

THIRUVALLUVAR UNIVERSITY

SERKKADU, VELLORE-632115

B.Sc. PHYSICS

SYLLABUS

FROM THE ACADEMIC YEAR
2023 - 2024

Contents

- i. Preamble
- ii. PO and PSO Description
- iii. UG Template
- iv. Methods of Evaluation & Methods of Assessment
- v. Semester Index.
- vi. Subjects Core, Elective, Non-major, Skill Enhanced, Ability Enhanced, Extension Activity, Environment, Professional Competency
 - 1) Course Lesson Box
 - 2) Course Objectives
 - 3) Units
 - 4) Learning Outcome
 - 5) Reference and Text Books
 - 6) Web Sources
 - 7) PO & PSO Mapping tables

B.Sc. PHYSICS SYLLABUS

Preamble

Physics is one of the basic and fundamental sciences. The curriculum for the graduate programme in Physics is revised as per the UGC guidelines on Learning Outcome based Course Framework. The learner-centric courses let the student progressively develop a deeper understanding of various aspects of physics.

The new curriculum offer courses in the core areas of mechanics, acoustics, optics and spectroscopy, electricity and magnetism, atomic and nuclear physics, solid state, electronics and other fields. The courses will train students with sound theoretical and experimental knowledge that suits the need of academics and industry. In addition to the theoretical course work, the students also learn physics laboratory methods for different branches of physics, specialized measurement techniques, analysis of observational data, including error estimation and etc. The students will have deeper understanding of laws of nature through the subjects like classical mechanics, quantum mechanics, statistical physics etc. The problem solving ability of students will be enhanced. The students can apply principles in physics to real life problems. The courses like integrated electronics and microprocessors will enhance the logical skills as well as employability skills. The numerical methods and mathematical physics provide analytical thinking and provide a better platform for higher level physics for research.

The restructured courses with well-defined objectives and learning outcomes, provide guidance to prospective students in choosing the elective courses to broaden their skills not only in the field of physics but also in interdisciplinary areas. The elective modules of the framework offer students choice to gain knowledge and expertise in specialized domains of physics like astrophysics, medical physics, etc.

LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK GUIDELINES BASED REGULATIONS FOR UNDER GRADUATE PROGRAMME					
Programme:	B.Sc. PHYSICS				
Programme Code:	U28				
Duration:	3 years [UG]				
Programme Outcomes:	PO1: Disciplinary knowledge: Capable of demonstrating comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate Programme of study PO2: Communication Skills: Ability to express thoughts and ideas effectively in writing and orally; Communicate with others using appropriate media; confidently share one's views and express herself/himself; demonstrate the ability to listen carefully, read and write analytically, and present complex information in a clear and concise manner to different groups. PO3: Critical thinking: Capability to apply analytic thought to a body of knowledge; analyse and evaluate evidence, arguments, claims, beliefs on the basis of empirical evidence; identify relevant assumptions or implications; formulate coherent arguments; critically evaluate practices, policies and theories by following scientific approach to knowledge development. PO4: Problem solving: Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of nonfamiliar problems, rather than replicate curriculum content knowledge; and apply one's learning to real life situations. PO5: Analytical reasoning: Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyze and synthesize data from a variety of sources; draw valid conclusions and support them with evidence and examples, and addressing opposing viewpoints. PO6: Research-related skills: A sense of inquiry and capability for asking relevant/appropriate questions, problem arising, synthesising and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions from data, establish hypotheses, predict cause-and-effect relationships; ability to plan, execute and report the results of an experiment or investigation PO7: Cooperation/Team work: Ability to work effectively and respectfully with diverse teams; facilitate coop				

awareness and reflexivity of both self and society.

PO10 Information/digital literacy: Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources; and use appropriate software for analysis of data.

PO 11 Self-directed learning: Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion.

PO 12 Multicultural competence: Possess knowledge of the values and beliefs of multiple cultures and a global perspective; and capability to effectively engage in a multicultural society and interact respectfully with diverse groups.

PO 13: Moral and ethical awareness/reasoning: Ability toembrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstratingthe ability to identify ethical issues related to one"s work, avoid unethical behaviour such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights; appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all aspects of work.

PO 14: Leadership readiness/qualities: Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team members to engage with that vision, and using management skills to guide people to the right destination, in a smooth and efficient way.

PO 15: Lifelong learning: Ability to acquire knowledge and skills, including "learning how to learn", that are necessary for participating in learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge/skill development/reskilling.

Programm
Specific
Outcomes:

PSO1: Placement:

To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, and beliefs and apply diverse frames of reference to decisions and actions.

(These are mere guidelines. Faculty can create POs

PSO 2: Entrepreneur:

To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate start-ups and high potential organizations

PSO3: Research and Development:

based on their	Design and implement HR systems and practices grounded in research
curriculum or	that comply with employment laws, leading the organization towards
adopt from	growth and development.
UGC or	PSO4: Contribution to Business World:
University for	To produce employable, ethical and innovative professionals to sustain in
their	the dynamic business world.
Programme)	PSO 5: Contribution to the Society:
	To contribute to the development of the society by collaborating with
	stakeholders for mutual benefit

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
PSO 1	Y	Y	Y	Y	Y	Y	Y	Y
PSO 2	Y	Y	Y	Y	Y	Y	Y	Y
PSO3	Y	Y	Y	Y	Y	Y	Y	Y
PSO 4	Y	Y	Y	Y	Y	Y	Y	Y
PSO 5	Y	Y	Y	Y	Y	Y	Y	Y

3 - Strong, 2- Medium, 1- Low

Highlights of the Revamped Curriculum:

- > Student-centric, meeting the demands of industry & society, incorporating industrial components, hands-on training, skill enhancement modules, industrial project, project with viva-voce, exposure to entrepreneurial skills, training for competitive examinations, sustaining the quality of the core components and incorporating application oriented content wherever required.
- ➤ The Core subjects include latest developments in the education and scientific front, advanced programming packages allied with the discipline topics, practical training, devising mathematical models and algorithms for providing solutions to industry / real life situations. The curriculum also facilitates peer learning with advanced mathematical topics in the final semester, catering to the needs of stakeholders with research aptitude.
- The General Studies and Mathematics based problem solving skills are included as mandatory components in the 'Training for Competitive Examinations' course at the final semester, a first of its kind.

- The curriculum is designed so as to strengthen the Industry-Academia interface and provide more job opportunities for the students.
- The Industrial Statistics course is newly introduced in the fourth semester, to expose the students to real life problems and train the students on designing a mathematical model to provide solutions to the industrial problems.
- The Internship during the second year vacation will help the students gain valuable work experience, that connects classroom knowledge to real world experience and to narrow down and focus on the career path.
- Project with viva-voce component in the fifth semester enables the student, application of conceptual knowledge to practical situations. The state of art technologies in conducting a Explain in a scientific and systematic way and arriving at a precise solution is ensured. Such innovative provisions of the industrial training, project and internships will give students an edge over the counterparts in the job market.
- ➤ State-of Art techniques from the streams of multi-disciplinary, cross disciplinary and inter disciplinary nature are incorporated as Elective courses, covering conventional topics to the latest Artificial Intelligence.

Value additions in the Revamped Curriculum:

Semester	NewlyintroducedComponents	Outcome/ Benefits
I	FoundationCourse	> Instill
	To ease the transition of	confidenceamongstude
	learningfrom higher secondary	nts
	to	Createinterestforthesub
	highereducation, providing an over	ject
	viewofthepedagogyoflearningLit	
	eratureandanalysingtheworldthro	
	ughtheliterarylens	
	givesrisetoanewperspective.	
I,II,III,IV	SkillEnhancementpapers (Disci	> Industry
	pline centric	readygraduates
	/Generic/Entrepreneurial)	> Skilledhumanresource
		Studentsareequippedwi
		thessentialskillsto
		makethememployable
		 Trainingonlanguageand communicationskillsen
		ablethestudents gain knowledge and
		exposureinthecompetiti
		veworld.
		veworid.
		> Discipline centric
		skillwillimprovetheTec
		hnical knowhow
		ofsolvingreallife
		problems.
III,IV,V& VI	Electivepapers	Strengthening
		thedomainknowledge
		Introducing
		thestakeholdersto
		theState-of
		Arttechniquesfrom the
		streamsofmulti-
		disciplinary,crossdiscip
		linaryandinterdisciplina
		rynature
		Emerging topics
		inhigher
		education/industry/com
		municationnetwork/hea
		lthsectoretc.areintroduc
		edwith
		hands-on-training.

IV	ElectivePapers		 Exposuretoindustrymo uldsstudentsintosolutio nproviders GeneratesIndustryready graduates Employmentopportuni tiesenhanced 		
VSemester	Electivepapers		 Self-learning isenhanced Applicationoftheconce pttorealsituationisconce ivedresulting intangibleoutcome 		
VISemester	Electivepapers		 Enriches the studybeyondthe course. Developingaresearchfr amework and presenting their independent and intellectual ideas effectively. 		
ExtraCredits:	> Tocatertotheneedsofpee				
ForAdvancedLearners/Ho	onorsdegree		rlearners/research aspirants		
SkillsacquiredfromtheCo	ırses	Knowledge, Problem Solving, Analytical ability, Professional Competency, Professional Communication and Transferrable Skill			

Credit Distribution for UG Programme

Sem I	Credit	Sem II	Credit	Sem III	Credit	Sem IV	Credit	Sem V	Credit	Sem VI	Credit
1.1. Language - Tamil	3	2.1. Language - Tamil	3	3.1. Language - Tamil	3	4.1. Language - Tamil	3	5.1 Core Course – \CC IX –Theory	4	6.1 Core Course – CC XIII–Theory	4
1.2 English	3	2.2 English	3	3.2 English	3	4.2 English	3	5.2 Core Course – CC X–Theory	4	6.2 Core Course – CC XIV–Theory	4
1.3 Core Course – CC I (Theory)	5	2.3 Core Course – CC III (Theory)	5	3.3 Core Course – CC V (Theory)	5	4.3 Core Course – CC VII –Theory/ Core Industry Module	5	5. 3.Core Course CC -XI–Theory	4	6.3 Core Course – CC XV–Practicals	4
1.4 Core Course – CC II (Practical)	5	2.4 Core Course – CC IV (Practicals)	5	3.4 Core Course – CC VI (Practicals)	5	4.4 Core Course – CC VIII (Practicals)	5	5. 3.Core Course – Practicals / Project with viva- voce CC -XII	4	6.4 Elective -VII Generic/ Discipline Specific	3
1.5 Elective I Generic/ Discipline Specific (Allied Course I)	5	2.5 Elective II Generic/ Discipline Specific (Allied Course II)	6	3.5 Elective III Generic/ Discipline Specific (Allied Course III)	5	4.5 Elective IV Generic/ Discipline Specific (Allied Course IV)	6	5.4 Elective V Generic/ Discipline Specific	3	6.5 Elective VIII Generic/ Discipline Specific	3
1.6 Skill Enhancement Course SEC-1 (NME)	2	2.6 Skill Enhancement Course SEC-2 (NME)	2	3.6 Skill Enhancement Course SEC-4, (Entrepreneurial Skill)-(Naan Mudhalvan/NME)	1	4.6 Skill Enhancement Course SEC-6 – (Naan Mudhalvan/Discipline Specific)	2	5.5 Elective VI Generic/ Discipline Specific	3	6.6 Extension Activity	1
1.7 Skill Enhancement - (Foundation Course)	2	2.7 Skill Enhancement Course –SEC- 3(Discipline Specific)	2	3.7 Skill Enhancement Course SEC-5- (Discipline Specific)	2	4.7 Skill Enhancement Course SEC-7- (Discipline Specific)	2	5.6 Value Education	2	6.7 Professional Competency Skill	2
				3.8 E.V.S	2			5.5 Summer Internship /Industrial Training	2		
	23		23		24		23		26		21
		Total CreditPoints 140									140

CREDIT DISTRIBUTION FOR U.G.

3 – Year UG Programme Credits Distribution									
	No. of Papers Credits								
Part I	Tamil(3 Credits)	4	12						
Part II	English(3 Credits)	4	12						
	Core Courses (8x5 Credits& 7x 4 Credits)	15	68						
Part III	Elective Courses :Generic / Discipline Specific (3 Credits)	8	24						
	Part III Credits	92							
	Skill EnhancementCourses (6x2	7	13						
	credits & 1x1credit)								
	Summer Internship /Industrial Training	1	2						
	Foundation Course	1	2						
	Extension Activity (NSS / NCC /								
	Physical Education)	1	1						
	EVS(2 Credits)	1	2						
	Value Education (2 Credits)	1	2						
	Part IV Credits	22							
Part V	Professional Competency Skill	2							
	Total Credits for the U	G Programme	140						

Consolidated Semester wise and Component wise Credit distribution

Parts	Sem I	Sem II	Sem III	Sem IV	Sem V	Sem VI	Total
							Credits
Part I	3	3	3	3	-	-	12
Part II	3	3	3	3	-	-	12
Part III	13	13	13	13	22	18	92
Part IV	4	4	3	6	4	1	22
Part V	-	-	-	-	-	2	2
Total	23	23	22	25	26	21	140

*Part I. II, and Part III components will be separately taken into account for CGPA calculation and classification for the under graduate programme and the other components. IV, V have to be completed during the duration of the programme as per the norms, to be eligible for obtaining the UG degree

MethodsofEvaluation						
	ContinuousInternalAssessmentTest					
Internal	Assignments	25 Marks				
Evaluation	Seminars	23 Warks				
	AttendanceandClassParticipation					
External	EndSemesterExamination	75 Marks				
Evaluation	Lindseniester Examination	75 Warks				
	Total	100 Marks				
	MethodsofAssessment					
Recall(K1)	Simpledefinitions, MCQ, Recallsteps, Concept definitions					
Understand/C	MCQ,True/False,Shortessays,Conceptexplanations,Shortsummaryor					
omprehend(K2)	overview					
Application (K3)	Suggestidea/conceptwithexamples,Suggestformulae, Solveproblems,					
Application (KS)	Observe, Explain					
Analyze(K4)	Analyze(K4) Problem-solvingquestions, Finishaprocedure in many steps, Differentiate					
betweenvariousideas, Mapknowledge						
Evaluate(K5)	Longer essay/Evaluationessay, Critiqueorjustify with prosand cons					
Cwasts(VC)	Checkknowledgeinspecificoroffbeatsituations, Discussion	,Debatingor				
Create(K6)	Presentations					

Consolidated Semester wise and Component wise Credit distribution

Parts	Sem I	Sem II	Sem III	Sem IV	Sem V	Sem VI	Total
							Credits
Part I	3	3	3	3	-	-	12
Part II	3	3	3	3	-	-	12
Part III	13	13	13	13	22	18	92
Part IV	4	4	3	6	4	1	22
Part V	-	-	-	-	-	2	2
Total	23	23	22	25	26	21	140

^{*}Part I. II, and Part III components will be separately taken into account for CGPA calculation and classification for the under graduate programme and the other components. IV, V have to be completed during the duration of the programme as per the norms, to be eligible for obtaining the UG degree.

