

P14

# THIRUVALLUVAR UNIVERSITY

SERKKADU, VELLORE-632115

# **M.Sc. CHEMISTRY**

**SYLLABUS** 

FROM THE ACADEMIC YEAR

2023 - 2024

#### CONTENTS

| 1.  |     | Preamble                                      |
|-----|-----|-----------------------------------------------|
| 2.  |     | StructureofCourse                             |
| 3.  |     | LearningandTeachingActivities                 |
| 4.  |     | TutorialActivities                            |
| 5.  |     | LaboratoryActivities                          |
| 6.  |     | Field StudyActivities                         |
| 7.  |     | AssessmentActivities                          |
|     | 7.1 | Assessmentprinciples                          |
|     | 7.2 | AssessmentDetails                             |
| 8.  |     | Teachingmethodologies                         |
| 9.  |     | FacultyCourseFile                             |
| 10. |     | TemplateforPGProgrammein Chemistry            |
| 11. |     | TemplateforSemester                           |
| 12. |     | InstructionsforCourseTransaction              |
| 13. |     | TestingPattern                                |
| 14. |     | DifferentTypesofCourses                       |
| 15. |     | ElectiveCourses(EDfromotherDepartmentExperts) |
| 16. |     | SkillDevelopmentCourses                       |
| 17. |     | Institution-Industry-Interaction              |
|     |     |                                               |

18. ModelSyllabus

|                | LATIONS ON LEARNING OUTCOMES-BASED CURRICULUM<br>MEWORK FOR POSTGRADUATE EDUCATION                                                                                                                                                                                                                    |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Programme      | M. Sc., Chemistry                                                                                                                                                                                                                                                                                     |
| Programme Code |                                                                                                                                                                                                                                                                                                       |
| Duration       | PG – 2YEARS                                                                                                                                                                                                                                                                                           |
| Programme      | PO1: Problem Solving Skill                                                                                                                                                                                                                                                                            |
| Outcomes (Pos) | Apply knowledge of Management theories and Human Resource<br>practices to solve business problems through research in Global<br>context.                                                                                                                                                              |
|                | <b>PO2: Decision Making Skill</b><br>Foster analytical and critical thinking abilities for data-based decision-making.                                                                                                                                                                                |
|                | <b>PO3: Ethical Value</b><br>Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.                                                                                                                                                             |
|                | <b>PO4: Communication Skill</b><br>Ability to develop communication, managerial and interpersonal skills.                                                                                                                                                                                             |
|                | <ul> <li>PO5: Individual and Team Leadership Skill<br/>Capability to lead themselves and the team to achieve organizational<br/>goals.</li> <li>PO6: Employability Skill<br/>Inculcate contemporary business practices to enhance employability<br/>skills in the competitive environment.</li> </ul> |
|                | <ul> <li>PO7: Entrepreneurial Skill</li> <li>Equip with skills and competencies to become an entrepreneur.</li> <li>PO8: Contribution to Society</li> </ul>                                                                                                                                           |

|                   | Concerned in some on descrete and somethilizate significantity to assist |
|-------------------|--------------------------------------------------------------------------|
|                   | Succeed in career endeavors and contribute significantly to society.     |
|                   | DO 0 Multiculturel competence                                            |
|                   | PO 9 Multicultural competence                                            |
|                   | Possess knowledge of the values and beliefs of multiple cultures and     |
|                   | a global perspective.                                                    |
|                   | DO 10. Manal and othical awayon agg/yeaganing                            |
|                   | PO 10: Moral and ethical awareness/reasoning                             |
|                   | Ability to embrace moral/ethical values in conducting one's life.        |
| Programme         | PSO1 – Placement                                                         |
| Specific Outcomes | To prepare the students who will demonstrate respectful engagement       |
| (PSOs)            | with others' ideas, behaviors, beliefs and apply diverse frames of       |
|                   | reference to decisions and actions.                                      |
|                   |                                                                          |
|                   | PSO 2 - Entrepreneur                                                     |
|                   | To create effective entrepreneurs by enhancing their critical thinking,  |
|                   | problem solving, decision making and leadership skill that will          |
|                   | facilitate startups and high potential organizations.                    |
|                   |                                                                          |
|                   | PSO3 – Research and Development                                          |
|                   | Design and implement HR systems and practices grounded in                |
|                   | research that comply with employment laws, leading the organization      |
|                   | towards growth and development.                                          |
|                   |                                                                          |
|                   | <b>PSO4 – Contribution to Business World</b>                             |
|                   | To produce employable, ethical and innovative professionals to           |
|                   | sustain in the dynamic business world.                                   |
|                   |                                                                          |
|                   | <b>PSO 5 – Contribution to the Society</b>                               |
|                   | To contribute to the development of the society by collaborating with    |
|                   | stakeholders for mutual benefit.                                         |

| Semester-I                               | Credit | Hours | Semester-II                                 | Credit | Hours   | Semester-III                              | Credit | Hours | Semester–IV                                                              | Credi<br>t | Hours |
|------------------------------------------|--------|-------|---------------------------------------------|--------|---------|-------------------------------------------|--------|-------|--------------------------------------------------------------------------|------------|-------|
| 1.1. Core-I                              | 5      | 7     | 2.1. Core-IV                                | 5      | 6       | 3.1. Core-VII                             | 5      | 6     | 4.1. Core-XI                                                             | 5          | 6     |
| 1.2 Core-II                              | 5      | 7     | 2.2 Core-V                                  | 5      | 6       | 3.2 Core-VIII                             | 5      | 6     | 4.2 Core-XII                                                             | 5          | 6     |
| 1.3 Core – III                           | 4      | 6     | 2.3 Core – VI                               | 4      | 6       | 3.3 Core – IX                             | 5      | 6     | 4.3 Project with viva voce                                               | 7          | 10    |
| 1.4 Discipline<br>Centric<br>Elective -I | 3      | 5     | 2.4 Discipline<br>Centric<br>Elective – III | 3      | 4       | 3.4 Core – X                              | 4      | 6     | 4.4Elective-VI(Industry/Entrepreneurship)20% Theory80% Practical         | 3          | 4     |
| 1.5 Generic<br>Elective-II:              | 3      | 5     | 2.5 Generic<br>Elective -IV:                | 3      | 4       | 3.5 Discipline<br>Centric<br>Elective - V | 3      | 3     | 4.5 Skill<br>Enhancement<br>course /<br>Professional<br>Competency Skill | 2          | 4     |
|                                          |        |       |                                             | 2      | 4       | 3.6 Skill<br>enhancement<br>II            | 2      | 3     | 4.6 Extension<br>Activity                                                | 1          |       |
|                                          |        |       | Human rights                                | 2      | 2       | 3.7 Internship/<br>Industrial<br>Activity | 2      | -     |                                                                          |            |       |
|                                          |        |       | MOOC course                                 | 2      | -       |                                           |        |       |                                                                          |            |       |
|                                          | 20     | 30    |                                             | 26     | 30      |                                           | 26     | 30    |                                                                          | 23         | 30    |
|                                          | 1      | 1     | 1                                           |        | Total C | redit Points -95                          |        | 1     |                                                                          |            |       |

### Choice Based Credit System (CBCS), Learning Outcomes Based Curriculum Framework (LOCF) Guideline Based Credits and Hours Distribution System for all Post – Graduate Courses including Lab Hours

|      | First Year – Semester – I |         |                 |  |  |  |
|------|---------------------------|---------|-----------------|--|--|--|
| Part | List of Courses           | Credits | No. of<br>Hours |  |  |  |
|      | Core – I                  | 5       | 7               |  |  |  |
|      | Core – II                 | 5       | 7               |  |  |  |
|      | Core – III                | 4       | 6               |  |  |  |
|      | Elective – I              | 3       | 5               |  |  |  |
|      | Elective – II             | 3       | 5               |  |  |  |
|      |                           | 20      | 30              |  |  |  |

|      | Semester-II                        |         |                 |  |  |  |
|------|------------------------------------|---------|-----------------|--|--|--|
| Part | List of Courses                    | Credits | No. of<br>Hours |  |  |  |
|      | Core – IV                          | 5       | 6               |  |  |  |
|      | Core – V                           | 5       | 6               |  |  |  |
|      | Core – VI                          | 4       | 6               |  |  |  |
|      | Elective – III                     | 3       | 3               |  |  |  |
|      | Elective – IV                      | 3       | 3               |  |  |  |
|      | Skill Enhancement Course [SEC] - I | 2       | 4               |  |  |  |
|      | Human rights                       | 2       | 2               |  |  |  |
|      | MOOC course                        | 2       | -               |  |  |  |
|      |                                    | 26      | 30              |  |  |  |

| Second | Year - | Semester - | - III |
|--------|--------|------------|-------|
|--------|--------|------------|-------|

| Part | List of Courses                            | Credits | No. of<br>Hours |
|------|--------------------------------------------|---------|-----------------|
|      | Core – VII                                 | 5       | 6               |
|      | Core – VIII                                | 5       | 6               |
|      | Core – IX                                  | 5       | 6               |
|      | Core (Industry Module) – X                 | 4       | 6               |
|      | Elective – V                               | 3       | 3               |
|      | Skill Enhancement Course - II              | 2       | 3               |
|      | Internship / Industrial Activity [Credits] | 2       | -               |
|      |                                            | 26      | 30              |

|      | Semester-IV                                                    |         |                 |
|------|----------------------------------------------------------------|---------|-----------------|
| Part | List of Courses                                                | Credits | No. of<br>Hours |
|      | Core – XI                                                      | 5       | 6               |
|      | Core – XII                                                     | 5       | 6               |
|      | Project with VIVA VOCE                                         | 7       | 10              |
|      | Elective – VI (Industry Entrepreneurship)                      | 3       | 4               |
|      | Skill Enhancement Course – III / Professional Competency Skill | 2       | 4               |
|      | Extension Activity                                             | 1       | -               |
|      |                                                                | 23      | 30              |

# **Total 95 Credits for PG Courses**

#### 2. StructureofCourse

| CourseCode                                                                         |                           | Cou                               | rseName                |        | Credits              |
|------------------------------------------------------------------------------------|---------------------------|-----------------------------------|------------------------|--------|----------------------|
| LectureHours:(L)                                                                   |                           | TutorialHours:     LabPractice    |                        |        | Total:(L+T+P)        |
| perweek                                                                            | (                         | )perweek                          | Hours: (P)perwe        |        | perweek              |
| CourseCategory:                                                                    | Ye                        | ear&Semester:                     | A                      | dmis   | sionYear:            |
| Pre-requisite                                                                      |                           |                                   |                        |        |                      |
| Linksto otherCourses                                                               |                           |                                   |                        |        |                      |
| LearningObjectives:                                                                |                           |                                   | ,                      | )      |                      |
| CourseOutcomes:(for                                                                | students:Toki             | nowwhattheyare                    | goingtolearn)          |        |                      |
| CO1:                                                                               |                           |                                   |                        |        |                      |
| CO2:                                                                               |                           |                                   |                        |        |                      |
| CO3:                                                                               |                           |                                   |                        |        |                      |
| CO4:                                                                               |                           |                                   |                        |        |                      |
| CO5:                                                                               |                           |                                   |                        |        |                      |
| Recap:(notforexamina                                                               | tion)Motivati             | on/previouslectu                  | re/relevantportions    | requir | edforthe             |
| course)[Thisisdoneduri                                                             | ing2Tutorialh             | ours)                             |                        |        |                      |
| Units                                                                              | Contents                  |                                   |                        |        |                      |
| I                                                                                  |                           |                                   |                        |        | RequiredHours        |
| П                                                                                  |                           |                                   |                        |        | Required Hours       |
| 11                                                                                 |                           |                                   |                        |        | 1                    |
|                                                                                    |                           |                                   |                        |        | 15                   |
|                                                                                    |                           |                                   |                        |        | 15<br>15             |
| III                                                                                |                           |                                   |                        |        | 15<br>15<br>15       |
| III<br>IV                                                                          | Questionsrel              | atedtotheabovet                   | opics,fromvariousco    | omp    | 15<br>15<br>15<br>15 |
| III<br>IV<br>V<br>ExtendedProfessional                                             | -                         | atedtotheabovetonationsUPSC/TF    | <b>-</b>               | omp    | 15<br>15<br>15<br>15 |
| III<br>IV<br>V<br>ExtendedProfessional<br>Component(isapartofi                     | etitiveexami              |                                   | RB/NET/UGC-            | omp    | 15<br>15<br>15<br>15 |
| III<br>IV<br>V<br>ExtendedProfessional<br>Component(isapartofi<br>nternalcomponent | etitiveexami<br>CSIR/GATE | nationsUPSC/TE<br>E/TNPSC/otherst | RB/NET/UGC–<br>obesolv | omp    | 15<br>15<br>15<br>15 |
| III<br>IV<br>V<br>ExtendedProfessional<br>Component(isapartofi                     | etitiveexami<br>CSIR/GATE | nationsUPSC/TH                    | RB/NET/UGC–<br>obesolv | omp    | 15<br>15<br>15<br>15 |

| be includedin                       |                                                                                                                           |  |  |  |  |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| the                                 |                                                                                                                           |  |  |  |  |  |  |
| ExternalExaminationq                |                                                                                                                           |  |  |  |  |  |  |
| uestion                             |                                                                                                                           |  |  |  |  |  |  |
| paper)                              |                                                                                                                           |  |  |  |  |  |  |
| Skillsacquiredfrom<br>the<br>course | Knowledge,ProblemSolving,Analyticalability,Prof<br>essionalCompetency,ProfessionalCommunicationa<br>ndTransferrable Skill |  |  |  |  |  |  |
| LearningResources:                  |                                                                                                                           |  |  |  |  |  |  |
| Recommende                          | dTexts                                                                                                                    |  |  |  |  |  |  |
| ReferenceBooks                      |                                                                                                                           |  |  |  |  |  |  |
| Webresources                        | • Webresources                                                                                                            |  |  |  |  |  |  |
| BoardofStudiesDate:                 |                                                                                                                           |  |  |  |  |  |  |

#### 3. LearningandTeachingActivities

#### 3.1 TopicwiseDeliverymethod

| HourCount | Торіс | Unit | ModeofDelivery |
|-----------|-------|------|----------------|
|           |       |      |                |

#### 3.2 WorkLoad

The information below is provided as a guide to assist students in engaging appropriately with the course requirements.

| Activity           | Quantity | Workloadperiods |
|--------------------|----------|-----------------|
| Lectures           | 60       | 60              |
| Tutorials          | 15       | 15              |
| Assignments        | 5        | 5               |
| CycleTestorsimilar | 2        | 4               |
| ModelTestorsimilar | 1        | 3               |
| UniversityExam     | 1        | 3               |
|                    | Total    | 90periods       |

TutorialActivities

| TutorialCount | Торіс |
|---------------|-------|
|               |       |

## 4. LaboratoryActivities

#### 5. Field StudyActivities

#### 6. AssessmentActivities

#### 6.1 AssessmentPrinciples:

#### Assessmentforthiscourseis basedonthefollowingprinciples

- 1. Assessment must encourageandreinforcelearning.
- 2. Assessment must measure achievement of the stated learning objectives.
- 3. Assessmentmustenablerobustandfair judgmentsaboutstudent performance.
- 4. Assessmentpracticemustbefairandequitabletostudentsandgivethemthe opportunitytodemonstratewhattheylearned.
- 5. Assessmentmustmaintainacademicstandards.

#### DistributedDueDate AssessmentItem Weightage Cumulative Weightage 3<sup>rd</sup>week Assignment1 2% 2% 6<sup>th</sup>Week 2% 4% Assignment2 7<sup>th</sup>Week 6% CycleTest-I 10% 8<sup>th</sup>Week 2% 12% Assignment3 11<sup>th</sup>Week 2% 14% Assignment4 12<sup>th</sup>Week CycleTest-II 6% 20% 14<sup>th</sup>Week 2% 22% Assignment5 15<sup>th</sup>Week ModelExam 13% 35% Allweeks as perthe 40% Attendance 5% AcademicCalendar 17<sup>th</sup>Week UniversityExam 100% 60%

#### 6.2 AssessmentDetails:

#### CONTENTS

- a. AcademicSchedule
- b. StudentsNameList
- c. TimeTable
- d. Syllabus
- e. LessonPlan
- f. StaffWorkload
- g. CourseDesign(content,CourseOutcomes(COs),Deliverymethod,mappingofCOswithProgrammeOutcom es(POs), AssessmentPatternintermsofRevisedBloom'sTaxonomy)
- h. SampleCOAssessmentTools.
- i. FacultyCourseAssessment Report(FCAR)
- j. CourseEvaluationSheet
- k. TeachingMaterials(PPT,OHPetc)
- 1. Lecture Notes
- m. HomeAssignmentQuestions
- n. TutorialSheets
- o. RemedialClassRecord,ifany.
- p. Projectsrelated to he Course
- q. LaboratoryExperimentsrelatedto the Courses
- r. InternalQuestionPaper
- s. ExternalQuestionPaper
- t. SampleHomeAssignmentAnswerSheets
- u. Threebest, three middle level and three average Answersheets
- v. ResultAnalysis(COwiseandwholeclass)
- w. QuestionBank

forHigherstudiesPreparation(GATE/Placement)

x. Listofmenteesandtheiracademicachievements

# Illustration–I CreditDistributionforPGProgrammein ChemistryM.Sc.

Chemistry

|       | FirstYear Semester-I                                                                                                | Credit | Hoursper<br>week(L/T/P) |
|-------|---------------------------------------------------------------------------------------------------------------------|--------|-------------------------|
| PartA | CC1–Organic Reaction Mechanism-I                                                                                    | 5      | 7                       |
|       | CC2–Structure and Bonding in Inorganic Compounds                                                                    | 5      | 7                       |
|       | CC3 –Organic Chemistry Practical                                                                                    | 4      | 6                       |
|       | ElectiveI (Generic/DisciplineSpecific) (OnefromGroup A)<br>Pharmaceutical Chemistry/ Electrochemistry               | 3      | 5                       |
|       | ElectiveII (Generic/DisciplineSpecific) (OnefromGroupB)<br>Molecular Spectroscopy/ Nanomaterials and Nanotechnology | 3      | 5                       |
|       | Total                                                                                                               | 20     | 30                      |

|       | FirstYear Semester-II                                     | Credit | Hours per<br>week (L/T/P) |
|-------|-----------------------------------------------------------|--------|---------------------------|
| PartA | CC4–Organic Reaction Mechanism-II                         | 5      | 6                         |
|       | CC5– Physical Chemistry – I                               | 5      | 6                         |
|       | CC6 – Inorganic Chemistry Practical                       | 4      | 6                         |
|       | ElectiveIII (Generic/DisciplineSpecific) (OnefromGroup C) | 3      | 3                         |
|       | Medicinal Chemistry / Green Chemistry                     |        |                           |
|       | ElectiveIV (Computer / IT related) (OnefromGroup D)       | 3      | 3                         |
|       | Bio-inorganic Chemistry / Material Science                |        |                           |
|       | Skill Enhancement Course – SEC 2 (One From Group G)       | 2      | 4                         |
|       | Human rights                                              | 2      | 2                         |
|       | MOOC course                                               | 2      | -                         |
|       | Total                                                     | 26     | 30                        |

|        | Semester-III                                                                                              | Credit | Hours per    |
|--------|-----------------------------------------------------------------------------------------------------------|--------|--------------|
|        |                                                                                                           |        | week (L/T/P) |
| PartA  | CC7–Organic Synthesis and Photochemistry                                                                  | 5      | 6            |
|        | CC8– Coordination Chemistry – I                                                                           | 5      | 6            |
|        | CC9–Physical Chemistry Practical                                                                          | 5      | 6            |
|        | CC10– Analytical Instrumentation Technique Practical                                                      | 4      | 6            |
|        | Elective V (Generic/DisciplineSpecific) (OnefromGroup E)                                                  | 3      | 3            |
| Part B | Pharmacognosy and Phytochemistry                                                                          |        |              |
|        | Skill Enhancement course- SEC 3: Professional Communication<br>Skill- Term paper and Seminar Presentation | 2      | 3            |
|        | Internship / Industrial Activity                                                                          | 2      | -            |
|        | Total                                                                                                     | 26     | 30           |

|        | Second Year Semester-IV                                                         | Credit | Hours per<br>week (L/T/P) |
|--------|---------------------------------------------------------------------------------|--------|---------------------------|
| PartA  | Core Project with viva voce,                                                    | 7      | 10                        |
|        | CC11- Coordination Chemistry –II                                                | 5      | 6                         |
|        | CC12- Physical Chemistry – II                                                   | 5      | 6                         |
|        | Elective VI (Generic / Discipline Specific) (One from Group F)                  | 3      | 4                         |
| Part B | Chemistry of Natural Products / Polymer Chemistry                               |        |                           |
|        | Professional Competency Skill Enhancement                                       | 2      | 4                         |
|        | CourseTraining for Competitive Examinations                                     |        |                           |
|        | • Chemistry for NET / UGC - CSIR/ SET / TRB Competitive                         |        |                           |
|        | Examinations (2 hours)                                                          |        |                           |
|        | General Studies for UPSC / TNPSC / Other Competitive                            |        |                           |
|        | Examinations (2 hours)[OR] Chemistry for Advanced Research<br>Studies (4 hours) |        |                           |
|        | Extension Activity                                                              | 1      | -                         |
|        | Total                                                                           | 23     | 30                        |

|        | Category       | Credits | Number  | NumberofCred  | TotalC | TotalCreditsf |
|--------|----------------|---------|---------|---------------|--------|---------------|
|        | ofCourses      | foreac  | ofCours | its in        | redits | or the        |
|        |                | h       | es      | eachCategoryo |        | Programme     |
|        |                | Course  |         | f             |        |               |
|        |                |         |         | Courses       |        |               |
|        | Core           | 5       | 10      | 58            |        |               |
| PART A | Due:           | 4       | 2       |               |        |               |
|        | Project with   | 7       | 1       | 7             |        |               |
|        | vivavoce       |         |         |               | -      |               |
|        | Industry       |         |         |               |        |               |
|        | alignedProgr   |         |         |               | 83     |               |
|        | ammes-         |         |         |               |        |               |
|        | Elective(Gene  |         |         |               |        |               |
|        | ricandDiscipli | 3       | 6       | 18            |        |               |
|        | ne             | -       |         |               |        |               |
|        | Centric)       |         |         |               |        |               |
| PARTB  | SkillEnhance   |         |         |               |        | 92(C          |
| (i)    | ment&          |         |         |               |        | GPA)          |
|        |                |         |         |               |        |               |
|        |                |         |         |               |        |               |
|        |                | 2       | 3       | 6             | 10     |               |
|        | Human rights   |         |         |               |        |               |
|        | and MOOC       | 2       | 1       |               |        |               |
|        | course         | 2<br>2  | 1       | 4             |        |               |
|        |                | 2       | 1       |               |        |               |
|        |                |         |         |               |        |               |
| PART B | Ability        | 2       | 4       | 8             |        |               |
| (ii)   | Enhancement    |         |         |               |        |               |
|        | (Softskill)    |         |         |               | 2      |               |
|        | SummerI        | 1       | 2       | 2             |        | 3(Non         |
| (iii)  | nternship      |         |         |               |        | CGPA)         |
|        |                |         |         |               |        |               |
| PART C | Extension      | 1       | 1       | 1             | 1      |               |
|        | Activity       |         |         |               |        |               |
|        |                |         |         |               |        | 95            |



# 7. TemplateforSemester

| Code    | Category    | TitleofthePaper                                                     | Marks<br>(Max100) |    | Duration<br>forUE | Credits |
|---------|-------------|---------------------------------------------------------------------|-------------------|----|-------------------|---------|
|         |             |                                                                     | CIA               | UE | -                 |         |
| Semeste | r–I         |                                                                     |                   |    |                   | •       |
| PartA   | CoreI       | Organic reaction<br>mechanism-I                                     | 25                | 75 | 3Hrs              | 5       |
|         | CoreII      | Structure and Bonding<br>in Inorganic<br>compounds                  | 25                | 75 | 3Hrs              | 5       |
|         | CoreIII     | Organic chemistry<br>Practical                                      | 25                | 75 | 6Hrs              | 4       |
|         | ElectiveI   | Elective-<br>I(Pharmaceutical<br>chemistry/<br>Electrochemistry)    | 25                | 75 | 3Hrs              | 3       |
|         | ElectiveII  | Elective-<br>IIMolecular<br>spectroscopy/<br>Nanomaterials<br>and   | 25                | 75 | 3Hrs              | 3       |
|         |             | nanotechnology                                                      | Total             |    |                   | 20      |
|         |             |                                                                     | Iotai             |    |                   | 20      |
| Semest  |             |                                                                     |                   | 1  | 1                 | 1       |
| PartA   | CoreIV      | Organic reaction<br>mechanism-II                                    | 25                | 75 | 3Hrs              | 5       |
|         | CoreV       | Physical Chemistry-I                                                | 25                | 75 | 3Hrs              | 5       |
|         | CoreVI      | Inorganic chemistry<br>Practical                                    | 25                | 75 | 6 Hrs             | 4       |
|         | ElectiveIII | Elective-III<br>(Medicinal<br>chemistry/Green<br>chemistry)         | 25                | 75 | 3Hrs              | 3       |
|         | ElectiveIV  | Elective-IV(Bio-<br>inorganic<br>chemistry/Materi<br>als chemistry) | 25                | 75 | 3Hrs              | 3       |
|         |             | • ·                                                                 |                   | 1  | 1                 | i       |

| PartB | SkillEnhance | (Choose one  | InternalAssessment |    |
|-------|--------------|--------------|--------------------|----|
|       | ment         | fromGroup-G) |                    | 2  |
|       | Course-SEC2  |              |                    |    |
|       | Human rights |              |                    | 2  |
|       | MOOC         |              |                    | 2  |
|       | course       |              |                    |    |
|       |              |              | Total              |    |
|       |              |              |                    | 26 |
|       |              |              |                    |    |

| Seme           | ster-III                                |                                                                                                                                                                        |                                                                         |                             |               |    |  |
|----------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|---------------|----|--|
| PartA          | Core VII                                | Organic synthesis and<br>Photochemistry                                                                                                                                | 25                                                                      | 75                          | 3Hrs          | 5  |  |
|                | Core VIII                               | Corodination chemistry-I                                                                                                                                               | 25                                                                      | 75                          | 3Hrs          | 5  |  |
|                | CoreIX                                  | PHYSICAL<br>CHEMISTRY<br>PRACTICAL                                                                                                                                     | 25                                                                      | 75                          | 6Hrs          | 5  |  |
|                | Core X                                  | ANALYTICAL<br>INSTRUMENTATION<br>TECHNIQUES Practical                                                                                                                  | 25                                                                      | 75                          | 6Hrs          | 4  |  |
|                | Elective/EDV                            | Elective-VI /ED-<br>V(Pharmacognosy and<br>Phytochemistry)                                                                                                             | 25                                                                      | 75                          | 3Hrs          | 3  |  |
| PartB          |                                         |                                                                                                                                                                        | •                                                                       | •                           |               |    |  |
|                | Skill<br>based(TermpaperandSeminar<br>) | Assignmentofproblem<br>bythefacultyLecture-I(bythe<br>II(bythestudent)<br>III(bythestudent)<br>Submissionofawrite-up ( 10<br>Marks/Grade Point/ LetterC<br>Regulation) | 25%<br>25%<br>25%<br>25%<br>-15pag<br>25%                               | Lectur<br>Lectur<br>gesusin | e-<br>gLaTeX) | 2  |  |
|                | Internship/Industrial- VacationActivity |                                                                                                                                                                        |                                                                         |                             |               |    |  |
|                | 1                                       | Total                                                                                                                                                                  |                                                                         |                             |               | 26 |  |
| Semest         | er-IV                                   |                                                                                                                                                                        |                                                                         |                             |               |    |  |
| PartA          | CoreXI                                  | Coordination chemistry-II                                                                                                                                              | 25                                                                      | 75                          | 3Hrs          | 5  |  |
|                | CoreXII                                 | Physical chemistry-II                                                                                                                                                  | 25                                                                      | 75                          | 3Hrs          | 5  |  |
|                | Core Project with viva voce             |                                                                                                                                                                        |                                                                         |                             |               | 7  |  |
|                | ElectiveVI                              | Elective-VI<br>(Chemistry of natural<br>products/ Polymer<br>chemistry)                                                                                                | 25                                                                      | 75                          | 3Hrs          | 3  |  |
|                |                                         | chemistry)                                                                                                                                                             | ProfessionalCompetency InternalAssessment<br>Skill<br>EnhancementCourse |                             |               |    |  |
| PartB          | SkillEnhancement<br>Course-SEC4         | ProfessionalCompetency<br>Skill                                                                                                                                        | Inter                                                                   | nalAsse                     | essment       | 2  |  |
| PartB<br>PartC |                                         | ProfessionalCompetency<br>Skill                                                                                                                                        |                                                                         | nalAsse                     |               | 1  |  |
|                | Course-SEC4<br>Extension                | ProfessionalCompetency<br>Skill<br>EnhancementCourse                                                                                                                   |                                                                         |                             | Total         |    |  |

#### **ElectiveCourses**

Coursesaregrouped(GroupAtoGroupF)soastoincludetopicsfromPureChemistry(P C),AppliedChemistry (AC) and IndustrialComponents(IC) like pharmaceutical industries, Polymer labscoursesforflexibilityofchoicebythe stakeholders/institutions.

#### SemesterI:ElectiveIandElectiveII

ElectiveI tobe chosenfromGroupAandElective II tobe chosenfromGroupB

#### GroupA:(PC/AC/IC)

- 1. Pharmaceutical Chemistry
- 2. Electrochemistry

#### GroupB:(PC/AC/IC)

- 1. Nanomaterials and Nanotechnology
- 2. Molecular Spectroscopy

#### SemesterII:ElectiveIII& ElectiveIV

#### Elective III to be chosen from Group C and Elective IV to be chosen

#### from Group DGroupC:(PC/AC/IC)

- 1. Medicinal Chemistry
- 2. Green Chemistry

#### GroupD:(PC/AC/IC)

- 1. Bioinorganic Chemistry
- 2. Material Science

#### SemesterIII:ElectiveV

Elective Vtobe chosenfromGroupE.

#### GroupE:(PC/AC/IC)

- 1. Pharmacognosy and Phytochemistry
- 2. Biomolecules and Heterocyclic compounds

#### SemesterIV:ElectiveVI

#### ElectiveVIto be chosen fromGroupF.

#### GroupF:(PC/AC/IC)

- 1. Chemistry of Natural products
- 2. Polymer Chemistry

#### **SkillEnhancementCourses**

Skill Enhancement Courses are chosen to keep in pace with the latest developments in the academic / industrial front and provides flexibility of choice by the stakeholders /institutions.

#### GroupG(SkillEnhancementCourses)SEC:( Practical based paper)

- Computational Chemistry
- ➢ 3D printing in Chemistry
- Preparation of Consumer products
- Chemistry in everyday life
- Cosmetic Chemistry
- > Origin lab
- Industrial Chemistry
- Research Tools and Techniques

#### **AbilityEnhancement Courses**

- Soft Skill courses
- ExtraDisciplinaryCoursesforotherDepartments(not forMathematicsstudents)

StudentsfromotherDepartmentsmayalsochooseanyoneofthefollowing

asExtraDisciplinaryCourse.

ED-I: Chemistry for

Life Sciences

ED-II:Chemical

conservation

ED-III:Chemistry in food

preservation

ED-IV:Chemistry for Social

studies

ED-V:Chemistry in consumer products

| Courses            | Lecture | Tutorial | LabPractice | Total |
|--------------------|---------|----------|-------------|-------|
|                    | Hrs     | hrs      |             | hrs   |
| Core               | 75      | 15       |             | 90    |
| Electives          | 75      | 15       |             | 90    |
| ED                 | 75      | 15       |             | 90    |
| LabPracticeCourses | -       | 15       | 75          | 90    |
| Project            | 20      |          | 70          | 90    |

#### 8. InstructionsforCourseTransaction

9. Testing Pattern (25+75)

#### **13.1Internal Assessment**

**Theory Course:** For theory courses there shall be three tests conducted by the faculty concerned and the average of the best two can be taken as the Continuous Internal Assessment (CIA) for amaximumof25marks.The durationofeachtestshallbe one/oneandahalfhour.

**Computer Laboratory Courses:** For Computer Laboratory Oriented Courses, there shall be twotests in Theory part and two tests in Laboratory part. Choose one best from Theory part and otherbest from the two Laboratory part. The average of the best two can be treated as the CIA for amaximumof25marks.The durationofeachtestshallbe one/oneanda halfhour.

There isnoimprovement for CIA of both theory and laboratory,and,also for University EndSemester Examination.

#### 14. DifferentTypesofCourses

#### (i) CoreCourses(Illustrative)

- 1. Organic Reaction mechanism I & II
- 2. Structure and bonding in Inorganic compounds
- 3. Organic Chemistry Practical
- 4. Physical Chemistry-I & II
- 5. Inorganic Chemistry Practical
- 6. Organic synthesis and Photochemistry
- 7. Coordination Chemistry-I & II
- 8. Physical Chemistry Practical
- 9. Analytical Instrumentation technique practical

#### (ii) ElectiveCourses(EDwithintheDepartmentExperts)(Illustrative)

- 1. Pharmaceutical Chemistry
- 2. Nanomaterials and Nanotechnology
- 3. Electrochemistry
- 4. Molecular Spectroscopy
- 5. Medicinal Chemistry
- 6. Green Chemistry
- 7. Pharmacognosy and Phytochemistry
- 8. Biomolecules and Heterocyclic compounds
- 9. Bio inorganic Chemistry
- 10. Material Science
- 11. Chemistry of Natural products
- 12. Polymer chemistry

#### (iii)ElectiveCourses(EDfromotherDepartmentExperts)

#### (iv) SkillDevelopmentCourses

(v) Institution-Industry-Interaction(IndustryalignedCourses)

Programmes /course work/fieldstudy/Modelling the Industry

Problem/StatisticalAnalysis/Commerce-Industryrelatedproblems/MoU

withIndustryandthelike activities.

# TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM FRAMEWORK FOR UNDERGRADUATE EDUCATION Programme M.Sc. Programme Code

| Programme Code              |                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Duration                    | 2 years for PG                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| Programme                   | PO1: Problem Solving Skill                                                                                                                                                                                                   |  |  |  |  |  |  |  |
| Outcomes (Pos)              | Apply knowledge of Management theories and Human Resource<br>practices to solve business problems through research in Global<br>context.                                                                                     |  |  |  |  |  |  |  |
|                             | PO2: Decision Making Skill                                                                                                                                                                                                   |  |  |  |  |  |  |  |
|                             | Foster analytical and critical thinking abilities for data-based decision-making.                                                                                                                                            |  |  |  |  |  |  |  |
|                             | <b>PO3: Ethical Value</b><br>Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.                                                                                    |  |  |  |  |  |  |  |
|                             | <b>PO4: Communication Skill</b><br>Ability to develop communication, managerial and interpersonal skills.                                                                                                                    |  |  |  |  |  |  |  |
|                             | <b>PO5: Individual and Team Leadership Skill</b><br>Capability to lead themselves and the team to achieve organizational goals.                                                                                              |  |  |  |  |  |  |  |
|                             | <b>PO6: Employability Skill</b><br>Inculcate contemporary business practices to enhance employability skills in the competitive environment.                                                                                 |  |  |  |  |  |  |  |
|                             | <b>PO7: Entrepreneurial Skill</b><br>Equip with skills and competencies to become an entrepreneur.                                                                                                                           |  |  |  |  |  |  |  |
|                             | <b>PO8: Contribution to Society</b><br>Succeed in career endeavors and contribute significantly to society.                                                                                                                  |  |  |  |  |  |  |  |
|                             | <b>PO 9 Multicultural competence</b><br>Possess knowledge of the values and beliefs of multiple cultures and<br>a global perspective.                                                                                        |  |  |  |  |  |  |  |
|                             | <b>PO 10: Moral and ethical awareness/reasoning</b><br>Ability to embrace moral/ethical values in conducting one's life.                                                                                                     |  |  |  |  |  |  |  |
| Programme                   | PSO1 – Placement                                                                                                                                                                                                             |  |  |  |  |  |  |  |
| Specific Outcomes<br>(PSOs) | To prepare the students who will demonstrate respectful engagement<br>with others' ideas, behaviors, beliefs and apply diverse frames of<br>reference to decisions and actions.                                              |  |  |  |  |  |  |  |
|                             | <b>PSO 2 - Entrepreneur</b><br>To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations. |  |  |  |  |  |  |  |

| [ |                                                                                                                                                                                                               |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | <b>PSO3 – Research and Development</b><br>Design and implement HR systems and practices grounded in<br>research that comply with employment laws, leading the organization<br>towards growth and development. |
|   | <b>PSO4 – Contribution to Business World</b><br>To produce employable, ethical and innovative professionals to<br>sustain in the dynamic business world.                                                      |
|   | <b>PSO 5 – Contribution to the Society</b><br>To contribute to the development of the society by collaborating with<br>stakeholders for mutual benefit.                                                       |

# 15. Syllabusfordifferent CoursesofM.Sc. Chemistry

| Title of the  | ORGANIC                                                                                               | C REACTION      | ME    | CHANISM       | - I        |                                         |              |  |  |  |
|---------------|-------------------------------------------------------------------------------------------------------|-----------------|-------|---------------|------------|-----------------------------------------|--------------|--|--|--|
| Course        |                                                                                                       |                 |       |               |            |                                         |              |  |  |  |
| Paper No.     | Core I                                                                                                |                 |       |               |            |                                         |              |  |  |  |
| Category      | Core                                                                                                  | Year            | Ι     | Credits       | 4          | Course                                  |              |  |  |  |
|               |                                                                                                       | Semester        | Ι     |               |            | Code                                    |              |  |  |  |
| Instructional | Lecture                                                                                               | Tutorial        | La    | o Practice    |            | Total                                   |              |  |  |  |
| hours per     | 4                                                                                                     | 1               | - 5   |               |            |                                         |              |  |  |  |
| week          |                                                                                                       | 1               |       |               |            |                                         |              |  |  |  |
| Prerequisites | Basic conce                                                                                           | epts of organic | chem  | nistrv        |            |                                         |              |  |  |  |
| Objectives of | Basic concepts of organic chemistryTo understand the feasibility and the mechanism of various organic |                 |       |               |            |                                         |              |  |  |  |
| the course    | To understand the feasibility and the mechanism of various organic<br>reactions.                      |                 |       |               |            |                                         |              |  |  |  |
| the course    |                                                                                                       | ehend the tea   | hnia  | ues in the    | dete       | ermination of                           | reaction     |  |  |  |
|               | mechanism                                                                                             |                 | Jung  | ues in the    | uen        | or of                                   | reaction     |  |  |  |
|               |                                                                                                       |                 | ent d | of stereoche  | mistr      | y involved in                           | organic      |  |  |  |
|               | compounds                                                                                             |                 | opt   |               | , iiii Sti | j mvorved m                             | organie      |  |  |  |
|               | -                                                                                                     |                 | e the | differences   | invol      | ved in the vario                        | ous types    |  |  |  |
|               |                                                                                                       | reaction mecha  |       |               | 111 01     | ved in the varia                        | ous types    |  |  |  |
|               | 0                                                                                                     |                 |       |               | r the      | preparation                             | of organic   |  |  |  |
|               | To design feasible synthetic routes for the preparation of organic compounds.                         |                 |       |               |            |                                         |              |  |  |  |
| Course        | 1                                                                                                     |                 | ermi  | nation of R   | leacti     | on Mechanism                            | : Reaction   |  |  |  |
| Outline       |                                                                                                       |                 |       |               |            | on coordinate                           |              |  |  |  |
| outine        |                                                                                                       |                 |       |               |            | of reactions:                           | -            |  |  |  |
|               |                                                                                                       |                 |       |               |            | n: non-kinetic                          |              |  |  |  |
|               | 1 -                                                                                                   |                 |       | •             |            | s-isolation, det                        |              |  |  |  |
|               | 1 -                                                                                                   |                 |       |               |            | elling, isotope                         |              |  |  |  |
|               |                                                                                                       | -               |       | -             |            | - relation of                           |              |  |  |  |
|               |                                                                                                       |                 |       |               |            | mmett and Taf                           |              |  |  |  |
|               |                                                                                                       |                 |       |               | -          | or, substituent a                       | -            |  |  |  |
|               | constants.                                                                                            | energy relation | nomp  | , parmar race | 10000      | , , , , , , , , , , , , , , , , , , , , |              |  |  |  |
|               |                                                                                                       | romatic and A   | linh  | atic Electro  | nhilia     | substitution:                           |              |  |  |  |
|               |                                                                                                       |                 |       |               |            | n-benzenoid,                            |              |  |  |  |
|               |                                                                                                       |                 |       |               |            | ic substitution:                        | -            |  |  |  |
|               | -                                                                                                     |                 |       |               | -          | ohenol, nitrob                          |              |  |  |  |
|               |                                                                                                       | •               |       |               |            | electrophiles                           |              |  |  |  |
|               |                                                                                                       |                 |       | •             | 0          | electrophiles: si                       |              |  |  |  |
|               |                                                                                                       |                 |       |               |            | tion; Carbon ele                        |              |  |  |  |
|               |                                                                                                       |                 |       |               |            | ation reactions                         |              |  |  |  |
|               |                                                                                                       |                 |       |               |            | SEi, SE1- Med                           |              |  |  |  |
|               | evidences.                                                                                            |                 |       |               |            |                                         | und          |  |  |  |
|               |                                                                                                       | Aromatic and    | Alin  | hatic Nucle   | onhili     | ic Substitution                         | : Aromatic   |  |  |  |
|               |                                                                                                       |                 |       |               |            | Ar, SN1 and                             |              |  |  |  |
|               | -                                                                                                     |                 |       |               |            | f structure, lea                        | -            |  |  |  |
|               |                                                                                                       |                 |       |               |            | and Sulphur-nu                          |              |  |  |  |
|               | and attack                                                                                            | ng nucleopilite | . KC  |               | ygen       | and Surphur-III                         | ucicopinies, |  |  |  |

|                              | Duchanan and Decommund manations, your Dichter Communist Housen and                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | Bucherer and Rosenmund reactions, von Richter, Sommelet- Hauser and                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | Smiles rearrangements. SN1, ion pair, SN2 mechanisms and evidences.<br>Aliphatic nucleophilic substitutions at an allylic carbon, aliphatic trigonal<br>carbon and vinyl carbon.SN1, SN2, SNi, and SE1 mechanism and<br>evidences.                                                                                                                                                                                                                                                               |
|                              | UNIT-IV:Stereochemistry-I: Introduction to molecular symmetry and                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | chirality – axis, plane, centre, alternating axis of symmetry. Optical isomerism due to asymmetric and dissymmetric molecules with C, N, S based chiral centres. Optical purity, prochirality, enantiotopic and diastereotopic atoms, groups, faces, axial and planar chirality, chirality due                                                                                                                                                                                                   |
|                              | to helical shape, methods of determining the configuration. Racemic                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | modifications: Racemization by thermal, anion, cation, reversible<br>formation, epimerization, mutarotation. D, L system, Cram's and Prelog's<br>rules: R, S notations, proR, proS, side phase and re phase Cahn-Ingold-<br>Prelog rules, absolute and relative configurations. Configurations of<br>allenes, spiranes, biphenyls, cyclooctene, helicene, binaphthyls, exo-cyclic<br>alkylidene-cycloalkanes. Asymmetric synthesis, destruction.<br>Stereoselective and stereospecific synthesis |
|                              | UNIT-V:Stereochemistry-II: Conformation and reactivity of acyclic                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | systems, intramolecular rearrangements, neighbouring group participation, chemical consequence of conformational equilibrium. Stability of five and                                                                                                                                                                                                                                                                                                                                              |
|                              | six-membered rings: mono-, di- and polysubstituted cyclohexanes,                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | conformation and reactivity in cyclohexane systems. Fused and bridged                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                              | rings: bicyclic, poly cyclic systems, decalins and Brett's rule. Optical rotation and optical rotatory dispersion, conformational asymmetry, ORD                                                                                                                                                                                                                                                                                                                                                 |
|                              | curves, octant rule, configuration and conformation.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Extended                     | Questions related to the above topics, from various competitive                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Professional                 | examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Component (is                | be solved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| a part of<br>internal        | (To be discussed during the Tutorial hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| component<br>only, Not to be |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| included in the              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| external                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| examination                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| question paper)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Skills acquired from this    | Knowledge, Problem solving, Analytical ability, Professional Competency,<br>Professional Communication and Transferable skills.                                                                                                                                                                                                                                                                                                                                                                  |
| course                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Recommended                  | 1. J. March and M. Smith, Advanced Organic Chemistry, 5 <sup>th</sup> edition,                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Text                         | John-Wiley and Sons.2001.                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                              | 2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt,                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | <ul> <li>Rinehart and Winston Inc., 1959.</li> <li>P.S.Kalsi, Stereochemistry of carbon compounds, 8<sup>th</sup> edition, New</li> </ul>                                                                                                                                                                                                                                                                                                                                                        |
|                              | Age International Publishers, 2015.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | 4. P. Y. Bruice, Organic Chemistry, 7 <sup>th</sup> edn, Prentice Hall, 2013.                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              | 5. J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2 <sup>nd</sup> edition,                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | Oxford University Press, 2014.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Reference   | 1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A           |  |  |  |  |  |  |  |  |  |
|-------------|------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Books       | and B, 5 <sup>th</sup> edition, Kluwer Academic / Plenum Publishers, 2007.   |  |  |  |  |  |  |  |  |  |
|             | 2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.       |  |  |  |  |  |  |  |  |  |
|             | 3. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.         |  |  |  |  |  |  |  |  |  |
|             | 4. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw             |  |  |  |  |  |  |  |  |  |
|             | Hill, 2000.                                                                  |  |  |  |  |  |  |  |  |  |
|             | 5. I. L. Finar, Organic chemistry, Vol-1&2, 6 <sup>th</sup> edition, Pearson |  |  |  |  |  |  |  |  |  |
|             | Education Asia, 2004.                                                        |  |  |  |  |  |  |  |  |  |
| Website and | 1.https://sites.google.com/site/chemistryebookscollection02/home/organic-    |  |  |  |  |  |  |  |  |  |
| e-learning  | chemistry/organic                                                            |  |  |  |  |  |  |  |  |  |
| source      | 2. <u>https://www.organic-chemistry.org/</u>                                 |  |  |  |  |  |  |  |  |  |

#### **Course Learning Outcomes (for Mapping with POs and PSOs)**

Students will be able

**CLO1**: To recall the basic principles of organic chemistry.

**CLO2**: To understand the formation and detection of reaction intermediates of organicreactions.

CLO3: To predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.

CLO4: To apply the principles of kinetic and non-kinetic methods to determine the mechanism of reactions.

**CLO5**:To design and synthesize new organic compounds by correlating the stereochemistryof organic compounds.

|        | PO1 | PO2 | PO3      | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10  |
|--------|-----|-----|----------|-----|-----|-----|------------|-----|-----|-------|
| CO 1   | S   | S   | S        | S   | М   | S   | S          | S   | S   | М     |
| CO 2   | М   | S   | S        | S   | S   | M   | S          | S   | S   | S     |
| CO 3   | S   | S   | M        | S   | S   | S   | S          | М   | S   | S     |
| CO 4   | М   | S   | S        | S   | S   | М   | S          | S   | S   | S     |
| CO 5   | М   | S   | M        | S   | S   | М   | S          | М   | S   | S     |
| Strong | - 3 | 1   | Medium-2 |     |     |     |            |     |     | Low-1 |

#### **CO-PO Mapping (Course Articulation Matrix)**

| 27 |
|----|
|----|

| CO /PO                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| C01                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| CO5                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

#### Level of Correlation between PSO's and CO's

#### 3 – Strong, 2 – Medium, 1 - Low

|                        | Methods of Evaluation                                                          |                                                              |  |  |  |  |  |  |  |
|------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|--|--|--|
|                        | Continuous Internal Assessment Test                                            |                                                              |  |  |  |  |  |  |  |
| Internal               | Assignments                                                                    | 25 Marks                                                     |  |  |  |  |  |  |  |
| Evaluation             | Seminars                                                                       |                                                              |  |  |  |  |  |  |  |
|                        | Attendance and Class Participation                                             |                                                              |  |  |  |  |  |  |  |
| External<br>Evaluation | End Semester Examination                                                       | 75 Marks                                                     |  |  |  |  |  |  |  |
|                        | Total                                                                          | 100 Marks                                                    |  |  |  |  |  |  |  |
|                        | Methods of Assessment                                                          |                                                              |  |  |  |  |  |  |  |
| Recall (K1)            | Simple definitions, MCQ, Recall steps, Concept definitions.                    |                                                              |  |  |  |  |  |  |  |
| Understand/            | MCO True/False Short essays Concept e                                          | MCO. True/False Short account overlandtions, short survey or |  |  |  |  |  |  |  |
| Comprehend             | MCQ, True/False, Short essays, Concept explanations, short summary or overview |                                                              |  |  |  |  |  |  |  |
| (K2)                   |                                                                                | overview.                                                    |  |  |  |  |  |  |  |
| Application            | Suggest idea/concept with examples, sugg                                       | gest formulae, solve problems,                               |  |  |  |  |  |  |  |
| (K3)                   | Observe, Explain.                                                              |                                                              |  |  |  |  |  |  |  |
| Analyze (K4)           | Problem-solving questions, finish a Differentiate between various ideas Man    |                                                              |  |  |  |  |  |  |  |
| Evaluate               | Differentiate between various ideas, wiap                                      | Differentiate between various ideas, Map knowledge.          |  |  |  |  |  |  |  |
| (K5)                   | Longer essay/ Evaluation essay, Critique of                                    | or justify with pros and cons.                               |  |  |  |  |  |  |  |
| Create (K6)            | Check knowledge in specific or offbeat si or Presentations.                    | tuations, Discussion, Debating                               |  |  |  |  |  |  |  |

In order to avoid pull the score down of each PO, it is suggested that the usage L-Low (1) to the minimum.

The S, M, L is based on the course outcome. The mapping is based on the revised Bloom's Taxonomy Verbs used to describe your course outcome.

- Remember and Understanding Lower level
- Apply and Analyze Medium Level
- Evaluate and Create Strong Level

| Title of the             | STRUCT     | <b>URE AND</b> | BO                                                   | NDING IN     | N IN   | ORGANIC CO                      | MPOUNDS                           |  |  |  |
|--------------------------|------------|----------------|------------------------------------------------------|--------------|--------|---------------------------------|-----------------------------------|--|--|--|
| Course                   |            |                |                                                      |              |        |                                 |                                   |  |  |  |
| Paper No.                | Core II    |                |                                                      |              |        |                                 |                                   |  |  |  |
| Category                 | Core       | Year           | Ι                                                    | Credits      | 4      | Course                          |                                   |  |  |  |
|                          |            | Semester       | Ι                                                    |              |        | Code                            |                                   |  |  |  |
| Instructional            | Lecture    | Tutorial       | Lal                                                  | o Practice   |        | Total                           |                                   |  |  |  |
| hours per week           | 4          | 1              | -                                                    |              |        | 5                               |                                   |  |  |  |
| Prerequisites            |            |                | f Inorganic Chemistry                                |              |        |                                 |                                   |  |  |  |
| <b>Objectives of the</b> | To determ  | nine the str   | ne structural properties of main group compounds and |              |        |                                 |                                   |  |  |  |
| course                   | clusters.  |                |                                                      |              |        |                                 |                                   |  |  |  |
|                          | To gain    | fundamenta     | nental knowledge on the structural aspects of ionic  |              |        |                                 |                                   |  |  |  |
|                          | crystals.  |                |                                                      |              |        |                                 |                                   |  |  |  |
|                          | To familia | arize various  | s diff                                               | raction and  | d mic  | roscopic techni                 | ques.                             |  |  |  |
|                          | To study   | the effect of  | poin                                                 | t defects a  | nd li  | ne defects in ior               | nic crystals.                     |  |  |  |
|                          | To evalua  | te the struct  | ural                                                 | aspects of   | solid  | s.                              |                                   |  |  |  |
| Course Outline           | UNIT-I:S   | Structure of   | mair                                                 | n group co   | mpou   | unds and cluster                | rs: VB theory –                   |  |  |  |
|                          | Effect of  | lone pair a    | nd el                                                | ectronega    | tivity | of atoms (Ben                   | t's rule) on the                  |  |  |  |
|                          | geometry   | of the mo      | olecu                                                | les; Struc   | ture   | of silicates -                  | applications of                   |  |  |  |
|                          | Pauling's  | rule of elec   | trova                                                | alence - iso | omor   | phous replacem                  | ents in silicates                 |  |  |  |
|                          | – ortho,   | meta and p     | vro s                                                | silicates –  | one    | dimensional, tv                 | vo dimensional                    |  |  |  |
|                          |            |                |                                                      |              |        |                                 | Structural and                    |  |  |  |
|                          |            |                |                                                      |              |        |                                 | y acids – types,                  |  |  |  |
|                          | -          |                |                                                      |              |        |                                 | atures of closo,                  |  |  |  |
|                          | -          |                |                                                      |              |        |                                 | Wade's rule to                    |  |  |  |
|                          | -          | -              |                                                      | -            |        | ain group cluste                |                                   |  |  |  |
|                          | 1          |                |                                                      |              | -      | 0 1                             |                                   |  |  |  |
|                          |            |                |                                                      |              |        |                                 | cking of ions in crystal lattice, |  |  |  |
|                          | -          | -              |                                                      |              | -      | -                               | netry operations                  |  |  |  |
|                          |            | •              | -                                                    |              |        | •                               | nd space group;                   |  |  |  |
|                          |            |                |                                                      |              |        |                                 | de equation -                     |  |  |  |
|                          |            | ski equation   |                                                      |              |        |                                 | 1                                 |  |  |  |
|                          | UNIT-II    | Solid state    | e che                                                | emistry –    | II: S  | tructural feature               | es of the crystal                 |  |  |  |
|                          | systems:   | Rock salt,     | zinc                                                 | blende &     | wurt   | zite, fluorite an               | nd anti-fluorite,                 |  |  |  |
|                          |            |                |                                                      |              |        |                                 | Spinels -normal                   |  |  |  |
|                          |            | • •            | -                                                    |              |        | •                               | rowth methods:                    |  |  |  |
|                          |            | lt and solut   | tion                                                 | (hydrother   | mal,   | sol-gel method                  | ls) – principles                  |  |  |  |
|                          | and        |                |                                                      |              |        |                                 |                                   |  |  |  |
|                          | examples   |                | •                                                    |              | 4      | 1 1 37                          | 1:00                              |  |  |  |
|                          |            | -              |                                                      |              |        | chemistry: X-1                  | -                                 |  |  |  |
|                          | -          |                |                                                      |              |        | ction method –<br>D data, Phase | -                                 |  |  |  |
|                          |            |                | -                                                    |              |        | nce of reflect                  | - ·                               |  |  |  |
|                          |            |                | -                                                    |              |        | rumentation an                  |                                   |  |  |  |
|                          |            | -              |                                                      |              |        | tween optical                   |                                   |  |  |  |
|                          |            |                |                                                      |              |        | tation, sampling                |                                   |  |  |  |
|                          |            | <i>,</i> ,,,,  |                                                      | , <b></b>    |        | , 201119111                     |                                   |  |  |  |

|                          | applications of SEM and TEM.                                                                                                               |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|                          | UNIT-V:Band theory and defects in solids                                                                                                   |
|                          | Band theory – features and its application of conductors, insulators and                                                                   |
|                          | semiconductors, Intrinsic and extrinsic semiconductors; Defects in                                                                         |
|                          | crystals – point defects (Schottky, Frenkel, metal excess and metal                                                                        |
|                          | deficient) and their effect on the electrical and optical property, laser                                                                  |
|                          | and phosphors; Linear defects and its effects due to dislocations.                                                                         |
| Extended<br>Professional | Questions related to the above topics, from various competitive<br>examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others            |
| Component (is a          | to be solved                                                                                                                               |
| part of internal         | (To be discussed during the Tutorial hours)                                                                                                |
| component only,          |                                                                                                                                            |
| Not to be included       |                                                                                                                                            |
| in the external          |                                                                                                                                            |
| examination              |                                                                                                                                            |
| question paper)          |                                                                                                                                            |
| Skills acquired          | Knowledge, Problem solving, Analytical ability, Professional                                                                               |
| from this course         | Competency, Professional Communication and Transferable skills.                                                                            |
| Recommended              | 1. A R West, Solid state Chemistry and its applications, 2ndEdition                                                                        |
| Text                     | (Students Edition), John Wiley & Sons Ltd., 2014.                                                                                          |
|                          | 2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,                                                                            |
|                          | <ul> <li>Himalaya Publishing House, 2001.</li> <li>3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4<sup>th</sup></li> </ul> |
|                          | Edition, CRC Press, 2012.                                                                                                                  |
|                          | 4. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders                                                                        |
|                          | company: Philadelphia, 1977.                                                                                                               |
|                          | 5. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry;                                                                       |
| Reference Books          | 4th ed.; Harper and Row: NewYork, 1983.                                                                                                    |
| Reference Books          | 1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and<br>Models in Inorganic Chemistry, 3rd Ed, 1994.                          |
|                          | 2. R J D Tilley, Understanding Solids - The Science of Materials, 2 <sup>nd</sup>                                                          |
|                          | edition, Wiley Publication, 2013.                                                                                                          |
|                          | 3. C N R Rao and J Gopalakrishnan, New Directions in Solid State                                                                           |
|                          | Chemistry, 2 <sup>nd</sup> Edition, Cambridge University Press, 199.                                                                       |
|                          | 4. T. Moeller, Inorganic Chemistry, A Modern Introduction; John Wiley: New York, 1982.                                                     |
|                          | 5. D. F. Shriver, P. W. Atkins and C.H. Langford; Inorganic                                                                                |
|                          | Chemistry; 3rd ed.; Oxford University Press: London, 2001.                                                                                 |
| Website and              | https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-                                                                   |
| e-learning source        | fall-2018/video_galleries/lecture-videos/                                                                                                  |

#### **Course Learning Outcomes (for Mapping with POs and PSOs)**

Students will be able

**CO1**: Predict the geometry of main group compounds and clusters.

**CO2**: Explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.

**CO3**: Understand the various types of ionic crystal systems and analyze their structural features.

**CO4**: Explain the crystal growth methods.

CO5: To understand the principles of diffraction techniques and microscopic techniques.

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1        | S   | S   | S   | S   | M   | S   | S          | S   | S   | М    |
| CO 2        | M   | S   | S   | S   | S   | М   | S          | S   | S   | S    |
| CO 3        | S   | S   | М   | S   | S   | S   | S          | M   | S   | S    |
| <b>CO 4</b> | M   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 5        | М   | S   | М   | S   | S   | М   | S          | Μ   | S   | S    |

**CO-PO Mapping (Course Articulation Matrix)** 

3 – Strong, 2 – Medium, 1 - Low

#### Level of Correlation between PSO's and CO's

| CO /PO                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| CO1                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| C05                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

3 – Strong, 2 – Medium, 1 - Low

| Title of the             | ODCAN                                                                               | IC CHEMI       | стр    |              |         | T                 |                   |
|--------------------------|-------------------------------------------------------------------------------------|----------------|--------|--------------|---------|-------------------|-------------------|
| Course                   | UNGAN                                                                               |                | SIN    | IINAC        | IICA    |                   |                   |
| Paper No.                | Core III                                                                            |                |        |              |         |                   |                   |
| Category                 | Core                                                                                | Year           | Ι      | Credits      | 4       | Course            |                   |
| Category                 | Core                                                                                | Semester       | I      | Creans       | 4       | Code              |                   |
| In stars of an al        | Lastura                                                                             |                | -      | Duastias     |         |                   |                   |
| Instructional            | Lecture                                                                             | Tutorial       |        | ) Practice   |         | Total             |                   |
| hours per week           | -<br>D '                                                                            |                | 5.     | 1            |         | 6                 |                   |
| Prerequisites            |                                                                                     | cepts of or    |        |              |         | • • • • •         | 1 • 1             |
| <b>Objectives of the</b> |                                                                                     |                |        |              | parat   | ion, qualitativ   | ve analysis and   |
| course                   |                                                                                     | on of organi   |        | -            |         |                   |                   |
|                          | To develo                                                                           | op analytica   | ıl sk  | ill in the   | hand    | ling of chemi     | ical reagents for |
|                          | separation                                                                          | n of binary a  | nd te  | ernaryorga   | nic n   | nixtures.         |                   |
|                          | To analy                                                                            | ze the ser     | oarate | ed organi    | c co    | mponents sys      | stematically and  |
|                          | -                                                                                   | them suital    |        | U            |         | 1 ,               | 5                 |
|                          |                                                                                     |                | •      | erimental    | setu    | p for the orga    | anic preparations |
|                          |                                                                                     | two stages.    | -      |              | -       | U U               | 1 1               |
|                          | -                                                                                   | -              |        | purification | on ai   | nd drying tec     | chniques for the  |
|                          | -                                                                                   | d processing   |        | 1            |         |                   | 1                 |
| Course Outline           | UNIT-I:S                                                                            | Separation     | and    | analysis:    |         |                   |                   |
|                          | UNIT-I:Separation and analysis:<br>Two component mixtures. Ternary component (Demo) |                |        |              |         |                   |                   |
| ,                        | UNIT-II:                                                                            | Estimations    | :      |              | _       |                   |                   |
|                          |                                                                                     |                |        |              |         |                   |                   |
|                          | a) a                                                                                | a) Estimation  | of Pl  | nenol (bron  | ninatio | on)               |                   |
|                          | /                                                                                   | ) Estimation   |        |              |         | ,                 |                   |
|                          |                                                                                     | ) Estimation   | of Et  | hyl methyl   | ketor   | ne (iodimetry)    |                   |
|                          |                                                                                     | l) Estimation  |        |              |         |                   |                   |
|                          |                                                                                     | e) Estimation  |        |              |         | imetry)           |                   |
|                          |                                                                                     | I: Two stag    |        |              |         |                   |                   |
|                          | · · ·                                                                               | Bromoaceta     |        |              |         |                   |                   |
|                          | · · ·                                                                               | Nitroaniline   |        |              |         |                   |                   |
|                          | · · · · ·                                                                           | 3,5-Tribrom    |        |              |         |                   |                   |
|                          |                                                                                     | cetyl salicyc  |        |              | nethy   | l salicylate      |                   |
|                          | /                                                                                   | enzilic acid f |        |              |         |                   |                   |
|                          | /                                                                                   | Nitroaniline   |        |              |         | 1 /               |                   |
|                          | g) m·                                                                               | Nitrobenzo     | ic ac  | id from m    | ethyl   | benzoate          |                   |
| Extended                 | Questions                                                                           | s related to t | he al  | ove topics   | s, fro  | m various com     | petitive          |
| Professional             | examinati                                                                           | ions UPSC /    | TRE    | 3 / NET/ U   | JGC-    | CSIR / GATE       | /TNPSC others     |
| Component (is a          | to be solv                                                                          | red            |        |              |         |                   |                   |
| part of internal         | (To be dis                                                                          | scussed duri   | ng th  | e Tutorial   | hour    | ·s)               |                   |
| component only,          |                                                                                     |                |        |              |         |                   |                   |
| Not to be included       |                                                                                     |                |        |              |         |                   |                   |
| in the external          |                                                                                     |                |        |              |         |                   |                   |
| examination              |                                                                                     |                |        |              |         |                   |                   |
| question paper)          |                                                                                     |                |        |              |         |                   |                   |
| Skills acquired          |                                                                                     | -              |        |              |         | ability, Profes   |                   |
| from this course         |                                                                                     |                |        |              |         | on and Transfe    |                   |
| Recommended              | 1. A R                                                                              | West, Solid    | state  | Chemistr     | y and   | l its application | ns, 2ndEdition    |

| Text                   | (Students Edition), John Wiley & Sons Ltd., 2014.                                 |
|------------------------|-----------------------------------------------------------------------------------|
|                        | 2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,                   |
|                        | Himalaya Publishing House, 2001.                                                  |
|                        | 3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 <sup>th</sup>     |
|                        | Edition, CRC Press, 2012.                                                         |
| <b>Reference Books</b> | 1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and                 |
|                        | Models in Inorganic Chemistry, 3rd Ed, 1994.                                      |
|                        | 2. R J D Tilley, Understanding Solids - The Science of Materials, 2 <sup>nd</sup> |
|                        | edition, Wiley Publication, 2013.                                                 |
|                        | 3. C N R Rao and J Gopalakrishnan, New Directions in Solid State                  |
|                        | Chemistry, 2 <sup>nd</sup> Edition, Cambridge University Press, 199.              |
| Website and            | https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-                    |
| e-learning source      | chemistry-fall-2018/video_galleries/lecture-videos/                               |
| Course Learning (      | hyteomog (for Monning with DOg and DSOg)                                          |

**Course Learning Outcomes (for Mapping with POs and PSOs)** Students will be able:

CO1: To recall the basic principles of organic separation, qualitative analysis and preparation.

**CO2**: To explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.

**CO3**: To determine the characteristics of separation of organic compounds by variouschemical reactions.

CO4: To develop strategies to separate, analyze and prepare organic compounds.

**CO5**:To formulate a method of separation, analysis of organic mixtures and design suitableprocedure for organic preparations.

