguments; critically evaluate practices, policies and theories by following scientific approach to knowledge development.

PO3: Problem Solving: Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply one's earning to real life situations.

PO4: Analytical Reasoning: Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyze and synthesize data from a variety of sources; draw valid conclusions and support them with evidence and examples and addressing opposing viewpoints.

PO5: Scientific Reasoning:Ability to analyse, interpret and draw conclusions from quantitative / qualitative data; and critically evaluate ideas, evidence, and experiences from an open minded and reasoned perspective.

PO6: Self-directed \& Lifelong Learning: Ability to work independently, identify and manage a project. Ability to acquire knowledge and skills, including "learning how to learn", through self-placed and self-directed learning aimed at personal development, meeting economic, social and cultural objectives.

B.Sc Mathematics

Programme Specific Outcomes:

PSO1: Acquire good knowledge and understanding, to solve specific theoretical \& applied problems in different area of mathematics \& statistics.

PSO2: Understand, formulate, develop mathematical arguments, logically and use quantitative models to address issues arising in social sciences, business and other context/fields.

PSO3: To prepare the students who will demonstrate respectful engagement with other's ideas, behaviors, beliefs and apply diverse frames of references to decisions and actions.To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.

Mapping of Course Learning Outcomes (CLOs) with Programme Outcomes (POs) and Programme Specific Outcomes (PSOs)can be carried out accordingly, assigning the appropriate level in the grids:

| | POs | | | | | | | PSOs | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 | 2 | 3 | 4 | 5 | 6 | \cdots | 1 | 2 | \cdots |
| CLO1 | | | | | | | | | | |
| CLO2 | | | | | | | | | | |
| CLO3 | | | | | | | | | | |
| CLO4 | | | | | | | | | | |
| CLO5 | | | | | | | | | | |

Highlights of the Revamped Curriculum:

> Student-centric, meeting the demands of industry \& society, incorporating industrial components, hands-on training, skill enhancement modules, industrial project, project with viva-voce, exposure to entrepreneurial skills, training for competitive examinations, sustaining the quality of the core components and incorporating application oriented content wherever required.
> The Core subjects include latest developments in the education and scientific front, advanced programming packages allied with the discipline topics, practical training, devising mathematical models and algorithms for providing solutions to industry / real life situations. The curriculum also facilitates peer learning with advanced mathematical topics in the final semester, catering to the needs of stakeholders with research aptitude.
> The General Studies and Mathematics based problem solving skills are included as mandatory components in the 'Training for Competitive Examinations' course at the final semester, a first of its kind.
> The curriculum is designed so as to strengthen the Industry-Academia interface and provide more job opportunities for the students.
> The Industrial Statistics course is newly introduced in the fourth semester, to expose the students to real life problems and train the students on designing a mathematical model to provide solutions to the industrial problems.
> The Internship during the second year vacation will help the students gain valuable work experience, that connects classroom knowledge to real world experience and to narrow down and focus on the career path.
> Project with viva-voce component in the fifth semester enables the student, application of conceptual knowledge to practical situations. The state of art technologies in conducting a Explain in a scientific and systematic way and arriving at a precise solution is ensured. Such innovative provisions of the industrial training, project and internships will give students an edge over the counterparts in the job market.
> State-of Art techniques from the streams of multi-disciplinary, cross disciplinary and inter disciplinary nature are incorporated as Elective courses, covering conventional topics to the latest - Artificial Intelligence.

Value Additions in the Revamped Curriculum:

Semester	Newly introduced Components	Outcome / Benefits
I	Foundation Course To ease the transition of learning from higher secondary to higher education, providing an overview of the pedagogy of learning abstract Mathematics and simulating mathematical concepts to real world.	- Instil confidence among students - Create interest for the subject
$\begin{array}{\|l\|} \hline \text { I, II, } \\ \text { III, IV } \end{array}$	Skill papers Enhancement (Discipline centric / Generic / Entrepreneurial)	- Industry ready graduates - Skilled human resource - Students are equipped with essential skills to make
		- Training on Computing / Computational skills enable the students gain knowledge and exposure on latest computational aspects
		- Data analytical skills will enable students gain internships, apprenticeships, field work involving data collection, compilation, analysis etc.
		- Entrepreneurial skill training will provide an opportunity for independent livelihood - Generates self - employment - Create small scale entrepreneurs - Training to girls leads to women empowerment
		- Discipline centric skill will improve the Technical knowhow of solving real life problems using ICT tools
$\begin{aligned} & \text { III, IV, } \\ & \text { V \& VI } \end{aligned}$	Elective papers- An open choice of topics categorized under Generic and Discipline Centric	- Strengthening the domain knowledge - Introducing the stakeholders to the State-of Art techniques from the streams of multi-disciplinary, cross disciplinary and inter disciplinary nature - Students are exposed to Latest topics on Computer Science / IT, that require strong mathematical background

		- Emerging topics in higher education / industry / communication network / health sector etc. are introduced with hands-on-training, facilitates designing of mathematical models in the respective sectors
IV	Industrial Statistics	- Exposure to industry moulds students into solution providers - Generates Industry ready graduates - Employment opportunities enhanced
II year Vacation activity	Internship / Industrial Training	- Practical training at the Industry/ Banking Sector / Private/ Public sector organizations / Educational institutions, enable the students gain professional experience and also become responsible citizens.
V Semester	Project with Viva - voce	- Self-learning is enhanced - Application of the concept to real situation is conceived resulting in tangible outcome
VI Semester	Introduction of Professional Competency component	- Curriculum design accommodates all category of learners; 'Mathematics for Advanced Explain' component will comprise of advanced topics in Mathematics and allied fields, for those in the peer group / aspiring researchers; - 'Training for Competitive Examinations’ -caters to the needs of the aspirants towards most sought after services of the nation viz, UPSC, CDS, NDA, Banking Services, CAT, TNPSC group services, etc.
Extra Credits: For Advanced Learners / Honours degree		- To cater to the needs of peer learners / research aspirants

[^0]2. Credit Distribution for UG Programme in Mathematics

Sem I	Credit	H	Sem II	Credit	H	Sem III	Credit	H	Sem IV	Credit	H	Sem V	Credit	H	Sem VI	Credit	H
Part 1. Language - Tamil	3	6	Part..1. Language - Tamil	3	6	Part..1. Language - Tamil	3	6	Part..1. Language Tamil	3	6	5.1 Core Course-\CC IX Abstract Algebra	4	5	6.1 Core Course-CC XIII Linear Algebra	4	6
Part. 2 English	3	6	Part. 2 English	3	6	Part. 2 English	3	6	Part. 2 English	3	6	5.2 Core Course - CC X Real Analysis	4	5	6.2 Core Course - CC XIV Complex Analysis	4	6
1.3 Core Course - CC I Algebra and Trigonometry	5	6	2..3 Core Course CC III Analytical Geometry	5	5	3.3 Core Course - CC V Vector Calculus	5	5	4.3 Core Course - CC VII Optimization Techniques	5	5	5. 3.Core Course CC-XI Mathematical Modeling	4	5	$\begin{aligned} & \hline 6.3 \text { Core } \\ & \text { Course - CC } \\ & \text { XV } \\ & \text { Mechanics } \end{aligned}$	4	6
1.4 Core Course CC II Differential Calculus	5	5	2.4 Core Course CC IV Integral Calculus	5	5	3.4 Core Course - CC VI Differential Equations	5	5	4.4 Core Course CC VIII Elements of Mathematical Analysis	5	5	5. 4.Core Course -/ Project with viva- voce CC -XII	4	5	6.4 Elective - VII Generic/ Discipline Specific A. Programming in C++ B. Financial Analytics	3	5
1.5 Elective I Generic/ Discipline Specific A. Allied Mathematics - I B. Numerical Methods-I	3	5	2.5 Elective II Generic/ Discipline Specific A. Allied Mathematics - I B.Numerical Methods-II	3	6	3.5 Elective III Generic/ Discipline Specific Mathematical Statistics-I	3	5	4.5 Elective IV Generic/ Discipline Specific Mathematical Statistics-II	3	6	5.5 Elective V Generic/ Discipline Specific A. Transform Techniques B. Special Functions	3	4	6.5 Elective VIII Generic/ Discipline Specific A. Discrete Mathematics B. Big Data Analysis	3	5
1.6 Skill Enhancement Course SEC-1	2	2	2.6 Skill Enhancement Course SEC-2	2	2	3.6 Skill Enhancement Course SEC-4, (Entrepreneurial Skill)	1	1	4.6 Skill Enhancement Course SEC-6	2	2	5.6 Elective VI Generic/ Discipline Specific A. Graph Theory and Applications B. Number Theory	3	4	6.6 Extension Activity	1	-
1.7 Skill Enhancement -(Foundation	2	2	2.7 Skill Enhancement Course -	2	2	3.7 Skill Enhancement Course SEC-5	2	2	4.7 Skill Enhancement Course SEC-7	2	2	5.7 Value Education	2	2	$\begin{aligned} & \hline 6.7 \\ & \text { Professional } \\ & \text { Competency } \\ & \hline \end{aligned}$	2	2

Course)			SEC-3											Skill		
						3.8 E.V.S.	2	2			5.8 Summer Internship /Industrial Training	2				
	23	32		23	32		24	32	23	32		26	30		21	30

Template for Curriculum Design for UG Programme in Mathematics
 Credit Distribution for UG Programme in Mathematics
 B.Sc Mathematics
 First Year - Semester-I

Part	List of Courses	Credit	No. of Hours
Part-1	Language - Tamil	3	6
Part-2	English	3	6
Part-3	Core Courses \& Elective Courses [in Total]	13	16
Part-4	Skill Enhancement Course SEC-1	2	2
	Foundation Course	2	2

Semester-II

Part	List of Courses	Credit	No. of Hours
Part-1	Language - Tamil	3	6
Part-2	English	3	6
Part-3	Core Courses \& Elective Courses including laboratory [in Total]	13	16
Part-4	Skill Enhancement Course -SEC-2	2	2
	Skill Enhancement Course -SEC-3 (Discipline / Subject Specific)	2	2
		$\mathbf{2 3}$	$\mathbf{3 2}$

Second Year - Semester-III

Part	List of Courses	Credit	No. of Hours
Part-1	Language - Tamil	3	6
Part-2	English	3	6
Part-3	Core Courses \& Elective Courses including laboratory [in Total]	13	15
Part-4	Skill Enhancement Course -SEC-4 (Entrepreneurial Based)	1	1
	Skill Enhancement Course -SEC-5 (Discipline / Subject Specific)	2	2
	E.V.S	2	2
		$\mathbf{2 4}$	$\mathbf{3 2}$

Semester-IV

Part	List of Courses	Credit	No. of Hours
Part-1	Language - Tamil	3	6
Part-2	English	3	6
Part-3	Core Courses \& Elective Courses including laboratory [in Total]	13	16
Part-4	Skill Enhancement Course -SEC-6 (Discipline / Subject Specific)	2	2
	Skill Enhancement Course -SEC-7 (Discipline / Subject Specific)	2	2
		$\mathbf{2 3}$	$\mathbf{3 2}$

Third Year
Semester-V

Part	List of Courses	Credit	No. of Hours
Part-3	Core Courses including Elective Based	22	26
Part-4	Value Education	2	2
	Internship / Industrial Visit / Field Visit	2	2
		$\mathbf{2 6}$	$\mathbf{3 0}$

Semester-VI

Part	List of Courses	Credit	No. of Hours
Part-3	Core Courses including Project / Elective Based \& LAB	18	28
Part-4	Extension Activity	1	-
	Professional Competency Skill	2	2
		$\mathbf{2 1}$	$\mathbf{3 0}$

Consolidated Semester wise and Component wise Credit distribution

Parts	Sem I	Sem II	Sem III	Sem IV	Sem V	Sem VI	Total Credits
Part I	3	3	3	3	-	-	12
Part II	3	3	3	3	-	-	12
Part III	13	13	13	13	22	18	92
Part IV	4	4	3	6	4	1	22
Part V	-	-	-	-	-	2	2
Total	23	23	22	25	26	21	$\mathbf{1 4 0}$

*Part I. II, and Part III components will be separately taken into account for CGPA calculation and classification for the under graduate programme and the other components. IV, V have to be completed during the duration of the programme as per the norms, to be eligible for obtaining the UG degree.

Topics of the Core Courses

1. Algebra and Trigonometry
2. Differential Calculus
3. Analytical Geometry
4. Integral Calculus
5. Vector Calculus
6. Differential Equations
7. Optimization Techniques
8. Elements of Mathematical Analysis
9. Abstract Algebra
10. Real Analysis
11. Mathematical Modelling
12. Project with viva- voce
13. Linear Algebra
14. Complex Analysis
15. Mechanics

Topics of the Generic Elective Course (Allied)

1. Allied Mathematics - I
2. Allied Mathematics - II
3. Numerical Methods - I
4. Numerical Methods - I
5. Mathematical Statistics - I
6. Mathematical Statistics -II

Topics of the Discipline Specific Elective Courses

1. Transform Techniques
2. Special Functions
3. Graph Theory and its Applications
4. Number Theory
5. Programming in $\mathrm{C}++$
6. Financial Analytics
7. Discrete Mathematics
8. Big Data Analysis

Topics of the Discipline Skill Enhancement Courses

1. Mathematics for Competitive Examinations - I
2. Mathematics for Competitive Examinations - I
3. Geogebra
4. Maxima
5. Python Programming
6. R-Programming for Statistics

Titleof the	Course	Foundationcourse-BridgeMathematics					
PaperNumber		FOUNDATION1					
Category	Core	Year		Credits	C	Course Code	FC
		Semester					
InstructionalHours perweek		Lecture		Tutorial	LabPractice	Total	
		2			-- $\quad 2$		2
Pre-requisite		12^{th} Standard Mathematics					
Objectives of the Course		Tobridgethegap andfacilitatetransitionfrom highersecondarytotertiaryeducation; Toinstill confidenceamongstakeholdersand inculcateinterest for Mathematics. Hours: 6					
CourseOutline		UNIT-I:Algebra:Binomialtheorem,Generalterm,middleterm, problemsbasedontheseconcepts. Hours: 6					
		Unit II: Sequences and series (Progressions). Fundamental principleofcounting.Factorialn. Hours: 6					
		Unit III: Permutations and combinations, Derivation of formulaeandtheirconnections,simpleapplications,combinationswithr epetitions,arrangementswithingroups,formationofgroups. Hours: 6					
		Unit IV: Trigonometry: Introduction to trigonometric ratios, proofof $\sin (A+B), \cos (A+B), \tan (A+B)$ formulae, multiple and submultipleangles, $\sin (2 \mathrm{~A}), \cos (2 \mathrm{~A}), \tan (2 \mathrm{~A})$ etc.,transformations suminto productandproductinto sumformulae,inversetrigonometric functions,sineruleandcosinerule.					
		UnitV:Calculus:Limits,standardformulaeandproblems,differentiatio n ,firstprinciple, uvrule, $\mathrm{u} /$ vrule, methodsofdi \square erentiation, applicationo fderivatives, integration-productrule andsubstitutionmethod. Hours:6					
RecommendedText		1. NCERTclassXIandXIItextbooks. 2. AnyStateBoardMathematicstextbooksofclassXIandXII					
Websiteand e-LearningSource		https://nptel.ac.in					

CourseLearning Outcome

Aftercompletionofthiscoursesuccessfully,thestudentswillbeableto
CLO 1: Prove the binomial theorem and apply it to find the expansions of any $(x+y)^{n}$ and also,solvetherelatedproblems

CLO 2: Find the various sequences and series and solve the problems related to them. Explaintheprincipleofcounting.

CLO 3: Find the number of permutations andcombinations indi \square erent cases.Apply theprincipleofcountingtosolvetheproblemsonpermutationsandcombinations

CLO 4: Explain various trigonometric ratios and find them for di \square erent angles, including sum ofthe angles, multiple and submultiple angles, etc. Also, they can solve the problems using thetransformations.