First Year - Semester-I

Part	List of Courses	Credit	No. of Hours
Part-1	Language – Tamil	3	6
Part-2	English	3	6
Part-3	Core Courses & Elective Courses [in Total]	13	16
	Skill Enhancement Course SEC-1	2	2
Part-4	Foundation Course	2	2
		23	32

Semester-II

Part	List of Courses	Credit	No. of Hours
Part-1	Language – Tamil	3	6
Part-2	English	3	6
Part-3	Core Courses & Elective Courses including laboratory [in Total]	13	16
Part-4	Skill Enhancement Course -SEC-2	2	2
	Skill Enhancement Course -SEC-3 (Discipline / Subject Specific)	2	2
		23	32

Second Year - Semester-III

Part	List of Courses	Credit	No. of
			Hours
Part-1	Language - Tamil	3	6
Part-2	English	3	6
Part-3	Core Courses & Elective Courses including laboratory [in Total]	13	15
Part-4	Skill Enhancement Course -SEC-4 (Entrepreneurial Based)	1	1
	Skill Enhancement Course -SEC-5 (Discipline / Subject Specific)	2	2
	E.V.S	2	2
		24	32

Semester-IV

Part	List of Courses	Credit	No. of
			Hours
Part-1	Language - Tamil	3	6
Part-2	English	3	6
Part-3	Core Courses & Elective Courses including laboratory [in Total]	13	16
Part-4	Skill Enhancement Course -SEC-6 (Discipline / Subject Specific)	2	2
	Skill Enhancement Course -SEC-7 (Discipline / Subject Specific)	2	2
		23	32

Third Year

Semester-V

Part	List of Courses	Credit	No. of
			Hours
Part-3	Core Courses including Elective Based	22	26
Part-4	Value Education	2	2
	Internship / Industrial Visit / Field Visit	2	2
		26	30

Semester-VI

Part	List of Courses	Credit	No. of
			Hours
Part-3	Core Courses including Project / Elective Based & LAB	18	28
Part-4	Extension Activity	1	-
	Professional Competency Skill	2	2
		21	30

Consolidated Semester wise and Component wise Credit distribution

Parts	Sem I	Sem II	Sem III	Sem IV	Sem V	Sem VI	Total Credits
Part I	3	3	3	3	-	-	12
Part II	3	3	3	3	-	-	12
Part III	13	13	13	13	22	18	92
Part IV	4	4	3	6	4	1	22
Part V	-	-	-	-	-	2	2
Total	23	23	22	25	26	21	140

^{*}Part I. II, and Part III components will be separately taken into account for CGPA calculation and classification for the under graduate programme and the other components. IV, V have to be completed during the duration of the programme as per the norms, to be eligible for obtaining the UG degree.

NON-MAJOR ELECTIVES

- 1. PHYSICS FOR EVERYDAY LIFE
- 2. ASTROPHYSICS
- 3. PHYSICS OF MEDICAL INSTRUMENTS
- 4. HOME ELECTRICAL INSTALLATION
- 5. PHYSICS OF MUSIC
- 6. ENERGY PHYSICS
- 7. NANOSCIENCE AND NANOTECHNOLOGY

DISCIPLINE SPECIFIC CORE ELECTIVE (COMPULSORY)

1. DIGITAL ELECTRONICS AND MICROPROCESSOR 8085

DISCIPLINE SPECIFIC ELECTIVES (OPTIONAL)

- 1. COMMUNICATION SYSTEMS
- 2. BASIC AND APPLIED ELECTRONICS
- 3. MATHEMATICAL PHYSICS
- 4. ADVANCED MATHEMATICAL PHYSICS
- 5. NUMERICAL METHODS AND C PROGRAMMING
- 6. MATERIALS SCIENCE
- 7. LASERS AND FIBER OPTICS
- 8. DIGITAL PHOTOGRAPHY
- 9. MEDICAL INSTRUMENTATION

TheCourseofStudy andtheScheme ofExaminations

		StudyComponents CourseTitle		Ins.					
S.No.	Part			Hrs /wee k	Credit	Title ofthePaper	Max	kimumN	Iarks
		SEMESTERI					CIA	Uni. Exam	Total
1.	I	Language	Paper-1	6	3	Tamil/OtherLanguages	25	75	100
2.	II	English	Paper-1	6	3	English	25	75	100
3.	III	Core Course –CC I (Theory)	Paper-1	6	5	Properties of Matter and Acoustics	25	75	100
4.	III	Core Course –CC II (Practical)	Practical-1	5	5	Core Practical	25	75	100
5.	III	Elective I Generic/ Discipline Specific (Allied Course I)	Elective I(Allied Paper-1)	5	3	Mathematics I	25	75	100
6.	IV	Skill Enhancement Course SEC-1 (NME)	Paper1	2	2	Choose any one Course from Non Major Elective	25	75	100
7.	IV	Skill Enhancement - (Foundation Course)	-	2	2	Introductory Physics	25	75	100
		Sem.Total		32	23		175	525	700
	SEMESTERII						CIA	Uni. Exa	Total
0 1	т	T T	D 0		2	T '1/O/1 I	25	m	100
8.	I	Language	Paper-2	6	3	Tamil/OtherLanguages	25	75	100
9.	II	English	Paper-2	6	3	English	25	75	100

10.	III	Core Course –CC III (Theory)	Paper-2	5	5		Heat, ThermodynamicsandStati icalPhysics	st 2	5	75		100
11.	III	I Core Course –CC IV Pra (Practical)		5	5		Core Practical	2:	5	75		100
12.	III		Elective II (Allied Paper-2)	6	3		Mathematics II	2:	5	75		100
13.	IV	Skill Enhancement Course SEC-2 (NME)	Paper2	2	2		Choose any one Course from Non Major Elective	2:	5	75		100
14.	IV	Skill Enhancement Course SEC-3 (Discipline Specific)	Paper 1	2	2		Choose any one Course from Discipline Specific Elective	2:	5	75		100
		Sem.Total		32	2	23		1'	75	525	5	700
		SEMESTERIII						C	CIA	Un Exa m		Γotal
15.	I	Language	Paper-3	6	3		Tamil/OtherLanguages	25	5	75		100
16	. I	I English	Paper-3	6		3	English	25	7.	5	100	
17		I Core Course –CC (Theory)	raper-3	5		5	General and Classical Mechanics	25	7	5	100	
18	. II	I Core Course –CC (Practical)	VI Practical-	3 5		5	Core Practical	25	7	5	100	
19	. II	Discipline Specific (Allied Course III)	Elective III(All Paper-3)	lied 5		3	Allied Chemistry I	25	7	5	100	
20). Г	Skill Enhancement Course SEC-4, (Entrepreneurial Skill) (Naan Mudhalvan/NN	•	1		1	Choose any one Course from Non Major Elective	25	7	5	100	
21	. Г	Skill Enhancement Course SEC-5- (Discipline Specific)	Paper-2	2		2	Choose any one Course from Discipline Specific Elective	25	7	5	100	
22	Г		-	2		2	EnvironmentalStudies	0	0		0	
		Sem.Total		32	2 1	24		175	52	25	700)
		SEMESTERIV										
23	.]		Paper-4	6	+	3	Tamil/OtherLanguages	25	7.	- 	100	\dashv
23		0 0	Paper-4	6		3	English	25	7.		100	\dashv
25		υ	Paper-4	5		5	Optics And	25	7.		100	\dashv
		CC VII –Theory/ Core Industry Module				3	Spectroscopy	25			100	
26	j. II	CC VIII (Practical)	Practical-4	4		5	Core Practical	25	7	5	100	
27	. II	I Elective IV Generic/ Discipline Specific	Elective IV (Allied Pape	6 er-		3	Allied Chemistry II	25	7	5	100	

		(Allied Course IV)	4)						
28.	IV	Skill Enhancement Course SEC-6 – (Naan Mudhalvan/Discipline Specific)	Paper-3	2	2	Choose any one Course from Discipline Specific Elective	25	75	100
29.	IV	Skill Enhancement Course SEC-7- (Discipline Specific)	Paper-4	2	2	Choose any one Course from Discipline Specific Elective	25	75	100
30.	IV	E.V.S	-	1	2	EnvironmentalStudies	25	75	100
		Sem.Total		32	23		200	600	800
		CIEN AIR CODED V							
31.	III	CC IX –Theory	Paper-5	5	4	Atomic Physics and Lasers	25	75	100
32.	III	Core Course – CC X–Theory	Paper-6	5	4	Relativity and Quantum Mechanics	25	75	100
33.	III	Core Course CC -XI-Theory	Paper-7	5	4	Electricity, Magnetism and Electromagnetism	25	75	100
34.	III	Core Course – Practical/ Project with viva- voce CC -XII	Practical-5	5	4	Core Practical	25	75	100
35.	III	Elective V Generic/ Discipline Specific	Elective V	4	3	Choose any one Course from Discipline Specific Elective	25	75	100
36.	III	Elective VI Generic/ Discipline Specific	Elective VI	4	3	Choose any one Course from Discipline Specific Elective	25	75	100
37.	IV	Value Education	-	2	2	Value Education	25	75	100
38.	IV	Summer Internship /Industrial Training	-	-	2	Internship /Industrial Training (Carried out in II year summer vocation) (30 hours)	100	0	100
	1	Sem.Total		30	26		275	525	800
]	CEMECTEDII		1	-				
39.	III	SEMESTERVI Core Course – CC XIII–Theory	Paper-8	6	4	Nuclearand Particle Physics	25	75	100
40.	III	Core Course – CC XIV–Theory	Paper-9	6	4	SolidStatePhysics	25	75	100
41.	III	Core Course – CC XV–Practical	Practical-6	6	4	Core Practical	25	75	100
42.	III	Elective -VII Generic/	Elective -VII	5	3	Digital Electronics and	25	75 7	100

		Discipline Specific				Microprocessor8085			
43.	III	Elective VIII Generic/ Discipline Specific	Elective -VIII	5	3	Choose any one Course from Discipline Specific Elective	25	75	100
44.	IV	Extension Activity	-	-	1	Extension Activity	100	-	100
45.	IV	Professional Competency Skill	-	2	2	Professional Competency Skill	100	-	100
		Sem.Total		30	21		325	375	700
		Grand Total			140		1325	3075	4400

COURSE	FIRST SEMESTER - FOUNDATION COURSE
COURSETITLE	INTRODUCTORY PHYSICS
CREDITS	2
COURSE	To help students get an overview of Physics before learning their
OBJECTIVES	core courses. To serve as a bridge between the school curriculum
	and the degree programme.

UNITS	COURSE DETAILS
UNIT-I	Measurements : vectors, scalars –examples for scalars and vectors from physical quantities – addition, subtraction of vectors – resolution and resultant of vectors – units and dimensions– standard physical constants.
UNIT-II	Forces : different types of forces–gravitational, electrostatic, magnetic, electromagnetic, nuclear –mechanical forces like, centripetal, centrifugal, friction, tension, cohesive, adhesive forces.
UNIT-III	Energy and momentum: different forms of energy—conservation lawsof momentum, energy—types of collisions—angular momentum—alternate energy sources—real life examples.
UNIT-IV	Linear and circular motions: types of motion—linear, projectile, circular, angular, simple harmonic motions—satellite motion—banking of a curved roads—stream line and turbulent motions—wave motion—comparison of light and sound waves—free, forced, damped oscillations.
UNIT-V	Properties of matter: surface tension – shape of liquid drop – angle of contact – viscosity –lubricants – capillary flow – diffusion – real life examples– properties and types of materials in daily use-conductors, insulators – thermal and electric.
TEXT BOOKS	 D.S.Mathur, 2010, Elements of Properties of Matter, S.Chand & Co BrijLal & N. Subrahmanyam, 2003, Properties of Matter, S.Chand & Co.
REFERENCE BOOKS	1. H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, S.Chand & Co.
WEBLINKS	 http://hyperphysics.phy- astr.gsu.edu/hbase/permot2.htmlhttps://science.nasa.gov/ems/ https://eesc.columbia.edu/courses/ees/climate/lectures/radiation_h ays/

	Continuous InternalAssessment	External Examination	Total	ı
Ī	25	75	100	1

COURSEOUTCOMES:

Attheendofthecourse, the studentwill beableto:

	CO1	Apply concept of vectors to understand concepts of Physics and solve problems
	CO2	Appreciate different forces present in Nature while learning about phenomena related to these different forces.
TCOMES velocity and energy CO4 Differentiate different type		Quantify energy in different process and relate momentum, velocity and energy
		Differentiate different types of motions they would encounter in various courses and understand their basis
	CO5	Relate various properties of matter with their behaviour and connect them with different physical parameters involved.

MAPPINGWITHPROGRAMOUTCOMES:

 $\label{eq:mapcourse} Map course outcomes \textbf{(CO)} for each course with program outcomes \textbf{(PO)} in the 3-point scale of STRONG \textbf{(S)}, MEDIUM \textbf{(M)} and LOW \textbf{(L)}.$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	S	S	S	M	M	S

COURSE	FIRST SEMESTER -CORE-I		
COURSETITLE PROPERTIES OF MATTER AND SOUND			
CREDITS	5		
COURSE	Study of the properties of matter leads to information which is of		
OBJECTIVES	practical value to both the physicist and the engineers. It gives us information about the internal forces which act between the constituent parts of the substance. Students who undergo this course are successfully bound to get a better insight and understanding of the subject.		

UNITS	COURSEDETAILS
	ELASTICITY: Hooke's law – stress-strain diagram – elastic
	constants –Poisson's ratio – relation between elastic constants and
UNIT-I	Poisson's ratio – work done in stretching and twisting a wire –
	twisting couple on a cylinder – rigidity modulus by static torsion–
	torsional pendulum (with and without masses).