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1        | S   | S   | S   | S   | M   | S   | S          | S   | S   | М    |
| CO 2        | М   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 3        | S   | S   | M   | S   | S   | S   | S          | М   | S   | S    |
| <b>CO 4</b> | М   | S   | S   | S   | S   | М   | S          | S   | S   | S    |
| CO 5        | М   | S   | М   | S   | S   | М   | S          | M   | S   | S    |

#### **CO-PO Mapping (Course Articulation Matrix)**

3 – Strong, 2 – Medium, 1 - Low

| Level of Correlation between PSO's and | l CO's |
|----------------------------------------|--------|
|----------------------------------------|--------|

| СО /РО | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|--------|------|------|------|------|------|
| CO1    | 3    | 3    | 3    | 3    | 3    |
| CO2    | 3    | 3    | 3    | 3    | 3    |
| CO3    | 3    | 3    | 3    | 3    | 3    |
| CO4    | 3    | 3    | 3    | 3    | 3    |

| C05                                                  | 3   | 3   | 3   | 3   | 3   |
|------------------------------------------------------|-----|-----|-----|-----|-----|
| Weightage                                            | 15  | 15  | 15  | 15  | 15  |
| Weighted percentage of Course<br>Contribution to Pos | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |

3 – Strong, 2 – Medium, 1 - Low

| Title of the             | PHARM       | ACEUTIC       | AL C     | THEMIST         | RY       |                          |                   |
|--------------------------|-------------|---------------|----------|-----------------|----------|--------------------------|-------------------|
| Course                   |             |               |          |                 |          |                          |                   |
| Paper No.                | Elective 1  | [             |          |                 |          |                          |                   |
| Category                 | Elective    | Year          | Ι        | Credits         | 4        | Course                   |                   |
|                          |             | Semester      | Ι        |                 |          | Code                     |                   |
| Instructional            | Lecture     | Tutorial      | Lal      | <b>Practice</b> | 1        | Total                    |                   |
| hours per week           | 4           | 1             | -        |                 |          | 5                        |                   |
| Prerequisites            | Basic kno   | owledge on    | drug     | gs and dos      | ses      | 1                        |                   |
| <b>Objectives of the</b> |             |               |          |                 |          | oharmaceutical           | chemistry.        |
| course                   | To recall   | the principle | e and    | biologica       | l fun    | ctions of various        | s drugs.          |
|                          |             |               |          | -               |          |                          | e consequences    |
|                          | of various  |               |          |                 | 1        |                          | 1                 |
|                          |             | •             | n the    | various a       | nalys    | sis and technique        | es.               |
|                          |             | -             |          |                 | -        | structural activity      |                   |
| Course Outline           |             |               | <u> </u> | <u> </u>        |          |                          | al properties of  |
|                          | drug mo     | lecule: phy   | sical    | l properti      | es. ]    | Refractive inde          | ex- Definition,   |
|                          | explanation | on, formula   | ı, in    | portance,       | dete     | ermination, spe          | ecific & molar    |
|                          |             |               |          |                 |          |                          | ion- Dielectric   |
|                          |             | -             |          |                 |          |                          | pharmaceutical    |
|                          | -           |               |          |                 |          | -                        | pt of viscosity,  |
|                          |             |               | low,     | Kinemati        | ıc, ŀ    | Relative,Specific        | c, Reduced &      |
|                          | Intrinsic v |               | ה וים    | •               | <u>.</u> | • • 1                    | 1 1' 4'           |
|                          |             | -             |          |                 | •        | :principle and           | 11                |
|                          |             |               |          |                 |          |                          | and limitations,  |
|                          |             | maceuticals   |          | Properties      |          | troduction to of various | types of          |
|                          |             | maceuticals   |          | adio-phar       |          |                          | liagnostics, as   |
|                          |             |               |          |                 |          |                          | mical Properties  |
|                          |             |               |          |                 |          | ties of drugs (a)        |                   |
|                          |             |               |          |                 |          | vity, (d) degree         |                   |
|                          |             |               |          |                 |          |                          | Introduction to   |
|                          | drug dosa   | ige Forms &   | & Dr     | ug Delive       | ry sy    | stem – Definiti          | ion of Common     |
|                          |             |               |          |                 |          |                          | as formularies,   |
|                          | sources o   | f drug, drug  | g noi    | menclature      | e, rou   | ites of administ         | tration of drugs  |
|                          | -           |               |          | -               |          |                          | ige forms. Drug   |
|                          | -           | -             |          | -               |          | -                        | losage Forms &    |
|                          |             |               |          |                 |          |                          | Drug Regulation   |
|                          |             |               |          |                 |          |                          | of drug, drug     |
|                          |             |               |          |                 |          | drugs products           | , need            |
|                          |             | ge form, cla  |          |                 |          |                          | on, procedure     |
|                          |             | -             |          |                 |          | 0                        | unds, molecular   |
|                          |             | -             | -        |                 |          | -                        | ationship (SAR)   |
|                          |             |               | -        |                 |          | •                        | ffect, isoterism, |
|                          |             | -             |          | •               |          |                          | erties of simple  |
|                          |             | -             |          |                 |          | • • •                    | cy theory, rate   |
|                          |             | duced-fit th  |          |                 | -        |                          |                   |
|                          |             |               |          |                 |          |                          |                   |

|                                  | <b>UNIT-V:Computers in Pharmaceutical Chemistry:</b> Need of computers for chemistry. Computers for Analytical Chemists Introduction to computers: Organization of computers, CPU, Computer memory, I/O devices, information storage, software components. Application of computers in chemistry: Quantitative structure activity relationship (QSAR): Development of QSAR, drug receptor interactions, the additivity of group contributions, physico-chemical parameters, lipophilicity parameters, electronic parameter, ionization constants, steric parameters, chelation parameters, redox potential, indicator-variables |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extended<br>Professional         | Questions related to the above topics, from various competitive<br>examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Component (is a                  | to be solved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| part of internal                 | (To be discussed during the Tutorial hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| component only,                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Not to be included               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| in the external                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| examination                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| question paper)                  | Variable Declare entries Analytical differ Declarational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Skills acquired from this course | Knowledge, Problem solving, Analytical ability, Professional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Recommended                      | Competency, Professional Communication and Transferable skills. 1. Physical Chemistry- Bahl and Tuli.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Text                             | <ol> <li>Text Book of Physical Pharmaceutics, IInd edition, Vallabh</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                  | PrakashanC.V.S. Subramanyam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                  | 3. Medicinal Chemistry (Organic Pharmaceutical Chemistry), G.R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                  | Chatwal, Himalaya Publishing house.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                  | 4. Instrumental method of Analysis: Hubert H, Willard,7th edition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                  | 5. Textbook of Pharmaceutical Chemistry by, Jayshree Ghosh, S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                  | Chand & company Ltd.Pharmaceutical Chemistry by Dr. S.<br>Lakshmi, Sultanchand & Sons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>Reference Books</b>           | 1. Computers in chemistry, K.V. Raman, Tata Mc.Graw-Hill, 1993.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                  | 2. Computers for Chemists, S.K Pundir, Anshu bansal, A pragate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                  | prakashan., 2 nd edition, New age international (P) limited, New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  | Delhi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                  | 3. Physical Pharmacy and Pharmaceutical Sciences by Martins,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                  | <ul><li>Patrick J. Sinko, Lippincott. William and Wilkins.</li><li>4. Cooper and Gunn's Tutorial Pharmacy ,6th edition by S.J. Carter,</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                  | Cooper and Guilli's Futorial Filannacy ,our edition by S.J. Carter,<br>CBS Publisher Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                  | 5. Ansels pharmaceutical Dosage forms and Drug Delivery System by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                  | Allen Popvich and Ansel, Indian edition-B.I. Publication Pvt. Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Website and         https://www.ncbi.nlm.nih.gov/books/NBK482447/              |                                                                    |  |  |  |  |  |  |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|--|
| e-learning source                                                              | https://training.seer.cancer.gov/treatment/chemotherapy/types.html |  |  |  |  |  |  |
|                                                                                |                                                                    |  |  |  |  |  |  |
| Course Learning C                                                              | <b>Dutcomes (for Mapping with POs and PSOs)</b>                    |  |  |  |  |  |  |
| Students will be abl                                                           | e:                                                                 |  |  |  |  |  |  |
|                                                                                |                                                                    |  |  |  |  |  |  |
| CO1: To identify th                                                            | e suitable drugs for various diseases.                             |  |  |  |  |  |  |
| CO2: To apply the                                                              | principles of various drug action and drug design.                 |  |  |  |  |  |  |
| <b>CO3</b> : To acquire the knowledge on product development based on SAR.     |                                                                    |  |  |  |  |  |  |
| <b>CO4</b> : To apply the knowledge on applications of computers in chemistry. |                                                                    |  |  |  |  |  |  |
| CO5:To synthesize new drugs after understanding the concepts SAR.              |                                                                    |  |  |  |  |  |  |

## **CO-PO Mapping (Course Articulation Matrix)**

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1 | S   | S   | S   | S   | M   | S   | S          | S   | S   | М    |
| CO 2 | M   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 3 | S   | S   | M   | S   | S   | S   | S          | М   | S   | S    |
| CO 4 | Μ   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 5 | Μ   | S   | М   | S   | S   | M   | S          | М   | S   | S    |

3 – Strong, 2 – Medium, 1 - Low

| Level of Correlation between | PSO's and CO's |
|------------------------------|----------------|
|------------------------------|----------------|

| CO /PO                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| CO1                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| CO5                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| 3 – Strong | 2 – Medium, | 1 - Low |
|------------|-------------|---------|
|------------|-------------|---------|

| Title of the Course | ELECTH    | ROCHEMI        | STR    | Y           |        |                                     |                 |  |  |  |
|---------------------|-----------|----------------|--------|-------------|--------|-------------------------------------|-----------------|--|--|--|
| Paper No.           | Elective  |                |        |             |        |                                     |                 |  |  |  |
| Category            | Elective  | Year           | Ι      | Credits     |        |                                     |                 |  |  |  |
|                     |           | Semester       | Ι      | 1           |        | Code                                |                 |  |  |  |
| Instructional hours | Lecture   | Tutorial       | La     | b Practice  | ;<br>; | Total                               |                 |  |  |  |
| per week            | 4         | 1              | -      |             |        | 5                                   |                 |  |  |  |
| Prerequisites       | Basic kno | wledge of e    | electr | ochemistr   | v      |                                     |                 |  |  |  |
| Objectives of the   |           |                |        |             |        | tes in terms of                     | f conductance,  |  |  |  |
| course              |           | osphere, inte  |        |             | 2      |                                     | ,               |  |  |  |
|                     |           | -              |        |             | lectri | cal double lay                      | er of different |  |  |  |
|                     | models.   | anze me su     | uotu   |             |        | ieur douore ruy                     | er of anterent  |  |  |  |
|                     |           |                | . 1    |             | 1      |                                     |                 |  |  |  |
|                     |           |                |        |             |        | lensity and ove<br>nical reactions. |                 |  |  |  |
|                     |           |                |        |             |        |                                     |                 |  |  |  |
|                     |           | analytical te  |        |             | JVCI   | voltages and I                      | ts applications |  |  |  |
| Course Outline      |           |                |        | *           | limit  | ations van't H                      | loff factor and |  |  |  |
| Course Outline      |           |                |        |             |        |                                     | deal behavior.  |  |  |  |
|                     |           |                |        |             |        |                                     | ionic activity  |  |  |  |
|                     |           | •              |        |             | •      |                                     | eory of strong  |  |  |  |
|                     |           | -              |        | -           |        | •                                   | Determination   |  |  |  |
|                     |           | y coefficier   |        |             |        |                                     | ractions. Born  |  |  |  |
|                     |           |                |        |             |        |                                     | Debye-Huckel    |  |  |  |
|                     | limiting  | law at         |        | -           |        |                                     | electrolytes    |  |  |  |
|                     | modificat |                |        |             |        |                                     | uction-Debye-   |  |  |  |
|                     | Huckel    |                |        |             |        |                                     | ualitative and  |  |  |  |
|                     |           |                |        |             |        |                                     | ce for ionic    |  |  |  |
|                     | 1         |                |        |             |        | n formations.                       |                 |  |  |  |
|                     |           |                |        |             |        |                                     | phenomena -     |  |  |  |
|                     | Evidence  | s for electric | cal de | ouble layer | r, pol | arizable and no                     | on-polarizable  |  |  |  |
|                     |           |                |        |             |        | - Lippmann eq                       |                 |  |  |  |
|                     | capillary | curves. Elec   | etro-l | kinetic phe | nom    | ena electro-osr                     | nosis,          |  |  |  |
|                     | electroph | oresis, strea  | amin   | g and sec   | lime   | ntation potent                      | ials, colloidal |  |  |  |
|                     |           | •              |        |             |        | •                                   | nholtz -Perrin, |  |  |  |
|                     | -         | -              |        |             |        |                                     | le layer. Zeta  |  |  |  |
|                     |           | -              |        | _           | -      | plications and                      |                 |  |  |  |
|                     |           |                |        |             |        | v                                   | e Reactions:    |  |  |  |
|                     |           |                |        |             |        |                                     | electrodes at   |  |  |  |
|                     |           |                |        |             |        |                                     | ition for the   |  |  |  |
|                     | -         |                |        | -           | -      |                                     | on-polarizable  |  |  |  |
|                     |           |                |        |             | e sys  | stem, over pot                      | ential. Rate of |  |  |  |
|                     |           | emical reac    |        |             | 1 -    | 7 1 .                               | • • • •         |  |  |  |
|                     |           |                |        |             |        |                                     | on-significance |  |  |  |
|                     |           | -              |        | -           |        |                                     | mmetry factor.  |  |  |  |
|                     |           | -              |        |             | -      | •                                   | r and transfer  |  |  |  |
|                     |           | t Tafel equa   |        |             | -      |                                     |                 |  |  |  |
|                     |           |                |        |             |        |                                     | System: Rates   |  |  |  |
|                     |           | -              |        |             |        |                                     | equation for a  |  |  |  |
|                     | multi-ste | p reaction.    | Kate   | aeterminir  | ig ste | ep, electrode po                    | olarization and |  |  |  |

|                                                                                                                                                            | depolarization. Transfer coefficients, its significance and determination,<br>Stoichiometric number. Electro-chemical reaction mechanisms-rate expressions, order, and surface coverage. Reduction of I3-, Fe2+, and dissolution of Fe to Fe2+. Overvoltage - Chemical and electro chemical, Phase, activation and concentration over potentials.                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                            | Evolution of oxygen and hydrogen at different pH. Pourbiax and Evan's diagrams.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                            | <b>UNIT-V:Concentration Polarization, Batteries and Fuel cells:</b><br>Modes of Transport of electro active species - Diffusion, migration<br>and hydrodynamic modes. Role of supporting electrolytes.<br>Polarography principle and applications. Principle of square wave<br>polarography. Cyclic voltammetry- anodic and cathodic stripping<br>voltammetry and differential pulse voltammetry. Sodium and<br>lithium-ion batteries and redox flowbatteries. Mechanism of charge<br>storage: conversion and alloying. Capacitors- mechanism of energy<br>storage, charging at constant current and constant voltage. Energy |
|                                                                                                                                                            | production systems: Fuel Cells: classification, alkaline fuel cells, phosphoric acid fuel cells, hightemperature fuel cells.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Extended<br>Professional<br>Component (is a part<br>of internal<br>component only, Not<br>to be included in the<br>external examination<br>question paper) | Questions related to the above topics, from various competitive<br>examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC<br>others to be solved<br>(To be discussed during the Tutorial hours)                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Skills acquired from                                                                                                                                       | Knowledge, Problem solving, Analytical ability, Professional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| this course<br>Recommended Text                                                                                                                            | <ul><li>Competency, Professional Communication and Transferable skills.</li><li>D. R. Crow, Principles and applications of electrochemistry,</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Kecommended Text                                                                                                                                           | <ul> <li>4thedition, Chapman &amp; Hall/CRC, 2014.</li> <li>2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                            | <ol> <li>S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt.,<br/>Ltd., New Delhi, 2008.</li> <li>D. Vierenethen, S. Sandaran, P. Vanletterener, K. Paragarian</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                            | <ol> <li>B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan<br/>and P.S. Raghavan, Electrochemistry-Principles and<br/>applications, S. Viswanathan Printers, Chennai,2007.</li> <li>Joseph Wang, Analytical Electrochemistry, 2<sup>nd</sup> edition, Wiley,<br/>2004.</li> </ol>                                                                                                                                                                                                                                                                                                                                   |
| Reference Books                                                                                                                                            | <ol> <li>J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry,<br/>vol.1 and 2B, Springer, Plenum Press, New York, 2008.</li> <li>J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden<br/>Electro chemistry, vol. 2A, Springer, Plenum Press, New York,<br/>2008.</li> </ol>                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                            | <ol> <li>Philip H. Rieger, Electrochemistry, 2<sup>nd</sup> edition, Springer, New York, 2010.</li> <li>L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| 5 | . K.L. Kapoor, A Text book of Physical chemistry, | volume-3, |
|---|---------------------------------------------------|-----------|
|   | Macmillan, 2001.                                  |           |

| Website and       | 1. https://www.pdfdrive.com/modern-electrochemistry-e34333229. |
|-------------------|----------------------------------------------------------------|
| e-learning source |                                                                |

Students will be able:

**CO1**: To understand the behaviour of electrolytes in solution and compare the structures of electrical double layer of different models.

CO2: To predict the kinetics of electrode reactions applying Butler-Volmer and Tafel equations

CO3: To study different thermodynamic mechanism of corrosion,

**CO4**: To discuss the theories of electrolytes, electrical double layer, electrodics and activitycoefficient of electrolytes

**CO5**: To have knowledge on storage devices and electrochemical reaction mechanism.

| <b>CO-PO Mapping (Course Articulation Matri</b> | x) |
|-------------------------------------------------|----|
|-------------------------------------------------|----|

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CO 1 | S   | S   | S   | S   | M   | S   | S   | S   | S   | М    |
| CO 2 | М   | S   | S   | S   | S   | M   | S   | S   | S   | S    |
| CO 3 | S   | S   | М   | S   | S   | S   | S   | M   | S   | S    |
| CO 4 | М   | S   | S   | S   | S   | Μ   | S   | S   | S   | S    |
| CO 5 | М   | S   | М   | S   | S   | М   | S   | М   | S   | S    |

3 – Strong, 2 – Medium, 1 - Low

#### Level of Correlation between PSO's and CO's

| СО /РО                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| CO1                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| CO5                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| Title of the      | NANO M              | IATERIAL                              | S A   | ND NANC      | ) TE             | CHNOLOGY         |                                 |
|-------------------|---------------------|---------------------------------------|-------|--------------|------------------|------------------|---------------------------------|
| Course            |                     |                                       |       |              |                  |                  |                                 |
| Paper No.         | <b>Elective</b>     | Ι                                     |       |              |                  |                  |                                 |
| Category          | Elective            | Year                                  | Ι     | Credits      | 4                | Course           |                                 |
|                   |                     | Semester                              | Ι     |              |                  | Code             |                                 |
| Instructional     | Lecture             | Tutorial                              | Lal   | b Practice   |                  | Total            |                                 |
| hours per week    | 4                   | 1                                     | -     |              |                  | 5                |                                 |
| Prerequisites     | Basic kn            | owledge of                            | cryst | allograph    | y an             | d material sci   | ence                            |
| Objectives of the | To unders           | stand the con                         | ncept | t of nano n  | nater            | ials and nano te | echnology.                      |
| course            | To unders           | stand the var                         | rious | types of n   | ano              | materials and th | neir properties.                |
|                   | To unde             | rstand the                            | app   | olications   | of               | synthetically    | important nano                  |
|                   | materials.          |                                       |       |              |                  |                  |                                 |
|                   |                     |                                       | acter | istics of va | riou             | s nano material  | s synthesized by                |
|                   | new techr           | U                                     |       |              |                  |                  |                                 |
|                   |                     |                                       |       |              |                  | lly used new na  |                                 |
| Course Outline    |                     | ntroduction                           |       | f nanom      |                  |                  | anotechnologies,                |
|                   |                     |                                       |       |              |                  |                  | 3D. Synthesis                   |
|                   |                     |                                       |       |              |                  | _                | lers. Features of               |
|                   | nanostruc           | tures, Back                           | groui | nd of nano   | struc            | tures. Techniqu  | ues of synthesis                |
|                   | of nano             | materials,                            | Tool  | ls of th     | e n              | anoscience. A    | Applications of                 |
|                   | nanomate            | rials and tee                         | chnol | ogies.       |                  |                  |                                 |
|                   | UNIT-II:            | Bonding an                            | nd st | ructure of   | the <sup>2</sup> | nanomaterials    | , Predicting the                |
|                   | Type of             | Bonding                               | in    | a Subst      | ance             | crystal stru     | cture. Metallic                 |
|                   | nanoparti           | cles, Surfac                          | es of | f Materials  | s. Na            | noparticle Size  | and Properties.                 |
|                   | -                   |                                       |       |              |                  | -                | ondensation, arc                |
|                   | -                   | -                                     |       |              |                  | -                | l hydrothermal-                 |
|                   | -                   |                                       |       | -            |                  |                  | -pressure CVD.                  |
|                   |                     | ve assisted a                         | -     | -            |                  |                  | pressure e v D.                 |
|                   |                     |                                       |       |              |                  | -                | ries relevant to                |
|                   |                     |                                       |       |              |                  |                  | al properties of                |
|                   |                     |                                       |       |              |                  | on, thermal      |                                 |
|                   |                     | · · · · · · · · · · · · · · · · · · · |       |              |                  | · ·              | ides: silica, iron              |
|                   |                     | alumina - s                           |       | -            |                  |                  | ,                               |
|                   | UNIT-IV             | Electrical                            | pro   | operties,    | Cor              | ductivity an     | d Resistivity,                  |
|                   |                     |                                       |       |              |                  |                  | netic properties,               |
|                   |                     |                                       |       |              |                  |                  | of magnetic                     |
|                   |                     |                                       |       |              |                  |                  | -Ge, Si, GaAs,                  |
|                   |                     |                                       |       |              |                  |                  | s p and n –type                 |
|                   |                     |                                       |       | -            |                  |                  | Hall voltage -                  |
|                   | interpreta semicond |                                       |       | 0            |                  | • •              | oplications of rs, photovoltaic |
|                   | and photo           | -                                     | June  | uon as tial  | 13130            |                  | is, photovoltate                |
|                   | cell.               | Surveine                              |       |              |                  |                  |                                 |
|                   |                     | Nano thin f                           | ilms. | nanocom      | posite           | es. Application  | of nanoparticles                |
|                   |                     |                                       |       | -            |                  |                  | synthesis, and                  |
|                   |                     |                                       |       |              |                  |                  | polymer-matrix                  |
|                   |                     |                                       |       |              |                  |                  | EM and AFM -                    |

|                                                                                                                                                               | principle, instrumentation and applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                               | principie, instrumentation and appreations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Extended<br>Professional<br>Component (is a<br>part of internal<br>component only,<br>Not to be included<br>in the external<br>examination<br>question paper) | Questions related to the above topics, from various competitive<br>examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others<br>to be solved<br>(To be discussed during the Tutorial hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Skills acquired                                                                                                                                               | Knowledge, Problem solving, Analytical ability, Professional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| from this course                                                                                                                                              | Competency, Professional Communication and Transferable skills.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Recommended                                                                                                                                                   | 1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Text                                                                                                                                                          | Publishers, 2016.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Reference Books                                                                                                                                               | <ol> <li>Arumugam, Materials Science, Anuradha Publications,2007.</li> <li>Giacavazzo et. al., Fundamentals of Crystallography, International<br/>Union of Crystallography. Oxford Science Publications, 2010</li> <li>Woolfson, An Introduction to Crystallography, Cambridge<br/>University Press, 2012.</li> <li>James F. Shackelford and Madanapalli K. Muralidhara, Introduction<br/>to Materials Science for Engineers. 6<sup>th</sup> ed., PEARSON Press, 2007.</li> <li>S.Mohan and V. Arjunan, Principles of Materials Science, MJP<br/>Publishers, 2016.</li> <li>Arumugam, Materials Science, Anuradha Publications,2007.</li> <li>Giacavazzo et. al., Fundamentals of Crystallography, International<br/>Union of Crystallography. Oxford Science Publications, 2010</li> <li>Woolfson, An Introduction to Crystallography, Cambridge<br/>University Press, 2012.</li> <li>James F. Shackelford and Madanapalli K. Muralidhara, Introduction<br/>to Materials Science for Engineers. 6<sup>th</sup> ed., PEARSON Press, 2010</li> </ol> |
| Website and                                                                                                                                                   | 1. <u>http://xrayweb.chem.ou.edu/notes/symmetry.html</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| e-learning source                                                                                                                                             | 2. <u>http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf</u> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Course Learning C</b><br>Students will be abl                                                                                                              | Dutcomes (for Mapping with POs and PSOs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                               | ethods of fabricating nanostructures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CO1. To explain III                                                                                                                                           | $\frac{1}{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

**CO2**: To relate the unique properties of nanomaterials to reduce dimensionality of the material.

**CO3**: To describe tools for properties of nanostructures.

CO4: To discuss applications of nanomaterials.

**CO5**:To understand the health and safety related to nanomaterial.

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1 | S   | S   | S   | S   | M   | S   | S          | S   | S   | М    |
| CO 2 | М   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 3 | S   | S   | M   | S   | S   | S   | S          | M   | S   | S    |
| CO 4 | M   | S   | S   | S   | S   | М   | S          | S   | S   | S    |
| CO 5 | М   | S   | М   | S   | S   | М   | S          | Μ   | S   | S    |

3 – Strong, 2 – Medium, 1 - Low

## Level of Correlation between PSO's and CO's

| CO /PO                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| CO1                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| CO5                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| Title of the             | MOLEC      | ULAR SPE       | CT    | ROSCOPY     | Y      |                  |                                              |
|--------------------------|------------|----------------|-------|-------------|--------|------------------|----------------------------------------------|
| Course                   |            |                |       |             | -      |                  |                                              |
| Paper No.                | Elective   | Π              |       |             |        |                  |                                              |
| Category                 | Elective   | Year           | Ι     | Credits     | 4      | Course           |                                              |
|                          |            | Semester       | Ι     |             |        | Code             |                                              |
| Instructional            | Lecture    | Tutorial       | La    | b Practice  |        | Total            |                                              |
| hours per week           | 4          | 1              | -     |             |        | 5                |                                              |
| Prerequisites            | Basic kn   | owledge of     | spec  | troscopy    |        |                  |                                              |
| <b>Objectives of the</b> | To under   | stand the ini  | fluen | ce of rotat | ion a  | and vibrations   | on the spectra of                            |
| course                   | the polya  | tomic molec    | cules | •           |        |                  |                                              |
|                          | To study   | the principl   | e of  | Raman spe   | ectro  | scopy, ESR sp    | ectroscopy, EPR                              |
|                          | spectrosc  | opy and frag   | gmer  | tation patt | erns   | in Mass spectr   | oscopy.                                      |
|                          | To highli  | ght the sig    | nific | ance of Fr  | anck   | -Condon prin     | ciple to interpret                           |
|                          | the select | ion rule, inte | ensit | y and types | s of e | electronic trans | sitions.                                     |
|                          |            |                |       |             |        |                  | terms of splitting                           |
|                          | -          |                | ns u  | sing corre  | latio  | n techniques     | such as COSY,                                |
|                          |            | R, NOESY.      |       |             |        | 0 1 1            | 1:00                                         |
|                          |            |                | ructu | ral elucid  | ation  | of molecules     | s using different                            |
| Course Outline           |            | echniques.     | and   | Domon S     | noot   | Possonny Doto    | tional spectra of                            |
| Course Outline           |            |                |       |             |        |                  | tional spectra of                            |
|                          |            |                |       |             |        |                  | otational spectral                           |
|                          | -          | -              |       |             |        | e                | . Classical theory                           |
|                          |            |                |       |             |        |                  | ability ellipsoids,                          |
|                          | -          | •              |       |             |        |                  | Raman spectra of                             |
|                          |            | •              |       | -           |        |                  | inti-Stokes lines.                           |
|                          | Vibration  | al Raman sp    | pectr | a, Raman a  | activ  | ity of vibration | ns, rule of mutual                           |
|                          | exclusion  | , rotational   | fine  | structure-  | O ai   | nd S branches    | , Polarization of                            |
|                          | Raman sc   | attered phot   | tons. |             |        |                  |                                              |
|                          |            | Vibrationa:    |       | Spectrosco  |        |                  | of molecules,                                |
|                          |            |                |       |             |        |                  | ergy expression,                             |
|                          |            | 0              |       |             |        |                  | their symmetry,                              |
|                          |            |                |       |             |        |                  | spectral lines,                              |
|                          | -          |                |       |             |        |                  | pic substitution.                            |
|                          |            | -              |       |             |        | -                | etra of diatomic                             |
|                          |            |                |       |             |        |                  | orn-Oppenheimer<br>es – symmetry             |
|                          |            | s, overtone a  |       | lis of po   | iyato  | mile morecur     | cs – symmetry                                |
|                          |            | -              |       | Influence   | of ro  | tation on vibra  | ational spectra of                           |
|                          |            | -              |       |             |        |                  | nd perpendicular                             |
|                          |            | s of linear an |       | -           |        | -                |                                              |
|                          |            | [:Electronic   |       |             |        | Electronic       |                                              |
|                          |            |                |       |             |        |                  | Frank-Condon                                 |
|                          |            |                |       |             |        |                  | $\pi \rightarrow \pi^*, n \rightarrow \pi^*$ |
|                          |            |                | selec | tion rules. | Pho    | toelectron Spe   | ectroscopy: Basic                            |
|                          | principles |                | ra c  | f simple    | ma     |                  | v photoelectron                              |
|                          | -          | -              |       | -           |        |                  | y photoelectron lation inversion,            |
|                          | spectrosc  | opy (Ars)      | . L   | astis. Las  | 501    | action, popul    | auon inversion,                              |

|                    | properties of laser radiation, examples of simple laser systems.        |
|--------------------|-------------------------------------------------------------------------|
|                    | UNIT-IV:NMR and ESR spectroscopy: Chemical shift, Mechanism             |
|                    | of shielding and de-shielding. Spin systems: Simplification of complex  |
|                    | spectra. Spin-spin interactions: Homonuclear coupling interactions -    |
|                    | AX, AX2, AB types. Vicinal, germinal and long-range coupling-spin       |
|                    | decoupling. Nuclear Overhauser effect (NOE), Factors influencing        |
|                    | coupling constants and Relative intensities. 13CNMR and structural      |
|                    | correlations, Satellites. ESR spectroscopy Characteristic features of   |
|                    | ESR spectra, line shapes and line widths; The g value and the hyperfine |
|                    | coupling parameter (A). Interpretation of ESR spectra and structure     |
|                    | elucidation of organic radicals using ESR spectroscopy; Spin orbit      |
|                    | coupling and significance of g tensors, zero/non-zero field splitting,  |
|                    | Kramer's degeneracy.                                                    |
|                    | UNIT-V:Mass Spectrometry, EPR and Mossbauer Spectroscopy:               |
|                    | Ionization techniques- Electron ionization (EI), chemical ionization    |
|                    | (CI), isotope abundance, molecular ion, fragmentation processes of      |
|                    | organic molecules, deduction of structure through mass spectral         |
|                    | fragmentation, high resolution. Effect of isotopes on the appearance of |
|                    | mass spectrum. EPR spectra of anisotropic systems - anisotropy in g     |
|                    | value, causes of anisotropy, anisotropy in hyperfine coupling,          |
|                    | hyperfine splitting caused by quadrupole nuclei. Principle of           |
|                    | Mossbauer spectroscopy: Doppler shift, Isomer shift, Applications:      |
|                    | Mossbauer spectra of high and low-spin Fe and Sn compounds              |
| Extended           | Questions related to the above topics, from various competitive         |
| Professional       | examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others            |
| Component (is a    | to be solved                                                            |
| part of internal   | (To be discussed during the Tutorial hours)                             |
| component only,    |                                                                         |
| Not to be included |                                                                         |
| in the external    |                                                                         |
| examination        |                                                                         |
| question paper)    |                                                                         |
| Skills acquired    | Knowledge, Problem solving, Analytical ability, Professional            |
| from this course   | Competency, Professional Communication and Transferable skills.         |
| L                  |                                                                         |

| Recommended            | 1. C. N. Banwell and E. M. McCash, Fundamentals of Molecular                            |
|------------------------|-----------------------------------------------------------------------------------------|
| Text                   | <i>Spectroscopy</i> , 4 <sup>th</sup> Ed., Tata McGraw Hill, New Delhi, 2000.           |
| ICAL                   | 2. R. M. Silverstein and F. X. Webster, <i>Spectroscopic Identification</i>             |
|                        | of Organic Compounds, 6 <sup>th</sup> Ed., John Wiley & Sons, New York,                 |
|                        | 2003.                                                                                   |
|                        | 3. W. Kemp, <i>Applications of Spectroscopy</i> , English Language Book                 |
|                        | Society, 1987.                                                                          |
|                        | 4. D. H. Williams and I. Fleming, Spectroscopic Methods in Organic                      |
|                        | Chemistry, 4 <sup>th</sup> Ed., Tata McGraw-Hill Publishing Company, New                |
|                        | Delhi, 1988.                                                                            |
|                        | 5. R. S. Drago, <i>Physical Methods in Chemistry</i> ; Saunders:                        |
|                        | Philadelphia, 1992.                                                                     |
| <b>Reference Books</b> | 1. P.W. Atkins and J. de Paula, <i>Physical Chemistry</i> , 7 <sup>th</sup> Ed., Oxford |
|                        | University Press, Oxford, 2002.                                                         |
|                        | 2. I. N. Levine, <i>Molecular Spectroscopy</i> , John Wiley & Sons, New                 |
|                        | York, 1974.                                                                             |
|                        | 3. A. Rahman, Nuclear Magnetic Resonance-Basic Principles,                              |
|                        | Springer-Verlag, New York, 1986.                                                        |
|                        | 4. K. Nakamoto, Infrared and Raman Spectra of Inorganic and                             |
|                        | coordination Compounds, PartB: 5th ed., John Wiley& Sons Inc.,                          |
|                        | New York, 1997.                                                                         |
|                        | 5. J. A. Weil, J. R. Bolton and J. E. Wertz, <i>Electron Paramagnetic</i>               |
|                        | Resonance; Wiley Interscience, 1994.                                                    |
| Website and            | 1. <u>https://onlinecourses.nptel.ac.in/noc20_cy08/preview</u>                          |
| e-learning source      | 2. https://www.digimat.in/nptel/courses/video/104106122/L14.html                        |
| Course Learning (      | <b>Dutcomes (for Mapping with POs and PSOs)</b>                                         |

Students will be able:

**CO1**: To understand the importance of rotational and Raman spectroscopy.

**CO2**: To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules.

CO3: To evaluate different electronic spectra of simple molecules using electronic spectroscopy.

**CO4**: To outline the NMR,  ${}^{13}$ C NMR, 2D NMR – COSY, NOESY, Introduction to  ${}^{31}$ P,  ${}^{19}$ FNMR and ESR spectroscopic techniques.