CLO 5: Find the limit and derivative of a function at a point, the definite and indefinite integralofafunction.Findthepointsofmin/maxofafunction.

Mapping of Course Learning Outcomes (CLOs) with Programme Learning Outcomes (PLOs)andProgrammeSpecificOutcomes(PSOs)

	Pos							PSOs	
	1	2	3	4	5	6	1	2	
CLO1	1	1	1	1	1	1	1	1	
CLO2	2	1	1	2	2	1	2	1	
CLO3	2	1	1	2	2	1	2	1	
CLO4	1	1	1	1	1	1	2	1	
CLO5	1	1	1	1	1	1	2	1	

B.Sc Mathematics
 Core Courses

Title of	Course	ALGEBRA \& TRIGONOMETRY				
Paper Number		CORE 1				
Category	Core	Year	Credits	$5 \mathrm{l\mid l}$	Course Code	
		Semester				
Instructional Hours per week		Lecture	Tutorial	Lab Practice	Total	
		5		-	5	
Pre-requisite		$12^{\text {th }}$ Standard Mathematics				
Objectives of the Course		- Basic ideas on the Theory of Equations, Matrices and Number Theory. - Knowledge to find expansions of trigonometry functions, solve theoretical and applied problems.				
Course Outline		Unit I: Reciprocal Equations-Standard form-Increasing or decreasing the roots of a given equation- Removal of terms, Approximate solutions of roots of polynomials by Horner's method - related problems.				
		Unit II: Summation of Series: Binomial- Exponential -Logarithmic series (Theorems without proof) - Approximations - related problems.				
		Unit III: Characteristic equation -Eigen values and Eigen VectorsSimilar matrices - Cayley -Hamilton Theorem (Statement only) - Finding powers of square matrix, Inverse of a square matrix up to order 3, Diagonalization of square matrices - related problems.				
		Unit IV: Expansions of $\sin n \theta, \cos n \theta$ in powers of $\sin \theta, \cos \theta-$ Expansion of $\operatorname{tann} \theta$ in terms of $\tan \theta$, Expansions of $\cos ^{n} \theta, \sin ^{n} \theta$, $\cos ^{\mathrm{m}} \theta \sin ^{\mathrm{n}} \theta$-Expansions of $\tan \left(\theta_{1}+\theta_{2}+, \ldots,+\theta_{\mathrm{n}}\right)$-Expansions of $\sin \theta$, $\cos \theta$ and $\tan \theta$ in terms of θ - related problems.				
		Unit V: Hyperbolic functions - Relation between circular and hyperbolic functions Inverse hyperbolic functions, Logarithm of complex quantities, Summation of trigonometric series - related problems.				

Extended Professional (is a Component (is a part of internal component only Not to be included in the External Examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)
Skills acquired from this course	Knowledge, problem solving, analytical ability, professional competency, professional communication and transferable skill.
Recommended Text	1. W.S. Burnstine and A.W. Panton, Theory of equations 2.David C. Lay, Linear Algebra and its Applications, 3rd Ed., Pearson Education Asia, Indian Reprint, 2007
3. G.B. Thomas and R.L. Finney, Calculus, 9th Ed., Pearson Education,	
Delhi, 2005	

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to
CLO 1: Classify and Solve reciprocal equations
CLO 2: Find the sum of binomial, exponential and logarithmic series
CLO 3: Find Eigen values, eigen vectors, verify Cayley - Hamilton theorem and diagonalize a given matrix
CLO 4: Expand the powers and multiples of trigonometric functions in terms of sine and cosine
CLO 5: Determine relationship between circular and hyperbolic functions and the summation of trigonometric series

	POs						PSOs		
	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	-	-	-	3	2	1
CLO2	2	1	3	1	-	-	3	2	1
CLO3	3	1	3	1	-	-	3	2	1
CLO4	3	1	3	-	-	-	3	2	1
CLO5	3	1	3	-	-	-	3	2	1

Title of th	Course	DIFFERENTIAL CALCULUS				
Paper Number		CORE 2				
Category	Core	Year	Credits	C	Course Code	
		Semester				
Instructional Hours per week		Lecture	Tutorial	Lab Practice	Total	
		5			5	
Pre-requisite		$12^{\text {th }}$ Standard Mathematics				
Objectives of the Course		- The basic skills of differentiation, successive differentiation, and their applications. - Basic knowledge on the notions of curvature, evolutes, involutes and polar co-ordinates and in solving related problems.				
Course Outline		UNIT-I: Successive Differentiation: Introduction (Review of basic concepts) - The $n^{\text {th }}$ derivative - Standard results - Fractional expressions - Trigonometrical transformation - Formation of equations involving derivatives - Leibnitz formula for the $n^{\text {th }}$ derivative of a product - Feynman's method of differentiation.				
		UNIT-II: Partial Differentiation: Partial derivatives - Successive partial derivatives - Function of a function rule - Total differential coefficient - A special case - Implicit Functions.				
		UNIT-III:Partial Differentiation (Continued): Homogeneous functions - Partial derivatives of a function of two variables - Maxima and Minima of functions of two variables - Lagrange's method of undetermined multipliers.				
		UNIT-IV:Envelope: Method of finding the envelope - Another definition of envelope - Envelope of family of curves which are quadratic in the parameter.				
		UNIT-V:Curvature: Definition of Curvature - Circle, Radius andCentre of Curvature - Evolutes and Involutes - Radius of Curvature inPolar Co-ordinates.				

Extended Professional Component (is a part of internal component only, Not to be included in the External Examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / / TNPSC / others to be solved (To be discussed during the Tutorial hour)
Skills acquired from this course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill
Recommended Text	1. H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, Inc., 2002. 2. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2010. 3. M.J. Strauss, G.L. Bradley and K. J. Smith, Calculus, 3rd Ed., Dorling Kindersley (India) P. Ltd. (Pearson Education), Delhi, 2007.
Reference Books	1. R. Courant and F. John, Introduction to Calculus and Analysis (Volumes I \& II), Springer- Verlag, New York, Inc., 1989. 2. T. Apostol, Calculus, Volumes I and II. 3. S. Goldberg, Calculus and mathematical analysis.
Website and e-Learning Source	https://nptel.ac.in

Course Learning Outcome (for Mapping with PLOs and PSOs)

Students will be able to
CLO 1:Find the nth derivative, form equations involving derivatives and apply Leibnitz formula
CLO 2: Find the partial derivative and total derivative coefficient
CLO 3: Determine maxima and minima of functions of two variables and to use the Lagrange's method of undetermined multipliers

CLO 4: Find the envelope of a given family of curves
CLO 5: Find the evolutes and involutes and to find the radius of curvature using polar coordinates

	POs	PSOs

	1	2	3	4	5	6	1	2	3
CLO1	3	1	3	-	-	-	3	2	1
CLO2	2	1	3	-	-	-	3	2	1
CLO3	3	2	3	2	-	-	3	2	1
CLO4	3	2	3	2	1	-	3	2	1
CLO5	3	2	3	2	1	-	3	2	1

Title of th	Course	ANALYTICAL GEOMETRY				
Paper Number		CORE 3				
Category	Core	Year	Credits	C	Course Code	
		Semester II				
Instructional Hours per week		Lecture	Tutorial	Lab Practice	Total	
		5		--	5	
Pre-requisite		$12^{\text {th }}$ Standard Mathematics				
Objectives of the Course		- To understand and apply the concept of homogeneous equations of second degree to represent straight lines in different forms. - To derive polar equations for straight lines, circles, and conic sections, and analyze their geometric properties. - To formulate general equations of planes, calculate angles between two planes, and determine perpendicular distances. - To calculate the angle between a line and a plane, determine the length of perpendiculars, and analyze coplanar and skew lines. - To originate equations of spheres, determine lengths of tangents, and analyze sections of spheres.				
Course Outline		Unit - I: Pair of Straight lines Introduction - Homogeneous equation of second degree - Angle between the lines - Equation for the bisector of the angle between the lines - Condition for a second degree equation to represent a pair of straight lines. (Chapter 3: Sections 3.1-3.5 Pages: 89-129).				
		Unit - II: Polar Coordinates Introduction-Definition of polar coordinates - Relation between Cartesian coordinates and Polar coordinates - polar equation of a straight line - circle - Polar equation of a conic. (Chapter 9: Sections: 9.1-9.7.1 Pages: 480-500).				
		Unit - III: Plane Introduction - General equations of plane - Angle between two planes - Perpendicular distance - Plane passing through: Three given points, Intersection of two given planes - Condition for a second degree equation to represent a pair of planes. (Chapter 12: Sections: 12.1-12.12 Pages 585-629).				
		Unit - IV: Straight Lines Introduction - Equations of straight Lines - Angle between a line and plane - Length of the perpendicular - Coplanar lines - Skew lines Intersection of three planes. (Chapter 13: Sections: 13.1-13.12 Pages: 630-647, 648-686).				

	Unit - V: Sphere Equations of sphere - Length of the tangent - Section of a sphere - Equation of circle - Intersection of two spheres - Condition for the orthogonality - Radical planes. (Chapter 14: Sections: 14.1-14.11 Pages: 687-695, 699-727).
Extended Professional Component (is a part of internal component only, Not to be included in the External Examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)
Skills acquired from this course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill
Recommended Text	P.R.Vittal, Analytical Geometry 2D and 3D, Pearson Publications, Chennai.
Reference Books	1. P.Duraipandian and LaxmiDuraipandian, Analytical Geometry Twodimensions, Emerald Publication. 2. Shanti Narayan and P.K.Mittal, Analytical Solid Geometry of 3D, S. Chand Publications. 3. ManicavasagamPillay\&Natarajan, Analytical Geometry of Twodimensions, S. Viswanathan (printers \& publication) Pvt Ltd. 4. ManicavasagamPillay\&Natarajan, Analytical Geometry of Threedimensions, S. Viswanathan (printers \& publication) Pvt Ltd.
Website and e-Learning Source	https://mathworld.wolfram.com/, http://www.univie.ac.at/future.media/moe/galarie.html/

Course Learning Outcome (for Mapping with POs and PSOs)

CO Number	CO Statement	Knowledge Level
CO 1	Understand and apply the concept of homogeneous equations of second degree to represent straight lines in different forms.	$\mathrm{K} 1, \mathrm{~K} 2$
CO 2	Derive polar equations for straight lines, circles, and conic sections, and analyze their geometric properties.	$\mathrm{K} 4, \mathrm{~K} 5$
CO 3	Formulate general equations of planes, calculate angles between two planes, and determine perpendicular distances.	$\mathrm{K} 5, \mathrm{~K} 6$
CO 4	Calculate the angle between a line and a plane, determine the length of perpendiculars, and analyze coplanar and skew lines.	$\mathrm{K} 5, \mathrm{~K} 6$
CO 5	Formulate equations of spheres, determine lengths of tangents, and analyze sections of spheres.	$\mathrm{K} 4, \mathrm{~K} 5, \mathrm{~K} 6$

Mapping of CO with PO and PSO

CO	Programme Outcomes (PO)					Programme Specific Outcomes (PSO)				Mean Scores of COs	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
1	3	3	3	3	2	3	3	3	3	2	2.8
2	3	3	3	3	2	3	3	3	3	2	2.8
3	3	3	3	3	2	3	3	3	3	1	2.7
4	3	3	3	3	1	3	3	3	3	1	2.6
5	3	3	3	3	1	3	3	2	3	1	2.5

Title of the Course		INTEGRAL CALCULUS					
Paper Number		CORE 4					
Category	Core	Year Semester	I	Credits	C	Course Code	
			II				
Instructional Hours per week		Lecture		Tutorial	Lab Practice ${ }^{\text {Total }}$		
		5				5	
Pre-requisite		$12^{\text {th }}$ Standard Mathematics					
Objectives of the Course		- Knowledge on integration and its geometrical applications, double, triple integrals and improper integrals. - Knowledge about Beta and Gamma functions and their applications. - Skills to Determine Fourier series expansions.					
Course Outline		UNIT-I: Reduction formulae -Types, integration of product of powers of algebraic and trigonometric functions, integration of product of powers of algebraic and logarithmic functions - Bernoulli's formula, Feyman's technique of integration.					
		UNIT-II: Multiple Integrals - definition of double integrals evaluation of double integrals - double integrals in polar coordinates Change of order of integration.					
		UNIT-III: Triple integrals -applications of multiple integrals volumes of solids of revolution - areas of curved surfaces-change of variables - Jacobian.					
		UNIT-IV: Beta and Gamma functions - infinite integral - definitionsrecurrence formula of Gamma functions - properties of Beta and Gamma functions- relation between Beta and Gamma functions Applications.					
		UNIT-V: Geometric and Physical Applications of Integral calculus.					
Extended Professional Component (is a part of internal component only, Not to be included in the External Examination question paper)		Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)					
Skills acc this cours	uired from	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill					

\(\left.$$
\begin{array}{|l|l|}\hline \text { Recommended Text } & \begin{array}{l}\text { 1. H. Anton, I. Birens and S. Davis, Calculus, John Wiley and Sons, } \\
\text { Inc., 2002. }\end{array}
$$

2. G.B. Thomas and R.L. Finney, Calculus, Pearson Education, 2007.

3. D. Chatterjee, Integral Calculus and Differential Equations, Tata-

McGraw Hill Publishing Company Ltd.\end{array}\right\}\)| 4. P. Dyke, An Introduction to Laplace Transforms and Fourier Series, |
| :--- |
| Springer Undergraduate Mathematics Series, 2001 (second |
| edition). |

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to
CLO 1: Determine the integrals of algebraic, trigonometric and logarithmic functions and to find the reduction formulae

CLO 2: Evaluate double and triple integrals and problems using change of order of integration CLO 3: Solve multiple integrals and to find the areas of curved surfaces and volumes of solids of revolution

CLO 4: Explain beta and gamma functions and to use them in solving problems of integration
CLO 5: Explain Geometric and Physical applications of integral calculus

	POs							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	-	-	-	3	2	1	
CLO2	3	1	3	-	-	-	3	2	1	
CLO3	3	1	3	-	-	-	3	2	1	
CLO4	3	1	3	-	-	-	3	2	1	
CLO5	3	1	3	-	2	1	3	2	1	

Title of the Course		VECTOR CALCULUS							
Paper Number		CORE 5							
Category	Core	Year Semester	II	Credits	C	Course Code			
		Semester	III						
Instructional Hours per week		$\begin{array}{\|l\|} \hline \text { Lecture } \\ \hline 5 \end{array}$		Tutorial	Lab Practice	Total			
		5							
Pre-requisite				$12^{\text {th }}$ Standard Mathematics					
Objectives of the Course		- Knowledge about differentiation of vectors and on differential operators. Knowledge about derivatives of vector functions. - Skills in evaluating line, surface and volume integrals. - The ability to analyze the physical applications of derivatives of vectors.							
Course Outline		UNIT-I: Vector point function - Scalar point function - Derivative of a vector and derivative of a sum of vectors - Derivative of a product of a scalar and a vector point function - Derivative of a scalar product and vector product.							
		UNIT-II: The vector operator 'del', The gradient of a scalar point function - Divergence of a vector - Curl of a vector - solenoidal and irrotational vectors - simple applications.							
		UNIT-III:Laplacian operator, Vector identities - Line integral - simple problems.							
		UNIT-IV: Surface integral - Volume integral - Applications.							
		UNIT-V: Gauss divergence Theorem, Stoke's Theorem, Green's Theorem in two dimensions.							
Extended Professional Component (is a part of internal component only, Not to be included in the External Examination question paper)		Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)							
Skills acquired from this course		Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill							
Recommended Text		P. Duraipandiyan and KayalalPachaiyappan, Vector Analysis, S.Chand\& Co. Ltd.							