	DENDING OF DEAMS (1 'C D 1'
	BENDING OF BEAMS: cantilever—expression for Bending
	moment – expression for depression at the loaded end of the
	cantilever – oscillations of a cantilever – expression for time period –
UNIT-II	experiment to find Young's modulus – non-uniform bending–
	uniform bending – expression for elevation – experiment to
	determine Young's modulus using microscope- experiment to
	determine Young's modulus by Koenig's method.
	FLUID DYNAMICS: Surface tension: definition – molecular
	forces– excess pressure over curved surface – application to
	spherical and cylindrical drops and bubbles – determination of
	surface tension by Jaegar's method-variation of surface tension with
UNIT-III	temperature.
	<i>Viscosity</i> :definition – streamline and turbulent flow – rate of flow of
	liquid in a capillary tube – Poiseuille's formula –corrections –
	terminal velocity and Stoke's formula– variation of viscosity with
	temperature.
	WAVES AND OSCILLATIONS: Simple Harmonic Motion
	(SHM) – differential equation of SHM – graphical representation of
	SHM – composition of two SHM in a straight line and at right angles
TINITE IX	– Lissajous's figures- free, damped, forced vibrations –resonance and
UNIT-IV	Sharpness of resonance.
	Laws of transverse vibration in strings –sonometer – determination
	of AC frequency using sonometer –determination of frequency using
	Melde's string apparatus.
	ACOUSTICS OF BUILDINGS AND ULTRASONICS:
	Intensity of sound – decibel – loudness of sound –reverberation –
	Sabine's reverberation formula – acoustic intensity – factors
UNIT-V	affecting the acoustics of buildings.
CIVII	Ultrasonic waves: production of ultrasonic waves – Piezoelectric
	crystal method – magnetostriction method – application of ultrasonic
	waves
	1. D.S.Mathur, 2010, Elements of Properties of Matter,
	S.Chand & Co.
	2. BrijLal & N. Subrahmanyam, 2003, Properties of Matter,
	S.Chand & Co
TEXT BOOKS	3. D.R.Khanna & R.S.Bedi, 1969, Textbook of Sound,
TEXT DOORS	AtmaRam & sons
	4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound,
	Second revised edition, Vikas Publishing House.
	5. R.Murugesan,2012, <u>Properties of Matter</u> , S.Chand& Co.
	C.J. Smith, 1960, General Properties of Matter, Orient Longman
	Publishers
REFERENCE	2. H.R. Gulati, 1977, Fundamental of General Properties of Matter,
BOOKS	Fifth edition, R. Chand & Co.
DOOKS	3. A.P French, 1973, Vibration and Waves, MIT Introductory
	Physics, Arnold-Heinmann India.
	1. https://www.biolinscientific.com/blog/what-are-surfactants-and-
WEBLINKS	how-do-they-work http://hymarphysics.phy.estr.gsu.edu/hhase/permet2.html
	2. http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html
	3. https://www.youtube.com/watch?v=gT8Nth9NWPM

- 4. https://www.youtube.com/watch?v=m4u-SuaSu1s&t=3s
- 5. https://www.biolinscientific.com/blog/what-are-surfactants-and-how-do-they-work
- 6. https://learningtechnologyofficial.com/category/fluid-mechanics-lab/
- 7. http://www.sound-physics.com/
- 8. http://nptel.ac.in/courses/112104026/

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

At the endofthecourse, the studentwill be able to:

	CO1	Relate elastic behavior in terms of three modulii of elasticity
		and working of torsion pendulum.
	CO2	Able to appreciate concept of bending of beams and analyze
		the expression, quantify and understand nature of materials.
	CO3	Explain the surface tension and viscosity of fluid and support
		the interesting phenomena associated with liquid surface, soap
		films provide an analogue solution to many engineering
COURSEOUT		problems.
COMES	CO4	Analyze simple harmonic motions mathematically and apply
COMES		them. Understand the concept of resonance and use it to
		evaluate the frequency of vibration. Set up experiment to
		evaluate frequency of ac mains
	CO5	Understand the concept of acoustics, importance of
		constructing buildings with good acoustics.
		Able to apply their knowledge of ultrasonics in real life,
		especially in medical field and assimilate different methods of
		production of ultrasonic waves

MAPPING WITH PROGRAM OUT COMES:

 $\label{lem:mapping} Map course outcomes \textbf{(CO)} for each course with program outcomes \textbf{(PO)} in the 3-point scale of STRONG \textbf{(S)}, MEDIUM \textbf{(M)} and LOW \textbf{(L)}.$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	M	M	S	M	S
CO2	M	S	S	S	M	M	S	M	S	S
CO3	S	M	S	M	S	S	M	S	S	S
CO4	S	S	S	S	S	M	S	M	M	M
CO5	M	M	S	S	M	S	S	S	S	M

4

COURSE	FIRST SEMESTER – CORE-II
COURSETITLE	CORE PRACTICALS
CREDITS	5
COURSE	Apply various physics concepts to understand Properties of Matter,
OBJECTIVES	set up experimentation to verify theories, quantify and analyse, able
	to do error analysis and correlate results

Properties of Matter

- 1. Determination of rigidity modulus without mass using Torsional pendulum.
- 2. Determination of rigidity modulus with masses using Torsional pendulum.
- 3. Determination of moment of inertia of an irregular body.
- 4. Verification of parallel axes theorem on moment of inertia.
- 5. Verification of perpendicular axes theorem on moment of inertia.
- 6. Determination of moment of inertia and g using Bifilar pendulum.
- 7. Determination of Young's modulus by stretching of wire with known masses.
- 8. Verification of Hook's law by stretching of wire method.
- 9. Determination of Young's modulus by uniform bending load depression graph.
- 10. Determination of Young's modulus by non-uniform bending scale & telescope.
- 11. Determination of Young's modulus by cantilever load depression graph.
- 12. Determination of Young's modulus by cantilever oscillation method
- 13. Determination of Young's modulus by Koenig's method (or unknown load)
- 14. Determination of rigidity modulus by static torsion.
- 15. Determination of Y, n and K by Searle's double bar method.
- 16. Determination of surface tension & interfacial surface tension by drop weight method.
- 17. Determination of co-efficient of viscosity by Stokes' method terminal velocity.
- 18. Determination of critical pressure for streamline flow.
- 19. Determination of Poisson's ratio of rubber tube.
- 20. Determination of viscosity by Poiseullie's flow method -determination of radius by capillary tube & mercury pellet method.
- 21. Determination of g using compound pendulum.
- Choose minimum of any 8 experiments

METHOD OF EVALUATION:

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	SECOND SEMESTER – CORE-III
COURSETITLE	Heat, ThermodynamicsandStatisticalPhysics - Core 3
CREDITS	5
COURSE OBJECTIVES	The course focuses to understand a basic in conversion of temperature in Celsius, Kelvin and Fahrenheit scales. Practical exhibition and explanation of transmission of heat in good and bad conductor. Relate the laws of thermodynamics, entropy in everyday life and explore the knowledge of statistical mechanics and its relation

UNITS	COURSEDETAILS
	CALORIMETRY: specific heat capacity – specific heat capacity
	of gases C _P & C _V – Meyer's relation – Joly's method for
	determination of C_V – Regnault's methodfor determination of C_P
UNIT-I	LOWTEMPERATUREPHYSICS: Joule-Kelvin effect – porous
	plug experiment – Joule-Thomson effect –Boyletemperature –
	temperature of inversion – liquefaction of gas by Linde's Process –
	adiabatic demagnetisation.
	THERMODYNAMICS-I: zeroth law and first law of
UNIT-II	thermodynamics – P-V diagram – heat engine –efficiency of heat
	engine – Carnot's engine, construction, working and efficiency of
	petrol engine and diesel engines – comparison of engines.
	THERMODYNAMICS-II: second law of thermodynamics –
	entropy of an ideal gas – entropy change in reversible and
	irreversible processes – T-S diagram –thermodynamical scale of
UNIT-III	temperature – Maxwell's thermodynamical relations –Clasius-
	Clapeyron's equation (first latent heat equation) – third law of
	thermodynamics – unattainability of absolute zero – heat death.
	HEATTRANSFER: modes of heat transfer: conduction,
	convection and radiation.
	Conduction: thermal conductivity – determination of thermal
	conductivity of a good conductor by Forbe's method –
UNIT-IV	determination of thermal conductivity of a bad conductor by Lee's
	disc method.
	Radiation: black body radiation (Ferry's method) – distribution of
	energy in black body radiation – Wien's law and Rayleigh Jean's law –Planck's law of radiation – Stefan's law.
	STATISTICALMECHANICS: definition of phase-space – micro and macro states – ensembles –definition of different types of
	ensembles – classical and quantum Statistics – Maxwell-
UNIT-V	<u> </u>
UNII-V	Boltzmann statistics – expression for distribution function – Bose- Einstein statistics – expression for distribution function – Fermi-
	<u> </u>
	Dirac statistics – expression for distribution function – comparison of three statistics.
	of the statistics.

	1. Brijlal &N. Subramaniam, 2000, Heat and Thermodynamics,
	S.Chand& Co.
	2. Narayanamoorthy&KrishnaRao, 1969,Heat,Triveni Publishers,
	Chennai.
	3. V.R.Khanna&R.S.Bedi, 1998 1 st Edition, Text book of Sound,
TEXT BOOKS	Kedharnaath Publish & Co, Meerut
	4. Brijlal and N. Subramanyam, 2001, Waves and
	Oscillations, Vikas Publishing House, New Delhi.
	5. Ghosh, 1996, Text Book of Sound, S.Chand&Co.
	6. R.Murugeshan & Kiruthiga Sivaprasath, Thermal Physics,
	S.Chand& Co.
	1. J.B.Rajam & C.L.Arora, 1976, Heat and Thermodynamics, 8 th
	edition, S.Chand& Co. Ltd.
	2. D.S.Mathur, Heat and Thermodynamics, Sultan Chand & Sons.
DEFEDENCE	3. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th
REFERENCE	Edition, S. Chand & Co.
BOOKS	4. Resnick, Halliday&Walker,2010, Fundamentals of Physics, 6th
	Edition.
	5. Sears, Zemansky, Hugh D. Young, Roger A. Freedman, 2021
	University Physics with Modern Physics 15th Edition, Pearson.
WEDI INIZO	1. https://youtu.be/M_5KYncYNyc
WEBLINKS	2. https://www.youtube.com/watch?v=4M72kQulGKk&vl=en

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthe course the studentwillbeableto:

COURSEOUT COMES	CO1	Acquires knowledge on how to distinguish between temperature and heat. Introduce him/her to the field of thermometry and explain practical measurements of high temperature as well as low temperature physics. Student identifies the relationship between heat capacity, specific heat capacity. The study of Low temperature Physics sets the basis for the students to understand cryogenics, superconductivity, superfluidity and Condensed Matter Physics
	CO2	Derive the efficiency of Carnot's engine. Discuss the implications of the laws of Thermodynamics in diesel and petrol engines
	CO3	Able to analyze performance of thermodynamic systems viz efficiency by problems. Gets an insight into thermodynamic properties like enthalpy, entropy

CO4	Study the process of thermal conductivity and apply it to good and bad conductors. Quantify different parameters related to heat, relate them with various physical parameters and analyse them
CO5	Interpret classical statistics concepts such as phase space, ensemble, Maxwell-Boltzmann distribution law. Develop the statistical interpretation of Bose-Einstein and Fermi-Dirac. Apply to quantum particles such as photon and electron

MAPPING WITH PROGRAM OUT COMES:

 $\label{lem:mapping} Map course outcomes \textbf{(CO)} for each course with program outcomes \textbf{(PO)} in the 3-point scale of STRONG \textbf{(S)}, MEDIUM \textbf{(M)} and LOW \textbf{(L)}.$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	S	M	S	S	S	M	M	S	M

COURSE	SECOND SEMESTER – CORE-IV			
COURSETITLE	CORE PRACTICALS			
CREDITS	5			
COURSE	Apply their knowledge gained about the concept of heat and sound			
OBJECTIVES	waves, resonance, calculate frequency of ac mains set up			
	experimentation to verify theories, quantify and analyse, able to do			
	error analysis and correlate results			

HEAT, OSCILLATIONS, WAVES & SOUND(Any Eight of the below list)

- 1. Determination of specific heat by cooling graphical method.
- 2. Determination of thermal conductivity of good conductor by Searle's method.
- 3. Determination of thermal conductivity of bad conductor by Lee's disc method.
- 4. Determination of thermal conductivity of bad conductor by Charlaton's method.
- 5. Determination of specific heat capacity of solid-method of mixtures.
- 6. Determination of specific heat of liquid by Joule's electrical heating method (applying radiation correction by Barton's correction/graphical method),
- 7. Determination of Latent heat of a vaporization of a liquid.
- 8. Determination of Stefan's constant for Black body radiation.
- 9. Verification of Stefan's-Boltzmans law.
- 10. Determination of thermal conductivity of rubber tube.
- 11. Helmholtz resonator.
- 12. Velocity of sound through a wire using Sonometer.
- 13. Determination of velocity of sound using Kunds tube.

- 14. Determination of frequency of an electrically maintained tuning fork
- 15. To verify the laws of transverse vibration using sonometer.
- 16. To verify the laws of transverse vibration using Melde's apparatus.
- 17. To compare the mass per unit length of two strings using Melde's apparatus.
- 18. Frequency of AC by using sonometer.
- Choose minimum of any 8 experiments

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the studentwill beableto:

	CO1	Understand various postulates of special theory of relativity.						
	CO2	Appreciate the importance of transformation equations and also the general theory of relativity.						
COURSEO UTCOMES	CO3	Realise the wave nature of matter and understand its importance						
	CO4	Derive Schrodinger equation and also realize the use of operators.						
	CO5	Apply Schrödinger equation to simple problems.						

MAPPING WITH PROGRAM OUT COMES:

 $\label{lem:mapping} Map course outcomes \textbf{(CO)} for each course with program outcomes \textbf{(PO)} in the 3-point scale of STRONG \textbf{(S)}, MEDIUM \textbf{(M)} and LOW \textbf{(L)}.$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	S	S	M	S	M	M	S	M	M	M
CO3	M	M	S	M	S	S	M	S	S	S
CO4	M	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	M	M	S	M	M	S

COURSE	FIFTH SEMESTER – CORE XI
COURSETITLE	ELECTRICITY, MAGNETISM AND ELECTROMAGNETISM
CREDITS	4
COURSE OBJECTIVES	To classify materials based on their electrical and magnetic properties. To analyse the working principles of electrical gadgets. To understand the behaviour of dc, ac and transient currents. To know about the communication by electromagnetic waves.

UNITS	COURSE DETAILS
	CAPACITORS AND THERMO ELECTRICITY: capacitor –
	principle – capacitance of spherical and cylindrical capacitors –
	capacitance of a parallel plate capacitor (with and without dielectric
UNIT-I	slab) – effect of dielectric –Carey Foster bridge – temperature
0111-1	coefficient of resistance – Seebeck effect – laws of thermo emf –
	Peltier effect – Thomson effect – thermoelectric diagrams –uses of
	thermoelectric diagrams - thermodynamics of thermo couple -
	determination of Peltier and Thomson coefficients.
	MAGNETIC EFFECTS OF CURRENT: Biot and Savart's law –
	magnetic induction due to circular coil – magnetic induction due to
	solenoid – Helmholtz tangent galvanometer –force on a current
UNIT-II	element by magnetic field – force between two infinitely long
	conductors – torque on a current loop in a field - moving coil
	galvanometer – damping correction – Ampere's circuital law –
	differential form – divergence of magnetic field – magnetic
	induction due to toroid.
	MAGNETISM AND ELCTROMAGNETIC INDUCTION:
	magnetic induction B – magnetization M - relation between B, H
	and M - magnetic susceptibility - magnetic permeability -
	experiment to draw B-H curve – energy loss due to hysteresis -
UNIT-III	Importance of hysteresis curves – Faraday and Lenz laws –vector
	form – self-induction – coefficient of self-inductance of solenoid –
	Anderson's method – mutual induction – coefficient of mutual
	inductance between two coaxial solenoids – coefficient of coupling
	- earth inductor- determination of angle of dip(Φ)
	TRANSIENT AND ALTERNATING CURRENTS: growth and
	decay of current in a circuit containing resistance and inductance –
UNIT-IV	growth and decay of charge in a circuit containing resistance and capacitor – growth and decay of charge in an LCR circuit
UNII-IV	(expressions for charge only) – peak, average and rms values of ac
	- LCR series and parallel circuits – resonance condition – Q factor
	– DCK series and parametericuits – resonance condition – Q factor – power factor.
	MAXWELLS EQUATIONS AND ELECTROMAGNETIC
UNIT-V	WAVES: Maxwell's equations in vacuum, material media—
	physical significance of Maxwell's equations –displacement
	current – plane electromagnetic waves in free space – velocity of
	light – Poynting vector–electromagnetic waves in a linear
	homogenous media – refractive index.
	The second media to track the second

	1. Murugeshan. R., - Electricity and Magnetism, 8 th Edn, 2006,							
	S.Chandand Co, New Delhi.\							
	2. Sehgal D.L., Chopra K.L, Sehgal N.K., - Electricity and							
	Magnetism,							
TEXT BOOKS	3. Sultan Chand and Sons, New Delhi.							
	4. M. Narayanamurthy and N. Nagarathnam, Electricity and							
	Magnetism, 4th Edition.							
	5. National Publishing Co., Meerut.							
	1. 1. Brijlal and Subramanian, Electricity and Magnetism, 6th							
	Edn.,Ratanand Prakash, Agra.							
	2. Brijlal, N.Subramanyan and JivanSeshan, Mechanics and							
	Electrodynamics (2005),							
REFERENCE	3. Eurasia Publishing House (Pvt.) Ltd., New Delhi.							
BOOKS	4. David J. Griffiths, Introduction to Electrodynamics, 2 nd Edn. 1997,							
	Prentice Hall of							
	5. India Pvt. Ltd., New Delhi							
	6. D. Halliday, R. Resnik and J. Walker - Fundamentals of Physics,							
	6 th Edn., Wiley, NY, 2001.							
	1. https://www.edx.org/course/electricity							
WEB	2. https://www.udemy.com/courses/ electricity							
RESOURCES	3. https://www.edx.org/course/magnetism							
	4. http://www.hajim.rochester.edu/optics/undergraduate/courses.html							

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the studentwill beableto:

	CO1	Describe various thermo-electric effects and their properties.
COURSEOUT	CO2	Apply Biot and Savart law to study the magnetic effect of electric current.
	CO3	Use Faraday and Lenz laws in explaining self and mutual inductance.
COMES	CO4	Analyze the time variation of current and potential difference in AC circuits.
	CO5	Relate different physical quantities used to explain magnetic properties of materials.