**CO5**:To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopytechniques.

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1        | S   | S   | S   | S   | М   | S   | S          | S   | S   | М    |
| CO 2        | M   | S   | S   | S   | S   | М   | S          | S   | S   | S    |
| CO 3        | S   | S   | М   | S   | S   | S   | S          | M   | S   | S    |
| <b>CO 4</b> | M   | S   | S   | S   | S   | М   | S          | S   | S   | S    |
| CO 5        | Μ   | S   | М   | S   | S   | М   | S          | Μ   | S   | S    |

3 – Strong, 2 – Medium, 1 - Low

## Level of Correlation between PSO's and CO's

| СО /РО                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| C01                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| C05                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| Title of the<br>Course | ORGANIC                                                               | REACTION N                           | <b>IECH</b>    | ANISM-II        |          |                 |             |  |  |  |  |  |
|------------------------|-----------------------------------------------------------------------|--------------------------------------|----------------|-----------------|----------|-----------------|-------------|--|--|--|--|--|
| Paper No.              | Core IV                                                               |                                      |                |                 |          |                 |             |  |  |  |  |  |
| Category               | Core                                                                  | Year                                 | Ι              | Credits         | 4 Course |                 |             |  |  |  |  |  |
|                        |                                                                       | Semester                             | II             | ]               |          | Code            |             |  |  |  |  |  |
| Instructional          | Lecture                                                               | Tutorial                             | Lab            | Practice        | ·        | Total           |             |  |  |  |  |  |
| hours per              | 4                                                                     | 1                                    | -              |                 |          | 5               |             |  |  |  |  |  |
| week                   |                                                                       |                                      |                |                 |          |                 |             |  |  |  |  |  |
| Prerequisites          | Basic knowledge of organic chemistry                                  |                                      |                |                 |          |                 |             |  |  |  |  |  |
| <b>Objectives of</b>   | To understand the concept of aromaticity in benzenoid, non-benzenoid, |                                      |                |                 |          |                 |             |  |  |  |  |  |
| the course             | heterocyclic and annulene compounds.                                  |                                      |                |                 |          |                 |             |  |  |  |  |  |
|                        |                                                                       | nd the mecha                         | Inism          | involved in     | varı     | ous types of    | organic     |  |  |  |  |  |
|                        | reactions wit                                                         |                                      |                |                 |          |                 |             |  |  |  |  |  |
|                        |                                                                       | d the application the reactivity be  |                |                 |          |                 |             |  |  |  |  |  |
|                        |                                                                       | nthetic routes f                     |                |                 |          |                 |             |  |  |  |  |  |
| Course                 |                                                                       | mination and                         | -              | -               |          |                 |             |  |  |  |  |  |
| Outline                |                                                                       | nechanisms. S                        |                |                 |          |                 |             |  |  |  |  |  |
| 0                      |                                                                       | : Hoffmann and                       |                |                 |          |                 |             |  |  |  |  |  |
|                        |                                                                       |                                      | -              |                 |          | -               |             |  |  |  |  |  |
|                        | -                                                                     | ases, leaving                        | -              | -               |          |                 | -           |  |  |  |  |  |
|                        |                                                                       | in acyclic and                       | -              |                 |          | -               | _           |  |  |  |  |  |
|                        |                                                                       | nort-lived radio                     |                |                 |          | •               |             |  |  |  |  |  |
|                        | -                                                                     | al reactions, D                      |                |                 | •        | -               |             |  |  |  |  |  |
|                        |                                                                       | dical reactions                      |                |                 |          |                 | radicals;   |  |  |  |  |  |
|                        | polymerizati                                                          | on, addition                         | , ha           | logenations,    | arc      | omatic subs     | stitutions, |  |  |  |  |  |
|                        | rearrangemen                                                          | nts. Reactivity:                     | Read           | tivity on ali   | phatio   | c, aromatic s   | ubstrates,  |  |  |  |  |  |
|                        | reactivity in                                                         | the attacking ra                     | dical,         | effect of solve | ent.     |                 |             |  |  |  |  |  |
|                        |                                                                       | <b>Dxidation</b> and                 |                |                 |          |                 |             |  |  |  |  |  |
|                        |                                                                       | nsfer, hydride                       |                |                 |          |                 |             |  |  |  |  |  |
|                        |                                                                       | nination, oxic                       |                |                 |          | coupling        |             |  |  |  |  |  |
|                        |                                                                       | of oxidation rea                     |                |                 |          |                 |             |  |  |  |  |  |
|                        |                                                                       | rricyanide, mei                      |                |                 |          | -               | -           |  |  |  |  |  |
|                        | -                                                                     | lioxide, osmiun<br>, alcohols, halio |                |                 |          | •               |             |  |  |  |  |  |
|                        |                                                                       | nd Corey-Kim                         |                |                 |          | •               |             |  |  |  |  |  |
|                        |                                                                       | e (DMSO-DCC                          |                |                 |          |                 |             |  |  |  |  |  |
|                        |                                                                       | · ·                                  | /              | nund, reduc     |          |                 |             |  |  |  |  |  |
|                        | triphenyltin                                                          |                                      |                | en-Steven's     |          |                 | logeneous   |  |  |  |  |  |
|                        | hydrogenatic                                                          | on, MPV and B                        | ouvea          | ult-Blanc redu  | uction   | n.              | C           |  |  |  |  |  |
|                        |                                                                       | Rearrangement                        |                |                 |          |                 | nt carbon:  |  |  |  |  |  |
|                        | Pinacol-pina                                                          | colone and sen                       | ni-pina        | colone rearra   | ngen     | nents -applica  | tions and   |  |  |  |  |  |
|                        | stereochemis                                                          | stry, Wagner-M                       | leerwe         | in, Demjano     | v, D     | ienone-pheno    | l, Baker-   |  |  |  |  |  |
|                        |                                                                       | an, Benzilic aci                     |                | •               |          | -               |             |  |  |  |  |  |
|                        |                                                                       | cient nitrogen:                      |                |                 | -        | -               |             |  |  |  |  |  |
|                        |                                                                       | ents to electron                     |                |                 |          |                 |             |  |  |  |  |  |
|                        | -                                                                     | rangements. Re                       |                |                 |          | • •             |             |  |  |  |  |  |
|                        |                                                                       | -                                    |                |                 |          |                 |             |  |  |  |  |  |
|                        |                                                                       | 2]-Wittig and [2                     | , <b>5]-</b> W | ing rearrange   | men      | is.rifes and Pr | ioto rnes   |  |  |  |  |  |

|                              | rearrangement.Intramolecular rearrangements - Claisen, Cope, oxy-Cope                                                                        |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|                              | Benzidine rearrangements.                                                                                                                    |
|                              | UNIT-IV: Addition to Carbon Multiple Bonds: Mechanisms: (a)                                                                                  |
|                              | Addition to carbon-carbon multiple bonds- Addition reactions involving                                                                       |
|                              | electrophiles, nucleophiles, free radicals, carbenes and cyclic mechanisms-                                                                  |
|                              | Orientation and reactivity, hydrogenation of double and triple bonds,                                                                        |
|                              | Michael reaction, addition of oxygen and Nitrogen; (b) Addition to carbon-                                                                   |
|                              | hetero atom multiple bonds: Mannich reaction, acids, esters, nitrites,                                                                       |
|                              | addition of Grignard reagents, Wittig reaction, Prinsreaction.                                                                               |
|                              | Stereochemical aspects of addition reactions. Addition to Carbon-Hetero<br>atom Multiplebonds: Addition of Grignard reagents, organozinc and |
|                              | organolithium reagents to carbonyl and unsaturated carbonyl compounds.                                                                       |
|                              | Mechanism of condensation reactions involving enolates –Stobbe reactions.                                                                    |
|                              | Hydrolysis of esters and amides, ammonolysis of esters.                                                                                      |
|                              | UNIT-V: Reagents and Modern Synthetic Reactions: Lithium                                                                                     |
|                              | diisopropylamine (LDA), Azobisisobutyronitrile (AIBN), Sodium                                                                                |
|                              | cyanoborohydride (NaBH <sub>3</sub> CN), meta-Chloroperbenzoic acid (m-CPBA),                                                                |
|                              | Dimethyl aminiopyridine (DMAP), n-Bu <sub>3</sub> SnD, Triethylamine (TEA),                                                                  |
|                              | Diazobicyclo[5.4.0]undec-7-ene (DBU), Diisopropylazodicarboxylate                                                                            |
|                              | (DIAD), Diethylazodicarboxylate (DEAD), N-bromosuccinimide (NBS),<br>Trifluoroacetic acid (TFA), Tetramethyl piperiridin-1-oxyl (TEMPO),     |
|                              | Phenyltrimethylammonium tribromide (PTAB).Diazomethane and Zn-Cu,                                                                            |
|                              | Diethyl maleate (DEM).Suzuki coupling, Heck reaction, Negishi reaction,                                                                      |
|                              | Baylis-Hillman reaction.                                                                                                                     |
| Extended                     | Questions related to the above topics, from various competitive                                                                              |
| Professional                 | examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to                                                                              |
| Component (is                | be solved                                                                                                                                    |
| a part of                    | (To be discussed during the Tutorial hours)                                                                                                  |
| internal                     |                                                                                                                                              |
| component<br>only, Not to be |                                                                                                                                              |
| included in the              |                                                                                                                                              |
| external                     |                                                                                                                                              |
| examination                  |                                                                                                                                              |
| question                     |                                                                                                                                              |
| paper)                       |                                                                                                                                              |
| Skills acquired              | Knowledge, Problem solving, Analytical ability, Professional Competency,                                                                     |
| from this                    | Professional Communication and Transferable skills.                                                                                          |
| course                       |                                                                                                                                              |

| Recommende     | 1. J. March and M. Smith, Advanced Organic Chemistry, 5th ed.,                          |
|----------------|-----------------------------------------------------------------------------------------|
| d Text         | John-Wiley and Sons.2001.                                                               |
|                | 2. E. S. Gould, Mechanism and Structure in Organic Chemistry,                           |
|                | Holt, Rinehart and Winston Inc., 1959.                                                  |
|                | 3. P. S. Kalsi, Stereochemistry of carbon compounds, 8 <sup>th</sup> edn, New           |
|                | Age International Publishers, 2015.                                                     |
|                | 4. P. Y.Bruice, <i>Organic Chemistry</i> , 7 <sup>th</sup> edn.,Prentice Hall, 2013.    |
|                | 5. R. T. Morrison, R. N. Boyd, S. K. BhattacharjeeOrganic                               |
|                | Chemistry, 7 <sup>th</sup> edn., Pearson Education,2010.                                |
| Reference      | 1. S. H. Pine, Organic Chemistry, 5 <sup>th</sup> edn, McGraw Hill                      |
| Books          | International Editionn,1987.                                                            |
|                | 2. L. F. Fieser and M. Fieser, Organic Chemistry, Asia Publishing                       |
|                | House, Bombay,2000.                                                                     |
|                | 3. E.S. Gould, <i>Mechanism and Structure in Organic Chemistry</i> , Holt,              |
|                | Rinehart and Winston Inc., 1959.                                                        |
|                | 4. T. L. Gilchrist, <i>Heterocyclic Chemistry</i> , Longman Press, 1989.                |
|                | 5. J. A. Joule and K. Mills, <i>Heterocyclic Chemistry</i> , 4 <sup>th</sup> ed., John- |
|                | Wiley,2010.                                                                             |
| Website and    | 1.https://sites.google.com/site/chemistryebookscollection02/home/organ                  |
| e-learning     | <u>ic-chemistry/organic</u>                                                             |
| source         | 2. <u>https://www.organic-chemistry.org/</u>                                            |
| Course Learnin | ng Outcomes (for Mapping with POs and PSOs)                                             |

Students will be able:

CO1: To recall the basic principles of aromaticity of organic and heterocyclic compounds.

CO2: To understand the mechanism of various types of organic reactions.

**CO3**: To predict the suitable reagents for the conversion of selective organic compounds.

CO4: To correlate the principles of substitution, elimination, and addition reactions.

**CO5**:To design new routes to synthesis organic compounds.

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CO 1 | S   | S   | S   | S   | M   | S   | S   | S   | S   | М    |
| CO 2 | М   | S   | S   | S   | S   | M   | S   | S   | S   | S    |
| CO 3 | S   | S   | M   | S   | S   | S   | S   | M   | S   | S    |
| CO 4 | М   | S   | S   | S   | S   | M   | S   | S   | S   | S    |
| CO 5 | М   | S   | Μ   | S   | S   | Μ   | S   | М   | S   | S    |

## **CO-PO Mapping (Course Articulation Matrix)**

| СО /РО                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| CO1                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| CO5                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

# Level of Correlation between PSO's and CO's

| Title of the             | PHYSIC     | AL CHEM                                                               | IISTI  | RY-I        |       |                             |                           |  |  |  |  |  |
|--------------------------|------------|-----------------------------------------------------------------------|--------|-------------|-------|-----------------------------|---------------------------|--|--|--|--|--|
| Course                   |            |                                                                       |        |             |       |                             |                           |  |  |  |  |  |
| Paper No.                | Core V     |                                                                       |        |             |       |                             |                           |  |  |  |  |  |
| Category                 | Core       | Year                                                                  | Ι      | Credits     | 4     | Course                      |                           |  |  |  |  |  |
|                          |            | Semester                                                              | II     |             |       | Code                        |                           |  |  |  |  |  |
| Instructional            | Lecture    | Tutorial                                                              | Lal    | b Practice  |       | Total                       |                           |  |  |  |  |  |
| hours per week           | 4          | 1                                                                     | -      |             |       | 5                           |                           |  |  |  |  |  |
| Prerequisites            | Basic con  | cepts of pl                                                           | nysic  | al chemist  | ry    |                             |                           |  |  |  |  |  |
| <b>Objectives of the</b> | To recall  | the fundam                                                            | nenta  | ls of thern | nody  | namics and the              | e composition of          |  |  |  |  |  |
| course                   | -          | olar quantiti                                                         |        |             |       |                             |                           |  |  |  |  |  |
|                          | To under   | To understand the classical and statistical approach of the functions |        |             |       |                             |                           |  |  |  |  |  |
|                          | To comp    | are the sig                                                           | nifica | ance of M   | axw   | ell-Boltzman,               | Fermi-Dirac and           |  |  |  |  |  |
|                          | Bose-Ein   |                                                                       |        |             |       |                             |                           |  |  |  |  |  |
|                          | To corre   | elate the the                                                         | neorie | es of rea   | ction | rates for th                | e evaluation of           |  |  |  |  |  |
|                          | -          | namic para                                                            |        |             |       |                             |                           |  |  |  |  |  |
|                          |            | the mechan                                                            |        |             |       |                             |                           |  |  |  |  |  |
| <b>Course Outline</b>    |            |                                                                       |        | •           |       |                             | olar properties-          |  |  |  |  |  |
|                          | Chemical   | potential                                                             | , Gi   | bb's-Duhe   | em    | equation-binar              | ry and ternary            |  |  |  |  |  |
|                          | systems.   | Determinati                                                           | ion o  | f partial m | olar  | quantities. The             | ermodynamics of           |  |  |  |  |  |
|                          | real gase  | es - Fugac                                                            | ity-   | determina   | tion  | of fugacity                 | bygraphical and           |  |  |  |  |  |
|                          | equation   | of state m                                                            | etho   | ds-depende  | ence  | of temperatur               | re, pressure and          |  |  |  |  |  |
|                          | -          |                                                                       |        | -           |       | -                           | binary mixtures,          |  |  |  |  |  |
|                          | -          |                                                                       | •      |             |       |                             | l and non-ideal           |  |  |  |  |  |
|                          | mixtures.  | _                                                                     | -      |             |       | pefficients-star            |                           |  |  |  |  |  |
|                          |            | •                                                                     |        |             |       | freezing point              |                           |  |  |  |  |  |
|                          |            | -                                                                     | -      |             |       |                             |                           |  |  |  |  |  |
|                          |            |                                                                       |        | -           |       |                             | on of statistical         |  |  |  |  |  |
|                          |            | mamicscone                                                            | -      | of          |       | thermodyna<br>f distinguish | amic and<br>able and non- |  |  |  |  |  |
|                          |            | 1                                                                     |        |             |       | •                           | onical particles.         |  |  |  |  |  |
|                          |            | -                                                                     |        |             | -     |                             | stein Statistics-         |  |  |  |  |  |
|                          | comparis   |                                                                       |        |             |       | on functions                |                           |  |  |  |  |  |
|                          |            |                                                                       |        |             |       | onal partition              |                           |  |  |  |  |  |
|                          |            | nic, diatom                                                           |        |             |       | -                           |                           |  |  |  |  |  |
|                          |            |                                                                       |        |             |       |                             | amic functions in         |  |  |  |  |  |
|                          |            |                                                                       |        |             |       |                             | orium constants.          |  |  |  |  |  |
|                          | Statistica | 1 approach                                                            | to T   | Thermodyn   | amic  | properties: p               | pressure, internal        |  |  |  |  |  |
|                          | energy,    | entropy, en                                                           | nthalp | y, Gibb's   | 5     | function, Hel               | mholtz function           |  |  |  |  |  |
|                          |            |                                                                       |        |             |       |                             | on principle.Heat         |  |  |  |  |  |
|                          |            |                                                                       |        | -           |       | -                           | a hydrogen. Heat          |  |  |  |  |  |
|                          |            | of solids-Ei                                                          |        |             |       |                             |                           |  |  |  |  |  |
|                          |            |                                                                       |        |             |       |                             | of conservation           |  |  |  |  |  |
|                          |            |                                                                       |        |             |       |                             | s by heat, matter         |  |  |  |  |  |
|                          |            |                                                                       |        |             |       |                             | ory-validity and          |  |  |  |  |  |
|                          |            |                                                                       |        |             |       |                             | tro kinetic and           |  |  |  |  |  |
|                          |            |                                                                       |        | s-Applicat  | 10n c | of irreversible 1           | thermodynamics            |  |  |  |  |  |
|                          | Ŭ          | ical systems                                                          |        |             |       |                             |                           |  |  |  |  |  |
|                          |            |                                                                       |        |             |       |                             | fast reactions:           |  |  |  |  |  |
|                          | Transitio  | n state the                                                           | eory-e | evaluation  | of    | thermodynam                 | icparameters of           |  |  |  |  |  |

|                          | activation-applications of ARRT to reactions between atoms and<br>molecules, time andtrue order-kinetic parameter evaluation. Factors<br>determine the reaction rates in solution - primary salt effect and       |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | secondary salt effect. Chain reactions-chain length, kinetics of $H_2 - Cl_2 \& H_2 - Br_2$ reactions (Thermal and Photochemical reactions) - Rice Herzfeldmechanism. Study of fast reactions-relaxation methods- |
|                          | temperature and pressure jump methods electric and magnetic field<br>jump methods -stopped flow flash photolysis methods and pulse<br>radiolysis.Kinetics of polymerization-free radical, cationic,anionic        |
| <b>D</b> ( 1 1           | polymerization .                                                                                                                                                                                                  |
| Extended<br>Professional | Questions related to the above topics, from various competitive<br>examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others                                                                                   |
| Component (is a          | to be solved                                                                                                                                                                                                      |
| part of internal         | (To be discussed during the Tutorial hours)                                                                                                                                                                       |
| component only,          |                                                                                                                                                                                                                   |
| Not to be included       |                                                                                                                                                                                                                   |
| in the external          |                                                                                                                                                                                                                   |
| examination              |                                                                                                                                                                                                                   |
| question paper)          |                                                                                                                                                                                                                   |
| Skills acquired          | Knowledge, Problem solving, Analytical ability, Professional                                                                                                                                                      |
| from this course         | Competency, Professional Communication and Transferable skills.                                                                                                                                                   |
| Recommended              | 1. J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of                                                                                                                                                  |
| Text                     | Chemistry, 2nd edition, S.L.N.Chand and Co., Jalandhar, 1986.                                                                                                                                                     |
|                          | 2. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th                                                                                                                                                    |
|                          | edition, W.A.BenjaminPublishers, California, 1972.                                                                                                                                                                |
|                          | 3. M.C. Gupta, Statistical Thermodynamics, New Age International,                                                                                                                                                 |
|                          | Pvt. Ltd., New Delhi, 1995.                                                                                                                                                                                       |
|                          | 4. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013.                                                                                                                                         |
|                          | 5. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of                                                                                                                                                      |
|                          | chemical transformation, Macmillan India Ltd, Reprint - 2011.                                                                                                                                                     |
| <b>Reference Books</b>   |                                                                                                                                                                                                                   |
|                          | 1. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A                                                                                                                                                           |
|                          | Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999.                                                                                                                                                        |
|                          | 2.R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas                                                                                                                                                    |
|                          | Publishing, Pvt. Ltd., New Delhi, 1990.                                                                                                                                                                           |
|                          | 3. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry,                                                                                                                                                 |
|                          | Macmillan Publishers, New York, 1974                                                                                                                                                                              |
|                          | 4. K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom                                                                                                                                                     |
|                          | Press,1996.<br>5. Gurdeep Raj, Phase rule, Goel Publishing House, 2011.                                                                                                                                           |
| Website and              | 1. <u>https://nptel.ac.in/courses/104/103/104103112/</u>                                                                                                                                                          |
| e-learning source        | 2. https://bit.ly/3tL3GdN                                                                                                                                                                                         |
| ¥                        |                                                                                                                                                                                                                   |
| Course Learning C        | <b>Dutcomes (for Mapping with POs and PSOs)</b>                                                                                                                                                                   |

Students will be able:

CO1: To explain the classical and statistical concepts of thermodynamics.

CO2: To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions.

**CO3**: To discuss the various thermodynamic and kinetic determination.

**CO4**: To evaluate the thermodynamic methods for real gases ad mixtures. **CO5**:To compare the theories of reactions rates and fast reactions.

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1        | S   | S   | S   | S   | М   | S   | S          | S   | S   | М    |
| CO 2        | М   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 3        | S   | S   | M   | S   | S   | S   | S          | M   | S   | S    |
| <b>CO 4</b> | Μ   | S   | S   | S   | S   | Μ   | S          | S   | S   | S    |
| CO 5        | Μ   | S   | Μ   | S   | S   | М   | S          | М   | S   | S    |

### **CO-PO Mapping (Course Articulation Matrix)**

3 – Strong, 2 – Medium, 1 - Low

#### Level of Correlation between PSO's and CO's

| CO /PO                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| C01                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| CO5                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| Title of the             | INORGA                                                            | NIC CHE       | MIS   | TRY PRA      | CTI        | CAL                           |                                       |  |
|--------------------------|-------------------------------------------------------------------|---------------|-------|--------------|------------|-------------------------------|---------------------------------------|--|
| Course                   | In control                                                        |               |       |              |            |                               |                                       |  |
| Paper No.                | Core VI                                                           |               |       |              |            |                               |                                       |  |
| Category                 | Core                                                              | Year          | Ι     | Credits      | 4          | Course                        |                                       |  |
|                          |                                                                   | Semester      | II    |              |            | Code                          |                                       |  |
| Instructional            | Lecture                                                           | Tutorial      | La    | b Practice   | I          | Total                         |                                       |  |
| hours per week           | -                                                                 | 1             | 4     |              |            | 5                             |                                       |  |
| Prerequisites            | Basic pri                                                         | nciples of (  | Juali | itative ana  | lysis      | 5                             |                                       |  |
| <b>Objectives of the</b> |                                                                   |               |       |              |            |                               | an analytical tool                    |  |
| course                   | for the qu                                                        | antitative es | stima | tion of ion  | IS.        |                               |                                       |  |
|                          | To recall                                                         | the principl  | e and | l theory in  | prep       | aring standard                | l solutions.                          |  |
|                          | To train t                                                        | he students   | for   | improving    | their      | skill in estim                | nating the amount                     |  |
|                          |                                                                   | urately pro   |       |              |            |                               | -                                     |  |
|                          | To estima                                                         | ite metal ion | ns, p | resent in th | ne gi      | ven solution a                | ccurately without                     |  |
|                          | using inst                                                        |               |       |              |            |                               |                                       |  |
|                          |                                                                   |               |       | · 1          |            |                               | xture accurately.                     |  |
| <b>Course Outline</b>    |                                                                   |               |       |              |            |                               | a mixture of four                     |  |
|                          |                                                                   | ontaining tw  | vo co | mmon cat     | ions       | and two rare of               | cations.Cations to                    |  |
| Unit I                   | be tested.                                                        |               | 1     | 1 101        |            |                               |                                       |  |
| Compulsory               | Group-I: W, Tl and Pb.Group-II: Se, Te, Mo, Cu, Bi and Cd.        |               |       |              |            |                               |                                       |  |
|                          | Group-II                                                          | -             |       |              |            |                               |                                       |  |
|                          | Group-III                                                         |               |       | , V, Cr, Fe  |            | 1                             |                                       |  |
|                          | Group-IV : Zn, Ni, Co and Mn.                                     |               |       |              |            |                               |                                       |  |
|                          | Group-V: Ca, Ba and Sr.Group-VI: Li and Mg.                       |               |       |              |            |                               |                                       |  |
|                          | UNIT-II: Preparation of metal complexes: Preparation of inorganic |               |       |              |            |                               |                                       |  |
| Unit II and III          | complexe                                                          | -             | UII U | i metai e    | omb        |                               | aton of morganic                      |  |
| Choose any three         | -                                                                 | tion of trist | hiou  | reacopper(   | Dsul       | phate                         |                                       |  |
|                          |                                                                   | ation of pote |       |              |            |                               |                                       |  |
|                          |                                                                   | tion of tetra |       |              |            |                               |                                       |  |
|                          | -                                                                 | ation of Rein |       | ·            | ,          |                               |                                       |  |
|                          | e. Prepara                                                        | tion of hexa  | athio | ureacoppe    | r(I) c     | hloridedihydra                | ate                                   |  |
|                          | 1                                                                 |               |       |              |            | e diaquachrom                 | ate(III)                              |  |
|                          | 0 1                                                               | ation of sodi |       |              |            |                               |                                       |  |
|                          |                                                                   | ation of hex  |       | ,            |            | rate                          |                                       |  |
|                          |                                                                   | : Complex     |       |              |            |                               |                                       |  |
|                          |                                                                   | ·             |       | , U          |            | , and calcium.                |                                       |  |
|                          |                                                                   |               | ure o | of metal ion | ns-pl      | H control, mas                | king and de-                          |  |
|                          |                                                                   | ng agents.    |       | m and las    | 1 <b>.</b> | minture (all                  | control)                              |  |
|                          |                                                                   |               |       |              |            | a mixture (pH esence of iron. | · · · · · · · · · · · · · · · · · · · |  |
|                          |                                                                   | ination of n  | -     |              | -          |                               |                                       |  |
| <b>.</b>                 |                                                                   |               |       | -            |            |                               |                                       |  |
| Extended                 |                                                                   |               |       |              |            | m various con                 |                                       |  |
| Professional             |                                                                   |               | TR    | B / NET/ U   | JGC-       | CSIR / GATE                   | E /TNPSC others                       |  |
| Component (is a          | to be solv                                                        |               | 1     | T            | 1          | )                             |                                       |  |
| part of internal         | (10  be  d)                                                       | scussed duri  | ng tl | ne Lutorial  | nou        | rs)                           |                                       |  |
| component only,          |                                                                   |               |       |              |            |                               |                                       |  |
| Not to be included       |                                                                   |               |       |              |            |                               |                                       |  |

| Knowledge, Problem solving, Analytical ability, Professional                 |
|------------------------------------------------------------------------------|
| Competency, Professional Communication and Transferable skills.              |
| 1. A. JeyaRajendran, Microanalytical Techniques in Chemistry:                |
| Inorganic Qualitative Analysis, United global publishers, 2021.              |
| 2. V. V. Ramanujam, Inorganic Semimicro Qualitative Analysis;                |
| 3rded., The National Publishing Company, Chennai, 1974.                      |
| 3. Vogel's Text book of Inorganic Qualitative Analysis, 4thed., ELBS,        |
| London.                                                                      |
| 1. G. Pass, and H. Sutcliffe, <i>Practical Inorganic Chemistry</i> ; Chapman |
| Hall, 1965.                                                                  |
| 2. W. G. Palmer, Experimental Inorganic Chemistry; Cambridge                 |
| University Press, 1954.                                                      |
|                                                                              |
|                                                                              |
|                                                                              |

#### **Course Learning Outcomes (for Mapping with POs and PSOs)** Students will be able:

**CO1**: To identify the anions and cations present in a mixture of salts.

**CO2**: To apply the principles of semi micro qualitative analysis to categorize acid radicals and basic radicals.

CO3: To acquire the qualitative analytical skills by selecting suitable confirmatory tests and spot tests.

**CO4**: To choose the appropriate chemical reagents for the detection of anions and cations. **CO5**:To synthesize coordination compounds in good quality.

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1 | S   | S   | S   | S   | М   | S   | S          | S   | S   | Μ    |
| CO 2 | M   | S   | S   | S   | S   | М   | S          | S   | S   | S    |
| CO 3 | S   | S   | M   | S   | S   | S   | S          | M   | S   | S    |
| CO 4 | М   | S   | S   | S   | S   | М   | S          | S   | S   | S    |
| CO 5 | М   | S   | Μ   | S   | S   | М   | S          | М   | S   | S    |

## **CO-PO Mapping (Course Articulation Matrix)**

| СО /РО                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| CO1                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| CO5                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

# Level of Correlation between PSO's and CO's

| Title of the<br>Course | MEDICIN                                                                                                                                               | AL CHEMIS                                                                                                                       | ΓRY     |                                       |        |                  |              |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------|--------|------------------|--------------|--|--|
| Paper No.              | Elective III                                                                                                                                          | -                                                                                                                               |         |                                       |        |                  |              |  |  |
| Category               | Elective                                                                                                                                              | Year                                                                                                                            | Ι       | Credits                               | 4      | Course           |              |  |  |
|                        |                                                                                                                                                       | Semester                                                                                                                        | II      |                                       |        | Code             |              |  |  |
| Instructiona           | Lecture                                                                                                                                               | Tutorial                                                                                                                        | Lab     | Practice                              |        | Total            |              |  |  |
| l hours per            | 4                                                                                                                                                     | 1                                                                                                                               | -       |                                       |        | 5                |              |  |  |
| week                   |                                                                                                                                                       |                                                                                                                                 |         |                                       |        |                  |              |  |  |
| Prerequisite           | Basic know                                                                                                                                            | ledge of medi                                                                                                                   | cinal o | chemistry                             |        |                  |              |  |  |
| S                      |                                                                                                                                                       | 8                                                                                                                               |         | v                                     |        |                  |              |  |  |
| Objectives             | To study the                                                                                                                                          | e chemistry bel                                                                                                                 | hind th | e developm                            | ent of | pharmaceutica    | l materials. |  |  |
| of the course          |                                                                                                                                                       | wledge on me                                                                                                                    |         |                                       |        |                  |              |  |  |
|                        |                                                                                                                                                       | nd the need of                                                                                                                  |         |                                       |        | •                |              |  |  |
|                        |                                                                                                                                                       |                                                                                                                                 |         |                                       | 0      | tic agents and   | treatment of |  |  |
|                        | diabetes.                                                                                                                                             |                                                                                                                                 |         |                                       |        | 8                |              |  |  |
|                        |                                                                                                                                                       | and apply the a                                                                                                                 | action  | of various a                          | ntibio | tics.            |              |  |  |
| Course                 |                                                                                                                                                       |                                                                                                                                 |         |                                       |        | uction, target   | s, Agonist.  |  |  |
| Outline                |                                                                                                                                                       |                                                                                                                                 |         | -                                     |        |                  |              |  |  |
| outilit                | antagonist, partial agonist.Receptors, Receptor types, Theories of Drug – receptor interaction, Drug synergism, Drug resistance, physicochemical      |                                                                                                                                 |         |                                       |        |                  |              |  |  |
|                        | factors influencing drug action.                                                                                                                      |                                                                                                                                 |         |                                       |        |                  |              |  |  |
|                        | UNIT-II: Antibiotics: Introduction, Targets of antibiotics action,                                                                                    |                                                                                                                                 |         |                                       |        |                  |              |  |  |
|                        | classification of antibiotics, enzyme-based mechanism of action, SAR of                                                                               |                                                                                                                                 |         |                                       |        |                  |              |  |  |
|                        | peniclins and tetracyclins, clinical application of penicillins,                                                                                      |                                                                                                                                 |         |                                       |        |                  |              |  |  |
|                        | cephalosporin.Current trends in antibiotic therapy.                                                                                                   |                                                                                                                                 |         |                                       |        |                  |              |  |  |
|                        | <b>UNIT-III: Antihypertensive agents and diuretics:</b> Classification of                                                                             |                                                                                                                                 |         |                                       |        |                  |              |  |  |
|                        | cardiovascular agents, introduction to hypertension, etiology, types,                                                                                 |                                                                                                                                 |         |                                       |        |                  |              |  |  |
|                        | classification of antihypertensive agents, classification and mechanism of                                                                            |                                                                                                                                 |         |                                       |        |                  |              |  |  |
|                        |                                                                                                                                                       |                                                                                                                                 |         |                                       |        |                  |              |  |  |
|                        |                                                                                                                                                       | ction of diuretics, Furosemide, Hydrochlorothiazide, Amiloride.<br>NIT-IV:Analgesics, Antipyretics and Anti-inflammatory Drugs: |         |                                       |        |                  |              |  |  |
|                        |                                                                                                                                                       | 0                                                                                                                               |         |                                       |        | fication and m   |              |  |  |
|                        |                                                                                                                                                       |                                                                                                                                 |         |                                       |        | naproxen, in     |              |  |  |
|                        |                                                                                                                                                       |                                                                                                                                 |         |                                       |        |                  |              |  |  |
|                        | phenylbutazone and meperidine. Medicinal Chemistry of Antidiabetic Agents<br>Introduction, Types of diabetics, Drugs used for the treatment, chemical |                                                                                                                                 |         |                                       |        |                  |              |  |  |
|                        | classification, Mechanism of action, Treatment of diabetic mellitus.                                                                                  |                                                                                                                                 |         |                                       |        |                  |              |  |  |
|                        |                                                                                                                                                       | of insulin, sulfo                                                                                                               |         | · · · · · · · · · · · · · · · · · · · |        |                  |              |  |  |
|                        | -                                                                                                                                                     |                                                                                                                                 | -       |                                       | stem:  | Introduction to  | o Avurveda.  |  |  |
|                        |                                                                                                                                                       |                                                                                                                                 |         | -                                     |        | Systems and      | -            |  |  |
|                        |                                                                                                                                                       |                                                                                                                                 |         |                                       |        | tioned in ancie  |              |  |  |
|                        |                                                                                                                                                       |                                                                                                                                 |         |                                       |        | nla, Shatavar    |              |  |  |
|                        |                                                                                                                                                       | -                                                                                                                               |         |                                       | -      | Plants - AYUS    |              |  |  |
|                        |                                                                                                                                                       | -                                                                                                                               | -       |                                       |        | als, - Case S    |              |  |  |
|                        |                                                                                                                                                       | icts of Neem, A                                                                                                                 |         |                                       |        |                  | -            |  |  |
| Extended               |                                                                                                                                                       |                                                                                                                                 |         |                                       |        | s competitive ex | xaminations  |  |  |
| Professional           | -                                                                                                                                                     |                                                                                                                                 |         | -                                     |        | others to be so  |              |  |  |
| Component              |                                                                                                                                                       | ussed during th                                                                                                                 |         |                                       | -      |                  |              |  |  |
| (is a part of          |                                                                                                                                                       |                                                                                                                                 |         |                                       |        |                  |              |  |  |
| internal               |                                                                                                                                                       |                                                                                                                                 |         |                                       |        |                  |              |  |  |
| component              |                                                                                                                                                       |                                                                                                                                 |         |                                       |        |                  |              |  |  |
| only, Not to           |                                                                                                                                                       |                                                                                                                                 |         |                                       |        |                  |              |  |  |
| be included            |                                                                                                                                                       |                                                                                                                                 |         |                                       |        |                  |              |  |  |
|                        |                                                                                                                                                       |                                                                                                                                 |         |                                       |        |                  |              |  |  |

|                 | 1                                                                                                    |
|-----------------|------------------------------------------------------------------------------------------------------|
| in the          |                                                                                                      |
| external        |                                                                                                      |
| examination     |                                                                                                      |
| question        |                                                                                                      |
| paper)          |                                                                                                      |
| Skills          | Knowledge, Problem solving, Analytical ability, Professional Competency,                             |
| acquired        | Professional Communication and Transferable skills.                                                  |
| from this       |                                                                                                      |
| course          |                                                                                                      |
| Recommend       | 1. Wilson and Gisvold's textbook of organic medicinal and pharmaceutical                             |
| ed Text         | chemistry,                                                                                           |
|                 | 2. Wilson, Charles Owens: Beale, John Marlowe; Block, John H, Lipincott William, 12th edition, 2011. |
|                 | 3. Graham L. Patrick, An Introduction to Medicinal Chemistry, 5th edition,                           |
|                 | Oxford University Press, 2013.                                                                       |
|                 | JayashreeGhosh,AtextbookofPharmaceuticalChemistry,S.ChandandCo.Lt d,1999,1999 edn.                   |
|                 | 4. O.LeRoy, Natural and synthetic organic medicinal compounds, Ealemi, 1976.                         |
|                 | 5.S.AshutoshKar,MedicinalChemistry, WileyEasternLimited,                                             |
|                 | NewDelhi,1993,New edn.                                                                               |
|                 |                                                                                                      |
|                 | 6. H. Panda.The Complete Technology Book on Herbal Beauty Products                                   |
|                 | with Formulations and Processes. NIIR Project Consultancy Services.                                  |
|                 | 2005                                                                                                 |
|                 | 7. Khadabadi SS, Deore SL, Baviskar BA. Experimental                                                 |
|                 | Phytopharmacognosy.Nirali Prakashan, Pune. 1st Edition, 2019.                                        |
|                 | 8. Deore SL, Khadabadi SS, BaviskarBA.Pharmacognosy and                                              |
|                 | Phytochemistry-A Comprehensive Approach. PharmMed Press,                                             |
|                 | Hyderabad. 2nd Edition, 2018                                                                         |
| Reference       | 1. Foye's Princles of Medicinal Chemistry, Lipincott Williams, Seventh                               |
| Books           | Edition, 2012                                                                                        |
|                 | 2. Burger's Medicinal Chemistry, Drug Discovery and Development,                                     |
|                 | Donald J. Abraham, David P. Rotella, Alfred Burger, Academic press,                                  |
|                 | 2010.                                                                                                |
|                 | 3. WilsonandGisvold'sTextbookofOrganicMedicinalandPharmaceuticalChe                                  |
|                 | mistry, John M.Beale Jrand John M. Block, Wolters Kluwer, 2011, 12 <sup>th</sup> edn.                |
|                 | <ol> <li>P.Parimoo,ATextbookofMedicalChemistry,NewDelhi:CBSPublishers.199</li> <li>5.</li> </ol>     |
|                 | 5. S.Ramakrishnan,                                                                                   |
|                 | K.G.PrasannanandR.Rajan,TextbookofMedicalBiochemistry,Hyderaba                                       |
|                 | d: OrientLongman.3 <sup>rd</sup> edition,2001.                                                       |
| Website and     | 1. https://www.ncbi.nlm.nih.gov/books/NBK482447/                                                     |
| e-learning      | 2. https://training.seer.cancer.gov/treatment/chemotherapy/types.html                                |
| source          | 3. https://www.classcentral.com/course/swayam-medicinal-chemistry-12908                              |
| Course Learn    | ing Outcomes (for Mapping with POs and PSOs)                                                         |
| Students will b |                                                                                                      |
| CO1: Predict a  | a drugs properties based on its structure.                                                           |
|                 |                                                                                                      |

**CO2**: Describe the factors that affect its absorption, distribution, metabolism, and excretion, and hence the considerations to be made in drug design.