Website and e-Learning Source	https://nptel.ac.in

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to
CLO 1: Find the derivative of vector and sum of vectors, product of scalar and vector point function and to determine derivatives of scalar and vector products

CLO 2: Applications of the operator 'del' and to Explain soleonidal and ir-rotational vectors
CLO 3: Solve simple line integrals
CLO 4: Solve surface integrals and volume integrals
CLO 5: Verify the theorems of Gauss, Stoke's and Green's(Two Dimension)

	POs						PSOs		
	1	2	3	4	5	6	1	2	3
CLO1	3	2	3	1	-	-	3	2	1
CLO2	3	2	3	1	2	-	3	2	1
CLO3	3	3	3	3	-	-	3	3	1
CLO4	3	3	3	3	-	-	3	3	1
CLO5	3	3	3	3	2	-	3	3	1

Extended Professional Component (is a part of internal component only, Not to be included in the External Examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)
Skills acquired from this course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill
Recommended Text	T.K. ManicavachagomPillay, T. Natarajan, K.S. Ganapathy, Calculus Volume-II, S. Viswanathan Printers and Publishers Pvt. Ltd, 2012.
Reference Books	1. D.A. Murray, Introductory course in Differential Equations, Orient and Longman 2. H.T. H.Piaggio, Elementary Treaties on Differential Equations and their applications, C.B.S Publisher \& Distributors, Delhi, 1985. 3. Horst R. Beyer, Calculus and Analysis, Wiley, 2010. 4. Braun, M. Differential Equations and their Applications. (3rd Edn.), Springer- Verlag, New York. 1983. 5. TynMyint-U and LognathDebnath. Linear Partial Differential Equations for Scientists and Engineers. (4th Edn.) Birhauser, Berlin. 2007. 6. 6.. Boyce, W.E. and R.C.DiPrima. Elementary Differential Equations and Boundary Value Problems. (7th Edn.) John Wiley and Sons, Inc., New York. 2001. 7. Sundrapandian, V. Ordinary and Partial Differential Equations, Tata McGraw Hill Education Pvt.Ltd. New Delhi, 2013
Website and e-Learning Source	https://nptel.ac.in

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to
CLO 1: Determine solutions of homogeneous equations, non-homogeneous equations of degree one in two variables, solve Bernoulli's equations and exact differential equations

CLO 2: Find the solutions of equations of first order but not of higher degree and to Determine particular integrals of algebraic, exponential, trigonometric functions and their products

CLO 3: Find solutions of simultaneous linear differential equations, linear equations of second order and to find solutions using the method of variations of parameters

CLO 4: Form a PDE by eliminating arbitrary constants and arbitrary functions,
find complete, singular and general integrals, to solve Lagrange's equations
CLO 5: Explain standard forms and Solve Differential equations using Charpit's method

	POs							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	2	1	-	3	2	1	
CLO2	3	1	3	2	1	-	3	2	1	
CLO3	3	1	3	2	1	-	3	3	1	
CLO4	3	1	3	2	2	1	3	3	1	
CLO5	3	1	3	2	2	1	3	3	1	

Title of the Course Paper Number		Optimization Techniques					
		CORE 7					
Category	Core	Year	II	Credits	5 C	Course Code	
		Semester					
Instructional Hours per week		Lecture		Tutorial	Lab Practice	Total	
		5			--	5	
Pre-requisite		$12^{\text {th }}$ Standard Mathematics					
Objectives of the Course		To develop the skill of formulation of LPP and different techniques to solve it. To know the applications of Transportation and Assignment problems. To study the optimizing problems in Sequencing, Networking and Inventory control.					
Course Outline		Unit - I Li Introductio Mathemati Simplex m (Chapters Unit - II T Transporta Problem - (Chapter 8, 9.2, 9.3, 9.4 Unit - III Problems through 3 (Chapter 12 Unit -IV I Inventory 1 static mode Probabilisti (Chapter 14 Unit -V N Introductio Numbering Programme (Chapter 13		Programming Formulation Formulation of - Duality theo 4, 6(6.1-6.3)) portation Prob -Balanced and ced and Unbala ions -8.1, 8.2, ncing Problem n jobs through nes- Problems w ctions 12.1-12.5) tory Control s: Introduction th and without s mand. tions: 14.1-14.8) k Scheduling b Basic terms events - Time A uation and Rev tions: 13.1-13.8	Problem of the Proble LPPs. Graphical y. m Unbalanced pro ced problems. .3, 8.4 8.5; ,Ch 2 machines ith n jobs throug Deterministic m ortages- Inventory PERT/CPM Rules of Net alysis - Critical w Technique (P	Sol lem pter roble k m del y M ork Path ERT)	Illustration on ion Method - - Assignment Sections: 9.1, s with n jobs chines. single item dels with Construction ethod (CPM) -
Skills from this	acquired course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication, Transferrable Skill and designing mathematical models towards solving mathematical applications					

Recommended Text	S. Kalavathy, Operations Research - Vikas Publishing House Pvt. Ltd., $4^{\text {th }}$ Edition, Second Reprint 2018.
Reference Books	1. Hamdy A. Taha, Operations Research - An Introduction, Pearson, Seventh edition, 2014. Sons, New Delhi, 1983.
3. R. Pannerselvam, Operations Research, Prentice Hall of India	
Pvt. Ltd., New Delhi, 2005.	
4. S. D. Sharma, Operations Research, KedarNath Ram Nath and	
Co, Meerut, 1998.	

Course Learning Outcomes:

This course will enable the students to:

CO Number	CO Statement	Knowledge Level
CO 1	describe the concepts involved in solving linear programming problems which are widely used in business operations.	K1
CO 2	apply mathematical techniques used in optimizing transportation and assignment problems.	K2
CO 3	solve job sequencing problems.	K 3
CO 4	breakdown different inventory models	K 4
CO 5	evaluate PERT, CPM problems and develop applications	K5, K6

CO	Programme Outcomes (PO)							Programme Specific Outcomes (PSO)					$\begin{gathered} \hline \text { Mean } \\ \text { Scores } \\ \text { of } \\ \text { COs } \\ \hline \end{gathered}$
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
1	2	3	2	3	3	3	3	3	3	3	2	2	2.67
2	3	3	2	2	2	3	2	2	2	2	2	3	2.33
3	3	2	2	2	3	3	2	3	3	2	2	3	2.5
4	3	3	2	3	3	3	2	3	3	3	2	2	2.67
5	3	2	2	3	3	2	2	3	3	2	2	3	2.5

Title of the Course Paper Number		ELEMENTS OF MATHEMATICAL ANALYSIS					
		CORE 8					
Category	Core	Year Semester	II	Credits	C	Course Code	
			IV				
Instructional Hours per week		Lecture		Tutorial	Lab Practice	Total	
		5			--	5	
Pre-requisite		$12^{\text {th }}$ Standard Mathematics					
Objectives of the Course		- Identify and characterize sets and functions and Understand, test and analyze the convergence and divergence of sequences, series. - Understand metric spaces with suitable examples					
Course Outline		UNIT-I: Sets and Functions: Sets and elements- Operations on sets-functions- real valued functions- equivalence-countability- real numbers- least upper bounds.					
		UNIT-II: Sequences of Real Numbers: Definition of a sequence and subsequence-limit of a sequence - convergent sequences-divergent sequences- bounded sequences-monotone sequences					
		UNIT-III: Operations on convergent sequences - operations on divergent sequences - limit superior and limit inferior-Cauchy sequences.					
		UNIT-IV:Series of Real Numbers: Convergence and divergence series with non -negative terms-alternating series-conditional convergence and absolute convergence- tests for absolute convergence.					
		UNIT-V:Limits and Metric Spaces: Limit of a function on a real line Metric spaces - Limits in metric spaces - Continuous Functions on Metric Spaces: Function continuous at a point on there a line-Function continuous on a metric space.					
Extended Professional Component (is a part ofinternal component only, Not to be included in the External Examination question paper)		Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)					
Skills from this	acquired course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill					

Recommended Text	1. Richard R. Goldberg, Methods of Real Analysis: Oxford and IBH Publishing, (1 January 2020). 2. Ethan D. Bloch, The Real Numbers and Real Analysis, Springer, 2011. 3. G.M. The fundamentals of Mathematical Analysis, vol I. Pergamon Press, New York, 1965.
Reference Books	1. T. M. Apostol, Calculus (Vol. I), John Wiley and Sons (Asia) P. Ltd., 2002. 2. R.G. Bartle and D. R Sherbert, Introduction to Real Analysis, John Wiley and Sons (Asia) P. Ltd., 2000. 3. E. Fischer, Intermediate Real Analysis, Springer Verlag, 1983. 4. K.A. Ross, Elementary Analysis- The Theory of Calculus SeriesUndergraduate Texts in Mathematics, Springer Verlag, 2003.
Website and e-Learning Source	https://nptel.ac.in

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to
CLO 1: Explain in detail about sets and functions, equivalence and countability and the LUB axiom

CLO 2: Explain Sequence and Subsequence of real numbers and to find the limit of sequence to test for convergent, divergent, bounded and monotone sequences

CLO 3: Explain the operations on convergent and divergent sequences and to Explain the concepts of limit superior and limit inferior and the notion of Cauchy sequences
CLO 4: Classify the series of real numbers and the alternating series and their convergence and divergence, the conditional convergence and absolute convergence and solve problems on convergence of the sequences
CLO 5: Explain about the metric spaces and functions continuous on a Metric space

	POs					PSOs			
	1	2	3	4	5	6	1	2	3

CLO1	3	3	2	3	2	-	3	2	1
CLO2	3	3	2	3	2	-	3	2	1
CLO3	3	3	3	3	2	-	3	2	1
CLO4	3	3	3	3	2	-	3	2	1
CLO5	3	3	2	3	2	-	3	2	1

Title of th	Course	ABSTRACT ALGEBRA					
Paper Number		CORE 9					
Category	Core	Year	III	Credits	C	Course Code	
		Semester	V				
Instructional Hours per week		Lecture		Tutorial	Lab Practice	Total	
					--	5	
Pre-requisite		$12^{\text {th }}$ Standard Mathematics					
Objectives of the Course		- Concepts of Sets, Groups and Rings. - Construction, characteristics and applications of the abstract algebraic structures					
Course Outline		UNIT-I: Introduction to groups- Subgroups- cyclic groups and properties of cyclic groups- Lagrange's Theorem-A counting principle - Examples					
		UNIT-II: Normal subgroups and Quotient group- HomomorphismAutomorphism -Examples.					
		UNIT-III:Cayley's Theorem-Permutation groups - Examples					
		UNIT-IV:Definition and examples of ring- Some special classes of rings- homomorphism of rings- Ideals and quotient rings- More ideals and quotient rings.					
		UNIT-V: The field of quotients of an integral domain-Euclidean Rings - The particular Euclidean Ring - Examples					
Extended Professional Component (is a part of internal component only, Not to be included in the External Examination question paper)		Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)					
Skills from this	acquired course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill					
Recomme Text		Topics in Algebra-I.N.Herstein, Wiley Eastern Ltd. Second Edition ($1^{\text {st }}$ January 2006)					

Reference Books	1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearson, 2002. 2. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011. 3. Joseph A Gallian, Contemporary Abstract Algebra, 4th Ed., Narosa, 1999.
Website and e-Learning Source	https://nptel.ac.in

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to
CLO 1: Explain groups, subgroups and cyclic groups
CLO 2: Explain about Normal subgroup, Quotient groups, Homomorphisms and Automorphisms and verify the functions for homomorphism and automorphism properties
CLO 3: Explain Permutation groups and apply Cayley's theorem to problems
CLO 4: Explain Rings, Ideals and Quotient Rings and examine their structure
CLO 5: Discuss about the field of quotient of an integral domain and to Explain in detail about Euclidean Rings

	POs						PSOs		
	1	2	3	4	5	6	1	2	3
CLO1	3	3	2	3	1	-	3	3	1
CLO2	3	3	2	3	1	-	3	3	1
CLO3	3	3	2	3	2	-	3	3	1
CLO4	3	3	2	3	1	-	3	3	1
CLO5	3	3	2	3	2	-	3	3	1

Title of the Course Paper Number		REAL ANALYSIS					
		CORE 10					
Category	Core	Year	II	Credits	$4{ }^{4}$	Course Code	
		Semester	IV				
Instructional Hours per week		Lecture Tutorial			Lab Practice	Total	
		5				5	
Pre-requisite		$12^{\text {th }}$ Standard Mathematics					
Objectives of the Course		- Real Numbers and properties of Real-valued functions. - Connectedness, Compactness, Completeness of Metric spaces. - Convergence of sequences of functions, Examples and counter examples					
Course Outline		UNIT-I: Continuous Functions on Metric Spaces: Open sets- closed sets-Discontinuous function on R^{1}. Connectedness, Completeness and Compactness: More about open sets-Connected sets.					
		UNIT-II: Bounded sets and totally bounded sets: Complete metric spaces- compact metric spaces, continuous functions on a compact metric space, continuity of inverse functions, uniform continuity.					
		UNIT-III: Calculus: Sets of measure zero, definition of the Riemann integral, existence of the Riemann integral-properties of Riemann integral.					
		UNIT-IV:Derivatives-Rolle's theorem, Law of mean, Fundamental theorems of calculus.					
		UNIT-V: Taylor's theorem-Point wise convergence of sequences of functions, uniform convergence of sequences of functions.					
Extended Professional Component (is a part of internal component only, Not to be included in the External Examination question paper)		Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)					
Skills from this	acquired course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill					

Recommended Text	Methods of Real Analysis-Richard R.Goldberg (John Wiley \& sons, $2^{\text {nd }}$ edition) (Indian edition -Oxford and IBH Publishing Co, New Delhi, $1^{\text {st }}$ January 2020)
Reference Books	1. Principles of Mathematical Analysis by Walter Rudin, Tata McGraw Hill Education, Third edition (1 July 2017). 2. Mathematical Analysis Tom M A postal, Narosa Publishing House, $2^{\text {nd }}$ edition (1974), Addison-Wesley publishing company, New Delhi.
Website and e-Learning Source	https://nptel.ac.in

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to
CLO 1: Explain the concepts of Continuous and Discontinuous functions, open and close sets, Connectedness, Completeness and Compactness

CLO 2: Explain the concepts of bounded and totally bounded sets, continuity of inverse functions and Uniform continuity

CLO 3: Define the sets of measure zero, to Explain about the existence and properties of Riemann integral

CLO 4: Explain the concept of differentiability and to Explain Rolle's theorem, Law of mean, and Fundamental theorem of calculus

CLO 5: Explain the point wise and uniform convergence of sequence of function and to derive the Taylor's theorem

	POs								PSOs		
	1	2	3	4	5	6	1	2	3		
CLO1	3	3	1	3	1	-	3	1	1		
CLO2	3	3	1	3	1	-	3	1	1		
CLO3	3	3	1	3	1	-	3	1	1		
CLO4	3	3	1	3	1	-	3	1	1		
CLO5	3	3	1	3	1	-	3	1	1		

Title of the Course Paper Number		MATHEMATICAL MODELLING					
		CORE 11					
Category	Core	Year	II	Credits	C	Course Code	
		Semester	IV				
Instructional Hours per week		Lecture		Tutorial	Lab Practice	Total	
		5			--	5	
Pre-requisite		$12^{\text {th }}$ Standard Mathematics					
Objectives of the Course		- Construction and Analysis of Mathematical models found in real life problems. - Modelling through differential and difference equations					
Course Outline		UNIT-I:Mathematical Modelling: Simple situations requiring mathematical modelling, characteristics of mathematical models.					
		UNIT-II:Mathematical Modelling through differential equations: Linear Growth and Decay Models. Non-Linear growth and decay models, Compartment models.					
		UNIT-III:Mathematical Modelling, through system of Ordinary differential equations of first order: Prey-predator models, Competition models, Model with removal and model with immigrations. Epidemics: simple epidemic model, Susceptible-infected- susceptible (SIS) model, SIS model with constant number of carriers. Medicine: Model for Diabetes Mellitus.					
		UNIT - IV:Introduction to difference equations.					
		UNIT-V:Mathematical Modelling through difference equations: Harrod Model, cob web model application to Actuarial Science					
Extended Professional Component (is a part of internal component only, Not to be included in the External Examination question paper)		Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)					
Skills from this	acquired ourse	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill					