MAPPING WITH PROGRAM OUT COMES:

 $\label{lem:mapping} Map course outcomes \textbf{(CO)} for each course with program outcomes \textbf{(PO)} in the 3-point scale of STRONG \textbf{(S)}, MEDIUM \textbf{(M)} and LOW \textbf{(L)}.$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	M	S	M
CO2	M	S	S	S	M	S	S	M	M	M
CO3	S	S	S	M	S	S	S	M	S	M
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	S	M	S	S	S	M	M	S	M

COURSE	FIFTH SEMESTER – CORE XII
COURSETITLE	CORE PRACTICALS
CREDITS	4
COURSE	Demonstrate various optical phenomena principles, working, apply with
OBJECTIVES	various materials and interpret the results.

- 1. Spectrometer-diffraction grating -Normal incidence-determination of dispersive power
- 2. Spectrometer-solid prism- determination of dispersive power
- 3. Specific rotation of sugar solution-polarimeter.
- 4. Bi-prism Determination of refractive index.
- 5. Thickness of a thin film Bi-prism
- 6. Brewster's law verification-polarization
- 7. Diffraction at straight edge-Air wedge-determination of thickness of wire.
- 8. Forbe's method Thermal conductivity of a metal rod.
- 9. Spectrometer– Grating Normal incidence Wave length of Mercury spectral lines.
- 10. Spectrometer Grating Minimum deviation Wave length of Mercury spectral lines.
- 11. Spectrometer (i-d) curve.
- 12. Spectrometer (i-i') curve.
- 13. Spectrometer Narrow angled prism.
- 14. Spectral response of photo conductor (LDR).
- 15. Potentiometer –Resistance and Specific resistance of the coil.
- 16. Potentiometer E.M.F of a thermocouple.
- 17. Deflection Magnetometer Determination of Magnetic moment of a bar magnet and B_Husing circular coil carrying current.
- 18. Vibration magnetometer Determination of B_H using circular coil carrying current– Tan B position.
- 19. B.G Figure of Merit Charge Sensitivity
- 20. B.G-Comparision of coefficient of mutual inductance of coils
- 21. B.G- Internal resistance of a cell.
- Choose minimum of any 10 experiments

METHOD OF EVALUATION:

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	SIXTH SEMESTER – CORE XIII
COURSETITLE	NUCLEAR AND PARTICLE PHYSICS
CREDITS	4
COURSE OBJECTIVES	To understand constituents, properties and models of nucleus. To give reason for radioactivity and study their properties. To learn about the principles of various particle detectors and accelerators. To acquire knowledge on different types of nuclear reactions and their applications. To know the reason for cosmic rays and their effect on the surface of earth and also understand the classification of elementary particles.

UNITS	COURSE DETAILS
UNIT-I	PROPERTIES OF NUCLEUS: nuclear size, mass, density, charge, spin, angular momentum, magnetic dipole moment, electric quadrupole moment (qualitative) – binding energy – mass defect – packing fraction – nuclear stability – binding energy per nucleon graph – properties of nuclear force – meson theory of nuclear forces – Yukawa potential. NUCLEAR MODELS: liquid drop model –Weizacker's semiempirical mass formula – evidences for shell model – magic numbers.
UNIT-II	RADIO ACTIVITY: radio activity – laws of radioactivity – radioactive disintegration, decay constant, half-life, mean-life (only final formulae) – unitsof radioactivity–successive disintegration – transient and secular equilibrium– properties of alpha, beta and gamma rays – Geiger-Nuttal law $-\alpha$ -ray spectra –Gammow's theory of α -decay (qualitative) $-\beta$ -ray spectrum – neutrino theory of β -decay – nuclear isomerism – K-shell electron capture – internal conversion.
UNIT-III	PARTICLE DETECTORS AND ACCELERATORS DETECTORS: gas detectors –ionization chamber – G-M counter – scintillation counter – photo multiplier tube (PMT) – semiconductor detectors – neutron detector. ACCELERATORS: linear accelerators – cyclotron – synchrotron – betatron– electron synchrotron – protonsynchrotron (bevatron).
UNIT-IV	NUCLEAR REACTIONS: types of nuclear reactions — conservation laws in nuclear reaction — Q-value— threshold energy — nuclear fission — energy released in fission — chain reaction — critical mass — nuclear reactor — nuclearfusion — sources of stellar energy — proton-proton cycle — Carbon-Nitrogen cycle — thermonuclear reactions — controlled thermonuclear reactions.
UNIT-V	COSMIC RAYS AND ELEMENTARY PARTICLES COSMIC RAYS: discovery of cosmic rays – primary and secondary cosmic rays – cascade theory of cosmic ray showers – altitude and latitude effects –discovery of positron – pair production – annihilation of matter – Van-Allen radiation belts – big-bang theory 2

	− future of the Universe (elementary ideas only).\
	ELEMENTARY PARTICLES: particles and antiparticles –
	classification of elementary particles – types of fundamental
	interactions – quantum numbers of elementary particles –
	conservation laws and symmetry – quarks and types – quark model
	of nucleons.
	1. R Murugeshan & Kiruthiga Sivaprasath, Modern Physics, S.
	Chand & Co. (2013)
	2. Brijlal& N. Subramaniyan, Atomic and Nuclear Physics
	S.Chand& Co
TEXT BOOKS	3. J.B. Rajam, Modern Physics, S Chand &Co.Publishing Co.
	4. D.C. Tayal, Nuclear Physics, Himalayan Publishing House
	5. Atomic and Nuclear Physics, Brijlal& N. Subramaniyan,
	S. Chand& Co
	1. Basic ideas and concepts in Nuclear Physics, K.Heyde, 3rd Edn., Institute of Physics Pub.
	2. Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008)
	3. Concepts of nuclear physics by Bernard L. Cohen. (Tata
	Mcgraw Hill, 1998).
	4. Introduction to the physics of nuclei & particles, R.A. Dunlap.
	(Thomson Asia, 2004).
	5. Introduction to High Energy Physics, D.H. Perkins, Cambridge
	Univ. Press
	6. Introduction to Elementary Particles, D. Griffith, John Wiley &
REFERENCE	Son
BOOKS	7. Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India,
	New Delhi
	8. Radiation detection and measurement, G.F. Knoll (John Wiley
	& Sons, 2000).
	9. Theoretical Nuclear Physics, J.M. Blatt &V.F.Weisskopf (Dover
	Pub.Inc., 1991)
	10. Physics and Engineering of Radiation Detection, Syed Naeem
	Ahmed (AcademicPress, Elsevier, 2007).
	11. 13. Nuclear Physics, S. N. Ghoshal, S Chand & Co. Edition
	2003
	15. Elements of Nuclear Physics, M. L.Pandya& R. P. S.Yadav,
	KedarNath& Ram Nath
TANDA TANG	1. http://hyperphysics.phy-astr.gsu.edu/hbase/nuccon.html
WEBLINKS	2. https://www.kent.edu/physics/nuclear-physics-links
	3. https://www2.lbl.gov/abc/links.html

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the studentwill beableto:

	CO1 Describe various models that explain about the nuclear						
		structures					
	CO2	Give reason for various kinds of radioactivity and also know					
COURSEO	COZ	laws governing them					
	CO3	Know the principles and applications of various particle					
UTCOMES		detectors and accelerators.					
	CO4	Discuss the concepts used in nuclear reaction.					
	CO5	Classify various elementary particles and study the effect of					
	005	cosmic rays.					

MAPPING WITH PROGRAM OUT COMES:

 $\label{eq:mapping} Map course outcomes \textbf{(CO)} for each course with program outcomes \textbf{(PO)} in the 3-point scale of STRONG \textbf{(S)}, MEDIUM \textbf{(M)} and LOW \textbf{(L)}.$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	S	S	S	S	M	S	S
CO2	S	S	M	S	M	M	S	M	M	M
CO3	M	M	S	M	S	M	M	S	S	S
CO4	S	S	S	S	S	S	S	M	M	M
CO5	S	M	S	S	M	M	S	M	M	S

COURSE	SIXTH SEMESTER – CORE XIV
COURSETITLE	SOLID STATE PHYSICS
CREDITS	4
COURSE	To understand constituents, properties and models of nucleus.
OBJECTIVES	To give reason for radioactivity and study their properties. To learn
	about the principles of various particle detectors and accelerators.
	To acquire knowledge on different types of nuclear reactions and
	their applications. To know the reason for cosmic rays and their effect
	on the surface of earth and also understand the classification of
	elementary particles.

UNIT-I	BONDING IN SOLIDS, CRYSTAL STRUCTURE: types of bonding –ionic bonding – bond energy of NaCl molecule –covalent bonding – metallic bonding – hydrogen bonding – Van-der-Waals bonding – crystal lattice – lattice translational vectors – lattice with basis – unit cell – Bravais' lattices – Miller indices – procedure for finding them– structures of NaCl and diamond crystals –reciprocal lattice – reciprocal lattice vectors – properties – reciprocal lattices to SC, BCC and FCC structures – Brillouin zones.
UNIT-II	ELEMENTARY LATTICE DYNAMICS: lattice vibrations and phonons: linear monoatomicand diatomic chains-acoustical and optical phonons –qualitative description of the phonon spectrum in solids – Dulong and Petit's Law – Einstein and Debye theories of specific heat of solids – T ³ law (qualitative only)–properties of metals – classical free electron theory of metals(Drude-Lorentz) – Ohm's law – electrical and thermal conductivities – Weidemann-Franz' law.
UNIT-III	MAGNETIC PROPERTIES OF SOLIDS: permeability, susceptibility, relation between them – classification of magnetic materials – properties of dia, para, ferro, ferri and antiferromagnetism – Langevin's theory of diamagnetism – Langevin's theory of paramagnetism – Curie-Weiss law – Heisenberg's quantum theory of ferromagnetism – domains – discussion of B-H curve –hysteresis and energy loss – soft and hard magnets – magnetic alloys.
UNIT-IV	DIELECTRIC PROPERTIES OF MATERIALS: polarization and electric susceptibility –local electric field of an atom – dielectric constant and polarisability – polarization processes: electronic polarization—calculation of polarisability – ionic, orientational and space charge polarization—internal field – Clausius-Mosotti relation—frequency dependence of dielectric constant—dielectric loss—effect of temperature on dielectric constant – dielectric breakdown and its types—classical theory of electric polarisability.
UNIT-V	FERROELECTRIC & SUPERCONDUCTING PROPERTIES OF MATERIALS: elementary band theory: Kronig-Penny model – band gap – conductor, semiconductor (P and N type) and insulator – conductivity of semiconductor – mobility – Hall effect – measurement of conductivity (four probe method) - Hall coefficient. Superconductivity: experimental results –critical temperature –critical magnetic field – Meissner effect –type-I and type-II superconductors – Applications of superconductors.
TEXT BOOKS	 Introduction to Solid State Physics, Kittel, Willey Eastern Ltd (2003). Solid state Physics, Rita John, 1st edition, TataMcGraw Hill publishers (2014). Solid State Physics, R L Singhal, Kedarnath Ram Nath& Co., Meerut (2003) Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976,

	Cengage Learning
	7. Solid-state Physics, H. Ibach and H. Luth, 2009, Springer
	8. Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson
	India
	9. Solid State Physics, M.A. Wahab, 2011, Narosa Publishing House,
	ND
	1. Puri&Babber – Solid State Physics – S.Chand&Co. New Delhi.
	2. Kittel - Introduction to solid state physics, Wiley and Sons, 7 th
	edition.
REFERENCE	3. Raghavan - Materials science and Engineering, PHI
BOOKS	4. Azaroff - Introduction to solids, TMH
DOOKS	5. S. O. Pillai - Solid State Physics, Narosa publication
	6. A.J. Dekker - Solid State Physics, McMillan India Ltd.
	7. Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006,
	Prentice-Hall of India
WEDI INIZO	1. https://nptel.ac.in/courses/115105099/
WEBLINKS	2. https://nptel.ac.in/courses/115106061/

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the studentwill beableto:

	CO1	Classify the bonding &crystal structure also learn about the crystal structure analysis using X ray diffraction.			
COLIDGEO	CO2	Understand the lattice dynamics and thus learn the electrical and thermal properties of materials.			
COURSEO UTCOMES	CO3	Give reason for classifying magnetic material on the basis their behaviour.			
	CO4	Comprehend the dielectric behavior of materials.			
	CO5	Appreciate the ferroelectric and super conducting properties of materials.			

MAPPING WITH PROGRAM OUT COMES:

 $\label{lem:mapping} Map course outcomes \textbf{(CO)} for each course with program outcomes \textbf{(PO)} in the 3-point scale of STRONG \textbf{(S)}, MEDIUM \textbf{(M)} and LOW \textbf{(L)}.$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	S	S	S	S	M	S	S
CO2	M	S	M	S	M	M	S	M	M	M
CO3	S	M	S	M	S	M	M	S	S	S
CO4	S	S	S	S	M	S	S	M	M	M
CO5	S	M	M	S	S	M	S	M	M	S

COURSE	SIXTH SEMESTER – CORE XV
COURSETITLE	CORE PRACTICALS
CREDITS	4
COURSE	To perform basic experiments on characteristics of electronic devices
OBJECTIVES and then get into the applications such as amplifiers, oscillators,	
	counters, multivibrators. Perform fundamental experiments on
	microprocessor 8085 and learn to write programs by themselves.