CO3: Explain the relationship between drug's chemical structure and its therapeutic properties.

CO4: Designed to give the knowledge of different theories of drug actions at molecularlevel.

**CO5**:To identify different targets for the development of new drugs for the treatment of infectious and GIT.

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1        | S   | S   | S   | S   | М   | S   | S          | S   | S   | М    |
| CO 2        | М   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 3        | S   | S   | М   | S   | S   | S   | S          | M   | S   | S    |
| <b>CO 4</b> | М   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 5        | Μ   | S   | М   | S   | S   | М   | S          | Μ   | S   | S    |

**CO-PO Mapping (Course Articulation Matrix)** 

3 – Strong, 2 – Medium, 1 - Low

#### Level of Correlation between PSO's and CO's

| СО /РО                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| CO1                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| CO5                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| Title of the             | GREEN                                                                                                                                     | CHEMIST            | RY       |                                 |        |                 |                                    |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|---------------------------------|--------|-----------------|------------------------------------|--|--|
| Course                   |                                                                                                                                           |                    |          |                                 |        |                 |                                    |  |  |
| Paper No.                | Elective 1                                                                                                                                | Π                  |          |                                 |        |                 |                                    |  |  |
| Category                 | Elective                                                                                                                                  | Year               | Ι        | Credits                         | 4      | Course          |                                    |  |  |
|                          |                                                                                                                                           | Semester           | II       |                                 |        | Code            |                                    |  |  |
| Instructional            | Lecture                                                                                                                                   | Tutorial           | La       | b Practice                      |        | Total           |                                    |  |  |
| hours per week           | 4                                                                                                                                         | 1                  | -        |                                 |        | 5               |                                    |  |  |
| Prerequisites            | Basic know                                                                                                                                | owledge of         | gene     | ral chemis                      | stry   |                 |                                    |  |  |
| <b>Objectives of the</b> |                                                                                                                                           |                    | the      | principl                        |        | of gree         | 2                                  |  |  |
| course                   | To propose green solutions for chemical energy storage and conversion.                                                                    |                    |          |                                 |        |                 |                                    |  |  |
|                          |                                                                                                                                           |                    | ions     | for indust                      | trial  | production of   | Petroleum and                      |  |  |
|                          | Petrocher                                                                                                                                 |                    |          |                                 |        |                 |                                    |  |  |
|                          | -                                                                                                                                         | solutions fo       | r pol    | llution pre                     | venti  | ion in Industri | al chemical and                    |  |  |
|                          | fuel                                                                                                                                      |                    |          |                                 | ~      |                 |                                    |  |  |
|                          |                                                                                                                                           |                    |          |                                 |        | ping industries |                                    |  |  |
|                          | -                                                                                                                                         | -                  |          |                                 | lstr18 | al production   | of Surfactants,                    |  |  |
|                          | Organic a                                                                                                                                 | nd inorgani        | c che    | emicals.                        |        |                 |                                    |  |  |
|                          |                                                                                                                                           | T , 1              | <u>.</u> | 1.6                             | CI     |                 |                                    |  |  |
| <b>Course Outline</b>    |                                                                                                                                           |                    |          |                                 |        | -               | Green Chemistry.                   |  |  |
|                          | Limitations/ of Green Chemistry. Chemical accidents, terminologies,                                                                       |                    |          |                                 |        |                 |                                    |  |  |
|                          | International green chemistry organizations and Twelve principles of<br>Green Chemistry with examples                                     |                    |          |                                 |        |                 |                                    |  |  |
|                          | Green Chemistry with examples.                                                                                                            |                    |          |                                 |        |                 |                                    |  |  |
|                          | UNIT-II: Choice of starting materials, reagents, catalysts and solvents                                                                   |                    |          |                                 |        |                 |                                    |  |  |
|                          | in detail, Green chemistry in day today life. Designing green synthesis-                                                                  |                    |          |                                 |        |                 |                                    |  |  |
|                          | green reagents: dimethyl carbonate.Green solvents: Water,Ionic liquids-                                                                   |                    |          |                                 |        |                 |                                    |  |  |
|                          | criteria, general methods of preparation, effect on organic                                                                               |                    |          |                                 |        |                 |                                    |  |  |
|                          | reaction.Supercritical carbon dioxide- properties, advantages,                                                                            |                    |          |                                 |        |                 |                                    |  |  |
|                          |                                                                                                                                           | 1                  |          |                                 |        | 1 1             | n Super Critical                   |  |  |
|                          |                                                                                                                                           |                    |          | -                               | -      |                 | n Super Critical                   |  |  |
|                          |                                                                                                                                           | en synthesis       |          | -                               |        |                 | A 1 4 1 4                          |  |  |
|                          | UNIT-III: Environmental pollution, Green Catalysis-Acid catalysts,                                                                        |                    |          |                                 |        |                 |                                    |  |  |
|                          | Oxidation catalysts, Basic catalysts, Polymer supported catalysts-Poly<br>styrene aluminum chloride, polymeric super acid catalysts, Poly |                    |          |                                 |        |                 |                                    |  |  |
|                          | -                                                                                                                                         |                    |          |                                 | meric  | e super acid    | catalysis, Poly                    |  |  |
|                          |                                                                                                                                           | l photosensi       |          |                                 |        | an aunthoria    | avidation vaina                    |  |  |
|                          |                                                                                                                                           |                    |          |                                 |        | esterification, | oxidation using                    |  |  |
|                          |                                                                                                                                           | peroxide           |          |                                 |        |                 | saponification,<br>ement reaction. |  |  |
|                          |                                                                                                                                           | ons in organ       | -        |                                 | rcat   | non, Displace   |                                    |  |  |
|                          |                                                                                                                                           | -                  |          |                                 | 1      |                 |                                    |  |  |
|                          | UNIT-V:                                                                                                                                   |                    |          | e induce                        |        |                 | sis-Introduction,                  |  |  |
|                          |                                                                                                                                           | ntation, Pr        |          |                                 |        |                 | nochemistry –                      |  |  |
|                          |                                                                                                                                           |                    |          | -                               | / -    | onra sound      | assisted green                     |  |  |
| Extended                 |                                                                                                                                           | and Applic         |          |                                 | fra    | m various com   | natitiva                           |  |  |
| Professional             |                                                                                                                                           |                    |          |                                 |        |                 | /TNPSC others                      |  |  |
| Component (is a          | to be solv                                                                                                                                |                    |          | $\mathbf{J}$ ine $\mathbf{I}$ ( | JUU-   | USIK / UATE     | in so uners                        |  |  |
| part of internal         |                                                                                                                                           | ed<br>scussed duri | ing +1   | e Tutorial                      | hour   | ·e)             |                                    |  |  |
| component only,          |                                                                                                                                           | scussed dur        | ing ti   |                                 | noul   |                 |                                    |  |  |
| Not to be included       |                                                                                                                                           |                    |          |                                 |        |                 |                                    |  |  |
| in the external          |                                                                                                                                           |                    |          |                                 |        |                 |                                    |  |  |
| m me external            | I                                                                                                                                         |                    |          |                                 |        |                 |                                    |  |  |

| examination            |                                                                                   |
|------------------------|-----------------------------------------------------------------------------------|
| question paper)        |                                                                                   |
| Skills acquired        | Knowledge, Problem solving, Analytical ability, Professional                      |
| from this course       | Competency, Professional Communication and Transferable skills.                   |
| Recommended            | 1. Ahluwalia, V.K. and Kidwai, M.R. New Trends in Green Chemistry,                |
| Text                   | Anamalaya Publishers, 2005.                                                       |
|                        | 2. W. L. McCabe, J.C. Smith and P. Harriott, Unit Operations of                   |
|                        | Chemical Engineering, 7 <sup>th</sup> edition, McGraw-Hill,                       |
|                        | NewDelhi,2005.                                                                    |
|                        | 3. J. M. Swan and D. St. C. Black, Organometallics in Organic                     |
|                        | Synthesis, Chapman Hall, 1974.                                                    |
|                        | 4. V. K. Ahluwalia and R. Aggarwal, Organic Synthesis: Special                    |
|                        | Techniques, Narosa Publishing House, New Delhi,2001.                              |
|                        | 5. A. K. De, Environmental Chemistry, New Age Publications,                       |
|                        | 2017.                                                                             |
| <b>Reference Books</b> | 1. Anastas, P.T. and Warner, J.K. Oxford Green Chemistry -Theory and              |
|                        | Practical, University Press, 1998                                                 |
|                        | 2. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker, 2001             |
|                        | 3. Cann, M.C. and Connely, M.E. Real-World Cases in Green Chemistry,              |
|                        | American Chemical Society, Washington, 2000                                       |
|                        | 4. Ryan, M.A. and Tinnesand, M., Introduction to Green Chemistry,                 |
|                        | American Chemical Society Washington, 2002.                                       |
|                        | 5. Chandrakanta Bandyopadhyay, An Insight into Green Chemistry,                   |
|                        | Books and Allied (P) Ltd, 2019.                                                   |
| Website and            | 2. <u>https://www.organic-chemistry.org/</u>                                      |
| e-learning source      | 3. <u>https://www.studyorgo.com/summary.php</u>                                   |
|                        | $\mathbf{N}$ (C $\mathbf{M}$ : '(L $\mathbf{D}$ ) L $\mathbf{D}$ ( $\mathbf{O}$ ) |

Students will be able:

**CO1**: To recall the basic chemical techniques used in conventional industrial preparations and in green innovations.

CO2: To understand the various techniques used in chemical industries and in laboratory.

**CO3**: To compare the advantages of organic reactions assisted by renewable energy sources and non-renewable energy sources.

CO4: To apply the principles of PTC, ionic liquid, microwave and ultrasonic assisted organicsynthesis.

**CO5**: To design and synthesize new organic compounds by green methods.

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1        | S   | S   | S   | S   | M   | S   | S          | S   | S   | М    |
| CO 2        | M   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 3        | S   | S   | M   | S   | S   | S   | S          | M   | S   | S    |
| <b>CO 4</b> | М   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 5        | Μ   | S   | М   | S   | S   | Μ   | S          | Μ   | S   | S    |

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

| СО /РО                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| C01                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| C05                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| Title of the             | <b>BIO-INC</b>                                             | RGANIC                                        | CHE    | MISTRY      |       |                  |                                      |  |  |  |
|--------------------------|------------------------------------------------------------|-----------------------------------------------|--------|-------------|-------|------------------|--------------------------------------|--|--|--|
| Course                   |                                                            |                                               |        |             |       |                  |                                      |  |  |  |
| Paper No.                | Elective                                                   | IV                                            |        |             |       |                  |                                      |  |  |  |
| Category                 | Elective                                                   | Year                                          | Ι      | Credits     | 4     | Course           |                                      |  |  |  |
|                          |                                                            | Semester                                      | II     |             |       | Code             |                                      |  |  |  |
| Instructional            | Lecture                                                    | Tutorial                                      | Lal    | b Practice  |       | Total            |                                      |  |  |  |
| hours per week           | 4                                                          | 1                                             | -      |             |       | 5                |                                      |  |  |  |
| Prerequisites            | Basic kn                                                   | Basic knowledge of chemistry                  |        |             |       |                  |                                      |  |  |  |
| <b>Objectives of the</b> | To unders                                                  | To understand the role of trace elements.     |        |             |       |                  |                                      |  |  |  |
| course                   | To understand the biological significance of iron, sulpur. |                                               |        |             |       |                  |                                      |  |  |  |
|                          | To study                                                   | To study the toxicity of metals in medicines. |        |             |       |                  |                                      |  |  |  |
|                          |                                                            | nowledge c                                    |        |             |       |                  |                                      |  |  |  |
|                          |                                                            | s on various                                  |        |             |       | -                |                                      |  |  |  |
| <b>Course Outline</b>    |                                                            |                                               |        |             |       |                  | t and storage of                     |  |  |  |
|                          | metal ion                                                  | s: Ferritin, 7                                | Frans  | ferrin and  | sido  | rphores; Sodiu   | m and potassium                      |  |  |  |
|                          | transport,                                                 | Calcium si                                    | gnall  | ing protein | ns.M  | letalloenzymes:  | Zinc enzymes-                        |  |  |  |
|                          | carboxyp                                                   | eptidase a                                    | nd o   | carbonic    | anhy  | drase. Ironen    | zymes-catalase,                      |  |  |  |
|                          | peroxidas                                                  | e. Coppere                                    | enzyn  | nes – su    | pero  | xide dismutase   | e, Plastocyanin,                     |  |  |  |
|                          | -                                                          |                                               | -      |             | -     | - Vitamin-B12    | -                                    |  |  |  |
|                          |                                                            |                                               |        |             |       |                  | lemoglobin and                       |  |  |  |
|                          |                                                            | _                                             |        |             |       | -                | Binding of CO,                       |  |  |  |
|                          |                                                            |                                               |        |             |       |                  | l redox system:                      |  |  |  |
|                          |                                                            |                                               |        |             | •     | U                | tochrome P-450.                      |  |  |  |
|                          | -                                                          |                                               |        | •           |       | •                | nin. Iron-sulphur                    |  |  |  |
|                          |                                                            |                                               |        | -           |       | ructure and clas | -                                    |  |  |  |
|                          | -                                                          |                                               |        |             |       |                  |                                      |  |  |  |
|                          |                                                            |                                               |        |             |       |                  | nitrogen fixing                      |  |  |  |
|                          |                                                            |                                               |        |             |       |                  | s in nitrogenase-<br>al complexes of |  |  |  |
|                          |                                                            |                                               |        |             |       |                  | and reduction of                     |  |  |  |
|                          | -                                                          | -                                             |        |             |       |                  | nd photosystem-                      |  |  |  |
|                          | -                                                          | hylls struct                                  |        | •           | -     | notosystem i a   | and photosystem                      |  |  |  |
|                          |                                                            |                                               |        |             |       | oxicity of Hg.   | Cd, Zn, Pb, As,                      |  |  |  |
|                          |                                                            |                                               |        |             |       | n-Based Dia      |                                      |  |  |  |
|                          | -                                                          |                                               | -      |             |       | ts.Chelation tl  | •                                    |  |  |  |
|                          | treatment                                                  | •                                             |        | Agents:     |       |                  | aging Agents;                        |  |  |  |
|                          |                                                            | ım MRI Im                                     | agin   | g Agents.   | tem   | perature and c   | ritical magnetic                     |  |  |  |
|                          | Field.                                                     |                                               |        |             |       |                  |                                      |  |  |  |
|                          | UNIT-V:F                                                   | Enzymes -l                                    | [ntroc | luction a   | nd p  | properties -non  | menclature and                       |  |  |  |
|                          |                                                            |                                               |        |             |       |                  | vation and the                       |  |  |  |
|                          |                                                            |                                               |        |             |       |                  | Effect of pH,                        |  |  |  |
|                          | -                                                          | •                                             | ne re  | actions. Fa | actor | s contributing   | to the efficiency                    |  |  |  |
|                          | of enzym                                                   | e.                                            |        |             |       |                  |                                      |  |  |  |

| Extended               | Questions related to the above topics, from various competitive            |
|------------------------|----------------------------------------------------------------------------|
| Professional           | examinations UPSC / TRB / NET/ UGC-CSIR / GATE / TNPSC others              |
| Component (is a        | to be solved                                                               |
| part of internal       | (To be discussed during the Tutorial hours)                                |
| component only,        |                                                                            |
| Not to be included     |                                                                            |
| in the external        |                                                                            |
| examination            |                                                                            |
| question paper)        |                                                                            |
| Skills acquired        | Knowledge, Problem solving, Analytical ability, Professional               |
| from this course       | Competency, Professional Communication and Transferable skills.            |
| Recommended            | 1. Williams, D.R. – Introdution to Bioinorganic chemistry.                 |
| Text                   | 2. F.M. Fiabre and D.R. Williams– The Principles of Bioinorganic           |
|                        | Chemistry, RoyolSoceity of Chemistry, Monograph for Teachers-31            |
|                        | 3. K.F. Purcell and Kotz., Inorganic chemistry, WB Saunders Co.,           |
|                        | USA.                                                                       |
|                        | 4. G.N. Mugherjea and Arabinda Das, Elements of Bioinorganic               |
|                        | Chemistry - 1993.                                                          |
|                        | 5. R. Gopalan, V. Ramalingam, Concise Coordination Chemistry,              |
|                        | S. Chand, <b>2001</b> .                                                    |
| <b>Reference Books</b> | 1. M.Satake and Y.Mido, Bioinorganic Chemistry- Discovery                  |
|                        | Publishing House, New Delhi (1996)                                         |
|                        | 2. M.N. Hughes, 1982, The Inorganic Chemistry of Biological                |
|                        | processes, II Edition, Wiley London.                                       |
|                        | 3. R. W. Hay, Bio Inorganic Chemistry, Ellis Horwood, 1987.                |
|                        | 4. R. M. Roat-Malone, Bio Inorganic Chemistry, John Wiley, 2002.           |
|                        | 5. T. M. Loehr, Iron carriers and Iron proteins, VCH, 1989.                |
| Website and            | 1. <u>https://www.pdfdrive.com/instant-notes-in-inorganic-chemistry-</u>   |
| e-learning source      | the-instant-notes-chemistry-series-d162097454.html                         |
|                        | 2. <u>https://www.pdfdrive.com/shriver-and-atkins-inorganic-chemistry-</u> |
|                        | 5th-edition-d161563417.html                                                |
| Course Learning (      | Jutcomes (for Manning with POs and PSOs)                                   |

Students will be able:

**CO1**: The students will be able to analyses trace elements.

**CO2**: Students will be able to explain the biological redox systems.

**CO3**: Students will gain skill in analyzing the toxicity in metals.

CO4: Students will have experience in diagnosis.

**CO5**:Learn about the nitrogen fixation and photosynthetic mechanism.

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CO 1        | S   | S   | S   | S   | Μ   | S   | S   | S   | S   | М    |
| CO 2        | Μ   | S   | S   | S   | S   | M   | S   | S   | S   | S    |
| CO 3        | S   | S   | M   | S   | S   | S   | S   | M   | S   | S    |
| <b>CO 4</b> | Μ   | S   | S   | S   | S   | Μ   | S   | S   | S   | S    |
| CO 5        | Μ   | S   | Μ   | S   | S   | Μ   | S   | М   | S   | S    |

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

| CO /PO                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| C01                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| CO5                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| Title of the      | MATER                                                                                                     | IAL SCIEN      | ICE        | and Nucle       | ar (  | hemistry          |                                  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------|----------------|------------|-----------------|-------|-------------------|----------------------------------|--|--|
| Course            |                                                                                                           |                | (CL)       | inu i vuere     |       | inclinisti y      |                                  |  |  |
| Paper No.         | Elective                                                                                                  | V              |            |                 |       |                   |                                  |  |  |
| Category          | Elective                                                                                                  | Year           | Ι          | Credits         | 4     | Course            |                                  |  |  |
| Cutegory          | Licenve                                                                                                   | Semester       | II         |                 |       | Code              |                                  |  |  |
| Instructional     | Lecture                                                                                                   | Tutorial       |            | b Practice      |       | Total             |                                  |  |  |
| hours per week    | 4                                                                                                         | 1              |            | JITACHC         |       | 5                 |                                  |  |  |
| Prerequisites     | -                                                                                                         | 1<br>wladge of | -<br>solid | state che       | mist  | -                 |                                  |  |  |
| Objectives of the | Basic knowledge of solid-state chemistry<br>To understand the crystal structure, growth methods and X-ray |                |            |                 |       |                   |                                  |  |  |
| course            |                                                                                                           | scattering.    |            |                 |       |                   |                                  |  |  |
| course            | To explain the optical, dielectric and diffusion properties of crystals.                                  |                |            |                 |       |                   |                                  |  |  |
|                   |                                                                                                           |                |            |                 |       |                   | ctivity materials                |  |  |
|                   | and magn                                                                                                  |                | 10 01      | senneone        | 14010 | is, supercondu    |                                  |  |  |
|                   | 0                                                                                                         |                | s. cla     | ssification     | and   | applications of   | f nanomaterials.                 |  |  |
|                   |                                                                                                           |                |            |                 |       |                   | enewable energy                  |  |  |
|                   | conversio                                                                                                 |                | <u>r</u>   |                 |       |                   |                                  |  |  |
| Course Outline    |                                                                                                           |                | raph       | <b>v:</b> symme | trv - | unit cell and     | Miller indices -                 |  |  |
|                   |                                                                                                           |                |            |                 |       |                   | bace groups - X-                 |  |  |
|                   |                                                                                                           |                |            | -               |       | 0 1 1             | l lattice and its                |  |  |
|                   |                                                                                                           |                |            |                 |       |                   | structure-powder                 |  |  |
|                   |                                                                                                           | -              |            | •               | -     |                   | y maps, neutron                  |  |  |
|                   | -                                                                                                         | n-method ar    | -          |                 |       | C                 |                                  |  |  |
|                   | UNIT-II:                                                                                                  | Crystal g      | rowt       | h method        | ls: N | lucleation-equi   | ilibrium stability               |  |  |
|                   | and meta                                                                                                  | astable stat   | e. S       | ingle crys      | stal  | -Low and hi       | gh temperature,                  |  |  |
|                   | solution g                                                                                                | growth– Ge     | l and      | l sol-gel.      | Crys  | tal growthmeth    | nods-nucleation-                 |  |  |
|                   | equilibriu                                                                                                | m              |            | stabili         | ityan | dmetastablesta    | te.Singlecrystal-                |  |  |
|                   | Lowandh                                                                                                   | ightemperat    | ure, s     | solution gr     | owtl  | n– Gel and sol-   | gel. Melt growth                 |  |  |
|                   | -                                                                                                         |                |            |                 |       |                   | Bridgeman-                       |  |  |
|                   |                                                                                                           |                |            |                 |       | hnique,physica    |                                  |  |  |
|                   |                                                                                                           |                |            | and po          | lariz | ation factor      | - primary and                    |  |  |
|                   |                                                                                                           | v extinctions  |            |                 |       |                   |                                  |  |  |
|                   |                                                                                                           |                |            |                 |       |                   | ion: Solar Cells:                |  |  |
|                   | 0 /                                                                                                       | •              |            | 5               | · · · | · · 1             | kite based. Solar                |  |  |
|                   | 0.                                                                                                        |                |            |                 |       |                   | -sensitized photo                |  |  |
|                   |                                                                                                           |                |            |                 |       |                   | semiconductor                    |  |  |
|                   |                                                                                                           |                |            |                 |       |                   | . Photochemical                  |  |  |
|                   |                                                                                                           |                |            |                 |       |                   | nese based photo                 |  |  |
|                   |                                                                                                           |                |            |                 |       |                   | , Pd and Pt -                    |  |  |
|                   |                                                                                                           | -              |            |                 |       | om alcohol.       | Nuclear win                      |  |  |
|                   |                                                                                                           |                |            |                 |       |                   | - Nuclear spin                   |  |  |
|                   |                                                                                                           |                |            |                 |       | · ·               | for sub-atomic<br>aid Drop Model |  |  |
|                   | -                                                                                                         |                |            |                 |       | -                 | lectron capture;                 |  |  |
|                   |                                                                                                           |                |            |                 |       | •                 | sition, detection                |  |  |
|                   |                                                                                                           |                |            |                 |       |                   | clear emulsion,                  |  |  |
|                   |                                                                                                           |                |            | • •             |       |                   | enkov counters.                  |  |  |
|                   |                                                                                                           |                |            |                 |       |                   | actions, nuclear                 |  |  |
|                   |                                                                                                           |                |            |                 |       | arces: direct rea |                                  |  |  |
|                   |                                                                                                           |                |            | _               | -     |                   |                                  |  |  |
|                   | UNIT-V: Nuclear Chemistry II: Nuclear Reaction types, reaction,                                           |                |            |                 |       |                   |                                  |  |  |

| Extended               | cross section, Q-value, threshold energy, Stellar energy: synthesis of<br>elements, Hydrogen burning, Carbon burning. Photonuclear and<br>Thermo nuclear reactions. Szilard Chalmers reaction. The e, s, r, p and<br>x processes.Nuclear reactors- fast breeder reactors, particle<br>accelerators, cyclotron and synchrotron. Radio analytical methods:<br>Isotope dilution analysis, Radiometric titrations, Radio immuno assay,<br>Neutron activation analysis. |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Professional           | Questions related to the above topics, from various competitive<br>examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others                                                                                                                                                                                                                                                                                                                                    |
| Component (is a        | to be solved                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| part of internal       | (To be discussed during the Tutorial hours)                                                                                                                                                                                                                                                                                                                                                                                                                        |
| component only,        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Not to be included     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| in the external        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| examination            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| question paper)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Skills acquired        | Knowledge, Problem solving, Analytical ability, Professional                                                                                                                                                                                                                                                                                                                                                                                                       |
| from this course       | Competency, Professional Communication and Transferable skills.                                                                                                                                                                                                                                                                                                                                                                                                    |
| Recommended            | 1. S. Mohan and V. Arjunan, Principles of Materials Science, MJP                                                                                                                                                                                                                                                                                                                                                                                                   |
| Text                   | Publishers, 2016.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | 2. Arumugam, Materials Science, Anuradha Publications, 2007.                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        | 3. Giacavazzo et. al., Fundamentals of Crystallography, International                                                                                                                                                                                                                                                                                                                                                                                              |
|                        | Union of Crystallography. Oxford Science Publications, 2010                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | 4. James F. Shackelford and Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.                                                                                                                                                                                                                                                                                                                             |
|                        | 5. Essentials of nuclear chemistry by H.J. Arnikar, Eastern Wiley(1990)                                                                                                                                                                                                                                                                                                                                                                                            |
|                        | 6. Nuclear chemistry by Friedlander and Kennedy, John Wiley and Sons                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | (1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>Reference Books</b> | 1.Suggested Readings 1. M.G. Arora, Solid State Chemistry, Anmol                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        | Publications, New Delhi, 2001.                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        | 2. R.K. Puri and V.K. Babbar, Solid State Physics, S Chand and Company Ltd, 2001.                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | 3. C. Kittel, Solid State Physics, John-Wiley and sons, NY, 1966.                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | 4. H.P. Meyers, Introductory Solid State Physics, Viva Books Private                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | Limited, 1998.                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        | 5. A.R. West, Solid State Chemistry and Applications, John-Wiley and                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | sons, 1987.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | 6. Nuclear radiation detection by Price. Nuclear radiation detectors by                                                                                                                                                                                                                                                                                                                                                                                            |
|                        | S.S. Kapoor and Ramamoorthy, Wiley Eastern (1986).                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Website and            | 1. http://xrayweb.chem.ou.edu/notes/symmetry.html.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| e-learning source      | 2. <u>http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf</u> .                                                                                                                                                                                                                                                                                                                                                                                          |
| Course Learning (      | 3. <u>https://bit.ly/3QyVg2R</u>                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Course Learning (      | Dutcomes (for Mapping with POs and PSOs)                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Students will be abl   | e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>CO1</b> : To unders |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | sund and recan the synthesis and characteristics of crystal                                                                                                                                                                                                                                                                                                                                                                                                        |

CO1: To understand and recall the synthesis and characteristics of crystal structures, semiconductors, magnets, nanomaterials and renewable energy materials.
CO2: To integrate and assess the structure of different materials and their properties.
CO3: To analyse and identify new materials for energy applications.
CO4: To explain the importance of crystal structures, piezoelectric and

pyroelectricmaterials, nanomaterials, hard and soft magnets, superconductors, solar cells, electrodes, LEDuses, structures and synthesis.

CO5:To design and develop new materials with improved property for energy applications.

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1        | S   | S   | S   | S   | М   | S   | S          | S   | S   | М    |
| CO 2        | М   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 3        | S   | S   | М   | S   | S   | S   | S          | M   | S   | S    |
| <b>CO 4</b> | М   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 5        | М   | S   | М   | S   | S   | Μ   | S          | М   | S   | S    |

### **CO-PO Mapping (Course Articulation Matrix)**

3 – Strong, 2 – Medium, 1 - Low

### Level of Correlation between PSO's and CO's

| CO /PO                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| C01                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| C05                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| Title of the      | ORGAN      | IC SYNTH       | ESIS         | S AND PH      | ΙΟΤ      | OCHEMISTR          | XY                         |
|-------------------|------------|----------------|--------------|---------------|----------|--------------------|----------------------------|
| Course            |            |                |              |               |          |                    |                            |
| Paper No.         | Core VI    | [              |              | 1             |          | 1                  |                            |
| Category          | Core       | Year           | II           | Credits       | 4        | Course             |                            |
|                   |            | Semester       | III          |               |          | Code               |                            |
| Instructional     | Lecture    | Tutorial       | Lab Practice |               |          | Total              |                            |
| hours per week    | 4          | 1              | -            |               |          | 5                  |                            |
| Prerequisites     |            | owledge of a   | -            |               |          |                    |                            |
| Objectives of the |            |                |              | -             |          | •                  | keletons and the           |
| course            | -          |                | •            | 1             |          | lative positions   |                            |
|                   | -          | •              | nthe         | tically imp   | oorta    | nt reagents for    | r any successful           |
|                   | organic s  | •              |              | _             |          |                    |                            |
|                   |            |                |              |               | ind i    | dentifying suita   | able synthons to           |
|                   |            | cessful orga   |              | •             |          | <b>.</b> .         |                            |
|                   |            |                |              |               |          | on mechanisms      |                            |
|                   | 10 gain t  | ne knowled     | ge of        | photocher     | mica     | l organic reaction | ons.                       |
| Course Or il      | LINITT T   | Dlarrer        | a            | 0             | <b>C</b> | hasia 10           |                            |
| Course Outline    |            | 0              |              | 0             | •        |                    | ntrol elements:            |
|                   |            | -              | -            | -             |          |                    | npolung concepts           |
|                   |            |                |              |               |          |                    | rotective groups,          |
|                   |            |                |              |               |          |                    | on retrosynthetic          |
|                   |            | s of stereoch  |              |               |          |                    | ergent synthesis,          |
|                   |            |                |              |               |          |                    | nthetic analysis;          |
|                   |            | 0              | •            |               |          |                    | and bifunctional           |
|                   |            | •              |              | •             |          | -                  | n of hydroxyl,             |
|                   |            |                |              |               |          |                    | on of protection           |
|                   |            |                |              |               |          |                    | ments. Functional          |
|                   |            | rations and tr |              |               | oop -    |                    |                            |
|                   |            |                | Ĩ            |               |          |                    |                            |
|                   | UNIT-II    | I: Pericycl    | ic R         | eactions:     | Wo       | odward Hoffm       | nann rules; The            |
|                   |            |                |              |               |          |                    | cloaddition and            |
|                   | retrocycle | paddition re   | actio        | ns; [2+2],    | [2+4     | 4], [4+4, Cation   | nic, anionic, and          |
|                   | 1,3-dipol  | ar cycloadd    | ition        | s. Cheletre   | opic     | reactions.; E      | lectrocyclization          |
|                   |            |                |              |               |          |                    | es and trienes.            |
|                   |            |                |              |               |          |                    | nd (5,5)-carbon            |
|                   | migration  |                |              |               |          | nents. Ionic       |                            |
|                   |            |                |              |               |          | reactions.         | Regioselectivity,          |
|                   | stereosel  | ectivity in po | ericy        | clic reaction | ons.     |                    |                            |
|                   |            |                |              | _             |          |                    |                            |
|                   |            |                |              |               |          |                    | nical excitation:          |
|                   |            |                |              |               |          |                    | onskii diagrams;           |
|                   |            |                | gs;          | energy tr     | ansf     | er processes;      | Stern Volmer               |
|                   | equation.  |                |              |               |          |                    |                            |
|                   |            |                |              | •             |          |                    | triplets; Norrish          |
|                   |            | • •            | eavag        | ge reactior   | ıs; p    | hoto reductions    | s; Paterno-Buchi           |
|                   | reactions  |                |              |               |          | r Di s i           |                            |
|                   |            |                |              |               |          |                    | nistry of $\alpha,\beta$ - |
|                   | unsaturat  | ed ketones;    | C1S-         | trans isor    | neris    | ation. Photon      | energy transfer            |

| Extended<br>Professional<br>Component (is a<br>part of internal<br>component only,<br>Not to be included<br>in the external<br>examination | reactions, Photo cycloadditions, Photochemistry of aromatic<br>compounds; photochemical rearrangements; photo-stationery state; di-<br>$\pi$ -methane rearrangement; Reaction of conjugated cyclohexadienone to<br>3,4-diphenyl phenols; Barton's reactions.<br>Questions related to the above topics, from various competitive<br>examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others<br>to be solved<br>(To be discussed during the Tutorial hours) |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| question paper)                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Skills acquired                                                                                                                            | Knowledge, Problem solving, Analytical ability, Professional                                                                                                                                                                                                                                                                                                                                                                                                   |
| from this course                                                                                                                           | Competency, Professional Communication and Transferable skills.                                                                                                                                                                                                                                                                                                                                                                                                |
| Recommended                                                                                                                                | 1. F. A. Carey and Sundberg, Advanced Organic Chemistry, 5thed,                                                                                                                                                                                                                                                                                                                                                                                                |
| Text                                                                                                                                       | Tata McGraw-Hill, New York, 2003.                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                            | <ol> <li>J. March and M. Smith, Advanced Organic Chemistry, 5<sup>th</sup> ed.,<br/>John-Wiley and sons, 2007.</li> <li>R. E. Ireland, Organic synthesis, Prentice Hall India, Goel<br/>publishing house, 1990.</li> <li>Clayden, Greeves, Warren, Organic Chemistry, Oxford University<br/>Press, Second Edition, 2016.</li> <li>M. B. Smith, Organic Synthesis 3<sup>rd</sup> edn, McGraw Hill International<br/>Edition, 2011.</li> </ol>                   |
| <b>Reference Books</b>                                                                                                                     | 1. Gill and Wills, Pericyclic Reactions, Chapman Hall, London, 1974.                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            | <ol> <li>J.A. Joule, G.F. Smith, Heterocyclic Chemistry, Garden City Press,<br/>Great Britain, 2004.</li> <li>W. Caruthers, Some Modern Methods of Organic Synthesis 4<sup>th</sup>edn,<br/>Cambridge University Press, Cambridge, 2007.</li> <li>H. O. House. Modern Synthetic reactions, W.A. Benjamin Inc,</li> </ol>                                                                                                                                       |
|                                                                                                                                            | 1972.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                            | 5. Jagdamba Singh and Jaya Singh, Photochemistry and Pericyclic Reactions, New Age International Publishers, New Delhi, 2012.                                                                                                                                                                                                                                                                                                                                  |
| Website and                                                                                                                                | 1. https://rushim.ru/books/praktikum/Monson.pdf                                                                                                                                                                                                                                                                                                                                                                                                                |
| e-learning source                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| c icai iing source                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Students will be able:

**CO1:**To recall the basic principles of organic chemistry and to understand the various reactions of organic compounds with reaction mechanisms.