Recommended Text	J N Kapur, Mathematical Modeling, New Age International publishers(2009).
Reference Books	1. Mathematical Modeling by Bimalk. Mishra and DipakK.Satpathi. Ane Books Pvt. Ltd(1 Januuary 2009) 2. Mathematical Modeling Models, Analysis and Applications, by Sandip Banerjee, CRC Press, Taylor \& Francis group, 2014 3. Mathematical Modeling applications with Geogebra by Jonas Hall \& Thomas Ligefjard, John Wiley \& Sons, 2017 4. Mark M. Meerschaert: Mathematical Modeling, Elsevier Publ., 2007. 5. Edward A. Bender: An introduction to mathematical Modeling, CRC Press,2002 6. Walter J. Meyer, Concepts of Mathematical Modeling, Dover Publ., 2000
Website and e-Learning Source	https://nptel.ac.in

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to
CLO 1: Explain simple situations requiring Mathematical Modelling and to Determine the characteristics of such models

CLO 2: Model using differential equations in-terms of linear growth and Decay models
CLO 3: Model using systems of ordinary differential equations of first order, to discuss about various models under the categories 'Epidemics' and 'Medicine'
CLO 4: Explain in detail about difference equations
CLO 5: Model using difference equations

	POs						PSOs		
	1	2	3	4	5	6	1	2	3
CLO1	2	3	3	3	2	2	2	3	2
CLO2	2	3	3	3	2	2	2	3	2
CLO3	2	3	3	3	2	2	2	3	2
CLO4	3	2	2	2	-	1	2	3	2
CLO5	2	3	3	3	2	2	2	3	2

Title of the	Course	LINEAR ALGEBRA					
Paper Number		CORE 13					
Category	Core	Year	II	Credits	C	Course Code	
		Semester	VI				
Instructional Hours per week		Lecture		Tutorial	Lab Practice	Total	
		6			--	6	
Pre-requisite		$12^{\text {th }}$ Standard Mathematics					
Objectives of the Course		- Vector Spaces, linear dependence and independence of vectors .Dual spaces, Inner product and norm - orthogonalization process. - Linear transformations. Various operators on vector spaces					
Course Outline		UNIT-I: Vector spaces - Subspaces - Linear Combinations and linear span - Systems of Linear equations - Homogenous Equations - Nonhomogenous Equations - Elementary Matrices - Row reduced Echelon form.					
		UNIT-II: Linear Dependence and Linear independence - Bases Dimensions					
		UNIT-III: Linear transformations, null spaces and ranges - Matrix representation of a linear transformation -invertibility and isomorphisms - dual spaces					
		UNIT - IV: Eigen values, eigen vectors, diagonalizability - invariant subspaces - Cayley- Hamilton theorem					
		UNIT-V: Inner products and norms - Gram Schmidt Orthogonalization Process - Orthogonal complements					
Extended Professional Component (is a part of internal component only, Not to be included in the External Examination question paper)		Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)					
Skills from this	acquired course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill					
Recomme Text		Linear Algebra - Stephen H Friedberg, Arnold J Insel and Lawrence E Spence, $5^{\text {th }}$ edition (2018) Pearson					

| Reference Books | 1. I.N.Herstein, Topics in Algebra, Wiley EasternLtd. Second Edition,
 2006. |
| :--- | :--- | :--- |
| | 2.N.S.Gopalakrishnan, University Algebra, New Age International
 Publications, Wiley Eastern Ltd. |
| | 3. John B.Fraleigh, First course in Algebra, Addison Wesley.
 4. Stephen H. Friedberg, Arnold J. Insel, Lawrence E. Spence, Linear
 Algebra, 4th Ed., Prentice Hall of India Pvt. Ltd., New Delhi, 2004. |
| | 5.David C. Lay, Linear Algebra and its Applications, 3rd Ed.,
 Pearson Education Asia, Indian Reprint, 2007.
 7. Gilbert Strang, Linear Algebra and its Applications, Thomson,
 2007. |
| Website and
 e-Learning Source | https://nptel.ac.in |

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to
CLO 1: Acquire a detailed knowledge about vector spaces and subspaces
CLO 2: Explain the concepts of Linear Dependence, Linear Independence, Bases and Dimension of basis

CLO 3: Explain the concept of Linear Transformations, their Matrix representation and the notion of dual spaces
CLO 4: Find the Eigen values and Eigen vectors, to apply the concepts for diagonalisation
CLO5: Explain about Inner product and norms and to apply Gram Schmidt Orthogonalization Process to problems on inner product spaces

	POs						PSOs		
	1	2	3	4	5	6	1	2	3
CLO1	3	3	2	3	-	-	3	3	1
CLO2	3	3	3	3	-	-	3	3	1
CLO3	3	3	2	3	1	-	3	3	1
CLO4	3	3	3	3	-	-	3	3	1
CLO5	3	3	3	3	1	-	3	3	1

Title of the Course Paper Number		COMPLEXANALYSIS					
		CORE 14					
Category	Core	Year	II	Credits	C	Course Code	
		Semester	VI				
Instructional Hours per week		Lecture		Tutorial	Lab Practice	Total	
		6			--	6	
Pre-requisite		12 ${ }^{\text {th }}$ Standard Mathematics					
Objectives of the Course		- Apply concept and consequences of analyticity and C-R equations. - Understand the concept of mappings and transformations. - Compute complex contour integrals and applying Cauchy's integral in various versions. - Understand zeros and singularities of an analytic function, apply their properties in the evaluation of definite integral.					
Course Outline		UNIT-I:Analytic functions: Functions of a Complex variable -Limits -Theorem on limits -Continuity - Derivatives - Differentiation formulas - Cauchy Riemann equation - conditions for differentiability - Polar coordinates- Analytic functions- Harmonic functions.					
		$\begin{aligned} & \text { UNIT-II:Conformal mapping: Mappings - Mapping by exponential } \\ & \text { function - Linear transformation - The transformation } \mathrm{w}=\frac{1}{z}- \\ & \text { Mappings by } \frac{1}{z} \text { - Linear fractional transformations (bilinear) } \end{aligned}$					
		UNIT-III:Complex Integration: Contour integrals- Some examples Simply and Multiply connected domains- Cauchy integral formula Formula for derivatives- Liouville's theorem -Fundamental theorem of Algebra- Maximum modulus principle.					
		UNIT - IV:Sequences and Series: Convergence of sequences Convergence of series- Taylor's series - Laurent series- Absolute and uniform convergence of power Series - Continuity of sums of power series-Integration \& differentiation of power series					
		UNIT-V:Residues and Poles: Isolated singular points - ResiduesCauchy Residue theorem -Residue at infinity- The three types of isolated singular points -Residues at poles - Zeros of analytical functions - Zeros and poles - Evaluation of real improper integrals (excluding poles on the real axis).					

Extended Professional Component is a part of internal component only, Not to be included in the External Examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)
Skills acquired from this course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill
Recommended Text	S. Arumugam, A. ThangapandiIssac, A. Somasundaram, Complex Analysis, Scitech Publications, Pvt. Ltd, Chennai.
Reference Books	1. Theodore W. Gamelan, Complex Analysis, Springer Verlag, 2008 2. Joseph Bak and Donald J. Newman, Complex analysis, 2nd Ed., Undergraduate Texts in Mathematics, Springer-Verlag New York, Inc., New York, 1997.
3. Richard A. Silverman, Introductory Complex Analysis. Dover Publications, 1972.	
Website and e-Learning Source	S. Ponnusamy and H. Silverman, Complex variables with applications, Birkhauser, 2006. 5. Complex variables and application, Seventh Edition by James Ward Brown and Ruel V. Churchill, Mc-Graw Hill Book Co.,
International Edition, 2009.	

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to
CLO 1: Explain about analytic functions, their differentiation and continuity and to verify the Harmonic functions using analyticity conditions

CLO 2: Explain the concept of Conformal mappings and mappings by linear transformations and linear fractional transformations

CLO 3: Explain about the integrations of functions over simply and multiply connected domains and to derive the Cauchy integral formula, Liouvlle's theorem, Fundamental theorem of Algebra and Maximum Module Principle

CLO 4: Find the convergence the sequences and series, to derive Taylor's and Laurent's series CLO 5: Find the nature of singularities, to find the residue of a given function at a given singular point, to Explain about zeros and poles and to evaluate real improper integrals (Excluding poles on the real axis)

	POs							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	3	3	2	1	-	3	3	2	
CLO2	3	3	3	2	1	-	3	3	2	
CLO3	3	3	3	2	1	-	3	3	2	
CLO4	3	3	3	2	1	-	3	3	2	
CLO5	3	3	3	2	1	-	3	3	2	

Title of the Course Paper Number		MECHANICS					
		CORE 15					
Category	Core	Year	II	Credits	C	Course Code	
		Semester	VI				
Instructional Hours per week		Lecture		Tutorial	Lab Practice	Total	
		6			--	6	
Pre-requisite		$12^{\text {th }}$ Standard Mathematics					
Objectives of the Course		- Equilibrium of a particle under the action of given forces - Simple Harmonic Motion - Projectiles					
Course Outline		UNIT-I:Force: Newton's laws of motion - Resultant of two forces on a particle - Equilibrium of a Particle: Equilibrium of a particle Limiting equilibrium of a particle on an inclined plane.					
		UNIT-II:Forces on a Rigid Body: Moment of a Force - General motion of a body - Equivalent systems of forces- Parallel Forces Forces acting along a Triangle - A specific reduction of Forces: Reduction of coplanar forces into a force and couple - Problems involving frictional forces.					
		UNIT-III:Work, Energy and Power: Work - Conservative field of force - Power -Rectilinear Motion under Varying Force: Simple Harmonic Motion - along a horizontal line - along a vertical line.					
		UNIT - IV:Projectiles: Forces on a projectile - Projectile projected on an inclined plane					
		UNIT-V:Central Orbits: General orbits - Central orbit - Conic as a centered orbit					
Extended Professional Component (is a part of internal component only, Not to be included in the External Examination question paper)		Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)					
Skills from this	acquired course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill					

Recommended Text	P. Duraipandiyan, LaxmiDuraipandian, MutthamizhJayapragasam, Mechanics, S.Chand Publications, Pvt. Ltd, New Delhi, 2005.
Reference Books	1. J.L. Meriam and L. G. Kraige, Engineering Mechanics: Statics, Seventh Edition, Wiley and sons Pvt ltd., New York, 2012.
2. J.L. Meriam, L. G. Kraige, and J.N. Bolton, Engineering	
Mechanics: Dynamics, $8^{\text {th }}$ edn, Wiley and sons Pvt ltd., New York,	
2015.	
3. A. K. Dhiman,P.Dhinam and D. Kulshreshtha, Engineering Mechanics (Statics and Dynamics) ,McGraw Hill Education(India) Private Limited, New Delhi, 2015.	
Website and e-Learning Source	https://nptel.ac.in

Course Learning Outcome (for Mapping with POs and PSOs)

Students will able to
CLO 1: Define Resultant, Component of a Force, Coplanar forces, like and unlike parallel forces, Equilibrium of a Particle, Limiting equilibrium of a particle on an inclined plane.
CLO 2: Define Moment of a force and Couple with examples. Define Parallel Forces and Forces acting along a Triangle, Solve problems on frictional forces

CLO 3: Define work, energy, power, rectilinear motions under varying forces. Define Simple Harmonic Motion and find its Geometrical representation.

CLO 4: Define Projectile, impulse, impact and laws of impact. Prove that the path of a projectile is a parabola. Find the direct and oblique impact of smooth elastic spheres
CLO 5: Define central orbits, explain conic as centered orbits and solve problems related to central orbits

	POs						PSOs		
	1	2	3	4	5	6	1	2	3
CLO1	3	2	3	2	1	1	3	3	2
CLO2	3	2	3	2	1	1	3	3	2
CLO3	3	2	3	2	1	1	3	3	2
CLO4	3	2	3	2	1	1	3	3	2
CLO5	3	2	3	2	1	1	3	3	2

Generic Elective Courses (Allied Courses)

Titleofthe	Course	ALLIEDMATHEMATICS-I					
PaperNumber		ELECTIVECOURSEI					
Category	Core	Year	IORII	Credits	C	Course Code	
		Semester	IORIII				
InstructionalHou rs perweek		Lecture	Tutorial		LabPractice	Total	
		4			--	4	
Pre-requisite		$12^{\text {th }}$ StandardMathematics					
Objectives ofurse		- NecessaryskillstoanalyzeandmakedecisiononAssignmentan dTransportationproblemsSimpleHarmonicMotion - TosolverealworldproblemsonSequencingandNetworkandits applications					
CourseOutline		UNIT-I:Summationofseries:Binomialseries-Exponentialseries-Logarithmicseries-Simple Problems. Chapter2:Sections:2.1.3,2.2,2.2.1,2.3,2.3.3. Hours:12					
		UNIT-II:Matrices:Symmetric-Skew-Symmetric-Hermitian-Skew -Hermitian-OrthogonalandUnitarymatrices-Cayley-Hamiltontheorem(withoutproof)-Verification-ComputationofinverseofmatrixusingCayley-Hamiltontheorem. Chapter4:Sections:4.1.1-4.1.6,4.5.2and4.5.3.					
		NumericalMethods:Newton'smethodtofindarootapproximately.Fini te Differences:Interpolation:Operators , Δ, ∇, E, E^{-1} differencetables.Interpolationformulae:Newton'sforwardandback wardinterpolationformulaeforequalintervals,Lagrange'sinterpolationf ormula. Chapter3:Sections3.4.1.Chapter5:Sections:5.1and5.2.Hours:12					
		UNIT-IV:Trigonometry:Expansionsofsin${ }^{\mathrm{n}} \theta, \cos ^{\mathrm{n}} \theta$, in a seriesofpowersofsin θ and $\cos \theta-$ Expansionsofsin($\mathrm{n} \theta)$ and $\cos (\mathrm{n} \theta)$ inaseriessinesandcosinesofmultipleso f" θ "-Expansionsofsin $\theta, \cos \theta$ andtan θ inaseriesofpowersof" θ "Hyperbolicandinversehyperbolicfunctions . Chapter6:Section6.1-6.3					
		UNIT- V:DifferentialCalculus:Successivedifferentiation,nthderivatives,Lei bnitztheorem(withoutproof)andapplications,Jacobians,maximaandmi nimaoffunctionsoftwovariables-Simpleproblems Chapter1,Section1.1to1.3.1. Hours:12					

ExtendedProfessio nalComponent (is apart of internalcomp onent only,Nottobei ncludedin the ExternalExa mination questionpaper)	Questionsrelatedtotheabovetopics,fromvariouscompetitiveexamination sUPSC/TNPSC/otherstobe solved (TobediscussedduringtheTutorialhour)
Skills acquired fromthiscourse	Knowledge, Problem Solving, Analytical ability, Professional Competency,ProfessionalCommunicationandTransferrableSkill
RecommendedTe xt	AlliedMathematics,VolumeIandVolumeIIbyP.DuraipandianandS.Uda yabaskaran,S. ChandPublications VolumeI:UnitI-IV,VolumeII-UnitV
ReferenceBooks	1. AncillaryMathematicsbyS.NarayananandT.K.ManickavachagomPi llay,S.ViswanathanPinters,1986,Chennai

CourseLearningOutcome(forMappingwithPOsandPSOs)

Studentswillbeableto
CLO1:UnderstandtheconceptsofSummationofSeries.
CLO2:UnderstandtheconceptsofCayleyHamiltonTheoremandinversematrices.
CLO3:Understandtheconceptsoffinitedifferences.
CLO4:Understandtheknowledgeaboutexpansions,hyperbolicandinversehyperbolicfunctions.
CLO5:UnderstandtheconceptofLeibnitztheoremandfunctionsoftwovariables

	Pos							PSOs			
	1	2	3	4	5	6	1	2	3		
CLO1	2	3	1	3	1	1	3	1	1		
CLO2	3	2	1	3	1	1	3	1	1		
CLO3	3	2	1	3	1	1	3	1	1		
CLO4	3	3	1	3	1	1	3	1	1		
CLO5	3	2	1	3	1	1	3	1	1		

ExtendedProfessio nalComponent	Questionsrelatedtotheabovetopics,fromvariouscompetitiveexamination sUPSC/TNPSC/otherstobe solved (TobediscussedduringtheTutorialhour)
is apart of internalcomp onent only,Nottobei ncludedin the ExternalExa mination questionpaper)	
Skills acquired fromthiscourse	Knowledge, Problem Solving, Analytical ability, Professional Competency,ProfessionalCommunicationandTransferrableSkill
RecommendedTe xt	S. Narayanan, P. Kandhasamy, R. HanumanthaRao and T.K. ManickavasagamPillai, Ancillary Mathematics, Volume II, S. Viswanathan Printers, Chennai 2010.
ReferenceBooks	1. P. Balasubramaniyam, K. G. Subramanian, Ancillary Mathematics, Volume - I, Tata McGraw - Hill publishing company limited, New Delhi, 1996. 2. P. DuraiPandian, S. UdayaBaskaran, Allied Mathematics, Volume - I, Muhil publishers, 1 $1^{\text {st }}$ Edition, Chennai, 1997. 3. P. Kandsamy and K. Thilagavathy, Allied Mathematics volume - I, Volume - II, S. Chand \& Company, New Delhi, 2004. 4. Shanti Narayan, P.K. Mittal, Differential Calculus, S. Chand \& Co, New Delhi, 2005. 5. A. Singaravelu, Allied Mathematics, Meenakshi Agency, Chennai, 2001. 6. P.R. Vittal, Allied Mathematics, Margham Publications, Chennai, 1999.