Electronics

- 1. Zener diode voltage regulations
- 2. Bridge rectifier using diodes
- 3. Clipping and clamping circuits using diodes.
- 4. Characteristics of a transistor –(CE mode)
- 5. Characteristics of a transistor –(CB mode).
- 6. RC coupled CE transistor amplifier single stage.
- 7. Transistor Emitter follower.
- 8. Colpitt's oscillator -transistor.
- 9. Hartley oscillator transistor.
- 10. FET characteristics.
- 11. FET amplifier (common source)
- 12. UJT -characteristics
- 13. AC circuits with L,C,R -Series resonance.
- 14. AC circuits with L.C.R Parallel resonance.
- 15. Operational amplifier inverting amplifier and summing.
- 16. Operational amplifier non-inverting amplifier and summing.
- 17. Operational amplifier differential amplifier
- 18. Operational amplifier D/A converter by binary resistor method.
- 19. 5V,IC Regulated power supply.
- 20. Study of gate ICs NOT,OR,AND, NOR,NAND, XOR, XNOR
- 21. Verification of De Morgan's theorem using ICs –NOT, OR, AND
- 22. NAND and NOR as universal building blocks
- 23. Half adder / Half subtractor using logic gates
- 24. Microprocessor 8085 addition (8 bit only) and subtraction (8 bit only)
- 25. Microprocessor 8085 multiplication (8 bit only) and division (8 bit only)
- 26. Microprocessor 8085 square (8 bit only)
- 27. Microprocessor 8085 square root (8 bit only)
- 28. Microprocessor 8085 largest/smallest of numbers (8 bit only)
- Choose minimum of any 10 experiments

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

DISCIPLINE SPECIFIC CORE ELECTIVES (COMPULSORY)

COURSE	SIXTH SEMESTER – DISCIPLINE SPECIFIC ELECTIVE
COURSETITLE	DIGITAL ELECTRONICS AND MICROPROCESSOR 8085
CREDITS	3
COURSE	To learn all types of number systems, Boolean algebra and identities,
OBJECTIVES	digital circuits for addition and subtraction, flip-flops, registers,
	counters. To get the knowledge on fundamentals of 8085
	architecture, instruction sets and simple programs.

UNITS	COURSE DETAILS
UNIT-I	Number Systems and Boolean algebra: decimal, binary, octal, hexadecimal numbers systems and their conversions – codes: BCD, gray and excess-3 codes –code conversions –complements (1's, 2's, 9's and 10's) –binary addition, binary subtraction using 1's & 2's complement methods – Boolean laws – De-Morgan's theorem –basic logic gates -universal logic gates (NAND & NOR) –standard representation of logic functions (SOP & POS) – minimization techniques (Karnaugh map: 2, 3, 4 variables).
UNIT-II	Encoder and Decoder circuits: adders,half &full adder – subtractors,half &full subtractor –parallel binary adder – magnitude comparator – multiplexers (4:1) &demultiplexers (1:4), encoder (8-line-to-3-line) and decoder (3-line-to-8-line), BCD to seven segment decoder.
UNIT-III	Flip-flops: S-R Flip-flop, J-K Flip-flop, T and D type flip-flops, master-slave flip-flop, truth tables, registers:- serial in serial out and parallel in and parallel out Counters and memory circuits: asynchronous counters -mod-8, mod-10, synchronous - 4-bit ˚ counter – general memory operations, ROM, RAM (static and dynamic), PROM, EPROM, EPROM, EPROM, EAROM.
UNIT-IV	8085 Microprocessor: introduction to microprocessor – INTEL 8085 architecture – register organization –pin configuration of 8085, interrupts and its priority – Program Status Word (PSW) –instruction set of 8085 –addressing modes of 8085 –assembly language programming using 8085 –programmes for addition (8-Bit), subtraction (8-Bit), multiplication (8-Bit), division (8-Bit) – largest and smallest number in an array.
UNIT-V	I/O Interfaces: serial communication interface (8251-USART) – programmable peripheral interface (8255-PPI) - keyboard and display (8279), DMA controller (8237).
TEXT BOOKS	 M.Morris Mano, "Digital Design "3rd Edition, PHI, NewDelhi. Ronald J. Tocci. "Digital Systems-Principles and Applications" 6/e. PHI. New Delhi. 1999.(UNITS I to IV) S.Salivahana& S. Arivazhagan-Digital circuits and design

	4. Microprocessor Architecture, Programming and Applications with
	the 8085 – Penram International Publishing, Mumbai Ramesh
	S.Gaonakar
	5. Microcomputer Systems the 8086/8088 family – YU-Cheng Liu and GlenSA
	1. Herbert Taub and Donald Schilling. "Digital Integrated
	Electronics". McGraw Hill. 1985.
	2. S.K. Bose. "Digital Systems". 2/e. New Age International.1992.
DEFEDENCE	3. D.K. Anvekar and B.S. Sonade. "Electronic Data Converters:
REFERENCE BOOKS	Fundamentals & Applications". TMH.1994.
BOOKS	4. Malvino and Leach. "Digital Principles and Applications". TMG HillEdition
	5. Microprocessors and Interfacing – Douglas V.Hall
	6. Microprocessor and Digital Systems – Douglas V.Hall
WEDI INIZO	1. https://youtu.be/-paFaxtTCkI
WEBLINKS	2. https://youtu.be/s1DSZEaCX_g

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

DISCIPLINE SPECIFIC CORE ELECTIVES (OPTIONAL)

STUDENTS CAN CHOOSE ANY OF THE FOLLOWING SUBJECTS DURING THE FIFTH AND SIXTH SEMESTERS

COMMUNICATION PHYSICS					
Learning Objective: To get a thorough knowledge on transmission and reception of					
radio waves, the	radio waves, the different types of communication like fibre optic, radar, satellite,				
cellular					
UNITS	COURSE DETAILS				
	RADIO TRANSMISSION AND RECEPTION: transmitter –				
	modulation - types of modulation – amplitude modulation –				
	limitations of amplitude modulation – frequency modulation –				
UNIT-I	comparison of FM and AM – demodulation- essentials in				
	demodulation – receivers: AM radio receivers – types of AM radio				
	receivers –superheterodyne radio receiver, advantages – FM				
	receiver – difference between FM and AM receivers.				
	FIBER OPTIC COMMUNICATION: introduction – basic				
	principle of fiber optics – advantages – construction of optical fiber				
UNIT-II	– classification based on the refractive index profile – classification				
	based on the number of modes of propagation – losses in optical				
	fibers – attenuation–advantages of fiberoptic communication.				
	RADAR COMMUNICATION: introduction - basic radar system				

UNIT-III	-radar range equation – antenna scanning –pulsed radar system –			
	search radar – tracking radar – moving target indicator- Doppler			
	effect-MTI principle – CW Doppler radar.			
	SATELLITE COMMUNICATION: introduction- history of			
	satellites – satellite communication systems– satellite orbits – basic			
UNIT-IV	components of satellite communication system – commonly used			
	frequency in satellite – communication –multiple access			
	communication – satellite communication in India.			
	MOBILE COMMUNICATION: introduction – concept of cell –			
	basic cellular mobile radio system – cellphone – facsimile –			
UNIT-V	important features of fax machine – application of facsimile –			
	VSAT (very small aperture terminals) modem IPTV (internet			
	protocol television) -Wi-Fi-4G (basic ideas)			
	1. V.K.Metha, Principles of Electronics, S. Chand & CoLtd., 2013			
TEXT BOOKS	2. Anokh Singh and Chopra A.K., Principles of communication			
	Engineering, S.Chand& Co, 2013			
	1. J.S. Chitode, Digital Communications, 2020, Unicorn			
REFERENCE	publications			
BOOKS	2. Senior John. M, Optical Fiber Communications: Principles and			
	Practice, 2009, Pearson Education.			

Ī	Continuous InternalAssessment	End Semester Examination	Total	Grade
	25	75	100	

BASIC AND APPLIED ELECTRONICS				
Learning O	Learning Objective: This course aims to provide background of the basic and applied			
electronics th	electronics through theoretical & practical learning.			
UNITS	COURSE DETAILS			
UNIT-I	SEMICONDUCTINGDIODES &TRANSISTORS PN Junction Diode-Full wave Bridge Rectifier- Zener Diode-Voltage Regulated Power supply-Tunnel diode - Characteristics-Tunnel diodeas an oscillator-Construction and working of Photo diode. FET-Constructionandworking - FETasanamplifier-OutputCharacteristicsandparametersof FET-MOSFET-Construction and working Principle - UJT-Equivalent circuit and V-I characteristics of UJT - UJT as relaxation oscillator.			
UNIT-II	AMPLIFIERS&OSCILLATORS R-C coupled amplifier (Two stage)-Power amplifiers-Class A,B and C Push-Pull amplifier- Feedback amplifier-Principles of negative feedback is amplifier-Gain of negative feedback amplifier - Sinusoidal oscillators Circuit operation and frequency of oscillation of -Hartley, Colpitt's, Phas shift, Wein bridge and Crystal oscillator.			
UNIT-III	MULTIVIBRATORS&WAVESHAPINGCIRCUITS Multivibrators-Types of multivibrators-Transistor astable, monostable and bistablemultivibrators - Differentiating and Integrating-Circuits-Clipping circuits-Positive clipper-Biased clipper-Combination clipper-Clamping circuits-Positive clamper-Negative clamper.			

	INTEGRATEDCIRCUITS&OP-AMP
	Integrated circuit-Classification of ICs-Advantages-Limitations-Integrated
UNIT-IV	circuittechnology- Fabrication of Transistors, diodes, capacitors and
CIVII-IV	resistors - Symbol and TerminalsofanOP-AMP-Parameters-
	InvertingandNon-invertingamplifier -Gain-Miller effect - Virtual ground -
	Offset voltage - offset current - PSRR - CMRR.
	OP-AMPAPPLICATIONS&TIMER
	OPAMP-Sign and Scalechanger-Adder, subtractor and averager-
UNIT-V	Integratoranddifferentiator-OP AMP Logarithmic amplifier –Antilogarthmic
CIVII-V	amplifier-OP-AMP- Astable, Monostable and Bistablemultivibrator - 555
	Timer-Internal structure- Pin configuration of 555 Timer-555 Timer as
	Schmitt Trigger.
	1.V.K.MehtaandRohitMehta,PrinciplesofElectronics,
TEXT	SChand & Co., NewDelhi, 2007.
BOOKS	2.MArulThalapathi,BasicandAppliedElectronics,Comptek,Publishers,Chenn
	ai 2005.
	1.B.L.Theraja,FundamentalsofElectricalEngineeringandElectr
	onics,SChand&Co., New Delhi, 2008.
REFEREN	2.R.S.Sedha,ATextBookofAppliedElectronics,SChand&Co.,New
CE	Delhi,2010.
BOOKS	3.V.Vijayendran,Introductionto Integrated
DOOKS	Electronics(Digital&Analog),S. Viswanathan, Printers &
	Publishers Private Ltd, Chennai, 2007
	4. HandBookofElectronics - Gupta&Kumar, PragatiPrakashan, Meerut, 2014.

Continuous InternalAssessment		End Semester Examination	Total	Grade
	25	75	100	

MATHEMATICAL PHYSICS		
Learning Objective: To understand higher mathematical concepts which are applied to		
solve problems in	Physics and similar situations	
UNITS	COURSE DETAILS	
	MATRICES: types of matrices – symmetric, Hermitian, unitary and	
	orthogonal matrices- characteristic equation of a matrix - Eigen	
UNIT-I	values and Eigen vectors of a matrix – Cayley-Hamilton theorem –	
	inverse of matrix by Cayley-Hamilton theorem – similarity	
	transformations – diagonalization of 2x2 real symmetric matrices.	
	VECTOR CALCULUS: vector differentiation – directional	
	derivatives –definitions & Physical significance of gradient,	
UNIT-II	divergence, curl – Laplace operators– vector identities – line, surface	
	and volume integrals – statement, proof and simple problems for	
	Gauss's divergence theorem, Stoke's theorem, Green's theorem.	
ORTHOGONAL CURVILINEAR COORDINATES: tangent		
UNIT-III	basis vectors – scale factors – unit vectors in cylindrical and spherical	
UN11-111	coordinate systems –gradient of a scalar –divergence and curl of a	

	ventor. I only sion in ordinalised and only signal according to existence
	vector – Laplacian in cylindrical and spherical coordinate systems.
	FOURIER SERIES: periodic functions – Dirichlet's conditions –
	general Fourier series – even and odd functions and their Fourier
	expansions – Fourier cosine and sine – half range series – change of
UNIT-IV	length of interval. Fourier analysis of square wave, saw-tooth wave.
UNII-IV	FOURIER TRANSFORMS: Fourier Integral theorem(Statement
	only)–Fourier, Fourier sine and Fourier cosine transforms,– Fourier
	transform of trigonometric and exponential functions – inverse
	Fourier transform – convolution theorem.
	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS
	(PDE): PDE for transverse vibrations in elastic strings (one
UNIT-V	dimensional wave equation) –one dimensional heat flow equation –
	solutions to these PDE's by method of separation of variables –
	problems based on boundary conditions and initial conditions.
	1. Advanced Engineering Mathematics, Erwin Kreyszig, 2008,
	Wiley India.
	2. Mathematical Physics – P. K. Chattopadhyay, New Age
TEXT BOOKS	International Publishers.
	3. Mathematical Physics – B. D. Gupta.
	4. Mathematical Physics – B. K. Das, S. Chand & Co, New Delhi.
	·
	1. Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill.
DEFEDENCE	2. Engineering Mathematics III- B, M. K. Venkataraman,
REFERENCE	3. Applied Mathematics for Scientists and Engineers, Bruce R.
BOOKS	Kusse & Erik A. Westwig, 2 nd Ed, WILEY-VCH Verlag, 2006.
	4. Vector space & Matrices – J. C. Jain, Narosa Publishing House
	Pvt. Ltd.