**CO2:**To understand the versatility of various special reagents and to correlate their reactivity with various reaction conditions.

**CO3:**To implement the synthetic strategies in the preparation of various organic compounds. **CO4:**To predict the suitability of reaction conditions in the preparation of tailor-made organic compounds.

**CO5:**To design and synthesize novel organic compounds with the methodologies learnt during the course.

**CO-PO** Mapping (Course Articulation Matrix)

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1 | S   | S   | S   | S   | М   | S   | S          | S   | S   | М    |
| CO 2 | М   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 3 | S   | S   | М   | S   | S   | S   | S          | M   | S   | S    |
| CO 4 | М   | S   | S   | S   | S   | М   | S          | S   | S   | S    |
| CO 5 | М   | S   | М   | S   | S   | М   | S          | М   | S   | S    |

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

| СО /РО                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| C01                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| C05                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| Title of the      | COORD                                                                                                                                             | INATION     | CHE                 | MISTRY     | – I   |       |                 |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|------------|-------|-------|-----------------|--|--|--|
| Course            | coond                                                                                                                                             |             | 0112                |            | -     |       |                 |  |  |  |
| Paper No.         | Core VIII                                                                                                                                         |             |                     |            |       |       |                 |  |  |  |
| Category          | Core                                                                                                                                              | Year        | II Credits 4 Course |            |       |       |                 |  |  |  |
|                   |                                                                                                                                                   | Semester    | III                 |            |       | Code  |                 |  |  |  |
| Instructional     | Lecture                                                                                                                                           | Tutorial    | Lal                 | Practice   | I     | Total |                 |  |  |  |
| hours per week    | 4                                                                                                                                                 | 1           | -                   |            |       | 5     |                 |  |  |  |
| Prerequisites     | Basic kno                                                                                                                                         | wledge of i | norga               | anic chemi | istry |       |                 |  |  |  |
| Objectives of the | To gain insights into the modern theories of bonding in coordination                                                                              |             |                     |            |       |       |                 |  |  |  |
| course            | compounds.                                                                                                                                        |             |                     |            |       |       |                 |  |  |  |
|                   | To learn various methods to determine the stability constants of                                                                                  |             |                     |            |       |       |                 |  |  |  |
|                   | complexes.                                                                                                                                        |             |                     |            |       |       |                 |  |  |  |
|                   | To understand and construct correlation diagrams and predict the                                                                                  |             |                     |            |       |       |                 |  |  |  |
|                   | electronic transitions that are taking place in the complexes.                                                                                    |             |                     |            |       |       |                 |  |  |  |
|                   | To describe various substitution and electron transfer mechanistic                                                                                |             |                     |            |       |       |                 |  |  |  |
|                   | pathways of reactions in complexes.<br>To evaluate the reactions of octahedral and square planar complexes.                                       |             |                     |            |       |       |                 |  |  |  |
| Course Outline    | UNIT-I: Modern theories of coordination compounds: Crystal field                                                                                  |             |                     |            |       |       |                 |  |  |  |
|                   | theory - splitting of d orbitals in octahedral, tetrahedral and square                                                                            |             |                     |            |       |       |                 |  |  |  |
|                   | planar symmetries - measurement of 10Dq - factors affecting 10Dq -                                                                                |             |                     |            |       |       |                 |  |  |  |
|                   |                                                                                                                                                   |             |                     |            |       |       |                 |  |  |  |
|                   | spectrochemical series - crystal field stabilisation energy for high spin<br>and low spin complexes, evidences for crystal field splitting - site |             |                     |            |       |       |                 |  |  |  |
|                   | and low spin complexes- evidences for crystal field splitting - site                                                                              |             |                     |            |       |       |                 |  |  |  |
|                   | selections in spinels and antispinels - Jahn Teller distortions and its                                                                           |             |                     |            |       |       |                 |  |  |  |
|                   | consequences. Molecular Orbital Theory and energy level diagrams                                                                                  |             |                     |            |       |       |                 |  |  |  |
|                   | concept of Weak and strong fields, Sigma and pi bonding in octahedral,                                                                            |             |                     |            |       |       |                 |  |  |  |
|                   | square planar and tetrahedral complexes.                                                                                                          |             |                     |            |       |       |                 |  |  |  |
|                   | UNIT-II: Spectral characteristics of complexes: Term states for d                                                                                 |             |                     |            |       |       |                 |  |  |  |
|                   | ions - characteristics of d-d transitions - charge transfer spectra -                                                                             |             |                     |            |       |       |                 |  |  |  |
|                   | selection rules for electronic spectra - Orgel correlation diagrams -                                                                             |             |                     |            |       |       |                 |  |  |  |
|                   | Sugano-Tanabe energy level diagrams - nephelauxetic series - Racha                                                                                |             |                     |            |       |       |                 |  |  |  |
|                   | parameter and calculation of inter-electronic repulsion parameter.                                                                                |             |                     |            |       |       |                 |  |  |  |
|                   | UNIT-III: Stability and Magnetic property of the complexes:                                                                                       |             |                     |            |       |       |                 |  |  |  |
|                   | Stability of complexes: Factors affecting stability of complexes,                                                                                 |             |                     |            |       |       |                 |  |  |  |
|                   | Thermodynamic aspects of complex formation, Stepwise and overall formation constants, Stability correlations, statistical factors and             |             |                     |            |       |       |                 |  |  |  |
|                   | chelate effect, Determination of stability constant and composition of                                                                            |             |                     |            |       |       |                 |  |  |  |
|                   | the complexes: Formation curves and Bjerrum's half method,                                                                                        |             |                     |            |       |       |                 |  |  |  |
|                   | Potentiometric method, Spectrophotometric method, Ion exchange                                                                                    |             |                     |            |       |       |                 |  |  |  |
|                   | method, Polorographic method and Continuous variation method                                                                                      |             |                     |            |       |       |                 |  |  |  |
|                   | (Job's method)Magnetic property of complexes: Spin-orbit coupling,                                                                                |             |                     |            |       |       |                 |  |  |  |
|                   | effect of spin-orbit coupling on magnetic moments, quenching of                                                                                   |             |                     |            |       |       |                 |  |  |  |
|                   | orbital magnetic moments.                                                                                                                         |             |                     |            |       |       |                 |  |  |  |
|                   | UNIT-IV: Kinetics and mechanisms of substitution reactions of                                                                                     |             |                     |            |       |       |                 |  |  |  |
|                   | octahedral and square planar complexes: Inert and Labile                                                                                          |             |                     |            |       |       |                 |  |  |  |
|                   | complexes; Associative, Dissociative and SNCB mechanistic pathways<br>for substitution reactions; acid and base hydrolysis of octahedral          |             |                     |            |       |       |                 |  |  |  |
|                   |                                                                                                                                                   |             |                     |            |       |       | e rate of water |  |  |  |
| L                 | Complexe                                                                                                                                          |             | auvi                | or metal   | 1011  |       | and of wall     |  |  |  |

|                                    | <ul> <li>Publications, USA, 1977.</li> <li>Peter Atkins and Tina Overton, Shriver and Atkins' Inorganic<br/>Chemistry, 5th Edition, Oxford University Press, 2010.</li> </ul>                                                                                                                                                                                                                                                |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference Books                    | 1. Keith F. Purcell and John C. Kotz, Inorganic Chemistry, Saunders                                                                                                                                                                                                                                                                                                                                                          |
|                                    | <ol> <li>G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition,<br/>Pearson Education Inc., 2008</li> <li>D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.</li> <li>B. N. Figgis, Introduction to Ligand Fields, Wiley Eastern Ltd, 1976.</li> <li>F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann,<br/>Advanced Inorganic Chemistry, 6thed.; Wiley Inter-science: New<br/>York, 1988.</li> </ol> |
| Text                               | Chemistry – Principles of structure and reactivity, 4th Edition,<br>Pearson Education Inc., 2006                                                                                                                                                                                                                                                                                                                             |
| Recommended                        | 1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic                                                                                                                                                                                                                                                                                                                                                                  |
| from this course                   | Competency, Professional Communication and Transferable skills.                                                                                                                                                                                                                                                                                                                                                              |
| question paper)<br>Skills acquired | Knowledge, Problem solving, Analytical ability, Professional                                                                                                                                                                                                                                                                                                                                                                 |
| examination                        |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| in the external                    |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Not to be included                 |                                                                                                                                                                                                                                                                                                                                                                                                                              |
| component only,                    | (10 be discussed during the Tutorial hours)                                                                                                                                                                                                                                                                                                                                                                                  |
| Component (is a part of internal   | (To be discussed during the Tutorial hours)                                                                                                                                                                                                                                                                                                                                                                                  |
| Professional                       | examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved                                                                                                                                                                                                                                                                                                                                                    |
| Extended                           | Questions related to the above topics, from various competitive                                                                                                                                                                                                                                                                                                                                                              |
|                                    | sphere electron transfer reactions and Marcus-Hush theory; inner<br>sphere electron transfer reactions; nature of the bridging ligand in inner<br>sphere electron transfer reactions.Photo-redox, photo-substitution and<br>photo-isomerisation reactions in complexes and their applications.                                                                                                                               |
|                                    | UNIT-V: Electron Transfer reactions in octahedral complexes: Outer                                                                                                                                                                                                                                                                                                                                                           |
|                                    | replacement reaction and their correlation to Crystal Field Activation<br>Energy; Substitution reactions in square planar complexes: Trans<br>effect, theories of trans effect and applications of trans effect in<br>synthesis of square planar compounds; Kurnakov test.                                                                                                                                                   |

Students will be able:

**CO1:**Understand and comprehend various theories of coordination compounds.

**CO2:**Understand the spectroscopic and magnetic properties of coordination complexes.

**CO3:**Explain the stability of complexes and various experimental methods to determine the stability of complexes.

**CO4:**Predict the electronic transitions in a complex based on correlation diagrams and UV-visible spectral details.

**CO5:**Comprehend the kinetics and mechanism of substitution reactions in octahedral and square planar complexes.

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1        | S   | S   | S   | S   | М   | S   | S          | S   | S   | M    |
| CO 2        | M   | S   | S   | S   | S   | М   | S          | S   | S   | S    |
| CO 3        | S   | S   | M   | S   | S   | S   | S          | M   | S   | S    |
| <b>CO 4</b> | Μ   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 5        | Μ   | S   | М   | S   | S   | Μ   | S          | Μ   | S   | S    |

**CO-PO Mapping (Course Articulation Matrix)** 

3 – Strong, 2 – Medium, 1 - Low

| СО /РО                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| C01                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| CO5                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| Title of the          | PHYSIC                                                                                     | AL CHEM                                                                                                                                  | ISTI   | RY PRAC                         | TIC   | AL               |                   |  |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------|-------|------------------|-------------------|--|--|--|--|
| Course                |                                                                                            |                                                                                                                                          |        |                                 |       |                  |                   |  |  |  |  |
| Paper No.             | Core IX                                                                                    |                                                                                                                                          |        |                                 |       |                  |                   |  |  |  |  |
| Category              | Core                                                                                       | Year                                                                                                                                     | II     | Credits                         | 4     | Course           |                   |  |  |  |  |
|                       |                                                                                            | Semester                                                                                                                                 | III    |                                 |       | Code             |                   |  |  |  |  |
| Instructional         | Lecture                                                                                    | Tutorial                                                                                                                                 | Lal    | <b>Practice</b>                 |       | Total            |                   |  |  |  |  |
| hours per week        | -                                                                                          | 1                                                                                                                                        | 5      |                                 |       | 6                |                   |  |  |  |  |
| Prerequisites         | Basic kno                                                                                  | wledge of p                                                                                                                              | hysi   | cal chemis                      | try   | 1                |                   |  |  |  |  |
| Objectives of the     |                                                                                            |                                                                                                                                          |        |                                 |       | luctivity expen  | riments through   |  |  |  |  |
| course                | To understand the principle of conductivity experiments through conductometric titrations. |                                                                                                                                          |        |                                 |       |                  |                   |  |  |  |  |
|                       | To evalu                                                                                   | To evaluate the order of the reaction, temperature coefficient, and<br>activation energy of the reaction by following pseudo first order |        |                                 |       |                  |                   |  |  |  |  |
|                       | activation                                                                                 |                                                                                                                                          |        |                                 |       |                  |                   |  |  |  |  |
|                       | kinetics.                                                                                  |                                                                                                                                          |        |                                 |       |                  |                   |  |  |  |  |
|                       |                                                                                            |                                                                                                                                          |        |                                 |       |                  |                   |  |  |  |  |
|                       |                                                                                            |                                                                                                                                          |        |                                 |       |                  |                   |  |  |  |  |
|                       |                                                                                            |                                                                                                                                          |        |                                 |       |                  | system forming    |  |  |  |  |
|                       | U U                                                                                        | 0                                                                                                                                        | solid  | l and fin                       | d it  | s eutectic te    | mperatures and    |  |  |  |  |
|                       | composit                                                                                   |                                                                                                                                          |        |                                 |       |                  |                   |  |  |  |  |
|                       |                                                                                            |                                                                                                                                          |        |                                 |       | f oxalic acid or |                   |  |  |  |  |
|                       |                                                                                            |                                                                                                                                          |        |                                 | -     | •                | gen ion, charge   |  |  |  |  |
|                       |                                                                                            |                                                                                                                                          | ind M  | faxwell's                       | speed | d distribution b | by computational  |  |  |  |  |
| ~ ~ ~                 | calculatio                                                                                 |                                                                                                                                          |        |                                 |       |                  |                   |  |  |  |  |
| <b>Course Outline</b> |                                                                                            | UNIT-I:Conductivity Experiments                                                                                                          |        |                                 |       |                  |                   |  |  |  |  |
|                       |                                                                                            |                                                                                                                                          |        |                                 |       | ance of a strong | g electrolyte &   |  |  |  |  |
|                       |                                                                                            | verification                                                                                                                             |        | -                               |       |                  |                   |  |  |  |  |
|                       |                                                                                            |                                                                                                                                          | stwa   | ld's Diluti                     | on L  | aw & Determin    | nation of pKa of  |  |  |  |  |
|                       |                                                                                            | ak acid.                                                                                                                                 | 0 1    | 1 . 1                           |       |                  | 1.                |  |  |  |  |
|                       |                                                                                            |                                                                                                                                          |        |                                 |       | ingly soluble sa |                   |  |  |  |  |
|                       |                                                                                            |                                                                                                                                          |        |                                 |       | veak acid vs N   | aOH).             |  |  |  |  |
|                       | 5. Preci                                                                                   | pitation titra                                                                                                                           | ations | s (mixture                      | ot ha | alides only).    |                   |  |  |  |  |
|                       |                                                                                            |                                                                                                                                          |        |                                 |       |                  |                   |  |  |  |  |
|                       |                                                                                            |                                                                                                                                          | C      | . 1 1 1                         | 1     |                  | 1, 1, 1           |  |  |  |  |
|                       | -                                                                                          |                                                                                                                                          |        | •                               |       |                  | , determine the   |  |  |  |  |
|                       | -                                                                                          |                                                                                                                                          |        | ent and a                       | uso   | the activation   | energy of the     |  |  |  |  |
|                       | react                                                                                      |                                                                                                                                          | a of   | the reacti                      | an h  | aturaan aaatan   | a and indina in   |  |  |  |  |
|                       | -                                                                                          |                                                                                                                                          |        |                                 |       |                  | e and iodine in   |  |  |  |  |
|                       |                                                                                            | ect to iodine                                                                                                                            | •      |                                 | thou  | and determine    | e the order with  |  |  |  |  |
|                       | l                                                                                          |                                                                                                                                          | anu    | accione.                        |       |                  |                   |  |  |  |  |
|                       |                                                                                            | I: Phase dia                                                                                                                             | arar   | n                               |       |                  |                   |  |  |  |  |
|                       |                                                                                            |                                                                                                                                          | 0      |                                 | sim   | ole binary syste | m                 |  |  |  |  |
|                       |                                                                                            | alene-biphe                                                                                                                              |        |                                 | շոու  | ie emary syste   |                   |  |  |  |  |
|                       | -                                                                                          | ohenone- di                                                                                                                              | •      | vl amine                        |       |                  |                   |  |  |  |  |
|                       | Adsorpti                                                                                   |                                                                                                                                          |        |                                 |       |                  |                   |  |  |  |  |
|                       | -                                                                                          |                                                                                                                                          | acid   | on charee                       | bal & | determination    | of surface area   |  |  |  |  |
|                       |                                                                                            | ch isotherm                                                                                                                              |        |                                 |       |                  | . Si Sulluce uleu |  |  |  |  |
| Extended              |                                                                                            |                                                                                                                                          | -      |                                 | fra   | m various com    | netitive          |  |  |  |  |
| Professional          |                                                                                            |                                                                                                                                          |        |                                 |       |                  | /TNPSC others     |  |  |  |  |
|                       | to be solv                                                                                 |                                                                                                                                          |        | $\mathbf{D}$ / $\mathbf{NEI}$ ( | JUC-  | COIN / UATE      | 1 INF SC OULERS   |  |  |  |  |
| Component (is a       |                                                                                            | -cu                                                                                                                                      |        |                                 |       |                  |                   |  |  |  |  |

| part of internal         | (To be discussed during the Tutorial hours)                                        |
|--------------------------|------------------------------------------------------------------------------------|
| component only,          |                                                                                    |
| Not to be included       |                                                                                    |
| in the external          |                                                                                    |
| examination              |                                                                                    |
| question paper)          |                                                                                    |
| Skills acquired          | Knowledge, Problem solving, Analytical ability, Professional                       |
| from this course         | Competency, Professional Communication and Transferable skills.                    |
| Recommended              | 1. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry,                  |
| Text                     | Viva Books, New Delhi, 2009.                                                       |
|                          | 2. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.                 |
|                          | Viswanathan Co. Pvt., 1996.                                                        |
|                          | 3. V.D. Athawale and Parul Mathur, Experimental Physical Chemistry,                |
|                          | New Age International (P) Ltd., New Delhi, 2008.                                   |
|                          | 4. E.G. Lewers, Computational Chemistry: Introduction to the Theory                |
|                          | and Applications of Molecular and Quantum Mechanics, 2 <sup>nd</sup> Ed.,          |
|                          | Springer, New York, 2011.                                                          |
| <b>Reference Books</b>   | 1. J. B. Yadav, Advanced Practical Physical Chemistry, Goel                        |
|                          | Publishing House, 2001.                                                            |
|                          | 2. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in                       |
|                          | Physical Chemistry, 8th edition, McGraw Hill, 2009.                                |
|                          | 3. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.                 |
|                          | Chand and Co., 1987.                                                               |
|                          | 4. Shailendra K Sinha, Physical Chemistry: A laboratory Manual,                    |
|                          | Narosa Publishing House Pvt, Ltd., New Delhi, 2014.                                |
|                          | 5. F. Jensen, Introduction to Computational Chemistry, 3 <sup>rd</sup> Ed., Wiley- |
|                          | Blackwell.                                                                         |
| Website and              | https://web.iitd.ac.in/~nkurur/2015-                                               |
| e-learning source        | 16/Isem/cmp511/lab_handout_new.pdf                                                 |
| <b>Course Learning C</b> | Dutcomes (for Mapping with POs and PSOs)                                           |
| Students will be abl     | e:                                                                                 |
| CO1: To recall the p     | principles associated with various physical chemistry experiments.                 |
| -                        | lly plan and perform all the experiments.                                          |
| CO3: To observe an       | id record systematically the readings in all the experiments.                      |
|                          | nd process the experimentally measured values and compare with                     |
| graphical data.          |                                                                                    |

graphical data. CO5: To interpret the experimental data scientifically to improve students' efficiency for societal developments.

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CO 1        | S   | S   | S   | S   | M   | S   | S   | S   | S   | М    |
| CO 2        | М   | S   | S   | S   | S   | Μ   | S   | S   | S   | S    |
| CO 3        | S   | S   | M   | S   | S   | S   | S   | М   | S   | S    |
| <b>CO 4</b> | М   | S   | S   | S   | S   | Μ   | S   | S   | S   | S    |
| CO 5        | Μ   | S   | Μ   | S   | S   | Μ   | S   | Μ   | S   | S    |

**CO-PO Mapping (Course Articulation Matrix)** 

| СО /РО                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| CO1                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| CO5                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| Title of the          | ANALY                                                       | <b>FICAL INS</b>                                                                                                                                                                                                     | STRU                                                               | JMENTA        | ΤΙΟ                                         | N TECHNIQ         | UES Practical           |  |  |  |  |  |
|-----------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------|---------------------------------------------|-------------------|-------------------------|--|--|--|--|--|
| Course                |                                                             |                                                                                                                                                                                                                      |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
| Paper No.             | Core X                                                      |                                                                                                                                                                                                                      |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
| Category              | Core                                                        | Year                                                                                                                                                                                                                 | II                                                                 | Credits       | 4                                           | Course            |                         |  |  |  |  |  |
| 81                    |                                                             | Semester                                                                                                                                                                                                             | III                                                                |               |                                             | Code              |                         |  |  |  |  |  |
| Instructional         | Lecture                                                     | Tutorial                                                                                                                                                                                                             | Lal                                                                | Practice      |                                             | Total             |                         |  |  |  |  |  |
| hours per week        | -                                                           | 1                                                                                                                                                                                                                    | 5                                                                  |               |                                             | 6                 |                         |  |  |  |  |  |
| Prerequisites         |                                                             | 1                                                                                                                                                                                                                    | U                                                                  |               |                                             | Ŭ                 |                         |  |  |  |  |  |
| Objectives of the     | To design                                                   | chromatogra                                                                                                                                                                                                          | nhic                                                               | methods for   | r ider                                      | tification of spe | ries                    |  |  |  |  |  |
| course                |                                                             | To design chromatographic methods for identification of species.<br>To analyze different constituents through instrumental methods of analysis<br>To evaluate different contaminants in materials using turbidimetry |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
| course                |                                                             |                                                                                                                                                                                                                      |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
|                       |                                                             | conductivity measurements.<br>To design experiments for analysis of inorganic and organic materials.                                                                                                                 |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
|                       |                                                             |                                                                                                                                                                                                                      |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
|                       |                                                             | To analyze constituents in materials using emission and absorption techniques.                                                                                                                                       |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
| Course Outline        | UNIT-I:                                                     | UNIT-I:                                                                                                                                                                                                              |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
|                       | 1. Pc                                                       | otentiometri                                                                                                                                                                                                         | c titra                                                            | ation of a 1  | nixt                                        | ure of HCl and    | CH <sub>3</sub> COOH Vs |  |  |  |  |  |
|                       | N                                                           | aOH                                                                                                                                                                                                                  |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
|                       |                                                             |                                                                                                                                                                                                                      |                                                                    |               |                                             | id by EMF met     | thod.                   |  |  |  |  |  |
|                       |                                                             | otentiometri                                                                                                                                                                                                         |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
|                       |                                                             | otentiometri                                                                                                                                                                                                         |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
|                       | 5. Po                                                       | otentiometri                                                                                                                                                                                                         | c titra                                                            | ation of a 1  | nixt                                        | ure of Chloride   | and Iodide Vs           |  |  |  |  |  |
|                       | AgNO <sub>3.</sub>                                          |                                                                                                                                                                                                                      |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
|                       | 6. Determination of the pH of buffer solution by EMF method |                                                                                                                                                                                                                      |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
|                       | using Quinhydrone and Calomel electrode.                    |                                                                                                                                                                                                                      |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
|                       |                                                             | •                                                                                                                                                                                                                    |                                                                    |               | e sug                                       | gar in the prese  | ence of acid by         |  |  |  |  |  |
|                       | Po                                                          | olarimetric 1                                                                                                                                                                                                        | metho                                                              | od.           |                                             |                   |                         |  |  |  |  |  |
|                       | UNIT-II:                                                    |                                                                                                                                                                                                                      |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
| Any 10                |                                                             |                                                                                                                                                                                                                      |                                                                    |               | •                                           | olorimetric me    |                         |  |  |  |  |  |
| <b>Experiments to</b> |                                                             |                                                                                                                                                                                                                      |                                                                    | •             |                                             | photometric m     |                         |  |  |  |  |  |
| be chosen from        |                                                             |                                                                                                                                                                                                                      |                                                                    |               | e amount (mol/L) of ferricyanide present in |                   |                         |  |  |  |  |  |
| both Unit I & II      |                                                             | e given solu                                                                                                                                                                                                         |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
|                       |                                                             |                                                                                                                                                                                                                      |                                                                    |               | on co                                       | efficient of fer  | ricyanide using         |  |  |  |  |  |
|                       |                                                             | clic voltam                                                                                                                                                                                                          |                                                                    |               | •,                                          |                   | • • •                   |  |  |  |  |  |
|                       |                                                             |                                                                                                                                                                                                                      |                                                                    |               |                                             |                   | e given solution        |  |  |  |  |  |
|                       |                                                             | sing spectro                                                                                                                                                                                                         | L                                                                  |               |                                             |                   | תר                      |  |  |  |  |  |
|                       |                                                             | -                                                                                                                                                                                                                    |                                                                    | quality three | ougn                                        | COD, DO, BO       | JU                      |  |  |  |  |  |
|                       |                                                             |                                                                                                                                                                                                                      | asurements.<br>ay of Riboflavin and Iron in tablet formulations by |               |                                             |                   |                         |  |  |  |  |  |
|                       |                                                             | ectrophotor                                                                                                                                                                                                          |                                                                    |               |                                             |                   | ons by                  |  |  |  |  |  |
|                       | 1 1                                                         | 1                                                                                                                                                                                                                    |                                                                    |               | 1 70                                        | dwag by TI C (    | h) mixture of           |  |  |  |  |  |
|                       |                                                             | etal ions by                                                                                                                                                                                                         |                                                                    |               |                                             | dyes by TLC (     | o) mixture or           |  |  |  |  |  |
|                       |                                                             | ciai 10118 UY                                                                                                                                                                                                        | 1 ape                                                              |               | ogra                                        | piry              |                         |  |  |  |  |  |
|                       | LINIT II                                                    | [• Interproto                                                                                                                                                                                                        | tion                                                               | and identif   | icoti                                       | on of the given   | spectra of              |  |  |  |  |  |
|                       |                                                             |                                                                                                                                                                                                                      |                                                                    |               |                                             | on the followir   |                         |  |  |  |  |  |
|                       |                                                             | -Visible                                                                                                                                                                                                             | Jound                                                              |               | .i 110                                      |                   |                         |  |  |  |  |  |
|                       | 2.IR                                                        | - v 151010                                                                                                                                                                                                           |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
|                       | 3.Ran                                                       | nan                                                                                                                                                                                                                  |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
|                       | 4.NM                                                        |                                                                                                                                                                                                                      |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
|                       | 5.ESF                                                       |                                                                                                                                                                                                                      |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
|                       |                                                             | ss etc.,                                                                                                                                                                                                             |                                                                    |               |                                             |                   |                         |  |  |  |  |  |
|                       | 0.11143                                                     | ,, or                                                                                                                                                                            |                                                                    |               |                                             |                   |                         |  |  |  |  |  |

| Extended               | Questions related to the above topics, from various competitive           |
|------------------------|---------------------------------------------------------------------------|
| Professional           | examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others              |
| Component (is a        | to be solved                                                              |
| part of internal       | (To be discussed during the Tutorial hours)                               |
| component only,        | (10 be discussed during the Futorial hours)                               |
| Not to be included     |                                                                           |
| in the external        |                                                                           |
| examination            |                                                                           |
| question paper)        |                                                                           |
| Skills acquired        | Knowledge, Problem solving, Analytical ability, Professional              |
| from this course       | Competency, Professional Communication and Transferable skills.           |
|                        | Competency, Professional Communication and Transferable skins.            |
| Recommended            | 1. Vogel's Text book of Practical Organic Chemistry, 5th Ed,              |
| Text                   | ELBS/Longman, England, 2003.                                              |
| ICAL                   | 2. G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, <i>Vogel's</i> |
|                        | <i>Textbook of Quantitative Chemical Analysis</i> ; 6th ed., ELBS, 1989.  |
|                        | 3. J. D. Woollins, <i>Inorganic Experiments</i> ; VCH: Weinheim,          |
|                        | 1995.                                                                     |
|                        | 4. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry,         |
|                        | Viva                                                                      |
|                        | Books, New Delhi,2009.                                                    |
|                        | 5.Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.         |
|                        | Viswanathan Co. Pvt., 1996.                                               |
| <b>Reference Books</b> | 1. N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry –             |
|                        | Labmanual, S. Viswanathan Co. Pvt. Ltd, 2009.                             |
|                        | 2. J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, S.         |
|                        | Chand and Co., 2011.                                                      |
|                        | 3. J. B. Yadav, Advanced Practical Physical Chemistry, Goel               |
|                        | Publishing House, 2001.                                                   |
|                        | 4. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in              |
|                        | Physical Chemistry, 8th edition, McGraw Hill, 2009.                       |
|                        | 5. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.        |
|                        | Chand and Co., 1987.                                                      |
| Website and            | 1 https://hit.ly/20ESE7t                                                  |
| e-learning source      | 1. https://bit.ly/3QESF7t                                                 |
| 2                      | 2. https://bit.ly/3QANOnX                                                 |
| Course Leonning (      | Dutcomes (for Monning with POs and DSOs)                                  |

Students will be able:

CO1: To recall the principles associated with various inorganic organic and physical chemistry experiments

CO2: To scientifically plan and perform all the experiments

CO3: To observe and record systematically the readings in all the experiments

CO4: To calculate and process the experimentally measured values and compare with graphical data.

CO5: To interpret the experimental data scientifically to improve students efficiency for societal developments.