Course Learning Outcomes:

This course will enable the students to:

CO Number	CO Statement	Knowledge Level
CO 1	discuss and analyze the concept of gradient, divergence and curl and its properties.	K2, K4
CO 2	recognize the importance of Green's, Gauss and Stoke's theorem in vector integrals.	K1
CO 3	find solution of first order linear partial differential equations using Lagrange's method.	K5
CO 4	solve the ordinary differential equations by using Laplace Transform.	K3
CO5	develop Fourier series of the periodic functions.	K6

Mapping of CO with PO and PSO												
Programme Outcomes (PO)							Programme Specific Outcomes (PSO)					Mean Scores of COs
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	PSO4	PSO5	
2	2	1	3	2	2	1	3	3	3	2	2	2.17
2	3	2	2	3	2	3	2	3	2	3	2	2.42
3	3	2	2	3	3	3	2	3	2	3	2	2.58
3	3	2	2	3	1	3	3	2	3	2	1	2.33
3	2	1	2	1	2	2	2	2	2	1	3	1.92

		NUMERICAL METHODS with Applications- I					
Titleof theCourse							
PaperNumber		ELECTIVE - I					
Category	Core	Year	IORII	Credits	C	Course Code	
		Semester	IORIII				
InstructionalHours PerWeek		Lecture \quad Tutorial			LabPractice	Total	
		4 --			--		
Pre-requisite		$12^{\text {th }}$ StandardMathematics					
$\begin{array}{ll} \hline \text { Objectives } & \begin{array}{l} \text { of } \\ \text { theCo } \end{array} \\ \text { urse } & \end{array}$		To know the methods of solving simultaneous linear equations. To acquire knowledge about forward differences and Backward differences and their relationship. Knowledge about central difference operators and problems based on various central differences formulae. To study Newton"s divided difference formula and problems based on Lagrange"s interpolation formula.					
CourseOutline		UnitI:Solutions of Algebraic and Transcendental Equations: Bisection Method- Iteration Method- Regula-Falsi Method- Newton-Raphson Method. Chapter 1 :Section 1.1 to1.4					
		UnitII:Solutions of Simultaneous Linear Equations: Gauss-Elimination Method, Gauss-Jordan Method, Crout's Method. Chapter 2 :Section 2.1 to 2.3					
		Unit III: Finite Differences: E Operators and Relation between themDifferences of Polynomial-Factorial Polynomials. Chapter 3 :Section 3.1 to 3.4					
		UnitIV:Interpolation with Equal Intervals:Newton's Forward and Backward Interpolation formulae. Central Differences Formulae: Gauss-Forward and Backward Formulae- Stirling's Formula and Bessel's Formula. Chapter 4 :Section 4.1to 4.3 (omit 4.1a) Chapter 5 :Section 5.1to 5.6					
		UnitV:Interpolation with Unequal Intervals: Divided Differences Newton's Divided Differences Formula for Interpolation -Lagrange's Formula for Interpolation-Inverse Interpolation-Lagrange's method Reversion of Series method. Chapter 6 :Section 6.1, 6.2, 6.5\&6.7					

ExtendedProfessio nalComponent (is apart of internalcompo nent only,Nottobein cludedin the ExternalExam ination questionpaper)	Questionsrelatedtotheabovetopics,fromvariouscompetitiveexaminations UPSC /TNPSC /others tobesolved (TobediscussedduringtheTutorialhour)
Skills acquired fromthis course	Knowledge,problemsolving,analyticalability,professional competency,professionalcommunicationandtransferableskill.
Recommended Text	P.Kandasamy, K.Thilagavathy (2003) Calculus of Finite differences \& Numerical Analysis, S. Chand \& Company Ltd., New Delhi-55.
Reference Books	1.B.D. Gupta.(2001) Numerical Analysis.Konark Pub. Ltd., Delhi 2. M.K. Venkataraman. (1992) Numerical methods for Science and Engineering National Publishing Company, Chennai. 3. S. Arumugam. (2003) Numerical Methods, New Gamma Publishing, Palayamkottai. 4. H.C. Saxena. (1991) Finite differences and Numerical analysis S.Chand\& Co., Delhi
Websiteand e-LearningSource	https://ocw.mit.edu/courses/22-15-essential-numerical-methods-fall2014/pages/syllabus/ https://ocw.mit.edu/courses/18-330-introduction-to-numerical-analysis-spring-2004/

CourseLearningOutcome(forMappingwith POs and PSOs)

Studentswillbeable to
CLO1: After studied unit -1 , the student will be able to solve Iteration method- Regula-falsi method- Newton-Raphson method.

CLO2:After studied unit -2 , the student will be able to calculate interpolation values by applying Gauss-Elimination method, Gauss-Jordan method.

CLO3:After studied unit -3 , the student will be able to calculate Differences of a polynomialFactorial polynomials.

CLO4:After studied unit -4 , the student will be able to estimate Central Differences Formulae.
CLO5: After studied unit -5 , the student will be able to estimate the interpolation value for unequal intervals based on Lagrange's formula of inverse interpolation.

	POs							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	2	4	-	3	2	1	
CLO2	2	1	3	1	4	-	3	2	1	
CLO3	3	1	3	1	2	-	3	2	1	
CLO4	3	1	3	2	4	-	3	2	1	
CLO5	3	1	3	2	4	-	3	2	1	

Titleof theCourse		NUMERICAL METHODS with Applications - II					
PaperNumber		ELECTIVE - II					
Category	Core	Year	IORII	Credits	C	Course Code	
		Semester	IIORIV				
InstructionalHours perweek		Lecture	Tutorial		LabPractice	Total	
		4	--			4	
Pre-requisite		$12^{\text {th }}$ StandardMathematics					
Objectives of theCo urse		To evaluate derivatives using Newton's forward and backward differences formulae. To acquire the knowledge about evaluation of numerical integration. To evaluate the solution of linear homogeneous difference equations with constant coefficients. To obtain numerical solutions to the ordinary differential equations.					
CourseOutline		UnitI:Numerical Differentiation: Derivatives using Newton's Forward and Backward Difference Formulae Derivatives using Stirling's FormulaDerivatives using Divided Difference Formula- Maxima and Minima using the above Formulae. Chapter 7 :Section 7.1 to $7.4 \& 7.6$					
		UnitII: Numerical Integration: Trapezoidal Rule-Simpson's One-Third Rule - Simpson's Three-Eighth Rule- Weddle's Rule. Chapter 7 :Section $7.9 \& 7.13$ to 7.15					
		Unit III: Difference Equations: Linear Homogenous and Non Homogenous Difference Equation with constant coefficients- particular integrals for $a^{x}, x^{m}, \sin k x, \cos k x, a^{x} F(x)$. Chapter 8 :Section 8.1 to $8.4 \& 8.6$					
		UnitIV: Numerical solution of Ordinary Differential Equations (I order only): Taylor's series method- Picard's method. Chapter 9: Section 9.5 , 9.6					
		UnitV:Numerical solution of Ordinary Differential Equations (I order only): Euler's Method- Modified Euler's Method-Runge-Kutta Method (Fourth Order only). Chapter 9 : Section 9.7,9.9 to 9.11					

ExtendedProfessio nalComponent (is apart of internalcompo nent only, Nottobein cludedin the ExternalExam ination questionpaper)	Questionsrelatedtotheabovetopics,fromvariouscompetitiveexaminations UPSC /TNPSC /others tobesolved (TobediscussedduringtheTutorialhour)
Skills acquired fromthis course	Knowledge,problemsolving,analyticalability,professional competency,professionalcommunicationandtransferableskill.
Recommended Text	 Numerical Analysis, S. Chand \& Company Ltd., New Delhi-55.
Reference Books	1.B.D. Gupta.(2001) Numerical Analysis. Konark Pub. Ltd., Delhi 2. M.K. Venkataraman. (1992) Numerical methods for Science and Engineering National Publishing Company, Chennai.
3. S. Arumugam. (2003) Numerical Methods, New Gamma Publishing, Palayamkottai.	
4. H.C. Saxena. (1991) Finite differences and Numerical analysis	
S.Chand\& Co., Delhi	

CourseLearningOutcome(forMappingwith POs and PSOs)

Studentswillbeable to

CLO1: After studied unit -1 , the student will be able to evaluate derivatives by applying Newton's forward and backward differences formulae.

CLO2: After studied unit -2 , the student will be able to evaluate integrations by applying the trapezoidal rule, Simpson"s rules, and Weddle"s rule.

CLO3: After studied unit -3 , the student will be able to find a complete solution to linear difference equations.

CLO4:After studied unit -4 , the student will be able to estimate approximate numerical solutions of ordinary differential equations by Euler, Picard and Taylor.

CLO5:After studied unit -5 , the student will be able to estimate approximate numerical solutions of ordinary differential equations by Runge-Kutta methods.

	POs							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	2	4	-	3	2	1	
CLO2	2	1	3	1	4	-	3	2	1	
CLO3	3	1	3	1	2	-	3	2	1	
CLO4	3	1	3	2	4	-	3	2	1	
CLO5	3	1	3	2	4	-	3	2	1	

Extended Professional Component (is a part of internal component only, Not t be included in the External Examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)
Skills acquired from course	Knis professional communication and transferable skill.
Text Book	S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand \& Co, New Delhi, Reprint 2019.
Recommende d Text	1. Vittal,P.R.(2004).Mathematicalstatistics.MarghamPublications. 2. Kapur, J. N \&Saxena, H. C. (2010). Mathematical statistics (20thed.). S. Chand \& Company Ltd.
Website and e-Learning Source	https://nptel.ac.in

CourseOutcomes			
CO No.	CO-Statements	Cognitive Levels (K- Level)	
	Onsuccessfulcompletionofthiscourse,studentswillbe able to	K1	
CO1	acquiretheknowledgeofbasicconceptsinstatistics	K2	
$\mathbf{C O 2}$	beabletounderstandvarioustypesofrandomvariablesand the distributions	K3	
$\mathbf{C O 3}$	calculatemoments,cumulants,momentgeneratingfunction andvariousconstantsofprobabilitydistributions	K4	
$\mathbf{C O 4}$	illustratethetheoryofrandomvariables,distribution functionsandprobabilitydistributionswithsuitable	K5	
$\mathbf{C O 5}$	beabletoevaluatesolutionofreal-lifeproblemsunderthe concept of probability and probability distributions.		

Relationship Matrix											
Course Outcomes	ProgrammeOutcomes (POs)					ProgrammeSpecificOutcomes(PSOs)					Mean Scoreof COs
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	3	3	2	2	1	3	3	2	1	2	2.2
$\mathrm{CO2}$	3	3	2	2	1	3	3	2	1	2	2.2
$\mathrm{CO3}$	3	2	2	2	1	3	3	2	1	2	2.1
CO4	3	3	2	2	1	3	3	2	1	2	2.2
$\mathrm{CO5}$	3	3	3	2	1	3	3	2	1	2	2.3

Title of Course	the	MATHEMATICAL STATISTICS - II						
Paper Number		Elective - IV						
Category	Core	Year	II	Credits	3	Course Code		
		Semester	III					
Instructional Hours per week		Lecture		Tutorial	Lab Practice		Total	
		3		--	--		3	
Pre-requisite		$12^{\text {th }}$ Standard Mathematics						
Objectives of the Course		- To testthesignificanceofsampling - Finding the Goodness of Fit - To derivethevarious measuresof tandFdistributions - To Analyze the correlation coefficient and Regression lines						
Course Outline		Unit I:Introduction-TypesofSampling-ParameterandStatistic-Testsofsignificance-Procedure for testing of hypothesis - Test of significancefor large samples - Sampling ofattributes-Sampling of variables.						
		Unit II:Introduction - Student's t - distribution - Applications of t distribution						
		Unit III:-F-distribution -Applicationsof F-distribution.						
		Unit IV: Meaning of Correlation -Scatter Diagram - Karl Pearsons'sCoeficient of Correlation - Rank Correlation						
		Unit V:Introduction - Linear regression						
Extended Professional Component (is a part of internal component only, Not to be included in the External Examination question paper)		Questions related to the above topics, from various competitive examinations UPSC / TNPSC / others to be solved (To be discussed during the Tutorial hour)						

Skills acquired from this course	Knowledge, problem solving, analytical ability, professional competency, professional communication and transferable skill.
Text Book	S.C. Gupta and V.K. Kapoor, Fundamentals of Mathematical Statistics, Sultan Chand \& Co, New Delhi, Reprint 2019.
Recommended Text	1. Vittal,P.R.(2004).Mathematicalstatistics.MarghamPublications. 2. Kapur, J. N \&Saxena, H. C. (2010). Mathematical statistics (20thed.). S. Chand \& Company Ltd.
Website and e-Learning Source	https://nptel.ac.in

CONo.	CO-Statements	Cognitive Levels (K-levels)
	Recognizetheparametersandstatisticstotestthesignificanceofsampl ing	K1
$\mathbf{C O - 2}$	Finding the Goodness of Fit	K2
$\mathbf{C O - 3}$	Derivethevarious measuresofChi-square, tandFdistributions	K3
$\mathbf{C O - 4}$	Correlation coefficients between Observed and Estimated values	K4
$\mathbf{C O - 5}$	AnalysetheRegression lines	K4

Semester	Course Code			Titleofthe Course						Hours		Credits
II	21UMA23AC02			ALLIED-2:STATISTICS-II						6		4
CourseOut comes \downarrow	ProgrammeOutcomes(PO)					ProgrammeSpecificOutcomes(PSO)					Mean Scores ofCOs	
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5		
CO-1	1	2	2	2	2	3	3	2	2	2	2.1	
CO-2	2	3	1	2	2	2	2	3	3	2	2.2	
CO-3	2	3	2	1	3	2	2	3	2	2	2.2	
CO-4	3	2	3	3	1	2	2	2	3	2	2.3	
CO-5	3	1	2	2	2	2	3	2	2	3	2.2	

Discipline Specific Electives

Extended ProfessionalCompon ent(is a part ofinternal componentonly,Notto beincludedin the ExternalExamination questionpaper)	Questions related to the above topics, from various competitiveexaminations UPSC/TNPSC /otherstobesolved (TobediscussedduringtheTutorialHour)
Skills acquiredfromthisco urse	Knowledge,ProblemSolving,AnalyticalAbility,Professional Competency,ProfessionalCommunicationandTransferrableSkill
Recommended Text	CalculusVolumeIIIbyS.NarayananandT.K.ManickavachagomPillay,S.Vis wanathanPublishersPvt.Ltd. 2006
ReferenceBooks	1. EngineeringMathematicsVolumeIII,P.KandasamyandOther s,(S.ChandandCo)
2. AdvancedEngineering Mathematics-	
StanleyGrossmanandWilliamR.Devit	

CourseLearningOutcome(forMappingwithPOsandPSOs)

Studentswillbeableto
CLO1:FindtheLaplaceTransformandevaluationofintegralsusing LaplaceTransform
CLO2: Find the Inverse Laplace Transforms
CLO3:ExpansionofPeriodicFunctionsofPeriod2,ExpansionofOddandEvenFunction s

CLO4:FindtheFourierTransforms,InfiniteFourierTransformsandtheirproperties
CLO 5: Evaluate Fourier sine and cosine transform.