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

ADVANCED MATHEMATICAL PHYSICS		
Learning Objective	ve:The fundamentals of matrices and vector calculus learnt in earlier	
course will enable	students to learn advanced topics and theorems. The special functions	
and applications of	partial differential equations will be of use in research at a later stage.	
UNITS	COURSE DETAILS	
	MATRICES: introduction – special types of matrices – transpose –	
	conjugate– conjugate transpose– symmetric & anti symmetric –	
UNIT-I	Hermitian and skew Hermitian – orthogonal and unitary – properties	
	– characteristic equation – roots and characteristic vectors –	
	diagonalization— Cayley–Hamilton theorem –simple problems	
	VECTOR CALCULUS: ∇operator – divergence – second derivative	
	of vector functions or fields –Laplacian operator – curl of a vector –	
UNIT-II	line integral – line Integral of a vector field around an infinitesimal	
UNIT-II	rectangle – curl of conservative field – surface integral – volume	
	integral (without problem) – Gauss's divergence theorem and proof –	
	Stroke's theorem and proof –simple problems.	
UNIT-III SPECIAL FUNCTIONS: definition – Beta function – Gamma function – evaluation of Beta function – other forms of Beta function		

	– evaluation of Gamma function – other forms of Gamma function –
	relation between Beta and Gamma functions – simple problems-
	singular points of second order linear differential equations—
	singularities of Bessels and Laguerre equations.
	FROBENIUS METHOD AND SPECIAL FUNCTIONS:
	Frobenius method and applications to differential equations:
UNIT-IV	Legendre and Hermite differential equations – Legendre and Hermite
	polynomials – Rodrigues formula –generating function –
	orthogonality.
	PARTIAL DIFFERENTIAL EQUATIONS: solutions to partial
	differential equations using separation of variables - Laplace's
UNIT-V	equation in problems of rectangular – cylindrical and spherical
UNII-V	symmetry – conducting and dielectric sphere in an external uniform
	electric field – wave equation and its solution for vibrational modes
	of a stretched string.
	1. Mathematical Physics, B.D. Gupta-Vikas Publishing House, 4 th
TEXT BOOKS	Edition (2006)
	2. Mathematical Physics, SatyaPrakash (Sultan Chand)
	1. Mathematical
	MethodsorPhysicists, G.B. Arfken, H.J. Weber, F.E. Harris (2013, 7th
	Edn., Elsevier)
REFERENCE	2. Mathematical Physics–H. K. Dass, Dr. Rama Verma (S. Chand
	Publishing)
BOOKS	3. Advanced Engineering Mathematics, Erwin Kreyszig (Wiley
	India)
	4. Mathematical Physics and Special Relativity, M. Das, P.K. Jena
	and B.K. Dash (SrikrishnaPrakashan)

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

NUMERICAL METHODS AND C PROGRAMMING		
Learning Objective: To understand the methods in numerical differentiation and		
integration andto develop the problem solving skills of the student. To introduce		
explain the basic structure, rules of compiling and execution of C programming.		
UNITS COURSE DETAILS		
	NUMERICAL SOLUTIONS: determination of zeros of polynomials	
UNIT-I	– roots of linear and nonlinear algebraic and transcendental equations –	
UNII-I	bisection and Newton-Raphson methods – convergence and divergence	
	of solutions.	
	NUMERICAL DIFFERENTIATION, INTEGRATION AND	
	CURVE FITTING: Newton's forward and backward interpolation –	
UNIT-II	Lagrange's interpolation – Newton-Raphson method to find square	
	root and cube roots – principle of least squares – fitting a straight line	
	and exponential curve – trapezoidal rule – Simpson's 1/3 and 1/8 rule.	
UNIT-III	ALGORITHM, FLOW CHART AND PROGRAM: development	
UNII-III	of algorithm – flow chart for solving simple problems– average of set	

	of numbers – greatest, smallest – conversion of Fahrenheit to Celsius
	and Celsius to Kelvin, miles to kilometer – sorting set of numbers in
	ascending and descending order – square matrix, addition, subtraction
	and multiplication of order (2x2) using arrays.
	INTRODUCTION TO C: importance of C – basic structure of C
	programming – constants, variables and data types – character set, key
UNIT-IV	words and identifiers – declaration of variables and data types –
	operators – expressions: arithmetic, relational, logical, assignment –
	increment and decrement – conditional – comma operators.
	CONTROL STRUCTURE: decision making with if, if-else, nested if
UNIT-V	– switch –go to – break – continue –while, do while, for statements –
UNII-V	arrays, one dimensional and two dimensional – declaring arrays –
	storing arrays in memory –initializing arrays – simple programs.
	1. Numerical methods, Singaravelu, Meenakshipublication, 4 th Edn.,
	1999.
	2. Numerical methodsP.Kandasamy, K.Thilagavathy, K. Gunavathi,
	S.Chand, 2016
TEXT BOOKS	3. Programming in C, Balagurusamy, TMG, ND, 2012
	4. Numerical Analysis, M.K. Venkatraman, NPH, 2013
	5. Numerical Analysis, B.D.Gupta, Konark Publishers, New Delhi,
	2013
	1. Schaum's outline series, Theory and Problems of programming in
REFERENCE	C, C.Byron& S. Gottfried, Tata McGraw Hill 2003
BOOKS	-, -:= j >, , ,

Continuous 1	InternalAssessment	End Semester Examination	Total	Grade
	25	75	100	

	MATERIALS SCIENCE
Learning Object	tive: To learn imperfections in crystals, deformation of materials and
testing of materia	ls. To get knowledge on behavior of a material, under the action of light
and their applicati	ions. To know the applications of crystal defects.
UNITS	COURSE DETAILS
	CRYSTAL IMPERFECTIONS: introduction – point defects:
	vacancies(problems), interstitials, impurities, electronic defects -
	equilibrium concentration of point imperfections (problems)—
UNIT-I	application of point defects –line defects: edge dislocation(problems),
	screw dislocation – surface defects: extrinsic defects – intrinsic
	defects: grain boundaries, tilt & twist boundaries, twin boundaries,
	stacking faults – volume defects – effect of imperfections.
	MATERIAL DEFORMATION: introduction – elastic behavior of
UNIT-II	materials – atomic model of elastic behavior –modulus as a parameter
UNII-II	in design – rubber like elasticity – inelastic behavior of materials –
	relaxation process – viscoelastic behavior of materials – spring-Dash

	pot models of viscoelastic behavior of materials.
UNIT-III	PERMANENT DEFORMATION AND STRENGTHENING METHODS OF MATERIALS: introduction –plastic deformation: tensile stress-strain curve – plastic deformation by slip – creep: mechanism of creep – creep resistant materials – strengthening methods: strain hardening, grain refinement – solid solution strengthening – precipitation strengthening.
UNIT-IV	OPTICAL MATERIALS: introduction – optical absorption in metals, semiconductors and insulators – NLO materials and their applications – display devices and display materials: fluorescence and phosphorescence – light emitting diodes –liquid crystal displays.
UNIT-V	MECHANICAL TESTING: destructive testing: tensile test, compression test, hardness test – nondestructive testing (NDT): radiographic methods, ultrasonic methods – thermal methods of NDT: thermography – equipment used for NDT: metallurgical microscope
TEXT BOOKS	 Material science and Engineering, Raghavan V, Prentice Hall of India, Sixth Edition, 2015 Materials science, V. Rajendran, McGraw Hill publications 2011
REFERENCE BOOKS	 William D. Callister, Jr., Material Science & Engineering – An Introduction, 8th Edition, John Wiley & Sons, Inc., 2007 W. Bolton, "Engineering materials technology", 3rd Edition, Butterworth & Heinemann, 2001. Donald R. Askeland, Pradeep P. Phule, "The Science and Engineering of Materials", 5th Edition, Thomson Learning, First Indian Reprint, 2007. William F. Smith, "Structure and Properties of Engineering Alloys", Mc-Graw-Hill Inc., U.S.A, 2nd edition, 1993.

Continuous Inte	ernalAssessment	End Semester Examination	Total	Grade	
2	5	75	100		
	LASERSANDFIBEROPTICS				
Learning Objective: The students will learn the fundamentals, types of lasers, laser					
instrumentation a	instrumentation and their applications also the interconnect between optics with lasers.				
UNITS	UNITS COURSE DETAILS				
UNIT-I	FUNDAMENTALSOFLASER: basic principles: spontaneous and stimulated emission – Einstein'scoefficient – pumping mechanism: optical, electrical and laser pumping – population inversion – two and three level laser system – resonatorconfiguration – quality factor – threshold condition – concept of Qswitching–Theoryofmodelocking–cavitydumping.				
TYPESOFLASER: solidstatelaser: ruby laser, Nd:YAGlaser– semiconductor laser: intrinsic semiconductor laser, doped semiconductorlaser, injection laser – dye laser – chemical laser: HCL laser. Gaslaser:neutral atom gas laser (He-Ne laser), CO ₂ laser, Copper vapour laser.		er: HCL			

UNIT-III	APPLICATIONSOFLASER: application of laser in metrology – optical communication – material processing: laser instrumentation of material processing, powder feeder, laser heating, laser welding, laser melting – medical application – Laserinstrumentation for surgeries—laserinastronomy.
UNIT-IV	FIBEROPTICS: basic components of optical fiber communication – principles of lightpropagation through fiber – total internal reflection – optical fiber – coherent bundle – numerical aperture and skew mode – phase shift andattenuation during total internal reflection – types of fiber: single mode andmulti-mode fiber – step index and graded index fiber – fiber optic sensors – applicationoffiberoptics.
UNIT-V	CHARACTERISTICSANDFABRICATIONOFOPTICALFIBER: fiber characteristics: mechanical and transmission characteristics – absorption loss and scattering loss measurements – dispersion – connectors and splicers – fiber termination – optical time domain reflectometer(OTDR) and its uses – fiber material – fiber fabrication – fiber optic cablesdesign.
TEXT BOOKS	 B.B. Laud - Laser and Non-linear Optics, New Age International Publications Third Edition, NewDelhi. AnIntroductiontolaser, theory and applications by Avadhunulu, M.N.S., Chand&Co, NewDelhi J.Wilsonand J.F.B. Hawkes. 'Introduction to Opto Electronics', Pearson Education, 2018.
REFERENCE BOOKS	 A.Sennaroglu, "PhotonicsandLaserEngineering:Principles,Devicesa ndApplications" McGraw-HillEducation,2010. K.R.Nambiar, "Lasers:Principles, TypesandApplications", NewAgeI nternational,2004. Optic, AjoyGhatak, McGraw-HillEducation(India)Pvt,Ltd, 6thEdn., 2017.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

DIGITAL PHOTOGRAPHY			
Learning Objective: To understand the principles of photography and image formation			
and the science and arts behind it. To understand the essential components			
of conventional and digital cameras and also the different image processing techniques.			
UNITS	COURSE DETAILS		

	PHOTOGRAPHY AND BASIC PRINCIPLE OF IMAGE
UNIT-I	FORMATION: principle –chemical route and digital route –light, wavelengths, colours – shadows – light intensity and distance – making light form images –pin-hole images – practical limitations to pin-hole images – lens instead of pin-hole – focal length and image size – imaging of closer subjects.
UNIT-II	LENSES – CONTROLLING THE IMAGES: photographic lens – focal length and angle of view (<i>problems</i>) – focusing movement – aperture and f-numbers (<i>problems</i>) – depth of field– depth of focus – image stabilization – lenses for digital cameras – lens and camera care.
UNIT-III	CAMERA USING FILMS AND ITS TYPES: camera and its essential components— shutter — aperture — light measurement — film housing — camera types: view camera— view finder camera — Reflex camera— single lens reflex (SLR) camera.
UNIT-IV	DIGITAL CAMERAS PRINCIPLE AND TYPES: principle of digital image capturing –comparison of digital and analog picture information – megapixel – grain, noise and pixel density – optical and digital zooming – image stabilizer – bit depth – white balance – colour modes – file formats (TIFF, RAW & JPEG) – storage cards and types – digital cameras: camera phones – compact camera – hybrid camera – digital SLR.
UNIT-V	THE DIGITAL IMAGE – POSTPRODUCTION: hardware: computer and its peripherals – software: saving digital file – basic editing: navigating the image – undo/redo/history – crop – rotate – brightness &contrast – colour balance – hue/saturation – dodge/burn – cloning &retouching – removing an element in an image – advanced editing: histogram/levels – curves – selection tools: magic wand – printing digital images: inkjet printer – laser printer – dye sub printer – lambda/light jet printers.
TEXT BOOKS	 Michel J.Langford , Anna Fox & Richard Sawdon Smith, Basic photography, 9th Edition, , 2010-NL, Focal press, London Henry Carroll, Read this if you want to take great photographs of people, Laurence King Publishing
REFERENCE BOOKS	 Mark Galer, Digital Photography in Available Light essential skills, 2006, Focal press, London Paul Harcourt Davies, The Photographer's practical handbook, 2005, UK PRESS

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

MEDICAL INSTRUMENTATION		
Learning Objective: This course aims to provide background of the Physics principles		
inmedical instrumentation technologies through theoretical & practical learning.		
UNITS	COURSE DETAILS	

UNIT-I	BIOMETRICS:introduction to man-instrument system and its components –problems encountered in measuring living systems – transducers– force, motion, pressure transducers. AUDIOMETRY:mechanism of hearing – air and bone conduction – threshold of hearing –audiometer – masking in audiometry – pure tone
	and speech audiometer – evoked response audiometry – hearing aids
UNIT-II	BIOELECTRIC POTENTIALS AND ELECTRODES:biomedical signals – sources of bioelectric potentials – resting, action and propagation of bioelectric potentials –bio-potential electrodes – skin surface, needle electrodes. BIOMEDICAL RECORDERS:electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle — electro encephalogram (EEG) –brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)–pulse oximeter.
UNIT-III	DIAGNOSTIC RADIOLOGY: radiography – primary radiological image – contrast agents, filters– beam restrictor, grid –image quality COMPUTED TOMOGRAPHY:linear tomography – computed tomography – helical and multi slice –image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE:radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste.
UNIT-IV	ULTRASOUND IMAGING: ultrasound transducer – ultrasound imaging– Doppler ultrasound – ultrasound image quality & bio-effects. MAGNETIC RESONANCE IMAGING:proton & external magnetic field – precession – radiofrequency and resonance – MRI signal – relaxation time – MRI instrumentation – imaging sequences – biosafety
UNIT-V	PROJECT ASSIGNMENT: clinical practice of <i>one</i> of the following:electro cardiogram, electro encephalogram, electro myogram, electro oculogram, computed tomography, positron emission tomography, ultrasound
TEXT BOOKS	 Leslie Cromwell, Fred Weibell, Erich Pfieffer(2002) Biomedical Instrumentation & Measurements Prentice Hall of India, New Delhi. R. S. Khandpur (2003)Handbook of Biomedical Instrumentation 2ndEdn. Tata McGraw Hill, New Delhi. KuppusamyThayalan (2017), Basic Radiological Physics 2ndEdn. Jaypee Brothers Medical Publishers (P) Ltd, New Delhi.
REFERENCE BOOKS	 John Webster (2004) Bioinstrumentation John Wiley and Sons, Singapore. John Enderle, Susan Blanchard, Joseph Bronzino (2005) Introduction to Biomedical Engineering, 2nd ed. Elsevier, San Deigo William Hendee, Geoffrey Ibbott, Eric Hendee (2005) Radiation therapy Physics 3rd ed. Wiley-Liss, New Jersey

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

NON MAJOR ELECTIVES (NME)

PHYSICS FOR EVERYDAY LIFE		
Learning Objective: To know where all physics principles have been put to use in daily 3		

life and appreciate the concepts with a better understanding also to know about Indian		
scientists who have made significant contributions to Physics		
UNITS	COURSE DETAILS	
UNIT-I	MECHANICAL OBJECTS: spring scales – bouncing balls –roller	
UNII-I	coasters – bicycles –rockets and space travel.	
	OPTICAL INSTRUMENTS AND LASER: vision corrective lenses	
UNIT-II	– polaroid glasses – UV protective glass – polaroid camera – colour	
	photography – holography and laser.	
	PHYSICS OF HOME APPLIANCES: bulb – fan – hair drier –	
UNIT-III television – air conditioners – microwave ovens – vacuum clea		
	SOLAR ENERGY: Solar constant – General applications of solar	
UNIT-IV	energy – Solar water heaters – Solar Photo – voltaic cells – General	
	applications of solar cells.	
	INDIAN PHYSICIST AND THEIR CONTRIBUTIONS:	
UNIT-V	C.V.Raman, HomiJehangirBhabha, Vikram Sarabhai, Subrahmanyan	
UNII-V	Chandrasekhar, Venkatraman Ramakrishnan, Dr. APJ Abdul Kalam	
	and their contribution to science and technology.	
	1. The Physics in our Daily Lives, Umme Ammara, Gugucool	
TEXT BOOKS	Publishing, Hyderabad, 2019.	
	2. For the love of physics, Walter Lawin, Free Press, New York, 2011.	