**CO-PO Mapping (Course Articulation Matrix)** 

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1        | S   | S   | S   | S   | M   | S   | S          | S   | S   | М    |
| CO 2        | М   | S   | S   | S   | S   | Μ   | S          | S   | S   | S    |
| CO 3        | S   | S   | М   | S   | S   | S   | S          | Μ   | S   | S    |
| <b>CO 4</b> | Μ   | S   | S   | S   | S   | Μ   | S          | S   | S   | S    |
| CO 5        | Μ   | S   | М   | S   | S   | Μ   | S          | Μ   | S   | S    |

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

| СО /РО                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| CO1                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| CO5                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| Course<br>Paper No. 1 |            |                 | -                                                                                                 |                                                                                                    |        | HEMISTRY          |                                  |  |  |
|-----------------------|------------|-----------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------|-------------------|----------------------------------|--|--|
|                       | F1         |                 |                                                                                                   |                                                                                                    |        |                   |                                  |  |  |
|                       | Elective V |                 |                                                                                                   |                                                                                                    |        |                   |                                  |  |  |
|                       | Elective   | Year            | II                                                                                                | Credits                                                                                            | 4      | Course            |                                  |  |  |
|                       |            | Semester        | III                                                                                               |                                                                                                    |        | Code              |                                  |  |  |
| Instructional I       | Lecture    | Tutorial        |                                                                                                   | Practice                                                                                           |        | Total             |                                  |  |  |
|                       | 4          | 1               | -                                                                                                 | <i>,</i> <u>,</u> |        | 5                 |                                  |  |  |
|                       | •          | wledge of c     | hemi                                                                                              | strv                                                                                               |        | 0                 |                                  |  |  |
| <u> </u>              |            |                 |                                                                                                   |                                                                                                    | l nrc  | ducts biologic    | al functions and                 |  |  |
| U                     |            | ological uses   | - U                                                                                               |                                                                                                    | ii pit | ducts, biblogic   | ai functions and                 |  |  |
|                       | 1          | •               |                                                                                                   | primary a                                                                                          | and s  | econdary metal    | bolites and their                |  |  |
|                       | sources.   | P               |                                                                                                   | · [ · · · · · · ] ·                                                                                |        |                   |                                  |  |  |
|                       |            | stand the c     | once                                                                                              | pts of iso                                                                                         | olatic | on methods an     | d separation of                  |  |  |
|                       |            | compounds       |                                                                                                   | 1                                                                                                  |        |                   | 1                                |  |  |
|                       |            | -               |                                                                                                   | on selecte                                                                                         | ed gly | ycosides and m    | arine drugs.                     |  |  |
|                       |            |                 |                                                                                                   |                                                                                                    |        |                   | ferent sampling                  |  |  |
|                       | technique  |                 | C                                                                                                 |                                                                                                    |        |                   | 1 0                              |  |  |
| Course Outline        | UNIT-I:F   | <b>harmacog</b> | nosy                                                                                              | and Sta                                                                                            | ında   | rdization of      | Herbal drugs:                    |  |  |
|                       |            |                 |                                                                                                   |                                                                                                    |        |                   | and Source of                    |  |  |
| I                     | Drugs: Bi  | iological, m    | inera                                                                                             | ıl, marine,                                                                                        | and    | plant tissue cu   | ltures. Study of                 |  |  |
| I                     | pharmaco   | gnosticof a     | crud                                                                                              | e drug. B                                                                                          | iosyr  | nthesis: Shikim   | ic acid pathway                  |  |  |
|                       |            | -               | •                                                                                                 | •                                                                                                  |        | •                 | Crude drugs.                     |  |  |
|                       |            |                 |                                                                                                   |                                                                                                    |        |                   | mpling of crude                  |  |  |
|                       | •          |                 | •                                                                                                 |                                                                                                    |        |                   | foreign matter,                  |  |  |
| r                     | moisture   | Ash value.      | Phy                                                                                               | tochemica                                                                                          | al in  | vestigations-Ge   | eneral chemical                  |  |  |
|                       | tests.     |                 |                                                                                                   |                                                                                                    |        |                   |                                  |  |  |
|                       |            |                 |                                                                                                   |                                                                                                    |        |                   | of extraction,                   |  |  |
|                       |            |                 | Dec                                                                                               | oction, pe                                                                                         | ercol  | ation, Immersi    | on and soxhlet                   |  |  |
|                       | extraction |                 |                                                                                                   |                                                                                                    |        |                   | •.• 1                            |  |  |
|                       |            | -               |                                                                                                   |                                                                                                    |        |                   | on, supercritical                |  |  |
|                       |            |                 |                                                                                                   |                                                                                                    | sted e | extraction. Facto | ors affecting the                |  |  |
|                       |            | extraction p    |                                                                                                   |                                                                                                    |        |                   | 1- 49 9                          |  |  |
|                       |            |                 |                                                                                                   | ining T                                                                                            |        |                   | volatile oils:                   |  |  |
|                       |            |                 |                                                                                                   |                                                                                                    |        |                   | and separation alyptol. Volatile |  |  |
|                       | -          | · •             | -                                                                                                 |                                                                                                    |        |                   | • 1                              |  |  |
|                       |            |                 | Oils: Method of Preparations, Classifications of pphor oil, Geranium oil, Citral- Structure uses. |                                                                                                    |        |                   |                                  |  |  |
|                       |            | -               |                                                                                                   |                                                                                                    |        | taraxasterol:     |                                  |  |  |
|                       |            | logical appl    |                                                                                                   |                                                                                                    | 103,   | unarabien 01.     |                                  |  |  |
|                       |            |                 |                                                                                                   |                                                                                                    | kalni  | ds: Occurren      | nce, function of                 |  |  |
|                       |            |                 |                                                                                                   |                                                                                                    |        |                   | ion, Preliminary                 |  |  |
|                       |            | 1 / 1           |                                                                                                   |                                                                                                    |        |                   | ods of structural                |  |  |
|                       | elucidatio |                 | -                                                                                                 |                                                                                                    |        | papaverine        | - chemical                       |  |  |
|                       |            | 1               |                                                                                                   | -                                                                                                  |        | 1 1               | mical properties                 |  |  |
| -                     | and uses.  | ,               |                                                                                                   | 1 1                                                                                                |        | ,                 | 1 1 -                            |  |  |
|                       |            | Plant Glyco     | oside                                                                                             | s and Ma                                                                                           | rine   | drugs: Glycos     | ides: Basic ring                 |  |  |
|                       |            | •               |                                                                                                   |                                                                                                    |        | •                 | ative analysis.                  |  |  |
|                       |            |                 |                                                                                                   |                                                                                                    |        |                   | diacglycosides-                  |  |  |
|                       | Digoxin,   | digitoxin,      |                                                                                                   |                                                                                                    |        | ins glycoside     |                                  |  |  |

|                                                          | hecogenin. Plant pigments: Occurrence and general methods of<br>structure determination, isolation and synthesis of quercetin and<br>cyanidin chloride.Marine drugs -Selected Drug Molecules:<br>Cardiovascular active substances, Cytotoxic compounds, antimicrobial<br>compounds, antibiotic compounds, Anti-inflammatory agents. Marine<br>toxins. |  |  |  |  |  |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Extended                                                 | Questions related to the above topics, from various competitive                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Professional                                             | examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Component (is a                                          | to be solved                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| part of internal                                         | (To be discussed during the Tutorial hours)                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| component only,                                          |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Not to be included                                       |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| in the external                                          |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| examination                                              |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| question paper)                                          |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Skills acquired                                          | Knowledge, Problem solving, Analytical ability, Professional                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| from this course                                         | Competency, Professional Communication and Transferable skills.                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| Recommended                                              | 1. Gurdeep R Chatwal (2016), Organic chemistry of Natural products,                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Text                                                     | Volume I&II, 5th edition, Himalaya publishing House.                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|                                                          | 2. S.V.Bhat, B.A. Nagasampagi, M.Sivakumar (2014), Chemistry of                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                          | Natural Products, Revised edition, Narosa Publishers.                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| <b>Reference Books</b>                                   | 1. Jeffrey B. Harborne (2012), Phytochemical methods: A Guide to                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                          | Modern Techniques of Plant Analysis, 4th edition, Indian reprint,                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                          | Springer.                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                                                          | 2. Ashutoshkar (2007), Pharmacognosy and Pharmacobiotechnology, 2                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                                                          | nd edition, New age international (P) limited, New Delhi.                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Course Learning Outcomes (for Manning with POs and PSOs) |                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |

Students will be able:

**CO1:**To recall the sources of natural medicines and analysis of crude drugs.

**CO2:** To understand the methods of evaluation based on various parameters.

**CO3:**To analyze the isolated drugs

**CO4:**To apply various techniques to discover new alternative medicines.

**CO5:**To evaluate the isolated drugs for various pharmacological activities

| <b>CO-PO Mapping (Course Articulation Matrix)</b> |
|---------------------------------------------------|
|---------------------------------------------------|

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1 | S   | S   | S   | S   | М   | S   | S          | S   | S   | М    |
| CO 2 | Μ   | S   | S   | S   | S   | М   | S          | S   | S   | S    |
| CO 3 | S   | S   | M   | S   | S   | S   | S          | M   | S   | S    |
| CO 4 | М   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 5 | Μ   | S   | М   | S   | S   | М   | S          | М   | S   | S    |

3 – Strong, 2 – Medium, 1 - Low

| СО /РО                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| CO1                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| CO5                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

# Level of Correlation between PSO's and CO's

| decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Aming<br>acid metabolism and ureacycle.UNIT-IV:Proteins andnucleicacids:Structure, methods for th<br>synthesis of nucleosides - direct combination, formation of heterocycli<br>base and nucleoside modification, conversion of nucleoside to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Title of the   | BIOMOL                                                               | ECULES A                  | ND ]           | HETERO                 | CYC          | CLIC COMPO                            | DUNDS                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------|---------------------------|----------------|------------------------|--------------|---------------------------------------|-------------------------------------|
| Category         Elective         Year         II         Credits         4         Course<br>Code           Instructional<br>hours per week         Lecture         Tutorial         Lab Practice         Total           Objectives of<br>the course         Basic knowledge of chemistry         To learn the basic concepts and biological importance of biomolecule<br>and natural products.<br>To explain various of functions of carbohydrates, proteins, nucleic acids<br>steroids and hormones.<br>To understand the functions of alkaloids and terpenoids.<br>To extract and construct the structure of new alkaloids and terpenoid<br>from different methods.           Course Outline         UNIT-LiChemistry and metabolism of carbohydrates: Definition<br>classification and biological role of carbohydrates: nonsaccharides<br>Linear and ring structures (Haworth formula) of ribose, glucose, fructose<br>and mannose (structure determination not required), physical an<br>chemical properties of glucose and fructose.Disaccharides: Stard<br>glycogen and cellulose, lactose and sucrose. Polysaccharides: Stard<br>glycogen and cellulose, lactose and sucrose. Polysaccharides: Stard<br>glycogen and cellulose, cholesterol-occurrence, tests, physiologica<br>activity, biosynthesis of cholesterol-occurrence, tests, physiologica<br>activity, biosynthesis of cholesterol-occursence and regens an<br>estrogens, adrenocortical hormones-cortisone and cortisol structure and<br>functions of non-steroidal hormones-cortisone and ontry on.           UNIT-II:Proteins andnucleicacids:         Structure, methods for th<br>synthesis of nucleoside s - transamination, oxidative deamination an<br>decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amin<br>acid metabolism and ureacycle.           UNIT-II:Proteins andnucleicacids:         S                                                                                                                      |                |                                                                      |                           |                |                        |              |                                       |                                     |
| Semester         III         Code           Instructional<br>hours per week         4         1         -         5           Prerequisites         Basic knowledge of chemistry         5           Objectives of<br>the course         To learn the basic concepts and biological importance of biomolecule<br>and natural products.<br>To explain various of functions of carbohydrates, proteins, nucleic acids<br>steroids and hormones.<br>To understand the functions of alkaloids and terpenoids.<br>To clucidate the structure determination of biomolecules and natura<br>products.<br>To extract and construct the structure of new alkaloids and terpenoid<br>from different methods.           Course Outline         UNIT-I:Chemistry and metabolism of carbohydrates: Definition<br>classification and biological role of carbohydrates: Definition<br>classification and biological role of carbohydrates. Involution, physical and<br>chemical properties of glucose and fuctose.Disaccharides: Rin<br>structures (Haworth formula) – occurrence, physical and chemica<br>properties of maltose, lactose and sucrose. Polysaccharides: Starch<br>glycogen and cellulose – structure and properties, glycolysis o<br>carbohydrates.           UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence<br>nomenelature, configuration of substituents. Diels' hydrocarbon<br>stereochemistry, classification, Diels' hydrocarbon, biological importance<br>colour reactions of sterols, cholesterol from squalene. Hormones<br>Introduction, classification, functions of sex hormones- androgens an<br>estrogens, adrenocortical hormones-adrenaline and thyroxin.           UNIT-III:Proteins andnucleicacids: Structure and thyroxin.         UNIT-III:Proteins andnucleicacids: Structure, methods for th<br>synthesis of nucleosides - direct combination, of nucleoside t<br>nucle                                                                                                         |                |                                                                      |                           |                |                        |              | 1                                     |                                     |
| Instructional<br>hours per week         Lecture<br>4         Tutorial<br>Lab Practice         Total<br>5           Prerequisites         Basic knowledge of chemistry         5           Objectives of<br>the course         To learn the basic concepts and biological importance of biomolecule<br>and natural products.<br>To explain various of functions of carbohydrates, proteins, nucleic acids<br>steroids and hormones.<br>To understand the functions of alkaloids and terpenoids.<br>To elucidate the structure determination of biomolecules and natura<br>products.<br>To extract and construct the structure of new alkaloids and terpenoid<br>from different methods.           Course Outline         UNIT-I:Chemistry and metabolism of carbohydrates: onosaccharides<br>Linear and ring structures (Haworth formula) of ribose, glucose, fructos<br>and mannose (structure determination not required), physical an<br>chemical properties of glucose and fructose.Disaccharides: Rin<br>structures (Haworth formula) –occurrence, physical and chemica<br>properties of maltose, lactose and sucrose. Polysaccharides: Starch<br>glycogen and cellulose – structure and properties, glycolysis o<br>carbohydrates.           UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence<br>nomenclature, configuration of substituents. Diels' hydrocarbor<br>stereochemistry, classification, functions of sex hormones- androgens an<br>estrogens, adrenocortical hormones-adrenaline and thyroxin.           UNIT-III:Proteins andnucleicacids: Separation and purification o<br>amino acids - transamination, oxidative deamination an<br>decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amin<br>acid metabolism and ureacycle.           UNIT-IV:Proteins andnucleicacids: Structure, methods for th<br>synthesis of nucleoside - direct combination, formation of heterceycli<br>base and nucleoside sendifi                                                         | Category       | Elective                                                             |                           |                | Credits                | 4            |                                       |                                     |
| hours per week         4         1         -         5           Prerequisites         Basic knowledge of chemistry         -         5           Objectives of<br>the course         To learn the basic concepts and biological importance of biomolecule<br>and natural products.<br>To explain various of functions of carbohydrates, proteins, nucleic acids<br>steroids and hormones.<br>To understand the functions of alkaloids and terpenoids.<br>To elucidate the structure determination of biomolecules and natura<br>products.<br>To extract and construct the structure of new alkaloids and terpenoid<br>from different methods.           Course Outline         UNIT-I:Chemistry and metabolism of carbohydrates: Definition<br>classification and biological role of carbohydrates: nonsaccharides:<br>Linear and ring structures (Haworth formula) of ribose, glucose, fructos<br>and mannose (structure determination not required), physical an<br>chemical properties of glucose and fructose.Disaccharides: Rim<br>structures (Haworth formula) -occurrence, physical and chemica<br>properties of maltose, lactose and sucrose. Polysaccharides: Starch<br>glycogen and cellulose – structure and properties, glycolysis o<br>carbohydrates.           UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence<br>nomenclature, configuration of substituents. Diels' hydrocarbors<br>stereochemistry, classification, functions of sex hormones- androgens an<br>estrogens, adrenocortical hormones-adrenaline and thyroxin.           UNIT-III:Proteins andnucleicacids: Separation and purification o<br>amino acids - transamination, oxidative deamination an<br>decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amin<br>acid metabolism and ureacycle.           UNIT-IV:Proteins andnucleicacids: Structure, methods for th<br>synthesis of nucleoside - direct combinati                                                                                       |                |                                                                      |                           |                |                        |              |                                       |                                     |
| Prerequisites         Basic knowledge of chemistry           Objectives of<br>the course         To learn the basic concepts and biological importance of biomolecule<br>and natural products.<br>To explain various of functions of carbohydrates, proteins, nucleic acids<br>steroids and hormones.<br>To understand the functions of alkaloids and terpenoids.<br>To elucidate the structure determination of biomolecules and natura<br>products.<br>To extract and construct the structure of new alkaloids and terpenoid<br>from different methods.           Course Outline         UNIT-1:Chemistry and metabolism of carbohydrates: nosaccharides<br>Linear and ring structures (Haworth formula) of ribose, glucose, fructos<br>and mannose (structure determination not required), physical an<br>chemical properties of glucose and fructose.Disaccharides: Rin<br>structures (Haworth formula) –occurrence, physical and chemica<br>properties of maltose, lactose and sucrose. Polysaccharides: Starch<br>glycogen and cellulose – structure and properties, glycolysis o<br>carbohydrates.           UNIT-1I: Steroids and Hormones:Steroids-Introduction, occurrence<br>nomenclature, configuration of substituents. Diels' hydrocarbor<br>stereochemistry, classification, Diels' hydrocarbon, biological importance<br>colour reactions of sterols, cholesterol-occurrence, tests, physiologica<br>activity, biosynthesis of cholesterol from squalene. Hormones<br>Introduction, classification functions of sex hormones-androgens an<br>estrogens, adrenocortical hormones-cortisone and cortisol structure an<br>functions of non-steroidal hormones-adrenaline and thyroxin.           UNIT-IU:Proteins andnucleicacids: Structure, methods for th<br>synthesis of nucleoside - transamination, oxidative deamination an<br>decarboxylation. Biosynthesis of proteins: Role of nucleo: acids. Amin<br>acid metabolism and urcacycle.           UNIT-IV:Proteins andnucleicacids: Structure, metho |                |                                                                      | Tutorial                  | Lal            | b Practice             |              |                                       |                                     |
| Objectives of<br>the courseTo learn the basic concepts and biological importance of biomolecule<br>and natural products.<br>To explain various of functions of carbohydrates, proteins, nucleic acids<br>steroids and hormones.<br>To understand the functions of alkaloids and terpenoids.<br>To elucidate the structure determination of biomolecules and natura<br>products.<br>To extract and construct the structure of new alkaloids and terpenoid<br>from different methods.Course OutlineUNIT-I:Chemistry and metabolism of carbohydrates: Definition<br>classification and biological role of carbohydrates. onosaccharides<br>Linear and ring structures (Haworth formula) of ribose, glucose, fructos<br>and mannose (structure determination not required), physical and<br>chemical properties of glucose and fructose.Disaccharides: Starct<br>glycogen and cellulose – structure and properties, glycolysis o<br>carbohydrates.UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence<br>nomenclature, configuration of substituents. Diels' hydrocarbon<br>stereochemistry, classification, functions of sex hormones- androgens an<br>estrogens, adrenocortical hormones-cortisone and cortisol structure an<br>functions of non-steroidal hormones-adrenaline and thyroxin.UNIT-II:Proteins andnucleicacids: Separation and purification o<br>proteins – dialysis, gel filtration and electrophoresis. Catabolism o<br>amino acids - transamination, oxidative deamination an<br>decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amin<br>acid metabolism and urcacycle.UNIT-IV:Proteins andnucleicacids:<br>bas and nucleoside - direct combination, formation of heterocycli<br>bas and nucleoside modification, conversio                                 | -              | •                                                                    | 1                         | -              |                        |              | 5                                     |                                     |
| the course       and natural products.         To explain various of functions of carbohydrates, proteins, nucleic acids steroids and hormones.       To understand the functions of alkaloids and terpenoids.         To elucidate the structure determination of biomolecules and natura products.       To extract and construct the structure of new alkaloids and terpenoid from different methods.         Course Outline       UNIT-I:Chemistry and metabolism of carbohydrates: Definition classification and biological role of carbohydrates. onosaccharides: Linear and ring structures (Haworth formula) of ribose, glucose, fructos and mannose (structure determination not required), physical and chemical properties of glucose and fructose.Disaccharides: Starch glycogen and cellulose – structure and properties, glycolysis o carbohydrates.         UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence nomenclature, configuration of substituents. Diels' hydrocarbor stereochemistry, classification, Diels' hydrocarbon, biological importance colour reactions of sterols, cholesterol occurrence, tests, physiologica activity, biosynthesis of cholesterol occurrence, tests, physiologica activity, biosynthesis of sterols, cholesterol and purpersite and functions of non-steroidal hormones-cortisone and cortisol structure an functions of non-steroidal hormones-cortisone and purpersite on amino acids - transamination, oxidative deamination and decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amina acid metabolism and urcacycle.         UNIT-II:Proteins andnucleicacids: Structure, methods for th synthesis of nucleoside - direct combination, formation of heterocycli base and nucleoside - direct combination, formation of heterocycli                                                                                                                                                                                             |                |                                                                      | <u> </u>                  |                |                        |              |                                       |                                     |
| To explain various of functions of carbohydrates, proteins, nucleic acids steroids and hormones.         To understand the functions of alkaloids and terpenoids.         To elucidate the structure determination of biomolecules and natura products.         To extract and construct the structure of new alkaloids and terpenoid from different methods.         Course Outline         UNIT-I:Chemistry and metabolism of carbohydrates: Definition classification and biological role of carbohydrates: onosaccharides Linear and ring structures (Haworth formula) of ribose, glucose, fructos and mannose (structure determination not required), physical an chemical properties of glucose and fructose.Disaccharides: Rin structures (Haworth formula) –occurrence, physical and chemica properties of maltose, lactose and sucrose. Polysaccharides: Stared glycogen and cellulose – structure and properties, glycolysis o carbohydrates.         UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence nomenclature, configuration of substituents. Diels' hydrocarbor sterochemistry, classification, functions of sex hormones- androgens an estrogens, adrenocortical hormones-adrenaline and thyroxin.         UNIT-III: Proteins andnucleicacids: Separation and purification o proteins – dialysis, gel filtration and electrophoresis. Catabolism o amino acids – transamination, oxidative deamination an decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amin acid metabolism and ureacycle.         UNIT-IV:Proteins andnucleicacids: Structure, methods for th synthesis of nucleoside – direct combination, formation of heterocycli base and nucleoside – direct combination, formation of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson                                                                                                                                                                                    | _              |                                                                      |                           | ncept          | s and bio              | logic        | al importance                         | of biomolecules                     |
| steroids and hormones.         To understand the functions of alkaloids and terpenoids.         To elucidate the structure determination of biomolecules and natura products.         To extract and construct the structure of new alkaloids and terpenoid from different methods.         Course Outline       UNIT-I:Chemistry and metabolism of carbohydrates: Definition classification and biological role of carbohydrates. onosaccharides Linear and ring structures (Haworth formula) of ribose, glucose, fructos and mannose (structure determination not required), physical and chemical properties of glucose and fructose.Disaccharides: Ring structures (Haworth formula) –occurrence, physical and chemical properties of maltose, lactose and sucrose. Polysaccharides: Starch glycogen and cellulose – structure and properties, glycolysis of carbohydrates.         UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence nomenclature, configuration of substituents. Diels' hydrocarbor sterochemistry, classification, functions of sex hormones- androgens an estrogens, adrenocortical hormones-adrenaline and thyroxin.         UNIT-III:Proteins andnucleicacids: Separation and purification on proteins – dialysis, gle filtration and electrophoresis. Catabolism o amino acids - transamination, oxidative deamination an decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amina acid metabolism and ureacycle.         UNIT-IV:Proteins andnucleicacids: Structure, methods for th synthesis of nucleoside - direct combination, formation of heterocycli base and nucleoside - direct combination, formation of heterocycli                                                                                                                                                                                                                                                                                                                                 | the course     |                                                                      | 1                         | <b>c</b>       |                        | 1 1          | 1                                     | 1 · · · 1                           |
| To understand the functions of alkaloids and terpenoids.<br>To elucidate the structure determination of biomolecules and natura<br>products.<br>To extract and construct the structure of new alkaloids and terpenoid<br>from different methods.Course OutlineUNIT-i.Chemistry and metabolism of carbohydrates: Definition<br>classification and biological role of carbohydrates: onosaccharides<br>Linear and ring structures (Haworth formula) of ribose, glucose, fructos<br>and mannose (structure determination not required), physical and<br>chemical properties of glucose and fructose.Disaccharides: Rin,<br>structures (Haworth formula) -occurrence, physical and chemical<br>properties of maltose, lactose and sucrose. Polysaccharides: Starch<br>glycogen and cellulose – structure and properties, glycolysis o<br>carbohydrates.UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence<br>nomenclature, configuration of substituents. Diels' hydrocarbon<br>sterochemistry, classification, Diels' hydrocarbon, biological importance<br>colour reactions of sterols, cholesterol from squalene. Hormones<br>Introduction, classification, functions of sex hormones- androgens an<br>estrogens, adrenocortical hormones-cortisone and cortisol structure and<br>functions of non-steroidal hormones-cortison and purification o<br>proteins – dialysis, gel filtration and electrophoresis. Catabolism o<br>amino acids - transamination, oxidative deamination and<br>decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amin<br>acid metabolism and ureacycle.UNIT-IV:Proteins andnucleicacids:<br>base and nucleoside modification, conversion of nucleoside t<br>nucleotides. Primary and secondary structure of RNA and DNA, Watson                                                                                                                                                                                                                                   |                |                                                                      |                           |                | tions of ca            | rbohy        | ydrates, protein                      | ns, nucleic acids,                  |
| To elucidate the structure determination of biomolecules and natura<br>products.<br>To extract and construct the structure of new alkaloids and terpenoid<br>from different methods.Course OutlineUNIT-I:Chemistry and metabolism of carbohydrates: Definition<br>classification and biological role of carbohydrates: nonsaccharides<br>Linear and ring structures (Haworth formula) of ribose, glucose, fructos<br>and mannose (structure determination not required), physical and<br>chemical properties of glucose and fructose.Disaccharides: Rin,<br>structures (Haworth formula) -occurrence, physical and chemica<br>properties of maltose, lactose and sucrose. Polysaccharides: Starch<br>glycogen and cellulose – structure and properties, glycolysis o<br>carbohydrates.UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence<br>nomenclature, configuration of substituents. Diels' hydrocarbon<br>stereochemistry, classification, Diels' hydrocarbon, biological importance<br>colour reactions of sterols, cholesterol-occurrence, tests, physiologica<br>activity, biosynthesis of cholesterol from squalene. Hormones<br>Introduction, classification, functions of sex hormones- androgens an<br>estrogens, adrenocortical hormones-adrenaline and thyroxin.UNIT-III:Proteins andnucleicacids: Separation and purification o<br>proteins – dialysis, gel filtration and electrophoresis. Catabolism o<br>amino acids - transamination, oxidative deamination ami<br>decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amin<br>acid metabolism and ureacycle.UNIT-IV:Proteins andnucleicacids:<br>base and nucleoside s - direct combination, formation of heterocycli<br>base and nucleosides - direct combination, formation of heterocycli<br>base and nucleoside modification, conversion of nucleoside t<br>nucleotides. Primary and secondary structure of RNA and DNA, Watson                                                                                      |                |                                                                      |                           |                | <b>f</b> - 11 - 1 - 1  | 1            | 1 4                                   |                                     |
| products.<br>To extract and construct the structure of new alkaloids and terpenoid<br>from different methods.Course OutlineUNIT-I:Chemistry and metabolism of carbohydrates: Definition<br>classification and biological role of carbohydrates. onosaccharides<br>Linear and ring structures (Haworth formula) of ribose, glucose, fructos<br>and mannose (structure determination not required), physical and<br>chemical properties of glucose and fructose.Disaccharides: Ring<br>structures (Haworth formula) –occurrence, physical and chemica<br>properties of maltose, lactose and sucrose. Polysaccharides: Starch<br>glycogen and cellulose – structure and properties, glycolysis o<br>carbohydrates.UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence<br>nomenclature, configuration of substituents. Diels' hydrocarbor<br>stereochemistry, classification, Diels' hydrocarbon, biological importance<br>colour reactions of sterols, cholesterol-occurrence, tests, physiologica<br>activity, biosynthesis of cholesterol from squalene. Hormones<br>Introduction, classification, functions of sex hormones- androgens an<br>estrogens, adrenocortical hormones-adrenaline and thyroxin.UNIT-III:Proteins andnucleicacids: Separation and purification o<br>proteins – dialysis, gel filtration and electrophoresis. Catabolism o<br>amino acids - transamination, oxidative deamination and<br>decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amin<br>acid metabolism and ureacycle.UNIT-IV:Proteins andnucleicacids:Structure, methods for th<br>synthesis of nucleoside s - direct combination, formation of heterocycli<br>base and nucleoside modification, conversion of nucleoside t<br>nucleotides. Primary and secondary structure of RNA and DNA, Watson                                                                                                                                                                                                       |                |                                                                      |                           |                |                        |              |                                       | ular and matumal                    |
| To extract and construct the structure of new alkaloids and terpenoid<br>from different methods.Course OutlineUNIT-I:Chemistry and metabolism of carbohydrates: Definition<br>classification and biological role of carbohydrates. onosaccharides<br>Linear and ring structures (Haworth formula) of ribose, glucose, fructos<br>and mannose (structure determination not required), physical and<br>chemical properties of glucose and fructose.Disaccharides: Ring<br>structures (Haworth formula) –occurrence, physical and chemical<br>properties of maltose, lactose and sucrose. Polysaccharides: Starch<br>glycogen and cellulose – structure and properties, glycolysis of<br>carbohydrates.UNIT-II:Steroids and Hormones:Steroids-Introduction, occurrence<br>nomenclature, configuration of substituents. Diels' hydrocarbor<br>stereochemistry, classification, Diels' hydrocarbon, biological importance<br>colour reactions of sterols, cholesterol-occurrence, tests, physiologica<br>activity, biosynthesis of cholesterol from squalene. Hormones<br>Introduction, classification, functions of sex hormones- androgens an<br>estrogens, adrenocortical hormones-adrenaline and thyroxin.UNIT-III:Proteins andnucleicacids:Separation and purification on<br>amino acids - transamination, oxidative deamination and<br>decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amin<br>acid metabolism and ureacycle.UNIT-IV:Proteins andnucleicacids:Structure, methods for th<br>synthesis of nucleosides - direct combination, formation of heterocycli<br>base and nucleoside - direct combination, formation of heterocycli<br>base and nucleoside modification, conversion of nucleoside t<br>nucleotides. Primary and secondary structure of RNA and DNA, Watson                                                                                                                                                                                                                       |                |                                                                      | lie the stru              | cture          | determin               | ation        | of biomoleci                          | ules and natural                    |
| from different methods.Course OutlineUNIT-I:Chemistry and metabolism of carbohydrates: Definition<br>classification and biological role of carbohydrates: onosaccharides<br>Lincar and ring structures (Haworth formula) of ribose, glucose, fructos<br>and mannose (structure determination not required), physical and<br>chemical properties of glucose and fructose.Disaccharides: Ring<br>structures (Haworth formula) –occurrence, physical and chemica<br>properties of maltose, lactose and sucrose. Polysaccharides: Starch<br>glycogen and cellulose – structure and properties, glycolysis of<br>carbohydrates.UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence<br>nomenclature, configuration of substituents. Diels' hydrocarbor<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                | 1                                                                    | and constr                | uet f          | he structur            | re of        | new alkaloid                          | s and ternenoids                    |
| Course OutlineUNIT-I:Chemistry and metabolism of carbohydrates: Definition<br>classification and biological role of carbohydrates. onosaccharides<br>Linear and ring structures (Haworth formula) of ribose, glucose, fructos<br>and mannose (structure determination not required), physical and<br>chemical properties of glucose and fructose.Disaccharides: Rim<br>structures (Haworth formula) –occurrence, physical and chemica<br>properties of maltose, lactose and sucrose. Polysaccharides: Starch<br>glycogen and cellulose – structure and properties, glycolysis o<br>carbohydrates.UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence<br>nomenclature, configuration of substituents. Diels' hydrocarbon<br>stereochemistry, classification, Diels' hydrocarbon, biological importance<br>colour reactions of sterols, cholesterol-occurrence, tests, physiologica<br>activity, biosynthesis of cholesterol from squalene. Hormones<br>Introduction, classification, functions of sex hormones- androgens an<br>estrogens, adrenocortical hormones-cortisone and cortisol structure and<br>functions of non-steroidal hormones-adrenaline and thyroxin.UNIT-II:Proteins andnucleicacids: Separation and purification on<br>proteins – dialysis, gel filtration and electrophoresis. Catabolism o<br>amino acids - transamination, oxidative deamination and<br>decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amin<br>acid metabolism and ureacycle.UNIT-IV:Proteins andnucleicacids: Structure, methods for th<br>synthesis of nucleoside - direct combination, formation of heterocycli<br>base and nucleoside modification, conversion of nucleoside t<br>nucleotides. Primary and secondary structure of RNA and DNA, Watson                                                                                                                                                                                                                                          |                |                                                                      |                           |                |                        |              |                                       | s and terpenoids                    |
| <ul> <li>classification and biological role of carbohydrates. onosaccharides:<br/>Linear and ring structures (Haworth formula) of ribose, glucose, fructos<br/>and mannose (structure determination not required), physical and<br/>chemical properties of glucose and fructose.Disaccharides: Rin,<br/>structures (Haworth formula) –occurrence, physical and chemica<br/>properties of maltose, lactose and sucrose. Polysaccharides: Starch<br/>glycogen and cellulose – structure and properties, glycolysis of<br/>carbohydrates.</li> <li>UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence<br/>nomenclature, configuration of substituents. Diels' hydrocarbor<br/>stereochemistry, classification, Diels' hydrocarbon, biological importance<br/>colour reactions of sterols, cholesterol form squalene. Hormoness<br/>Introduction, classification, functions of sex hormones- androgens an<br/>estrogens, adrenocortical hormones-cortisone and cortisol structure an<br/>functions of non-steroidal hormones-adrenaline and thyroxin.</li> <li>UNIT-III:Proteins andnucleicacids: Separation and purification on<br/>proteins – dialysis, gel filtration and electrophoresis. Catabolism o<br/>amino acids - transamination, oxidative deamination and<br/>decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amina<br/>acid metabolism and ureacycle.</li> <li>UNIT-IV:Proteins andnucleicacids: Structure, methods for th<br/>synthesis of nucleosides - direct combination, formation of heterocycli<br/>base and nucleoside modification, conversion of nucleoside t<br/>nucleotides. Primary and secondary structure of RNA and DNA, Watson</li> </ul>                                                                                                                                                                                                                                                                                                                     | Course Outling |                                                                      |                           |                | metaholis              | m o          | f carbohydra                          | ates. Definition                    |
| <ul> <li>Linear and ring structures (Haworth formula) of ribose, glucose, fructos and mannose (structure determination not required), physical and chemical properties of glucose and fructose.Disaccharides: Ring structures (Haworth formula) –occurrence, physical and chemical properties of maltose, lactose and sucrose. Polysaccharides: Starch glycogen and cellulose – structure and properties, glycolysis of carbohydrates.</li> <li>UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence nomenclature, configuration of substituents. Diels' hydrocarbor stereochemistry, classification, Diels' hydrocarbon, biological importance colour reactions of sterols, cholesterol-occurrence, tests, physiologica activity, biosynthesis of cholesterol-occurrence, and curcions of non-steroidal hormones-cortisone and cortisol structure and functions of non-steroidal hormones-adrenaline and thyroxin.</li> <li>UNIT-III:Proteins andnucleicacids: Separation and purification of proteins – dialysis, gel filtration and electrophoresis. Catabolism of amino acids - transamination, oxidative deamination and decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amina acid metabolism and ureacycle.</li> <li>UNIT-IV:Proteins andnucleicacids: Structure, methods for th synthesis of nucleosides - direct combination, formation of heterocycli base and nucleoside modification, conversion of nucleoside t nucleotides. Primary and secondary structure of RNA and DNA, Watson</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                      |                           |                |                        |              |                                       |                                     |
| <ul> <li>and mannose (structure determination not required), physical and chemical properties of glucose and fructose.Disaccharides: Rin structures (Haworth formula) –occurrence, physical and chemica properties of maltose, lactose and sucrose. Polysaccharides: Starch glycogen and cellulose – structure and properties, glycolysis of carbohydrates.</li> <li>UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence nomenclature, configuration of substituents. Diels' hydrocarbon stereochemistry, classification, Diels' hydrocarbon, biological importance colour reactions of sterols, cholesterol-occurrence, tests, physiologica activity, biosynthesis of cholesterol from squalene. Hormones Introduction, classification, functions of sex hormones- androgens and estrogens, adrenocortical hormones-cortisone and cortisol structure and functions of non-steroidal hormones-adrenaline and thyroxin.</li> <li>UNIT-III:Proteins andnucleicacids: Separation and purification on proteins – dialysis, gel filtration and electrophoresis. Catabolism of amino acids - transamination, oxidative deamination and decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amina acid metabolism and ureacycle.</li> <li>UNIT-IV:Proteins andnucleicacids: Structure, methods for th synthesis of nucleosides - direct combination, formation of heterocycli base and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                                                      |                           |                |                        |              |                                       |                                     |
| <ul> <li>chemical properties of glucose and fructose.Disaccharides: Rin<br/>structures (Haworth formula) –occurrence, physical and chemica<br/>properties of maltose, lactose and sucrose. Polysaccharides: Starch<br/>glycogen and cellulose – structure and properties, glycolysis of<br/>carbohydrates.</li> <li>UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence<br/>nomenclature, configuration of substituents. Diels' hydrocarbon<br/>stereochemistry, classification, Diels' hydrocarbon, biological importance<br/>colour reactions of sterols, cholesterol-occurrence, tests, physiologica<br/>activity, biosynthesis of cholesterol from squalene. Hormones<br/>Introduction, classification, functions of sex hormones- androgens an<br/>estrogens, adrenocortical hormones-cortisone and cortisol structure and<br/>functions of non-steroidal hormones-adrenaline and thyroxin.</li> <li>UNIT-III:Proteins andnucleicacids: Separation and purification of<br/>proteins – dialysis, gel filtration and electrophoresis. Catabolism of<br/>amino acids - transamination, oxidative deamination and<br/>decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amina<br/>acid metabolism and ureacycle.</li> <li>UNIT-IV:Proteins andnucleicacids: Structure, methods for th<br/>synthesis of nucleosides - direct combination, formation of heterocycli<br/>base and nucleoside modification, conversion of nucleoside to<br/>nucleotides. Primary and secondary structure of RNA and DNA, Watson</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                      | •                         | ````           |                        |              | /                                     | •                                   |
| <ul> <li>structures (Haworth formula) –occurrence, physical and chemica properties of maltose, lactose and sucrose. Polysaccharides: Starch glycogen and cellulose – structure and properties, glycolysis of carbohydrates.</li> <li>UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence nomenclature, configuration of substituents. Diels' hydrocarborn stereochemistry, classification, Diels' hydrocarbon, biological importance colour reactions of sterols, cholesterol-occurrence, tests, physiologica activity, biosynthesis of cholesterol from squalene. Hormoness Introduction, classification, functions of sex hormones- androgens and estrogens, adrenocortical hormones-cortisone and chyroxin.</li> <li>UNIT-III:Proteins andnucleicacids: Separation and purification or proteins – dialysis, gel filtration and electrophoresis. Catabolism of amino acids - transamination, oxidative deamination and decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amino acid metabolism and ureacycle.</li> <li>UNIT-IV:Proteins andnucleicacids: Structure, methods for th synthesis of nucleoside - direct combination, formation of heterocycli base and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                                                      |                           |                |                        |              |                                       |                                     |
| <ul> <li>properties of maltose, lactose and sucrose. Polysaccharides: Starch glycogen and cellulose – structure and properties, glycolysis of carbohydrates.</li> <li>UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence nomenclature, configuration of substituents. Diels' hydrocarborn stereochemistry, classification, Diels' hydrocarbon, biological importance colour reactions of sterols, cholesterol-occurrence, tests, physiologica activity, biosynthesis of cholesterol from squalene. Hormones: Introduction, classification, functions of sex hormones- androgens and estrogens, adrenocortical hormones-cortisone and cortisol structure and functions of non-steroidal hormones-adrenaline and thyroxin.</li> <li>UNIT-III:Proteins andnucleicacids: Separation and purification on proteins – dialysis, gel filtration and electrophoresis. Catabolism of amino acids - transamination, oxidative deamination and decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amina acid metabolism and ureacycle.</li> <li>UNIT-IV:Proteins andnucleicacids: Structure, methods for th synthesis of nucleosides - direct combination, formation of heterocycli base and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                      |                           |                |                        |              |                                       |                                     |
| glycogen and cellulose – structure and properties, glycolysis of<br>carbohydrates.UNIT-II: Steroids and Hormones:Steroids-Introduction, occurrence<br>nomenclature, configuration of substituents. Diels' hydrocarbor<br>stereochemistry, classification, Diels' hydrocarbon, biological importance<br>colour reactions of sterols, cholesterol-occurrence, tests, physiologica<br>activity, biosynthesis of cholesterol from squalene. Hormoness<br>Introduction, classification, functions of sex hormones- androgens and<br>estrogens, adrenocortical hormones-cortisone and cortisol structure and<br>functions of non-steroidal hormones-adrenaline and thyroxin.UNIT-III:Proteins andnucleicacids: Separation and purification of<br>proteins – dialysis, gel filtration and electrophoresis. Catabolism of<br>amino acids - transamination, oxidative deamination and<br>decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amina<br>acid metabolism and ureacycle.UNIT-IV:Proteins andnucleicacids: Structure, methods for th<br>synthesis of nucleosides - direct combination, formation of heterocycli<br>base and nucleoside modification, conversion of nucleoside to<br>nucleotides. Primary and secondary structure of RNA and DNA, Watson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                                      |                           |                |                        |              |                                       |                                     |
| <ul> <li>UNIT-II: Steroids and Hormones: Steroids-Introduction, occurrence nomenclature, configuration of substituents. Diels' hydrocarborn stereochemistry, classification, Diels' hydrocarbon, biological importance colour reactions of sterols, cholesterol-occurrence, tests, physiologica activity, biosynthesis of cholesterol from squalene. Hormones Introduction, classification, functions of sex hormones- androgens and estrogens, adrenocortical hormones-cortisone and cortisol structure and functions of non-steroidal hormones-adrenaline and thyroxin.</li> <li>UNIT-III:Proteins andnucleicacids: Separation and purification or proteins – dialysis, gel filtration and electrophoresis. Catabolism or amino acids - transamination, oxidative deamination and decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amino acid metabolism and ureacycle.</li> <li>UNIT-IV:Proteins andnucleicacids: Structure, methods for the synthesis of nucleosides - direct combination, formation of heterocycli base and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                                                      |                           |                |                        |              |                                       |                                     |
| <ul> <li>nomenclature, configuration of substituents. Diels' hydrocarborn stereochemistry, classification, Diels' hydrocarbon, biological importance colour reactions of sterols, cholesterol-occurrence, tests, physiological activity, biosynthesis of cholesterol from squalene. Hormoness Introduction, classification, functions of sex hormones- androgens and estrogens, adrenocortical hormones-cortisone and cortisol structure and functions of non-steroidal hormones-adrenaline and thyroxin.</li> <li>UNIT-III:Proteins andnucleicacids: Separation and purification of proteins – dialysis, gel filtration and electrophoresis. Catabolism of amino acids - transamination, oxidative deamination and decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amine acid metabolism and ureacycle.</li> <li>UNIT-IV:Proteins andnucleicacids: Structure, methods for th synthesis of nucleosides - direct combination, formation of heterocycli base and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                      |                           |                |                        |              |                                       |                                     |
| <ul> <li>stereochemistry, classification, Diels' hydrocarbon, biological importance colour reactions of sterols, cholesterol-occurrence, tests, physiological activity, biosynthesis of cholesterol from squalene. Hormoness Introduction, classification, functions of sex hormones- androgens and estrogens, adrenocortical hormones-cortisone and cortisol structure and functions of non-steroidal hormones-adrenaline and thyroxin.</li> <li>UNIT-III:Proteins andnucleicacids: Separation and purification of proteins – dialysis, gel filtration and electrophoresis. Catabolism of amino acids - transamination, oxidative deamination and decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amine acid metabolism and ureacycle.</li> <li>UNIT-IV:Proteins andnucleicacids: Structure, methods for the synthesis of nucleosides - direct combination, formation of heterocycli base and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | UNIT-II:                                                             | Steroids a                |                |                        |              |                                       |                                     |
| <ul> <li>colour reactions of sterols, cholesterol-occurrence, tests, physiological activity, biosynthesis of cholesterol from squalene. Hormoness Introduction, classification, functions of sex hormones- androgens and estrogens, adrenocortical hormones-cortisone and cortisol structure and functions of non-steroidal hormones-adrenaline and thyroxin.</li> <li>UNIT-III:Proteins andnucleicacids: Separation and purification of proteins – dialysis, gel filtration and electrophoresis. Catabolism of amino acids - transamination, oxidative deamination and decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amino acid metabolism and ureacycle.</li> <li>UNIT-IV:Proteins andnucleicacids: Structure, methods for th synthesis of nucleosides - direct combination, formation of heterocyclibase and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                                      |                           | -              |                        |              |                                       |                                     |
| <ul> <li>activity, biosynthesis of cholesterol from squalene. Hormoness<br/>Introduction, classification, functions of sex hormones- androgens and<br/>estrogens, adrenocortical hormones-cortisone and cortisol structure and<br/>functions of non-steroidal hormones-adrenaline and thyroxin.</li> <li>UNIT-III:Proteins andnucleicacids: Separation and purification of<br/>proteins – dialysis, gel filtration and electrophoresis. Catabolism of<br/>amino acids - transamination, oxidative deamination and<br/>decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amino<br/>acid metabolism and ureacycle.</li> <li>UNIT-IV:Proteins andnucleicacids: Structure, methods for th<br/>synthesis of nucleosides - direct combination, formation of heterocycli<br/>base and nucleoside modification, conversion of nucleoside to<br/>nucleotides. Primary and secondary structure of RNA and DNA, Watson</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                                                      | •                         |                | · ·                    | •            | , , , , , , , , , , , , , , , , , , , | 0 1 /                               |
| <ul> <li>Introduction, classification, functions of sex hormones- androgens and estrogens, adrenocortical hormones-cortisone and cortisol structure and functions of non-steroidal hormones-adrenaline and thyroxin.</li> <li>UNIT-III:Proteins andnucleicacids: Separation and purification of proteins – dialysis, gel filtration and electrophoresis. Catabolism of amino acids - transamination, oxidative deamination and decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amino acid metabolism and ureacycle.</li> <li>UNIT-IV:Proteins andnucleicacids: Structure, methods for the synthesis of nucleosides - direct combination, formation of heterocyclibase and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                      |                           |                |                        |              |                                       |                                     |
| functions of non-steroidal hormones-adrenaline and thyroxin.UNIT-III:Proteins andnucleicacids: Separation and purification of<br>proteins – dialysis, gel filtration and electrophoresis. Catabolism of<br>amino acids - transamination, oxidative deamination and<br>decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amino<br>acid metabolism and ureacycle.UNIT-IV:Proteins andnucleicacids: Structure, methods for th<br>synthesis of nucleosides - direct combination, formation of heterocyclic<br>base and nucleoside modification, conversion of nucleoside to<br>nucleotides. Primary and secondary structure of RNA and DNA, Watson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                                                                      | •                         |                |                        |              | -                                     |                                     |
| <ul> <li>UNIT-III:Proteins andnucleicacids: Separation and purification of proteins – dialysis, gel filtration and electrophoresis. Catabolism of amino acids - transamination, oxidative deamination and decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amino acid metabolism and ureacycle.</li> <li>UNIT-IV:Proteins andnucleicacids: Structure, methods for the synthesis of nucleosides - direct combination, formation of heterocyclic base and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                                                      |                           |                |                        |              |                                       |                                     |
| <ul> <li>proteins – dialysis, gel filtration and electrophoresis. Catabolism of amino acids - transamination, oxidative deamination and decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amine acid metabolism and ureacycle.</li> <li>UNIT-IV:Proteins andnucleicacids: Structure, methods for the synthesis of nucleosides - direct combination, formation of heterocyclic base and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                      |                           |                |                        |              |                                       |                                     |
| <ul> <li>amino acids - transamination, oxidative deamination and decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amina acid metabolism and ureacycle.</li> <li>UNIT-IV:Proteins andnucleicacids: Structure, methods for thas synthesis of nucleosides - direct combination, formation of heterocyclic base and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                      |                           |                |                        |              | 1                                     | -                                   |
| <ul> <li>decarboxylation. Biosynthesis of proteins: Role of nucleic acids. Amina acid metabolism and ureacycle.</li> <li>UNIT-IV:Proteins andnucleicacids: Structure, methods for the synthesis of nucleosides - direct combination, formation of heterocyclic base and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | -                                                                    |                           | -              |                        |              | -                                     |                                     |
| acid metabolism and ureacycle.<br><b>UNIT-IV:Proteins andnucleicacids:</b> Structure, methods for th<br>synthesis of nucleosides - direct combination, formation of heterocyclic<br>base and nucleoside modification, conversion of nucleoside to<br>nucleotides. Primary and secondary structure of RNA and DNA, Watson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                                      |                           |                |                        | ,            |                                       |                                     |
| <b>UNIT-IV:Proteins andnucleicacids:</b> Structure, methods for the synthesis of nucleosides - direct combination, formation of heterocyclic base and nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                | -                                                                    | -                         |                | -                      | teins:       | Role of nucle                         | eic acids. Amino                    |
| synthesis of nucleosides - direct combination, formation of heterocyclic<br>base and nucleoside modification, conversion of nucleoside to<br>nucleotides. Primary and secondary structure of RNA and DNA, Watson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | acid metab                                                           | olism and u               | reacy          | /cie.                  |              |                                       |                                     |
| base and nucleoside modification, conversion of nucleoside to<br>nucleotides. Primary and secondary structure of RNA and DNA, Watson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                      |                           |                |                        |              | · · · · ·                             |                                     |
| nucleotides. Primary and secondary structure of RNA and DNA, Watson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                                                      |                           |                |                        |              |                                       |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                      |                           |                |                        |              |                                       |                                     |
| Crick model, solid phase synthesis ofoligonucleotides.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | nucleotides. Primary and secondary structure of RNA and DNA, Watson- |                           |                |                        |              |                                       |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                      |                           |                |                        |              |                                       |                                     |
| <b>UNIT-V:Fused Ring Heterocyclic Compounds:</b> Benzofused fiv<br>membered rings: Indole, isoindole, benzofuran and benzothiophene<br>Preparation and properties. Benzofused six membered rings: Quinolin<br>and isoquinoline: Preparation by ring closure reactions, Reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | membered<br>Preparation                                              | rings: Ind<br>1 and prope | ole,<br>rties. | isoindole,<br>Benzofus | ben<br>sed s | zofuran and<br>ix membered            | benzothiophene,<br>rings: Quinoline |