	POs							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	3	1	3	1	-	3	1	1	
CLO2	3	3	1	3	1	-	3	1	1	
CLO3	3	3	1	3	1	-	3	1	1	
CLO4	3	3	1	3	1	-	3	1	1	
CLO5	3	3	1	3	1	-	3	1	1	

TitleoftheCourse		SPECIALFUNCTIONS				
PaperNumber		ELECTIVECOURSE-V				
Category	Elective	Year	II	Credits	C	
		Semester	V			
Instructional Hours		Lecture		Tutorial	LabPractice	Total
		4		-	-	4
PerWeek						
Pre-requisite		$12^{\text {th }}$ StandardMathematics				
Objectives of theCo urse		1. Todevelopcomputationalskillsincertainspecialfunct ionswhicharefrequently occurring in higher mathematics and mathematical physics. 2. Learntheconceptsofsimultaneouslineardifferentialequations andsomesolvable types of nonlinear equations. 3. Basicknowledgeabout numericalsolutionsusingtheTaylorseries. 4. TounderstandtheconceptsofBesselfunctions,Legendrefuncti ons, andtheir properties. 5. To give an insight about Fourier integral, term by term differentiation of Fourier series and Legendre series.				
CourseOutline		UNIT-I: PropertiesofLinearOperators- SimultaneousLinearDifferentialEquations-SpecialSolvable Types of Nonlinear Equations.				
		UNIT-II: NumericalSolutionsUsingTaylorSeries- AdamsandModifiedAdamsMethod-Extrapolation with Differences				
		UNIT-III: PropertiesofPowerSeries-Examples- SingularPointsofLinearSecondOrderDifferential Equations - Method of Frobenius.				
		UNIT-IV: Bessel Functions-Properties-LegendreFunctions.				

	UNIT-V: TermbyTermDifferentiationofFourierSeries,LegendreSeries- Fourier Integral.
Extended ProfessionalCompon ent(is a part ofinternal componentonly,Notto beincludedin the ExternalExamination questionpaper)	Questions related to the above topics, from various competitiveexaminations UPSC/TNPSC /otherstobesolved (TobediscussedduringtheTutorialHour)
Skills acquiredfromthisco urse	Knowledge,ProblemSolving,AnalyticalAbility,Professional Competency,ProfessionalCommunicationandTransferrableSkill
Recommended Text	F.B.Hildebrand.(1977)AdvancedCalculusforApplications.PrenticeHall.Ne wJersey.
ReferenceBooks	1.J.N.SharmaandR.K.Gupta(1998)SpecialFunctions,Kris hnaPrakashanMandir, Meerut. 2.SatyaPrakash.(2004)MathematicalPhysics.Sultan\&Sons.NewDelhi. 3.D.Gupta(1978)MathematicalPhysics,VikasPublishingHouse. Websiteand e-Learningsource https://nptel.ac.in https:www.mathhelp.com/

CourseOutcomes

1. Afterstudiedunit-1,thestudentwillbeabletoacquiretheconceptoflinear operators, and solve simultaneous linear differential equations.
2. Afterstudiedunit-2,thestudentwillbeabletointerpretAdamsandModified Adams method and extrapolation techniques.
3. Afterstudiedunit-3,thestudentwillbeabletounderstandtheconceptofpower series solution.
4. Afterstudiedunit-4,thestudentwillbeabletoexplaintheconceptsof Bessel functions, Legendre functions, and their properties.
5. After studied unit -5 , the student will be able to analyze term-by-term differentiation of the Fourier series and Legendre series.

MappingwithProgramme Outcomes

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	3	3	3	2	3	2
CO2	3	2	3	3	2	3	3	3	2	3
CO3	2	2	3	3	3	3	2	3	3	2
CO4	3	3	2	3	3	2	3	2	3	3
CO5	2	3	3	2	3	3	3	3	2	2

Skills acquiredfromthisco urse	Knowledge,ProblemSolving,AnalyticalAbility,Professional Competency,ProfessionalCommunicationandTransferrableSkill
Recommended Text	S.ArumugamandS.Ramachandran,"InvitationtoGraphTheory", SCITECHPublications India Pvt. Ltd., 7/3C, Madley Road, T.Nagar, Chennai - 17
ReferenceBooks	1.Douglas B.West 'Introduction to Graph Theory',PearsonEducation,Inc.Pearson Prentice Hall,London. 2.S.A.Choudham,AFirstCourseinGraphTheory,MacmillanIndiaLtd. 3.RobinJ.Wilson,IntroductiontoGraphTheory,LongmanGroup Ltd. 4.J.A.BondyandU.S.R.Murthy,GraphTheorywithApplications,Macmill on,London. Websiteand e-Learningsource https://nptel.ac.in https:www.mathhelp.com/

Reference Books	1. An introductionto theTheoryofNumbers(Vthedition)byIvanNiven,HerbertS.ZuckarmanandHughL. MontgometryJohnWiley\&Sons,Inc.2001. 2. Elementarytheoryofnumbers,cy.Hsiung,Alliedpublishers, 1995. 3. ElementaryNumberTheory, AllynandBaconInc., Boston, 1980.
Website and e- Learning Source	https://nptel.ac.in

Course Learning Outcome (for Mapping with POs and PSOs)

Students will be able to
CLO 1: UnderstandthefundamentalconceptsofMathematicalInduction.
CLO 2: EvaluatetheGreatestcommonDivisorandLeastcommonmultipleusingthe algorithms.

CLO 3: Determine and understand theDiophantineequations forthreeormoreunknowns.
CLO 4: Demonstratethequadraticresidues, elementaryProperties
CLO 5: EvaluateandanalyzetheperfectnumbersusingtheMersenneandFermat Numbers.

	Pos							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	2	2	2	2	2	2	3	2	2	
CLO2	2	3	2	3	2	2	3	2	1	
CLO3	2	3	3	2	2	2	3	2	2	
CLO4	3	2	2	2	3	2	3	2	2	
CLO5	2	2	2	2	2	2	2	2	2	

Course Code	Course Name		L	T	P	S	\%		Marks		
									U	辱	\%
Elective Course - VII	OBJECT ORIENTED PROGRAMMING CONCEPTS USING C++	Core	5	-		-	3	5	25	75	100
Learning Objective											
LO1	Describe the procedural and object oriented paradigm with concepts of streams, classes, functions, data and objects										
LO2	Understand dynamic memory management techniques using pointers, constructors, destructors, etc										
LO3	Describe the concept of function overloading, operator overloading, virtual functions and polymorphism										
LO4	Classify inheritance with the understanding of early and late binding, usage of exception handling, generic programming										
LO5	Demonstrate the use of various OOPs concepts with the help of programs										
UNIT	Contents										
I	Introduction to C++ - key concepts of Object-Oriented Programming Advantages - ObjectOriented Languages - I/O in C++ - C++ Declarations. Control Structures :- Decision Makingand Statements : If ..else, jump, goto, break, continue, Switch case statements - Loops in $\mathrm{C}++$:for, while, do - functions in C++ - inline functions - Function										5

	Overloading.		
II	Classes and Objects: Declaring Objects - Defining Member Functions Static Member variablesand functions - array of objects -friend functions - Overloading member functions - Bit fieldsand classes Constructor and destructor with static members.		15
III	Operator Overloading: Overloading unary, binary operators Overloading Friend functions -type conversion - Inheritance: Types of Inheritance - Single, Multilevel, Multiple, Hierarchal,Hybrid, Multi path inheritance - Virtual base Classes - Abstract Classes.		15
IV	Pointers - Declaration - Pointer to Class, Object - this pointer - Pointers to derived classes andBase classes - Arrays - Characteristics - array of classes - Memory models - new and deleteoperators - dynamic object Binding, Polymorphism and Virtual Functions.		15
V	Files - File stream classes - file modes - Sequential Read / Write operations - Binary and ASCIIFiles - Random Access Operation Templates - Exception Handling - String - Declaring andInitializingstring objects - String Attributes - Miscellaneous functions.		15
	Total		75
Course Outcomes		Programme Outcome	
CO	Upon completion of the course the students would be able to:		
1	Remember the program structure of C with its syntax and semantics	PO1,PO6	
2	Understand the programming principles in C (data types, operators, branching and looping, arrays, functions, structures, pointers and files)	PO2	
3	Apply the programming principles learnt in realtime problems	PO4 ,PO5	
4	Analyze the various methods of solving a problem and choose the best method	PO6	
5	Code, debug and test the programs with appropriate test cases	PO3,PO6	
Text Book			
1	E. Balagurusamy, "Object-Oriented Programming with C++", TMH 2013, 7th Edition.		
Reference Books			
1.	Ashok N Kamthane, "Object-Oriented Programming with ANSI and Turbo C++", Pearson Education 2003.		
2.	Maria Litvin\&GrayLitvin, "C++ for you", Vikas publication 2002.		
Web Resources			
1.	https://alison.com/course/introduction-to-c-plus-plus-programming		

Mapping with Programme Outcomes:

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6
CO 1	3	3	3	3	3	3
CO 2	3	3	3	2	3	3
CO 3	3	2	2	2	3	2
CO 4	3	3	3	3	2	3
CO 5	3	2	3	2	3	3
Weight age of course contributed to each PSO	15	13	14	12	14	14

Course Code	Course Name		L	T	P		S	تِّ		Marks		
										米	砢	-
Elective Course - VII	OBJECT ORIENTED PROGRAMMING CONCEPTS USING C++LAB	Core	-		2		-		2	25	75	100
Course Objective												
C1	Describe the procedural and object oriented paradigm with concepts of streams, classes, functions, data and objects											
C2	Understand dynamic memory management techniques using pointers, constructors, destructors, etc											
C3	Describe the concept of function overloading, operator overloading, virtual functions and polymorphism											
C4	Classify inheritance with the understanding of early and late binding, usage of exception handling, generic programming											
C5	Demonstrate the use of various OOPs concepts with the help of programs											
S.No	List of Excercises											
1	Write a C++ program to demonstrate function overloading, Default Arguments and Inlinefunction.											
2	Write a C++ program to demonstrate Class and Objects											
3	Write a C++ program to demonstrate the concept of Passing Objects to Functions											

4	Write a C++ program to demonstrate the Friend Functions		60
5	Write a C++ program to demonstrate the concept of Passing Objects to Functions		
6	Write a C++ program to demonstrate Constructor and Destructor		
7	Write a C++ program to demonstrate Unary Operator Overloading		
8	Write a C++ program to demonstrate Binary Operator Overloading		
9	Write a C++ program to demonstrate: - Single Inheritance - Multilevel Inheritance - Multiple Inheritance - Hierarchical Inheritance - Hybrid Inheritance		
10	Write a C++ program to demonstrate Virtual Functions.		
11	Write a C++ program to manipulate a Text File.		
12	Write a C++ program to perform Sequential I/O Operations on a file.		
13	Write a C++ program to find the Biggest Number using Command Line Arguments		
14	Write a C++ program to demonstrate Class Template		
15	Write a C++ program to demonstrate Function Template.		
16	Write a C++ program to demonstrate Exception Handling.		
Course Outcomes		Programme Outcome	
CO	Upon completion of the course the students would be able to:		
1	Remember the program structure of C with its syntax and semantics	PO4,PO5	
2	Understand the programming principles in C (data types, operators, branching and looping, arrays, functions, structures, pointers and files)	PO6	
3	Apply the programming principles learnt in realtime problems	PO4 ,PO5	
4	Analyze the various methods of solving a problem and choose the best method	PO6	
5	Code, debug and test the programs with appropriate test cases	PO4,PO5	
Text Book			

1	E. Balagurusamy, "Object-Oriented Programming with C++", TMH 2013, 7th Edition.	
Reference Books		
1.	Ashok N Kamthane, "Object-Oriented Programming with ANSI and Turbo C++", Pearson Education 2003.	
2.	Maria Litvin\&GrayLitvin, "C++ for you", Vikas publication 2002.	
Web Resources		
1.	https://alison.com/course/introduction-to-c-plus-plus-programming	

Mapping with Programme Outcomes:

CO/PSO	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	PSO 6
CO 1	3	3	3	3	3	3
CO 2	3	2	3	3	2	3
CO 3	3	3	3	3	3	3
CO 4	3	2	2	3	3	3
CO 5	3	2	3	3	3	2

Title of the Course	FINANCIAL ANALYTICS					
Paper Number	ELECTIVECOURSE-VII					
Category	Year	III	Credits	C	Course Code	
	Semester	VI				
Instructional Hours per week	Lecture \quad Tutorial			Lab Practice	Total	
	5				5	
Pre-requisite	$12^{\text {th }}$ Standard Mathematics					
Objectives of the Course	The course aims to provide students with a comprehensive understanding of the various aspects of financial analytics, emphasizing the stock market, portfolio management, risk assessment and management, fraud analytics, and financial modeling.					
Course Outline	Unit I: Understanding Financial Analytics Provide an in-depth understanding of financial analytics - its relevance, and scope in today's financial landscape - Highlight recent trends and introduce the tools and techniques employed in finance.					
	Unit II: Stock Market Fundamentals: Introduce the history - importance and role of the stock market in the economy. Familiarize students with stocks - bonds, derivatives, and the roles of different market participants - Long-term vs. short-term investing - Diversification and its importance in a portfolio Regulatory bodies and their role in overseeing stock market activities - Compliance and legal aspects in stock market operations.					