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

ASTROPHYSICS				
Learning Objective: This course intends to introduce principles of astrophysics describing				
the science of formation and evolution of stars and interpretation of various heavenly				
phenomena and p	provide an understanding of the physical nature of celestialbodies along			
with the instrume	ntation and techniques used in astronomical research			
UNITS	COURSE DETAILS			
	TELESCOPES: Optical telescopes – magnifying power, brightness,			
UNIT-I	resolving power and f/a ratio – types of reflecting and refracting			
UNII-I	telescopes - detectors and image processing - radio telescopes -			
	Hubble space telescope.			
	SOLAR SYSTEM: Bode's law of planetary distances – meteors,			
UNIT-II	meteorites, comets, asteroids – Kuiper belt – Oort cloud – detection of			
	gravitational waves – recent advances in astrophysics.			
ECLIPSES: types of eclipses – solar eclipse – total and partial sola				
eclipse – lunar eclipse – total and partial lunar eclipse – transits.				
UNIT-III	THE SUN: physical and orbital data – solar atmosphere – photosphere			
UNII-III	– chromosphere – solar corona – prominences – sunspots – 11year			
	solar cycle – solar flares.			
	STELLAR EVOLUTION: H-R diagram – birth & death of low mass,			
UNIT-IV	intermediate mass and massive stars - Chandrasekar limit - white			
01411-14	dwarfs – neutron stars – pulsars – black holes – supernovae.			
	GALAXIES: classification of galaxies – galaxy clusters –interactions			

	of galaxies, dark matter and super clusters – evolving universe.		
	ACTIVITIES IN ASTROPHYSICS:		
	(i) Basic construction of telescope		
	(ii) Develop models to demonstrate eclipses/planetary motion		
UNIT-V	(iii) Night sky observation		
	(iv) Conduct case study pertaining to any topic in this paper		
	(v) Visit to any one of the National Observatories		
	Any three activities to be done compulsorily.		
	1. BaidyanathBasu, (2001). An introduction to Astrophysics, Second		
	printing, Prentice – Hall of India (P) Ltd, New Delhi		
TEVT DOOKS	2. K.S.Krishnaswamy, (2002), <u>Astrophysics – a modern perspective</u> ,		
TEXT BOOKS	New Age International (P) Ltd, New Delhi.		
	3. Shylaja, B.S. &Madhusudan, H.R.,(1999), Eclipse: A Celestial		
	Shadow Play, Orient BlackSwan,		

	Continuous InternalAssessment	End Semester Examination	Total	Grade
ſ	25	75	100	

PHYSICS OF MEDICAL INSTRUMENTS					
Learning Objective: The students will be exposed to instruments like ECG,EEG,EMG,					
	medical imaging, diagnostic specialties, operation theater and its safety which will kindle				
interest to special	ize in instrument servicing.				
UNITS	COURSE DETAILS				
	BIO-POTENTIALS AND ELECTRODES: transport of ions through				
	cell membrane- resting and action potential - Characteristics of resting				
TINITE T	potential – bio-electric potential – design of medical instruments –				
UNIT-I	components of bio-medical instrumentation – electrodes – electrode				
	potential – metal microelectrode – depth and needle electrodes – types				
	of surface electrode – the pH electrode.				
	Bio-potential based Instrumentation: Electrocardiography (ECG) –				
	origin of cardiac action potential - ECG lead configuration -block				
	diagram of ECG recording set up (qualitative) –				
UNIT-II	Electroencephalography (EEG) – origin of EEG – action and evoked				
	potentials - brain waves - block diagram of modern EEG set up -				
	electromyography (EMG) – block diagram of EMG recording setup.				
	OPERATION THEATRE AND SAFETY: diathermy – block				
	diagram of the electrosurgical diathermy- shortwave, microwave,				
	ultrasonic diathermy – ventilators – servo controlled systems –				
UNIT-III	RADIATION SAFETY: units of radiation - pocket dosimeter -				
	pocket type radiation alarm – thermo-luminescence dosimeter.				
	MEDICAL IMAGING: nuclear imaging technique -computer				
	tomography (CT) – principle – mathematical basis of image				
UNIT-IV	construction –block diagram of CT scanner – ultrasonic imaging				
	systems – construction of transducer – display modes – MRI principle				
	and instrumentation.				
UNIT-V	UNIT-V DIAGNOSTICS AND SPECIALITIES:X-rays in radiography -				

	fluoroscopy – comparison– image intensifiers – angiography – applications of X-ray examination (<i>problems</i>). LASER IN MEDICINE:laser interactions with biomolecules – advantages of laser surgery – endoscopy – types of endoscopes with
	their operation (qualitative).
TEXT BOOKS	 Biomedical Instrumentation and measurement, Leslie Cromwell, PHI, 2015 Medical Instrumentation, M. Arumugam, Anuradha agencies, 1992 Medical Electronics, M.J.Kumar Doss, Prathibha Publishers, 1987 Medical Physics, John R. Cameron and James G. Skofronick, Thrift books, Atlanta, 1985 Electronic Instruments and Instrumentation Technology, M. M.M.Anand, PHI, 2015

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

HOME ELECTRICAL INSTALLATION					
Learning Objective: The students will get knowledge on electrical instruments,					
installations and domestic wiring techniques with safety precautions and servicing.					
UNITS	COURSE DETAILS				
UNIT-I SIMPLE ELECTRICAL CIRCUITS: charge, current, potential difference, resistance – simple electrical circuits – DC ammeter voltmeter, ohmmeter – Ohm's law – difference between DC and AC advantages of AC over DC – electromagnetic induction - transformer – inductors/chokes – capacitors/condensers – impedance – AC ammeter, voltmeter –symbols and nomenclature					
UNIT-II	TRANSMISSION OF ELECTRICITY: production and transmission of electricity – concept of power grid – Series and parallel connections – technicalities of junctions and loops in circuits –transmission losses (qualitative) – roles of step-up and step-down transformers – quality of connecting wires – characteristicsof single and multicore wires				
UNIT-III	ELECTRICAL WIRING: different types of switches – installation of two way switch – role of sockets, plugs, sockets - installation of meters – basic switch board – electrical bell – indicator – fixing of tube lights and fans – heavy equipment like AC, fridge, washing machine, oven, geyser, jet pumps – provisions for inverter – gauge specifications of wires for various needs				
UNIT-IV	POWER RATING AND POWER DELIVERED: conversion of electrical energy in to different forms – work done by electrical energy – power rating of electrical appliances – energy consumption – electrical energy unit in kWh – calculation of EB bill – Joule's heating – useful energy and energy loss – single and three phase connections – Measures to save electrical energy – energy audit				
UNIT-V	UNIT-V SAFETY MEASURES: insulation for wires – colour specification for mains, return and earth – Understanding of fuse and circuit breakers –				

	types of fuse: kit-kat, HRC, cartridge, MCB, ELCB – purpose of earth		
	line – lighting arrestors – short circuiting and over loading – electrical		
	safety – tips to avoid electrical shock – first aid for electrical shock –		
	fire safety for electric current		
	1. Wiring a House: 5th Edition by Rex Cauldwell, (2014).		
	2. Black & Decker Advanced Home Wiring, 5th Edition: Backup		
Power - Panel Upgrades - AFCI Protection - "Smart" Thermo			
TEXT BOOKS	by Editors of Cool Springs Press, (2018).		
	3. Complete Beginners Guide to Rough in Electrical Wiring: by Kevin		
	Ryan (2022).		

	Continuous InternalAssessment	End Semester Examination	Total	Grade
ſ	25	75	100	

PHYSICS OF MUSIC		
Learning Objective: To apprise and train students on the role of Physics in music and get		
the knowledge on the musical notes and instruments.		
UNITS	COURSE DETAILS	
UNIT-I	SCIENTIFIC STUDY OF MUSIC: vibrations of atoms of matter-vibrations coupling to air – propagation of sound waves in air, other media, fluids & solids – velocity, frequency, wavelength, time period, intensity: definition and unit fs – classification of sound on frequency and velocity– human & animal sound perception– mechanism of ear and hearing – psychoacoustics	
UNIT-II	SIMPLE VIBRATING SYSTEMS: simple harmonic motion – tuning fork— amplitude, phase, energy,energy loss/damping/ dissipation – power – travelling waves and standing waves— laws of vibration in stretched strings— one-dimensional medium – open and closed organ pipes – over tones, harmonics – quality of sound: pitch, timber, loudness – octaves, musical notes	
UNIT-III	MUSICAL TONE: pure/simple tones – sine/cosine waves— well-defined frequencies, wavelengths, amplitudes & phases— partial tones – assembly of pure tones— mix of different frequencies & amplitudes— complex tone – superposition of simple tones – complex waveform— periodic complex waveform – formants – resonances— sound envelope	
UNIT-IV	PRODUCTION OF MUSICAL SOUNDS: human voice, mechanism of vocal sound production – larynx (sound box) – <i>stringed Instruments</i> : plucked &bowed, guitar, mandolin, violin, piano, etc. – <i>wind instruments</i> : whistles, flute, saxophone, pipe organ, bag pipes, etc – <i>percussion instruments</i> : plates, membranes, drums, cymbals, xylophone etc. – <i>electronic instruments</i> : keyboards, electric guitars, rhythm pads, etc. – analog and digital sound synthesizers, –MIDI instrument – computer generated music	
UNIT-V	RECORDING OF MUSIC & SOUND: Edison phonograph – cylinder & disk records – magnetic wire and tape recorders – digital	

	recording (e.g. to CD, DVD, etc.)- analog transducers, condenser,	
	dynamic microphones, loudspeaker – complex sound fields – near &	
	far fields of acoustic- spectral analysis techniques - continuous &	
	discrete Fourier transforms, digital signal processing – digital filtering	
	– specifications of recording studios	
	1. Physics and Music: The Science of Musical Sound by Harvey	
	White (2014)	
	2. Good Vibrations – The Physics of Music by Barry Parker,	
	(2009)	
TEXT BOOKS		
	3. The History of Musical Instruments by Curt Sachs,	
	(2006)	
	4. Physics and Music: Essential Connections and Illuminating	
	Excursions by Kinko Tsuji and Stefan C. Müller(2021)	

Ī	Continuous InternalAssessment	End Semester Examination	Total	Grade
I	25	75	100	

ENERGY PHYSICS			
Learning Objective: To get the understanding of the conventional and non-			
conventional energy sources, their conservation and storage systems.			
UNITS	COURSE DETAILS		
	INTRODUCTION TO ENERGY SOURCES: energy consumption		
	as a measure of prosperity – world energy future – energy sources		
UNIT-I	and their availability – conventional energy sources – non-		
	conventional and renewable energy sources – comparison – merits		
	and demerits.		
	SOLAR ENERGY: solar energy Introduction – solar constant – solar		
	radiation at the Earth's surface – solar radiation geometry – Solar		
UNIT-II	radiation measurements – solar radiation data –solar energy storage		
	and storage systems – solar pond – solar cooker – solar water heater		
	– solar greenhouse – types of greenhouses – solar cells.		
	WIND ENERGY: introduction – nature of the wind – basic principle		
	of wind energy conversion – wind energy data and energy estimation		
UNIT-III	– basic components of Wind Energy Conversion Systems (WECS) –		
	advantages and disadvantages of WECS – applications – tidal energy		
	BIOMASS ENERGY: introduction – classification – biomass		
UNIT-IV	conversion technologies –photosynthesis – fermentation - biogas		
UNII-IV	generation –classification of biogas plants – anaerobic digestion for		
	biogas – wood gasification – advantages & disadvantages.		
	ENERGY STORAGE: importance of energy storage- batteries - lead		
UNIT-V	acid battery -nickel-cadmium battery – fuel cells – types of fuel cells		
01411-4	– advantages and disadvantages of fuel cells – applications of fuel		
	cells - hydrogen storage.		

	1. G.D.Rai, Non-Conventional Sources of Energy, Khanna
	Publishers, 2009, 4 th Edn.
TEVT DOOKS	2. S P Sukhstme, J K Nayak, Solar Energy, Principles of Thermal
TEXT BOOKS	Collection and Storage, McGraw Hill, 2008, 3 rd Edn.
	3. D P Kothari, K P Singal, RakeshRajan, PHI Learning Pvt Ltd,
	2011, 2 nd Edn.
	1. John Twidell& Tony Weir, Renewable Energy Resources, Taylor
	& Francis, 2005, 2 nd Edn.
	2. S.A. Abbasi and NasemaAbbasi, Renewable Energy sources and
REFERENCE	their environmental impact, PHI Learning Pvt. Ltd, 2008.
BOOKS	3. M. P. Agarwal, Solar Energy, S. Chand & Co. Ltd., New
	Delhi,1982
	4. H. C. Jain, Non-Conventional Sources of Energy, Sterling
	Publishers, 1986.

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

NANOSCIENCE AND NANOTECHNOLOGY		
Learning Objective: This course aims to provide an overall understanding of		
Nanoscience and Nanotechnology and introduces different types of nanomaterials, their		
1 1	tion methods, characterization techniques and a range of applications.	
UNITS	COURSE DETAILS	
	NANOSCIENCE AND NANOTECHNOLOGY: nanoscale— nature	
	and nanostructures – nanostructures: 0D, 1D,2D– surface to volume	
UNIT-I	ratio- size effect - excitons - quantum confinement- metal based	
	nanoparticles (metal and metal oxide) – nanocomposites (non-polymer	
	based) – carbon nanostructures – fullerene –SWCNT and MWCNT	
	PROPERTIES OF NANO-MATERIALS:introduction –mechanical	
	behavior -elastic properties - hardness and strength - ductility and	
UNIT-II	toughness –superplastic behavior – optical properties – surface	
	plasmon resonance – electrical properties – dielectric materials and	
	properties – magnetic properties – super paramagnetism –	
	electrochemical properties – properties of CNTs.	
	FABRICATION METHODS AND VACUUM TECHNIQUES:top-	
	down and bottom-up approaches – electrochemical method – chemical	
UNIT-III	& physical vapour depositions (CVD & PVD) – plasma arc discharge	
	- sputtering - thermal evaporation - pulsed laser deposition - ball	
	milling – sol-gel methods – synthesis of CNT.	
	CHARACTERIZATION TECHNIQUES: scanning probe	
	microscopy - scanning tunneling microscopy - atomic force	
UNIT-IV	microscopy – scanning electron microscopy – transmission electron	
	microscopy -powder XRD method: determination of structure and	
	grain size analysis – UV-visible and photoluminescence spectroscopy.	