	Unit III: Portfolio Management Skills: The principles of portfolio construction - including Modern Portfolio Theory, asset allocation, and the use of fundamental and technical analysis. Explore behavioural finance - the Capital Asset Pricing Model - risk measures in portfolio management. Unit IV: Risk Assessment and Management: Explain different types of financial risks - their characteristics, and interrelationships. Cover methodologies such as Value at Risk - stress testing, and risk control methods like hedging and diversification. Discuss regulatory aspects related to risk management. Unit V: Fraud Analytics and Prevention: Define various types of financial fraud, emphasize ethical considerations - regulatory compliance - the strategies and technologies employed in fraud risk management. Introduce real-world case studies for practical understanding.
Skills acquired from this course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill
Recommended Text	PitabasMohanty (2023), "Financial Analytics", Wiley India, ISBN 978-93-5464-417-7
Reference Books	1. 1. ArgimiroArratia (2014), "Computational Finance An Introductory Course with R", Atlantis Press, ISBN 978-94-6239-069-0 2. Bernhard Pfaff (2013),"Financial risk modelling and portfolio optimization with R", Wiley, ISBN 978-0-470-97870-2 3. Cairns, A.J. G (2004), "Interest Rate Models: An Introduction", Princeton University Press, ISBN: 9780691118949 4. Christian Gourieroux\& Joann Jasiak (2002), "Financial Econometrics: Problems, Models, and Methods", Princeton University Press , ISBN: 9780691088723 5. David Ruppert (2011),"Statistics and Data Analysis for Financial Engineering", Springer, ISBN 978-1-4419-7786-1 6. Duffie, D. and Singleton, K.J (2003), "Credit Risk: Pricing, Measurement, and Management", Princeton University Press, ISBN: 9780691090467 7. John Y. Campbell, Andrew W. Lo, \& A. Craig MacKinlay (1997), "The Econometrics of Financial Markets", Princeton University Press, ISBN: 9780691043012
Website and e-Learning Source	https://nptel.ac.in

Course Outcome:

Upon completion of the course, students will:
CO 1: Grasp Financial Analytics Fundamentals: Understand the significance and relevance of financial analytics, recent trends, and the application of analytical tools and techniques in finance.

CO 2: Comprehend Stock Market Dynamics:Gain a comprehensive understanding of the stock market, its history, functions, and the roles played by different market participants and regulatory bodies.

CO 3: Apply Portfolio Management Principles: Acquire the skills necessary to construct portfolios based on Modern Portfolio Theory, analyze asset allocation, employ fundamental and technical analysis, and monitor and adjust portfolios.

CO 4: Assess and Manage Financial Risks: Identify different types of financial risks, understand risk and return relationships, and apply various risk assessment and management techniques.

CO 5: Understand Fraud Analytics and Prevention: Recognize different types of financial fraud, apply ethical considerations in fraud detection, and develop strategies to prevent and manage fraud.

The course is designed to provide a holistic understanding of financial analytics, preparing students to navigate the complex landscape of the stock market, risk management, fraud detection, and decision-making through modeling and forecasting in finance.

CO-PSO-PO Mapping

	PSO1	PSO2	PSO3
CO1	3	2	2
CO2	2	3	1
CO3	3	3	2
CO4	3	2	2
CO5	2	3	3

(Low-1; Moderate-2; High-3; No Correlation -0)

	PO1	PO2	PO3	PO4	P05	PO6
CO1	3	2	1	2	1	2

CO2	2	3	3	1	2	3
CO3	3	2	2	2	3	1
CO4	2	3	2	2	1	3
CO5	3	2	1	2	2	3

Title of the Course	DISCRETEMATHEMATICS					
Paper Number	ELECTIVECOURSE-VIII					
Category	Year	III	Credits	C	Course Code	
	Semester	VI				
Instructional Hours	Lecture ${ }^{\text {S }}$ Tutorial			Lab Practice	Total	
per week	5			--	5	
Pre-requisite	$12^{\text {th }}$ Standard Mathematics					
Objectives of the Course	This course aims to develop mathematical maturity and ability to deal with abstraction and to develop construction and verification of formallogical manipulation.					
Course Outline	UNIT I: RECURRENCE RELATIONS AND GENERATING FUNCTIONS Recurrence - Polynomials and their Evaluations - Recurrence Relations - Solution of Finite Order Homogeneous [linear] Relations - Solutions of Non-homogeneous Relations. (Chap V . Sections:1 to 5)					

	UNIT II: MATHEMATICAL LOGIC TF Statements - Connectives - Atomic and Compound Statements - Well-formed [StatementFormulae]- Truth Table of a Formula-Tautology -Tautological Implications and Equivalence of Formulae. (Chap IX . Sections:1 to 8)
	UNIT III: MATHEMATICAL LOGIC [CONTD..] Replacement process - Functionally complete sets of connectives and Duality law - NormalFormsPrincipalNormalForms.(Chap IX . Sections: 9 to 12)
	UNIT IV: LATTICES Lattices [omit example $15 \mathrm{PpNo.10.6}$]- Some properties of Lattices - New Lattices (omit remark Pp 10.14)-Modular and Distributive Lattices (omit theorem 10 and 17,Example 4Pp10.23, Example 11-Pp10.24) (Chap X . Sections:1 to 4)
	UNIT-V BOOLEAN ALGEBRA Boolean Algebra (omit theorem 25) - Boolean Polynomials- Karnaugh Maps (omit K- map for 5 and 6 variables) (Chap X. Sections:5 to 7)
Skills acquired from this course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill
Recommended Text	M.K.Venkataraman, N.Sridharan and N.Chandrasekaran, [2003] Discrete Mathematics, The National Publishing company, chennai.
Reference Books	1. Oscar Levin, Discrete Mathematics, 3rd Edition,2016. 2. B. A. Davey \& H. A. Priestley (2002). Introduction to Lattices and $\operatorname{Order}\left(2^{\text {nd }}\right.$ edition). Cambridge University Press. 3. Edgar G. Goodaire\& Michael M. Parmenter (2018). Discrete Mathematics withGraph Theory (3rd edition). Pearson Education. 4. Rudolf Lidl\& Günter Pilz (1998). Applied Abstract Algebra (2nd edition). Springer. 5. Kenneth H. Rosen (2012). Discrete Mathematics and its Applications: WithCombinatorics and Graph Theory (7th edition). McGraw-Hill. 6. C. L. Liu (1985). Elements of Discrete Mathematics (2nd edition). McGraw-Hill.
Website and e-Learning Source	https://nptel.ac.in

Course Learning Outcomes:

This course will enable the students to:

CO Number	CO Statement	Knowledge

		Level
CO 1	Analyse and perceive various graph theoretic concepts and familiarize with their applications.	K4, K5
CO 2	Describe about partially ordered sets, Boolean algebra, lattices and their types.	K1
CO 3	Apply Karnaugh map for simplifying the Boolean expression	K3
CO 4	Demonstrate the skill to construct simple mathematical proofs and to validate.	K2, K6
CO 5	Achieve greater accuracy, clarity of thought and language.	K6

CO	Programme Outcomes (PO)							Programme Specific Outcomes (PSO)					Mean Scores of COs
	P01	PO2	PO3	PO4	PO5	PO6	P07	PSO1	PSO2	PSO3	PSO4	PSO5	
1	2	3	2	3	3	3	3	3	3	3	2	2	2.67
2	3	2	2	2	3	3	3	2	2	2	2	3	2.42
3	2	2	2	2	3	3	3	3	3	3	2	3	2.58
4	3	2	2	3	3	3	2	3	3	3	3	2	2.67
5	3	2	2	3	3	2	2	3	3	2	2	3	2.5
	Mean Overall Score												2.57
												Result	High

Title of the Course	BIG DATA ANALYTICS					
Paper Number	ELECTIVECOURSE-VIII					
Category	Year	III	Credits	3	Course Code	
	Semester	VI				
Instructional Hours per week	Lecture Tutorial			Lab Practice	Tot	
	5				5	
Pre-requisite	$12^{\text {th }}$ Standard Mathematics					
Objectives of the Course	This course gives an overview of Big Data, i.e. storage, retrieval and processing of big data. In addition, it also focuses on the "technologies", i.e., the tools/algorithms that are available for storage, processing of Big Data. It also helps a student to perform a variety of "analytics" on different data sets and to arrive at positive conclusions.					

Course Outline	UNIT - I: BUSINESS POTENTIAL OF BIG DATA (6 Hrs) Definition - Big data, computing perfect storm, Data perfect storm, Convergence perfect storm, dependent, Independent, Interdependent, wider variety of data, Big Data and the New School of Marketing, Cross-Channel Lifecycle Marketing, Social and Affiliate Marketing, Fraud and Big Data, High volume, High velocity, High variety, Risk and Big Data, Credit Risk Management, Algorithmic Trading, Complex Interrelated Data, Intraday Risk Analytics, Disruptive Analytics, Optimization, Marketing Mixed Modelling.
	Unit - II BIG DATA TECHNOLOGY (8 Hrs) Big Data Technology Terms , Hadoop Distributed File System (HDFS), Map Reduce, Old vs. New Approaches, Open-Source Technology, The Cloud and Big Data, Mobile Business Intelligence, Ease of Mobile Application Deployment, Crowdsourcing Analytics, Inter- and TransFirewall Analytics, R\&D Approach, Adding Big Data Technology
	Unit - III: INFORMATION MANAGEMENT (8 Hrs) Big Data Foundation, Computing Platforms, More on Big Data Storage, Computational Limitations, Emerging Technologies, Consumption of Analytics, communication, Implement, Measure, Align incentives, Develop cognitive repairs, Creation to Consumption, Visualizing data, Describing, reporting, observing, discovering, Tools to Analytic Applications.
	Unit - IV: BIG DATA BUSINESS MODEL USING AI (8 Hrs) AI based Business Monitoring, AI Business Insights, AI Business Optimization, Data Monetization, Business Metamorphosis, Leveraging Technology, Power Competitive Differentiation, Economic-Driven Business Transformation, Evolution of the Business, Focus Initial Big Data Efforts Internally, Preparing for Organizational Transformation, Data as an Asset, Establishing Common Business, Corporate Mission, Business Strategy, Strategic Business Initiatives, Business Entities, Business Stakeholders, Business Decisions.

	Unit - V: DATA SCIENCE FOR BUSINESS STAKEHOLDER(10 Hrs) Forecasting Identify Key Business Initiative, Develop Business Stakeholder Personas Identify Strategic Nouns, Capture Business Decisions, Brainstorm Business Questions, Leverage BY Analysis, Create Actionable Scores, Analytics into Action. Articulate the Business Metamorphosis Vision, Data and Analytic Requirements, Identify Business and Operational Decisions, and Identify Analytic Requirements, Business Metamorphosis in Health Care, Prioritization Matrix, Privacy, Trust, and Decision Governance.
Skills acquired from this course	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill
Recommended Text	A) Minelli, Michael, Michele Chambers, and AmbigaDhiraj (2013). Big data, big analytics: emerging business intelligence and analytic trends for today's businesses. John Wiley \& Sons. B) Keighley, L. and Hill, P., (2017). Big Data MBA-Driving Business Strategies with Data Science Bill Schmarzo.
Reference Books	1. SeemaAcharya, SubhashiniChellappan, (2015)"Big Data Analytics", 1st Edition, Wiley 2. Liebowitz, J. ed., 2013. Big data and business analytics. CRC press. 3. Maheshwari, A., 2014. Data analytics made accessible. Seattle: Amazon Digital Services.
Website and e-Learning Source	https://nptel.ac.in

Course Outcome

At the end of the course students will be able to:
CO 1: To Understand Big Data and its Business analytics in the real world.
CO 2: knowledge about to big data analyze the Big Data framework like Hadoop and process Big Data to generate analytics.

CO 3: Application of Business Information and computational methods.
CO 4: To discussBusiness Strategy, Strategic Business Initiatives, Business Entities, Business Stakeholders.

CO 5: Have a high level understanding of Develop Business Stakeholder Personas Identify Strategic Nouns, Capture Business Decisions, and Brainstorm Business.

CO-PSO-PO Mapping

	PSO1	PSO2	PSO3
CO1	3	2	2
CO2	2	3	1
CO3	3	3	2
CO4	3	2	2
CO5	2	3	3

(Low-1; Moderate-2; High-3; No Correlation -0

	PO1	P02	P03	P04	P05	P06
CO1	3	2	1	2	1	2
CO2	2	3	3	1	2	3
CO3	3	2	2	2	3	1
CO4	2	3	2	2	1	3
CO5	3	2	1	2	2	3

SkillEnhancementCourses

Titleof theCourse		MATHEMATICSFORCOMPETIVEEXAMINATIONS-I				
PaperNumber		ELECTIVE(SEC)				
Category	Core	Year	I	Credits	2	Course Code
		Semester	I			
InstructionalHours perweek		Lecture		Tutorial	LabPractice	Total
		2		--	--	2
Pre-requisite		$12^{\text {th }}$ StandardMathematics				

Objectives of theCo urse	Aftertakingthecourse, - Thestudentwillable toanswerthequestionsrelatedtothenumbersystem. - Thestudentwillable toanswerreallifesimpleproblemsbyusingHCFandLCM. - Thestudentwillabletoapplythecorrectsequenceofoperationstofind outthevalueofagivenmathematicalexpressions. - Thestudentwill able tosolvetheprobleminvolvingsquareroots,cuberootsandaverage. - Thestudentwillable tocarryouttheproblemsrelatedtoage andsimpleproduct.
CourseOutline	UnitI: NumberSystem. Hours: 6
	UnitII: H.C.Fand L.C.Mofnumbers,DecimalFractions. Hours:6
	UnitIII: Simplification. Hours: 6
	UnitIV: SquarerootandCube Roots, Averages. Hours:6
	UnitV: Problemsonnumbers,ProblemsonAge,SurdsandIndices. Hours:6

Extended Professional Component is a part of internal component only, Nottobeincluded in the External Examinationqu estionpaper)	Questionsrelatedtotheabovetopics,fromvariouscompetitive examinationsUPSC/TNPSC/otherstobesolved(Tob ediscussedduringtheTutorialhour)
Skills acquired fromthiscourse	Knowledge,problemsolving,analyticalability,professional competency,professionalcommunicationandtransferableskill.
Recommended Text	1.R.S. Aggarwal[2017],QuantitativeAptitudeforCompetitiveExamin ations,S.ChandandCompany,NewDelhi. Chapters11-13,18,19,22,23,
ReferenceBooks	1.PraveenR.V,QuantitativeAptitudeandreasoning,PHILearningPvt,New Delhi.

CourseLearning Outcome(forMappingwithPOsandPSOs)

Studentswillbeableto
CLO1:SolveMathematicalProblemsusingMathematicalfor mulae.

CLO2: Understand the knowledge of application of Mathematics

CLO3: Understandtheconceptsofsimplification.
CLO4: Calculatethesquarerootandcuberoot.
CLO5: Solvetheproblemsonage.

	Pos							PSOs		
	1	2	3	4	5	6	1	2	3	
CLO1	3	1	3	2	2	-	3	2	1	
CLO2	2	1	3	1	2	-	3	2	1	
CLO3	3	1	3	1	2	-	3	2	1	
CLO4	3	1	3	2	2	-	3	2	1	
CLO5	3	1	3	2	3	-	3	2	1	

Titleof theCourse PaperNumber		MATHEMATICSFORCOMPETIVEEXAMINATIONS-II					
		ELECTIVE(SEC)					
Category	Core	Year	I	Credits	2	Course Code	
		Semester	II				
InstructionalHours perweek		Lecture		Tutorial	LabPractice	Total	
		2		--		2	
Pre-requisite		$12^{\text {th }}$ StandardMathematics					
Objectives of theCo		Aftertakingthecourse, Topreparethestudentsforcompetitiveexaminations					

urse	
CourseOutline	Unit I: Time and work - Time and distance - Problems on Trains.(Book1:Chapters 15,17,18).
	UnitII: Simpleinterest,compoundInterest-Bargraphs-PieChartsLineGraphs.(Book1:Chapters21,22,37,38,39).
	UnitIII: LogicalSequenceofWords-ArithmeticalReasoning-InsertingtheMissingCharacter.(Book2,Section:1,Chapters13-15)
	UnitIV: DataSufficiency-DecisionMaking- VerificationofTruthoftheStatement.(Book2,Section:1,Chapters16,17, 20.)
	UnitV: Non-VerbalReasoning-AnalyticalReasoning- GroupingofIdenticalFigures.(Book2,Section:3,Chapter3,4,13)

Extended Professional Component is a part of internal component only, Nottobeincluded in the External Examinationqu estionpaper)	Questionsrelatedtotheabovetopics,fromvariouscompetitive examinationsUPSC/TNPSC/otherstobesolved(Tob ediscussedduringtheTutorialhour)		
Skills acquired	Knowledge,problemsolving,analyticalability,professional competency,professionalcommunicationandtransferableskill.		
fromthiscourse		\quad	Recommended
:---			
Text		1.R.S.Aggarwal,QuantitativeAptitudeforCompetitiveExaminations,R	
:---			
evisedEdition,S.ChandandCompanyLtd.,RamNagar,NewDelhi,Repri			
nt2022.			
2.			
R.S.Agarwal,AModernApproachToVerbalAndNonverbalReasoning,S			
Chand,2018.			