UNIT-V	APPLICATIONS OF NANOMATERIALS: medicine: drug delinest ophotodynamic therapy — molecular motors —energy: fuel cell rechargeable batteries — supercapacitors— photovoltaics. sens nanosensors based on optical and physical properties — electrochem sensors-nanoelectronics: CNTFET — display screens — GMR read/v heads — nanorobots.	
TEXT BOOKS	 K.K.Chattopadhyay and A.N.Banerjee, (2012), Introduction to Nanoscience and Nanotechnology, PHI Learning Pvt. Ltd., M.A. Shah, Tokeer Ahmad (2010), <u>Principles of Nanoscience and Nanotechnology</u>, Narosa Publishing House Pvt Ltd. Mick Wilson, et al (2005) <u>Nanotechnology</u>, Overseas Press. 	
REFERENCE BOOKS	 Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley Publishing Inc. USA J.H.Fendler (2007) Nano particles and nano structured films; Preparation, Characterization and Applications, John Wiley & Sons B.S.Murty, et al (2012) Textbook of Nanoscience and Nanotechnology, Universities Press. 	

Continuous InternalAssessment		End Semester Examination	Total	Grade
	25	75	100	

COURSE	ALLIED PAPER
COURSETITLE	ALLIED PHYSICS – I
CREDITS	3
COURSE	To impart basicprinciples of Physics that which would be helpful for
OBJECTIVES	students who have taken programmes other than Physics.

UNITS	COURSE DETAILS	
UNIT-I	WAVES, OSCILLATIONS AND ULTRASONICS: Definition of simple harmonic motion (SHM) – laws of transverse vibrations of strings – determination of AC frequency using sonometer (steel and brass wires) – ultrasound – production – piezoelectric method – application of ultrasonics: medical field – ultrasonography.	
UNIT-II	PROPERTIES OF MATTER: Elasticity: elastic constants – bending of beam – theory of non- uniform bending – determination of Young's modulus by non-uniform bending – energy stored in a stretched wire – torsion of a wire – determination of rigidity modulus by torsional pendulum Viscosity: streamline and turbulent motion – critical velocity – coefficient of viscosity – Poiseuille's formula – comparison of viscosities – burette method, Surface tension: definition– drop weight method – surface tension and interfacial surface tension.	

	HEAT AND THERMODYNAMICS: Joule-Kelvin effect – Joule-
	Thomson porous plug experiment – theory – temperature of inversion
UNIT-III	 liquefaction of Oxygen- Linde's process of liquefaction of air- liquid Oxygen for medical purpose- importance of cryocoolers- entropy -
	change of entropy in reversible and irreversible process.
	ELECTRICITY AND MAGNETISM: potentiometer – principle –
UNIT-IV	measurement of thermo emf using potentiometer –magnetic field due to a current carrying conductor – Biot-Savart's law – field along the
UNII-IV	axis of the coil carrying current – peak, average and RMS values of ac
	current and voltage.
	DIGITAL ELECTRONICS AND DIGITAL INDIA: logic gates,
	OR, AND, NOT, NAND, NOR, EXOR logic gates – universal building blocks – Boolean algebra – De Morgan's theorem –
UNIT-V	verification – overview of Government initiatives: software
	technological parks under MeitY, NIELIT- semiconductor laboratories
	under Dept. of Space – an introduction to Digital India.
	1. R.Murugesan (2001), AlliedPhysics,S. ChandandCo,NewDelhi.
	2. BrijlalandN.Subramanyam (1994),
	WavesandOscillations, VikasPublishing House, NewDelhi.
	3. BrijlalandN.Subramaniam (1994), PropertiesofMatter,S.ChandandCo.,NewDelhi.
TEXT BOOKS	4. J.B.Rajam and C.L.Arora (1976). Heat and Thermodynamics
	(8 th edition), S.ChandandCo.,New Delhi.
	5. R.Murugesan(2005),
	OpticsandSpectroscopy,S.ChandandCo,NewDelhi.
	6. A.Subramaniyam,
	AppliedElectronics2 nd Edn.,NationalPublishingCo.,Chennai.
	1. ResnickHallidayandWalker(2018).FundamentalsofPhysics(11 th e dition),JohnWilleyand Sons, Asia Pvt.Ltd., Singapore.
	2. V.R.KhannaandR.S.Bedi (1998), TextbookofSound1 st Edn.
	KedharnaathPublishandCo, Meerut.
DEFEDENCE	3. N.S.KhareandS.S.Srivastava (1983),
REFERENCE BOOKS	ElectricityandMagnetism10 th Edn.,AtmaRamandSons, New
DOORS	Delhi.
	4. D.R.KhannaandH.R. Gulati(1979). Optics,S. Chand
	andCo.Ltd.,New Delhi. 5. V.K.Metha(2004).Principlesofelectronics6 th Edn.
	S. Chandandcompany.
	1. https://youtu.be/M_5KYncYNyc
	2. https://youtu.be/ljJLJgIvaHY
	3. https://youtu.be/7mGqd9HQ_AU
	4. https://youtu.be/h5jOAw57OXM
WEB	5. https://learningtechnologyofficial.com/category/fluid-mechanics-lab/
RESOURCES	6. http://hyperphysics.phy-
	astr.gsu.edu/hbase/permot2.htmlhttps://www.youtube.com/watch?v=g
	T8Nth9NWPMhttps://www.youtube.com/watch?v=9mXOMzUruMQ
	andt=1shttps://www.youtube.com/watch?v=m4u-
	SuaSu1sandt=3shttps://www.biolinscientific.com/blog/what-are-
	surfactants-and-how-do-they-work 4

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the studentwill beableto:

	1					
		Explain types of motion and extend their knowledge in the				
	CO1	study of variousdynamicmotionsanalyzeand demonstrate				
	COI	mathematically. Relate theory with practical applications in				
		medical field.				
		Explaintheirknowledgeofunderstandingaboutmaterialsandtheir				
	CO ₂	behaviorsandapplyittovarioussituationsinlaboratoryandreal life.				
		Connect droplet theory with Corona transmission.				
		Comprehend basic concept of thermodynamics concept of				
	001	entropyand associated theorems able to interpret the process of				
	CO3	flowtemperaturephysicsinthebackgroundofgrowthof this				
COURSEO		technology.				
UTCOMES		Articulate the knowledge about electric current				
		resistance,capacitance in terms of potential electric field and				
	~~ 1	electric				
	CO4	correlatetheconnectionbetweenelectricfieldandmagneticfieldan				
		danalyzethemmathematicallyverifycircuitsandapplytheconcepts				
		toconstructcircuitsandstudythem.				
		Interpret the real life solutions using AND, OR, NOT				
		basiclogicgatesandintendtheirideastouniversalbuildingblocks.				
	CO5 InferoperationsusingBooleanalgebraandacquireelemen					
		sofICcircuits.Acquire information about various Govt.				
		programs/ institutions in this field.				
		programs/ insututions in this field.				

MAPPING WITH PROGRAM OUT COMES:

 $\label{lem:mapping} Map course outcomes \textbf{(CO)} for each course with program outcomes \textbf{(PO)} in the 3-point scale of STRONG \textbf{(S)}, MEDIUM \textbf{(M)} and LOW \textbf{(L)}.$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	M	S	S	S	M	S	S	S	S	M
CO3	M	S	S	S	S	M	S	S	S	S
CO4	S	S	S	S	S	S	S	M	S	S
CO5	M	S	S	S	S	S	S	S	S	S

COURSE	ODD SEMESTER - CORE
COURSETITLE	ALLIED PRACTICALS – I
CREDITS	
COURSE	Apply various physics concepts to understand Properties of Matter
OBJECTIVES	and waves, set up experimentation to verify theories, quantify and
	analyses, able to do error analysis and correlate results

Minimum of Eight Experiments from the list:

- 1. Young's modulus by non-uniform bending using pin and microscope
- 2. Young's modulus by non-uniform bending using optic lever, scale and telescope
- 3. Rigidity modulus by static torsion method.
- 4. Rigidity modulus by torsional oscillations without mass
- 5. Surface tension and interfacial Surface tension drop weight method
- 2. Comparison of viscosities of two liquids burette method
- 3. Determination of g by compound pendulum
- 4. Specific heat capacity of a liquid half time correction
- 5. Verification of laws of transverse vibrations using sonometer
- 6. Calibration of low range voltmeter using potentiometer
- 7. Determination of thermo emf using potentiometer
- 8. Verification of truth tables of basic logic gates using ICs
- 9. Verification of De Morgan's theorems using logic gate ICs.
- 13. NAND as universal building block (AND, OR, NOT gates).

Note: Use of digital balance permitted

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE	ALLIED PAPER
COURSETITLE	ALLIED PHYSICS -II
CREDITS	3
COURSE OBJECTIVES	To understand the basic concepts of optics, modern Physics, concepts of relativity and quantumphysics, semiconductorphysics, and electronics.

UNITS	COURSE DETAILS
UNIT-I	OPTICS: Definition of i nterference – air wedge – determination of diameter of a thin wire by air wedge – diffraction – diffraction of light vs sound – normal incidence – experimental determination of wavelength using diffraction grating (no theory) – polarization – polarization by double refraction – Brewster's law.

	ATOMIC PHYSICS: Mass number – atomic number – nucleons –						
LINIUT II	vector atom model – various quantum numbers – Pauli's exclusion						
UNIT-II	principle – electronic configuration – periodic classification of						
	elements –photo electric effect – Einstein's photoelectric equation						
	- applications of photoelectric effect: solar cells,LED, photodiode.						
	NUCLEAR PHYSICS: Magic numbers – shell model – nuclear						
	energy – mass defect – binding energy – radioactivity – uses – half						
TINIUM TIT	life – mean life - radio isotopes and uses –controlled and						
UNIT-III	uncontrolled chain reaction – nuclear fission – energy released in						
	fission – critical size- atom bomb – nuclear fusion – thermonuclear						
	reactions – differences between fission and fusion. INTRODUCTION TO RELATIVITY AND GRAVITATIONAL						
TINITE IX	WAVES: frame of reference – postulates of special theory of						
UNIT-IV	relativity – Galilean transformation equations – Lorentz						
	transformation equations – derivation – length contraction – time						
	dilation – twin paradox – mass-energy equivalence.						
	SEMICONDUCTOR PHYSICS: p-n junction diode – forward						
	and reverse biasing – characteristic of diode – zener diode –						
UNIT-V	characteristic of zener diode – voltage regulator – full wave bridge rectifier – construction and working – advantages (no mathematical						
	treatment) – USB cell phone charger –introduction to e-vehicles						
	and EV charging stations. 1. R.Murugesan (2005), AlliedPhysics, S.ChandandCo, NewDelhi.						
	2. K.ThangarajandD.Jayaraman(2004),						
TEXT BOOKS	AlliedPhysics,PopularBookDepot,Chennai.						
	3. BrijlalandN.Subramanyam(2002),						
	TextbookofOptics,S.ChandandCo,NewDelhi.						
	4. R.Murugesan (2005), ModernPhysics,S.ChandandCo,NewDelhi.5. A.SubramaniyamAppliedElectronics,						
	2 nd Edn.,NationalPublishingCo.,Chennai.						
	2 Edit.,ivationan donsiningco.,chemiai.						
	1. ResnickHallidayandWalker (2018), FundamentalsofPhysics,						
	11 th Edn.,JohnWilleyandSons, Asia Pvt.Ltd.,Singapore.						
	2. D.R.KhannaandH.R. Gulati (1979).Optics,						
	S.ChandandCo.Ltd.,New Delhi.						
REFERENCE	3. A.Beiser (1997),						
BOOKS	ConceptsofModernPhysics,TataMcGrawHillPublication,NewD						
	elhi.						
	4. Thomas L. Floyd (2017), Digital Fundamentals, 11 th Edn.,						
	Universal Book Stall, NewDelhi.						
	5. V.K.Metha(2004), Principlesofelectronics, 6 th Edn.						
	,S.Chandand Company, New Delhi.						
	1. https://www.berkshire.com/learning-center/delta-p-						
	facemask/https://www.youtube.com/watch?v=QrhxU47gtj4htt						
WEB	ps://www.youtube.com/watch?time_continue=318andv=D38Bj						
RESOURCES	gUdL5Uandfeature=emb_logo						
	2. https://www.youtube.com/watch?v=JrRrp5F-Qu4						
	3. https://www.validyne.com/blog/leak-test-using-pressure-transdysers/						
	transducers/						

- https://www.atoptics.co.uk/atoptics/blsky.htm-https://www.metoffice.gov.uk/weather/learn-about/weather/optical-effects

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the studentwill beableto:

		Explaintheconceptsof interferencediffractionusingprinciplesof
	CO1	superposition su
	COI	based on wave patterns
		1
		Outline the basic foundation of different atom models and
		variousexperiments establishing quantum concepts. Relate the
	CO2	importance
	CO2	ofinterpretingimprovingtheoreticalmodelsbasedonobservation.
		Appreciateinterdisciplinarynatureofscience and in solar energy
		related applications.
		Summarizethepropertiesofnuclei,
		nuclearforcesstructureofatomicnucleusandnuclear models.
		Solveproblems on delayratehalf-lifeand mean-life.Interpret
COURSEO	CO2	· · · · · · · · · · · · · · · · · · ·
UTCOMES	CO3	nuclear processes likefission and fusion. Understand the
		importance of nuclear energy, safety measures carried and get
		our Govt.agencies like DAE guiding the country in the nuclear
		field.
		Todescribethebasicconceptsofrelativitylikeequivalenceprincipl
		e, inertialframes and Lorentz transformation. Extend their
	CO4	knowledge on concepts of relativity and vice-versa. Relate this
	CO4	with current research in this field and get an overview of
		research projects of National and International importance,
		like LIGO, ICTS, and opportunities available.
		Summarize the working of semiconductor devices like
	CO5	junction diode, Zenerdiode, transistors and practical devices
	COS	1
		we daily use like USB chargers and EV charging stations.

MAPPING WITH PROGRAM OUT COMES:

 $\label{lem:mapping} Map course outcomes \textbf{(CO)} for each course with program outcomes \textbf{(PO)} in the 3-point scale of STRONG \textbf{(S)}, MEDIUM \textbf{(M)} and LOW \textbf{(L)}.$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	M	S	S	S	M	S	S	S	S	M
CO3	M	S	S	S	S	M	S	S	S	S
CO4	S	S	S	S	S	S	S	M	S	S
CO5	M	S	S	S	S	S	S	S	S	S

COURSE	EVEN SEMESTER - CORE
COURSETITLE	ALLIED PRACTICALS – II
CREDITS	
COURSE OBJECTIVES	Apply various Physics concepts to understand concepts of Light, electricity and magnetism and waves, set up experimentation to verify theories, quantify and analyse, able to do error analysis and correlate results

Minimum of Eight Experiments from the list:

- 1. Radius of curvature of lens by forming Newton's rings (N and λ are given).
- 2. Thickness of a wire using air wedge.
- 3. Wavelength of mercury lines using spectrometer and grating.
- 4. Refractive index of material of the lens by minimum deviation.
- 5. Refractive index of liquid using liquid prism (hollow prism).
- 6. Determination of AC frequency using sonometer.
- 7. Specific resistance of a wire using PO box.
- 8. Thermal conductivity of poor conductor using Lee's disc.
- 9. Determination of figure of merit of table galvanometer.
- 10. Determination of Earth's magnetic field using field along the axis of a coil.
- 11. Characterisation of Zener diode (Forward and Reverse).
- 12. Construction of Zener / IC regulated power supply (IC 7805).
- 13. Construction of AND, OR gates using diodes and NOT gateusing transistor.
- 14. NOR gate as a universal building block (AND, OR, NOT gates).

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	