CourseLearningOutcomes

Thiscoursewillenablethestudentsto:

CONumber	COStatement	Knowledge Level
CO 1	makecritiqueofquantitativeinformationusing proportionalreasoning	K 5
CO 2	Interpretandcompareweightedaverages,indices, ranking.	K 2
CO 3	identifyusesandmisusesofpercentagesrelatedtoaproperu nderstanding ofthebases.	K 1
CO 4	examiningandestimatingpercentagesasratesper100	$\mathrm{K} 3, \mathrm{~K} 4$
CO 5	solveforanunknownquantityinproportional situation	K 6

E-learningsource:www.tcyonline.com/tests/mathematics-competitive-
examhttp://www.indiabix.com/online-test/non-verbal-reasoning-
test/http://books.tamilcube.com/career/aptitude-test/non-verbal-reasoning/non-verbal-reasoning-questions-001.aspx
https://www.kent.ac.uk/careers/tests/spatialtest.htmhttp://www.careerbl ess.com/aptitude/qa/home.phphttp://www.careerride.com/online-aptitude-test.aspx

	perweek	2	--	-
Pre-requisite	$12^{\text {th }}$ StandardMathematics	2		

Description:

This course introduces students to Geogebra, a dynamic math software. Over 30 hours, they'll learn to use Geogebra to visualize, solve, and analyze math problems across various fields. The goal is to build skills and enable the use of geometry for advanced mathematical applications.

Objectives:

- To introduce thestudents to Geogebra.
- To enhance understanding of mathematical concepts.
- To make the students to progressively build skills and knowledge.
- To leverage geometry for advanced applications.
- To ensure prerequisite knowledge and skills.

Prerequisites:

Solid foundation in basic math, including algebra and geometry. Completion of one year of high school or college-level math is recommended. Familiarity with equations, functions, and basic geometry, plus computer proficiency, is essential.
Unit - I: Introduction to Geogebra and Matrices (6 hours)
Introduction to Geogebra and its Applications- Exploring the Geogebra interface- Creating and manipulating matrices - Matrix operations (addition, multiplication) - Rank and Transpose of a matrix- Inverse of a matrix.

Unit - II: Trigonometry and Geogebra (6 hours)

Trigonometric functions and identities- Graphing trigonometric functions - Using Geogebra to solve trigonometric equations- Trigonometric applications and Geogebra tools.

Unit - III: Roots of Polynomials (6 hours)

Solving polynomial equations- Graphical representation of polynomial functions- Finding roots and factors of polynomials - Maxima and Minima of polynomial equations.

Unit - IV: Limits and Continuity (6 hours)

Introduction to limits and their graphical representation- Calculating limits- Exploring the concept of continuity - Continuity and limits in real-world scenarios.

Unit - V: Advanced Topics and Practical Applications (6 hours)

Further exploration of mathematical concepts- Real-world applications and case studies of the topics covered- Interactive problem-solving.

Assessment and Evaluation:

Assessment Component	Description	Weight

Weekly Assignments	Ongoing assessments consisting of weekly quizzes and assignments to evaluate topic understanding and participation.	40%
Mid-term Examination	A mid-term examination is held at the midpoint of the course, covering material from the first half of the syllabus.	20%
Final Examination	A comprehensive final examination that covers all course content. This examination evaluates student's overall understanding and retention of the course material.	40%

Textbook and Resources:

1. Online Geogebra Documentation:Geogebra provides extensive online documentation and tutorials to support learning and exploration.
2. Additional Reading: Students are encouraged to explore additional resources related to specific topics covered in the course, such as calculus textbooks for more in-depth coverage of differentiation and integration.
3. Course Materials: Lecture notes, slides, and assignments provided by the instructor throughout the course will be essential references.
4. Geogebra Software: Ensure you have access to the latest version of GeoGebra, which can be downloaded for free from the Geogebra website

E-Learning source

1. Search Tutorials | spoken-tutorial.org
2. Applications of GeoGebra - Course (swayam2.ac.in)
3. GeoGebra 5.04 -Course (swayam2.ac.in)

Course Learning Outcomes:

Course Outcome (CO)	Description
CO1: Proficiency	- Navigate the Geogebra interface effectively. - Construct and manipulate geometric objects, points, lines, and angles. - Perform symbolic computations using the algebra view. - Graph functions and equations using Geogebra. - Utilize Geogebra tools for geometry and algebraic tasks.- Employ Geogebra scripting for advanced mathematical tasks.
CO2: Matrix and Trigonometry	
Mastery	-Using matrices, including operations like addition, multiplication, and inversion. - Solve trigonometric equations and graph trigonometric functions using Geogebra. - Understand matrix transformations and trigonometric properties. CO3: Understanding ContinuityLimits and Analyze limits graphically and mathematically. - Comprehend the concept of mathematical continuity. -

		Represent limits and continuity visually using Geogebra.
CO4:Geogebra Scripting and Advanced Tasks	- Use Geogebra scripting for advanced mathematical tasks and explorations.	
CO5: Critical Thinking Mathematical Problem-Solving	and	- Develop critical thinking skills in approaching mathematical problems. - Apply mathematical concepts systematically to real-world scenarios. - Enhance overall problem-solving abilities.
CO6: Effective Communication of Mathematical Ideas	- Communicate mathematical ideas clearly, both verbally and in writing. - Present mathematical concepts and solutions in an organized manner - Demonstrate mathematical reasoning effectively.	
CO7: Independent Learning and Exploration	- Gain confidence and skills for independent learning and exploration of mathematical concepts using Geogebra. - Apply mathematics in various academic and practical contexts.	

Titleof theCourse	MAXIMA				
PaperNumber	ELECTIVE(SEC)				
Category	Year	II	Credits	2	Course Code
	Semester	IV			
InstructionalHours	Lecture		Tutorial	LabPractice	Total

	perweek	2	--	-
Pre-requisite	$12^{\text {th }}$ StandardMathematics	2		

Description:

This course empowers students with advanced Maxima skills for symbolic math. Tailored to deepen understanding of complex math, it covers symbolic calculations, algebra, differentiation, integration, and intricate problem-solving. Students will finish proficient in using Maxima for math exploration and research.

Objectives:

- To gain advanced skills in Maxima.
- To understand complex math concepts better.
- To use Maxima to its fullest.
- To simplify math like professionals.
- Make the students to handle difficult math problems.
- To utilize Maxima for exploring, researching, and problem-solving.

Prerequisites:

1. Strong foundation in mathematics, including calculus and algebra.
2. Prior experience with Maxima is helpful but not required.
3. Good understanding of fundamental math concepts, computer proficiency, and a passion for math encouraged.

Unit - I: Introduction to Maxima (6 hours)

Overview of Maxima software - Installation and setup - Basic commands and syntax - Using variables and functions - Introduction to symbolic expressions.

Unit - II: Algebraic Manipulations with Maxima (6 hours)

Simplifying expressions - Expanding and factoring polynomials - Solving equations and inequalities - Manipulating matrices and vectors.

Unit - III: Differentiation with Maxima (6 hours)

Symbolic differentiation - Chain rule and product rule - Differentiating trigonometric and exponential functions - Higher-order derivatives - Applications of differentiation.

Unit - IV: Integration with Maxima (6 hours)

Symbolic integration - Integration techniques (substitution, integration by parts) - Definite and indefinite integrals - Applications of integration - Numerical integration.

Unit - V: Ordinary Differential Equations with Maxima (6 hours)

Introduction to ordinary differential equations (ODEs) - First-order ODEs: Separable, linear, and integrating factor methods - Second-order ODEs: Homogeneous and non-homogeneous Applications of ODEs.

Assessment and Evaluation:

Assessment Component	Description	Weight
Weekly Assignments	Ongoing assessments consisting of weekly quizzes and assignments to evaluate topic understanding and participation.	40%
Mid-term Examination	A mid-term examination is held at the midpoint of the course, covering material from the first half of the syllabus.	20%
Final Examination	A comprehensive final examination that covers all course content, including differentiation, integration, and other topics. This examination evaluates students' overall understanding and retention of the course material.	

Textbooks and Resources:

1. Online Maxima Documentation: Maxima provides extensive online documentation and tutorials on its official website. Students can access a wealth of information and examples to support their learning and exploration of Maxima.
2. Additional Reading: Students are encouraged to explore additional resources related to specific topics covered in the course. Consider referring to textbooks on symbolic mathematics and computer algebra systems, which can provide more in-depth coverage of Maxima's capabilities and applications.
3. Course Materials: Lecture notes, slides, and assignments provided by the instructor throughout the course will serve as essential references. These materials will reinforce course concepts and provide practical exercises for students to apply what they've learned.
4. Maxima Software: Ensure you have access to the latest version of Maxima, which can be downloaded for free from the official Maxima website. Installing and familiarizing yourself with the software is crucial for hands-on practice and applying symbolic math techniques.

E-Learning source

1. Maxima, a Computer Algebra System (sourceforge.io)
2. The Maxima Book (sourceforge.io)
3. Maxima-tutorial (cheat-sheets.org)

Course Learning Outcomes:

Course Outcomes (CO)

Description

CO1: Use Maxima for symbolic math effectively.	Utilize Maxima software proficiently for symbolic mathematical calculations, including algebraic manipulations, differentiation, and integration.
CO2: Simplify complex mathematical expressions.	Demonstrate the ability to simplify complex mathematical expressions and solve equations using Maxima with precision and efficiency.
CO3: Visualize mathematical functions and data.	Apply Maxima's capabilities to visualize and graphically represent mathematical functions and data, enhancing the understanding of mathematical concepts.
CO4: Solve advanced mathematical problems.	Solve advanced mathematical problems from various branches of mathematics, including algebra, calculus, and differential equations, using
Maxima as a powerful computational tool.	

Titleof theCourse	PYTHONPROGRAMMING					
PaperNumber	ELECTIVE(SEC)					
Category	Core	Year	III	Credits	2	Course

	Semester			
InstructionalHours perweek	Lecture	Tutorial	LabPractice	Total
	2	--	--	2
Pre-requisite	$12^{\text {th }}$ StandardMathematics			

Objective:Totrainstudentinprogrammingtechniquesandprovidehandsonexperienceinusingprogra mmesto solve basic mathematical problems.

UNIT -I

Introduction:FeaturesofPython-HowtorunPython-variables-comments-Indentation-Multi-LineStatements-Quotes-Input,OutputandImportFunctions-Operators-Datatypes:Numbers-Strings-List-Tuple-Set-Dictionary-Datatypeconversion,Booleans.

UNIT-II

Control Flow Statements:The if Decision Control Flow Statement, The if...else Decision Control FlowStatement, The if...elif...else Decision Control Statement, Nested if Statement, The while Loop, The forLoop, The continue and break Statements. Functions: Definition- calling- Function Arguments- Anonymousfunctions-Recursive withmorethan onereturn value,Python Arrays,Introduction toTensors.

UNIT-III

Modules and Packages: Built-in modules- creating modules- import statement- package in Python-Date andTime modules- Case study: Numpy, Pandas, matplotlib- math, Python File handling. Data Visualization:Generating Data-Installing Matplotlib, Plotting a Simple Line Graph, Random Walks, Rolling Dice withPlotly.

UNIT-IV

Additionandsubtractionofmatrices-Multiplicationofmatrices-TraceandTransposeofMatrix-Rankofmatrix-Inverseof aMatrix-Findingthe eigen values andeigen vectors.

UNIT -V

Finding theDerivative of e^{ax}, trigonometric andhyperbolic functions-Finding the Derivative ofalgebraicandlogarithmicfunctions-evaluatethe line integrals with constantand variablelimits.

BooksforReference:

1. JeevaJose,"TamingPythonbyProgramming",RevisedEdition,KhannaPublishing,2019.ISBN :978-93-86173-34-8.
2. GowrishankarS,VeenaA,"IntroductiontoPythonProgramming",1stEdition,CRCPress/Taylo r\&Francis,2018.ISBN-13: 978-0815394372
3. ChSatyanarayana,"PythonProgramming",OrientBlackSwanPvt. Ltd,2022.ISBN:978-93-86235-63-3.
4. S.NarayananandT.K.ManicavachagomPillay,Calculus,VolumeI,S.Viswanathan(Printersan dPublishers),PVTLtd,Chennai, 2011.
5. A.K.Sharma,DifferentialCalculus,DiscoveryPublishingHouse,NewDelhi,2004.
6. G.B.Thomas andR.L. Finney,Calculus,PearsonEducation,2007.
7. P.R.VitalandV.Malini,Algebraand Trigonometry-I,MarghamPublications -Reprint2015.
8. S.ArumugamandA.ThangapandiIssac,AlgebraandTrigonometry,NewGammaPublishingHo
use,July2011.

Objective:TointroducetothestudentsthenovelapplicationsofRlanguageandtogivethemhands onexperienceofworkingwithdata.

Unit-I:BasicConceptsinR

Assignmentofvalues,Character,Vectorarithmetic,UnderstandingDatatypes,importing/e xporting data - Computation of tables and graphical representation in R:plot,piechart,boxplot,generatinggraphsfromimporteddata

Unit- II:ProbabilityDistributions

Fittingandplottingofbinomial,Poissonand Normaldistributions

Unit-III:CorrelationandRegression

Correlation and linearregression: Representation of bivariate data through scatterdiagram,KarlPearson's,Spearman'sandKendall'scoefficientsofcorrelation,Coefficient ofdetermination,linear regressionmodel,MultipleLinear Regression.

Unit-IV:TestsofHypothesis

Student'st-test,OnesampleZ-test,Paireddatat-test

Unit-V:Chi-squaretestandDesignofExperiments

Chi-squaretest:Independenceofattributesandgoodnessoffit-DesignofExperiments:
Completely randomized design (CRD), Randomized block design
(RBD) andLatinsquaredesign(LSD).

BooksforReference

1. MarkGardener, BeginningR the StatisticalProgramming Language, JohnWiley\&Sons,Inc. 2012.
2. JosephAdler,RinaNutshellADesktopQuickReference, O'reilly,2010.
3. CornillonPierreAndreEtAl,RForStatistics,TandFIndia, 2015.
4. R for Everyone: Advanced Analytics and Graphics, Jared P. Lander, Addison-

WesleyData \&AnalyticsSeries,2018.
5. R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, HadleyWickham,Garrett Grolemund, Shroffpublishers, 2017.
6. Learn R For Applied Statistics: With Data Visualizations Regressions And Statistics byHui,Apress, 2019

CourseLearningOutcomes

Thiscoursewillenablethestudentsto:

CONumber	COStatement	Knowledge Level
CO 1	explain practical implications of expectation andvariance andhow they predicttheshapes ofdistributionanddensity(mass)functionsofarandom variable	K 5
CO 2	demonstratecapabilitytowriteprogrammingcodesfor plottingdifferentdistributions.	K 4

CO 3	evaluatetheindependenceofattributesanddesignof experiments.	K6
CO 4	describeandapplyprobabilitydistributionfunctionanddiffere nttypesof distributivefunctionsthrough R Language.	K1
CO 5	knowandunderstandaboutTestsofHypothesis throughR.	K2

E- Learningsource:https://www.r-project.org/

https://www.r-statistics.com/

[^0]: Skills acquired from Knowledge, Problem Solving, Analytical ability, Professional the Courses \quad Competency, Professional Communication and Transferrable Skill