|                              | Mechanism of electrophilic and nucleophilic substitutions, oxidation and                                                   |  |  |  |  |  |  |  |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|                              | reduction reactions.                                                                                                       |  |  |  |  |  |  |  |
| Extended                     | Questions related to the above topics, from various competitive                                                            |  |  |  |  |  |  |  |
| Professional                 | examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved                                                  |  |  |  |  |  |  |  |
| Component (is a              | (To be discussed during the Tutorial hours)                                                                                |  |  |  |  |  |  |  |
| part of internal             | (To be discussed during the Tutorial nours)                                                                                |  |  |  |  |  |  |  |
| component only,<br>Not to be |                                                                                                                            |  |  |  |  |  |  |  |
| included in the              |                                                                                                                            |  |  |  |  |  |  |  |
| external                     |                                                                                                                            |  |  |  |  |  |  |  |
| examination                  |                                                                                                                            |  |  |  |  |  |  |  |
| question paper)              |                                                                                                                            |  |  |  |  |  |  |  |
| Skills acquired              | Knowledge, Problem solving, Analytical ability, Professional                                                               |  |  |  |  |  |  |  |
| from this course             | Competency, Professional Communication and Transferable skills.                                                            |  |  |  |  |  |  |  |
| Recommended                  | T. K Lindhorst, Essentials of Carbohydrate Chemistry and Biochemistry,                                                     |  |  |  |  |  |  |  |
| Text                         | Wiley VCH,North America,2007.                                                                                              |  |  |  |  |  |  |  |
|                              | I. L. Finar, Organic Chemistry Vol-2, 5 <sup>th</sup> edition,PearsonEducation Asia,                                       |  |  |  |  |  |  |  |
|                              | 1975.                                                                                                                      |  |  |  |  |  |  |  |
|                              | V. K. Ahluwalia and M. Goyal, Textbook of Heterocyclic                                                                     |  |  |  |  |  |  |  |
|                              | compounds, Narosa Publishing, New Delhi, 2000.                                                                             |  |  |  |  |  |  |  |
|                              | M. K. Jain and S. C. Sharma, Modern Organic Chemistry, Vishal                                                              |  |  |  |  |  |  |  |
|                              | Publishing Co., Jalandhar, Delhi, 2014.                                                                                    |  |  |  |  |  |  |  |
|                              | V. K. Ahluwalia, Steroids and Hormones, Ane books pub., New                                                                |  |  |  |  |  |  |  |
|                              | Delhi,2009.                                                                                                                |  |  |  |  |  |  |  |
|                              |                                                                                                                            |  |  |  |  |  |  |  |
|                              | the second se            |  |  |  |  |  |  |  |
| Reference                    | I. L. Finar, Organic Chemistry Vol-1, 6 <sup>th</sup> edition, Pearson Education                                           |  |  |  |  |  |  |  |
| Books                        | Asia,2004.                                                                                                                 |  |  |  |  |  |  |  |
|                              | Pelletier, Chemistry of Alkaloids, Van Nostrand                                                                            |  |  |  |  |  |  |  |
|                              | Reinhold Co,2000.                                                                                                          |  |  |  |  |  |  |  |
|                              | Shoppe, Chemistry of the steroids, Butterworthes, 1994.<br>I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal & |  |  |  |  |  |  |  |
|                              | aromatic plants, Vol 1 and Vol 10, Ukkaz Publications, Hyderabad, 2004.                                                    |  |  |  |  |  |  |  |
|                              | M. P. Singh. and H. Panda, Medicinal Herbs with their formulations,                                                        |  |  |  |  |  |  |  |
|                              | Daya Publishing House, Delhi,2005.                                                                                         |  |  |  |  |  |  |  |
| Website and                  | ps://www.organic-chemistry.org/                                                                                            |  |  |  |  |  |  |  |
| e-learning                   | ps://www.studyorgo.com/summary.php                                                                                         |  |  |  |  |  |  |  |
| source                       | ps://www.clutchprep.com/organic-chemistry                                                                                  |  |  |  |  |  |  |  |
| <b>Course Learning</b>       | Outcomes (for Mapping with POs and PSOs)                                                                                   |  |  |  |  |  |  |  |
| Students will be a           |                                                                                                                            |  |  |  |  |  |  |  |
| CO1: To understa             | nd the basic concepts of biomoleculesand natural products.                                                                 |  |  |  |  |  |  |  |
| CO2: To integrate            | e and assess the different methods of preparation of structurally different                                                |  |  |  |  |  |  |  |
| biomolecules and             |                                                                                                                            |  |  |  |  |  |  |  |
|                              | e the applications of biomolecules and their functions in the metabolism of                                                |  |  |  |  |  |  |  |
| living organisms.            |                                                                                                                            |  |  |  |  |  |  |  |
| 0 0                          | and rationalize the structure and synthesis of hotomorphic compounds                                                       |  |  |  |  |  |  |  |
| 104. To analyse a            | and rationalise the structure and synthesis of heterocyclic compounds.                                                     |  |  |  |  |  |  |  |

CO5: To develop the structure of biologically important heterocyclic compounds by different methods.

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1        | S   | S   | S   | S   | M   | S   | S          | S   | S   | М    |
| CO 2        | M   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 3        | S   | S   | M   | S   | S   | S   | S          | M   | S   | S    |
| <b>CO 4</b> | M   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 5        | Μ   | S   | М   | S   | S   | Μ   | S          | Μ   | S   | S    |

# **CO-PO Mapping (Course Articulation Matrix)**

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

| CO /PO                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| C01                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| CO5                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| Title of the      | COORD           | INATION        | CHE    | MISTRY      | – II   |                    |                                   |
|-------------------|-----------------|----------------|--------|-------------|--------|--------------------|-----------------------------------|
| Course            | COORD           |                |        |             |        |                    |                                   |
| Paper No.         | Core X          |                |        |             |        |                    |                                   |
| Category          | Core            | Year           | II     | Credits     | 4      | Course             |                                   |
| Caregory          |                 | Semester       | IV     |             |        | Code               |                                   |
| Instructional     | Lecture         | Tutorial       |        | Practice    | I      | Total              |                                   |
| hours per week    | 4               | 1              | -      | JIIactice   |        | 5                  |                                   |
| Prerequisites     |                 | wledge of i    | norg   | anic chemi  | strv   | 5                  |                                   |
| Objectives of the |                 |                |        |             |        | ots and structu    | ural aspects of                   |
| course            |                 | etallic comp   |        |             |        |                    |                                   |
| course            | 0               | -              |        |             | lic c  | ompounds and       | their catalytic                   |
|                   | behaviou        |                |        | 0           |        | F                  |                                   |
|                   |                 |                | ct the | e structure | of     | coordination co    | mpounds using                     |
|                   |                 | opic tools.    |        |             |        |                    | 1 0                               |
|                   | -               | 1              | uctur  | e and bone  | ding   | in coordination    | complexes.                        |
|                   | To evalua       | ate the spect  | ral cl | haracterist | ics of | f selected comp    | lexes.                            |
| Course Outline    |                 |                |        |             |        |                    | onding in metal                   |
|                   | – olefin c      | omplexes (     | exam   | ple: Ziese  | 's sa  | lt), metal-acety   | lene and metal-                   |
|                   | allyl com       | plexes; Me     | etal-c | yclopentac  | lieny  | l complexes –      | Examples and                      |
|                   |                 |                |        |             |        |                    | nerism. Metal –                   |
|                   |                 |                |        |             |        |                    | and bonding –                     |
|                   | U U             |                |        |             |        | •                  | ceptor nature of                  |
|                   |                 | • • •          | •      |             | · ·    |                    | ower oxidation                    |
|                   |                 | · · ·          |        |             |        | •                  | high nuclearity                   |
|                   | -               |                |        |             | ed or  | n polyhedral sk    | celeton electron                  |
| ,                 | -               | y or Wade's    |        |             |        |                    |                                   |
|                   |                 |                |        |             |        |                    | c compounds:                      |
|                   |                 |                |        |             |        |                    | lition, reductive                 |
|                   |                 | · ·            |        | · · · · ·   |        |                    | on reaction and nation of olefins |
|                   |                 |                |        |             |        |                    | using cobalt or                   |
|                   |                 |                |        |             |        |                    | acker process),                   |
|                   |                 | •              | -      | · · ·       |        |                    | gomerisation of                   |
|                   |                 |                |        | •           |        | onto process.      | Somerisation of                   |
|                   |                 | <b>-</b>       | -      |             |        | · ·                | of UV-Visible                     |
|                   |                 |                |        |             |        |                    | s, Geometrical                    |
|                   |                 |                |        |             |        |                    | coordination on                   |
|                   |                 | -              |        | -           |        | - ·                | o, aqua, nitro,                   |
|                   |                 |                | -      | -           |        | -                  | pectroscopy of                    |
|                   | -               | •              |        |             |        | -                  | s of 1H, 15N,                     |
|                   | 19F, 31P        | -NMR spec      | trosc  | opy in str  | uctu   | ral identification | on of inorganic                   |
|                   |                 | s, fluxional   |        |             |        |                    |                                   |
|                   | UNIT-IV         | ': Inorgani    | c spe  | ectroscopy  | /-II:  | Introductory te    | erminologies: g                   |
|                   | -               |                |        | -           |        |                    | ecting g and A;                   |
|                   |                 |                |        |             |        |                    | one and more                      |
|                   |                 |                |        |             |        |                    | dary hyperfine                    |
|                   |                 |                |        |             | -      |                    | Mn(II), Fe(II),                   |
|                   |                 |                |        |             |        |                    | copper(II) and                    |
|                   | $  [(NH_3)_5C]$ | $o-O_2-Co(NI)$ | []     | Mossb       | auer   | spectroscopy       | – Mossbauer                       |

|                                  | effect, Recoil energy, Mossbauer active nuclei, Doppler shift, Isomer<br>shift, quadrupole splitting and magnetic interactions. Applications of<br>Mössbauer spectra to Fe and Sn compounds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | <b>UNIT-V: Photo Electron Spectroscopy:</b> Theory, Types, origin of fine structures - shapes of vibrational fine structures – adiabatic and vertical transitions, PES of homonuclear diatomic molecules (N <sub>2</sub> , O <sub>2</sub> ) and heteronuclear diatomic molecules (CO, HCl) and polyatomic molecules (H <sub>2</sub> O, CO <sub>2</sub> , CH <sub>4</sub> , NH <sub>3</sub> ) – evaluation of vibrational constants of the above molecules. Koopman's theorem- applications and limitations.Optical Rotatory Dispersion – Principle of CD and ORD; $\Delta$ and $\lambda$ isomers in complexes, Assignment of absolute configuration using CD and ORD techniques. |
| Extended<br>Professional         | Questions related to the above topics, from various competitive<br>examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Component (is a part of internal | to be solved<br>(To be discussed during the Tutorial hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| component only,                  | (10 be discussed during the Tutorial hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Not to be included               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| in the external                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| examination<br>question paper)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Skills acquired                  | Knowledge, Problem solving, Analytical ability, Professional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| from this course                 | Competency, Professional Communication and Transferable skills.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Recommended<br>Text              | <ol> <li>J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic<br/>Chemistry – Principles of structure and reactivity, 4th Edition,<br/>Pearson Education Inc., 2006</li> <li>G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition,<br/>Pearson Education Inc., 2008</li> <li>D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.</li> <li>B D Gupta and A K Elias, Basic Organometallic Chemistry:<br/>Concepts, Syntheses and Applications, University Press, 2013.</li> <li>F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann,<br/>Advanced Inorganic Chemistry, 6thed.; Wiley Inter-science: New<br/>York, 1988.</li> </ol>                        |
| <b>Reference Books</b>           | 1. Crabtree, Robert H. The Organometallic Chemistry of the Transition<br>Matals 3rd ad Naw York NY: John Wilay 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                  | <ol> <li>Metals. 3rd ed. New York, NY: John Wiley, 2000.</li> <li>P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and<br/>Transition Metal Chemistry: Fundamentals and Applications, 1<sup>st</sup><br/>edition, Springer-Verlag Berlin Heidelberg, 2011.</li> <li>Concepts and Models of Inorganic Chemistry, B. Douglas, D.<br/>McDaniel, J. Alexander, John Wiley, 1994, 3rd edn.</li> <li>K. F. Purcell, J. C. Kotz, Inorganic Chemistry; Saunders:<br/>Philadelphia, 1976.</li> <li>R. S. Drago, Physical Methods in Chemistry; Saunders:<br/>Philadelphia, 1977.</li> </ol>                                                                                       |

| Website and <u>http</u> | os://archive.nptel.ac.in/courses/104/101/104101100/ |
|-------------------------|-----------------------------------------------------|
| e-learning source       |                                                     |

Students will be able:

CO1: Understand and apply 18 and 16 electron rule for organometallic compounds CO2: Understand the structure and bonding in olefin, allyl, cyclopentadienyl and carbonyl containing organometallic compounds

CO3: Understand the reactions of organometallic compounds and apply them in CO4: understanding the catalytic cycles

CO5: Identify / predict the structure of coordination complexes using spectroscopic tools such as IR, NMR, ESR, Mossbauer and optical rotatory dispersion studies to interpret the structure of molecules by various spectral techniques.

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CO 1 | S   | S   | S   | S   | M   | S   | S   | S   | S   | М    |
| CO 2 | М   | S   | S   | S   | S   | Μ   | S   | S   | S   | S    |
| CO 3 | S   | S   | M   | S   | S   | S   | S   | M   | S   | S    |
| CO 4 | М   | S   | S   | S   | S   | М   | S   | S   | S   | S    |
| CO 5 | М   | S   | Μ   | S   | S   | М   | S   | Μ   | S   | S    |

**CO-PO Mapping (Course Articulation Matrix)** 

3 – Strong, 2 – Medium, 1 - Low

#### Level of Correlation between PSO's and CO's

| СО /РО                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| CO1                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| C05                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| Title of the      | PHYSIC    | AL CHEM       | ISTI   | RY-II                                |        |                  |                     |
|-------------------|-----------|---------------|--------|--------------------------------------|--------|------------------|---------------------|
| Course            |           |               |        |                                      |        |                  |                     |
| Paper No.         | Core XI   |               |        |                                      |        |                  |                     |
| Category          | Core      | Year          | II     | Credits                              | 4      | Course           |                     |
|                   |           | Semester      | IV     |                                      |        | Code             |                     |
| Instructional     | Lecture   | Tutorial      | -      | Practice                             |        | Total            |                     |
| hours per week    | 4         | 1             | -      | JITactice                            |        | 5                |                     |
| Prerequisites     | · ·       | wledge of p   | hvei   | cal chemis                           | try    | 5                |                     |
| Objectives of the |           |               |        |                                      |        | cs of wave fur   | nctions and need    |
| course            |           | antum mec     |        |                                      | cristi | es of wave ful   | ictions and need    |
| course            | 1 1       |               |        |                                      | n mer  | chanical model   | ls of particle in a |
|                   |           | l rotor and h |        | -                                    |        |                  | is of particle in a |
|                   |           |               |        |                                      |        | hydrogen and     | d polyelectronic    |
|                   | systems.  | , the quality | ium    | meename                              | 5 10   | nyurogen and     | a polycleettollie   |
|                   |           | arize the su  | mme    | try in mole                          | cule   | s and predict th | ne point groups.    |
|                   |           | •             |        | •                                    |        | -                | g he concepts of    |
|                   | group the |               | uiona  | ii modes,                            | iryon  |                  | g ne concepts of    |
| Course Outline    |           |               | icle ( | duality II                           | ncert  | ainty principle  | e, Particle wave    |
|                   |           | -             |        | •                                    |        | • • •            | perties of wave     |
|                   |           |               |        |                                      |        |                  | ed, Orthogonal,     |
|                   |           |               |        |                                      |        |                  | an properties of    |
|                   |           |               |        |                                      |        |                  | body radiation,     |
|                   |           |               |        | -                                    |        |                  | ntum mechanics,     |
|                   | Postulate | -             | nyar   | ogen spee                            |        | inteed for quar  | of                  |
|                   |           |               | s Scl  | nrodinger                            | wave   | e equation Ti    | me independent      |
|                   | ~         | dependent     | ,      | nounger                              |        | e equation, m    | inte maepenaem      |
|                   |           | aoponaoni     |        |                                      |        |                  |                     |
|                   | UNIT-II   | : Quantum     | mo     | dels: Parti                          | icle i | n a box-1D, t    | two dimensional     |
|                   |           | -             |        |                                      |        | · · · ·          | near conjugated     |
|                   |           |               |        |                                      |        |                  | onic Oscillator-    |
|                   |           | -             | -      |                                      | -      | -                | constant and its    |
|                   |           |               |        |                                      |        |                  | , calculation of    |
|                   | -         | -             |        | -                                    |        | iatomic molecu   |                     |
|                   |           |               |        | U                                    |        |                  |                     |
|                   | UNIT-II   | I: Applicat   | tions  | to Hvdi                              | roger  | n and Poly       | electron atoms:     |
|                   |           |               |        | •                                    | 0      | •                | ave equation and    |
|                   |           |               |        |                                      |        |                  | ation of radial     |
|                   |           |               |        |                                      |        |                  | on methods: trial   |
|                   |           |               |        |                                      |        |                  | rticle in 1D box.   |
|                   |           |               |        |                                      |        |                  | k self-consistent   |
|                   |           |               |        | -                                    | -      |                  | -Sham equation      |
|                   |           |               |        | -                                    |        |                  | paulis exclusion    |
|                   |           | and Slater d  |        |                                      |        | I,               | -                   |
|                   |           |               |        |                                      | , sub  | groups, svm      | metry elements,     |
|                   |           |               |        |                                      |        |                  | al point groups-    |
|                   | -         |               |        |                                      |        |                  | and classes of      |
|                   |           |               |        |                                      |        |                  | direct product      |
|                   | represent | -             | 'he    | Great                                |        | thogonality      | theorem –           |
|                   | -         |               |        |                                      |        |                  | construction of     |
|                   |           | -             |        |                                      |        | oint groups.     | -                   |
|                   |           |               | .v, ~2 | $_{\rm II}$ , $\sim$ $_{\rm SV}$ and | - 20 P | 5 m Broups.      |                     |

|                                                                                                                                            | <b>UNIT-V: Applications of quantum and group theory:</b> Hydrogen Molecule-Molecular orbital theory and Heitler London (VB) treatment, Energy level diagram, Hydrogen molecule ion; Use of linear variation function and LCAO methods.Electronic conjugated system:Huckel method to Ethylene butadiene, cyclopropenyl, cyclo butadiene and Benzene. Applications of group theory to molecular vibrations, electronic spectra of ethylene. Methane, Ammonia and BF3.                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extended<br>Professional<br>Component (is a<br>part of internal<br>component only,<br>Not to be included<br>in the external<br>examination | Questions related to the above topics, from various competitive<br>examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others<br>to be solved<br>(To be discussed during the Tutorial hours)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| question paper)Skills acquiredfrom this course                                                                                             | Knowledge, Problem solving, Analytical ability, Professional<br>Competency, Professional Communication and Transferable skills.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Recommended<br>Text                                                                                                                        | <ol> <li>R.K. Prasad, Quantum Chemistry, New Age International<br/>Publishers, New Delhi, 2010, 4th revised edition.</li> <li>F. A. Cotton, Chemical Applications of Group Theory, John<br/>Wiley &amp; Sons, 2003, 2<sup>nd</sup> edition.</li> <li>A. Vincent, Molecular Symmetry and Group Theory. A<br/>Programmed Introduction to Chemical Applications, John and<br/>Willy &amp; Sons Ltd., 2013, 2<sup>nd</sup> Edition.</li> <li>T. Engel &amp; Philip Reid, Quantum Chemistry and Spectroscopy,<br/>Pearson, New Delhi, 2018, 4<sup>th</sup> edition.</li> <li>G. K. Vemulapalli, Physical Chemistry, Prentice Hall of India<br/>Pvt. Ltd. 2001. 6. D.A. McQuarrie, Quantum Chemistry, Viva<br/>Books PW. Ltd, 2013, 2<sup>nd</sup> edition.</li> </ol> |
| Reference Books                                                                                                                            | <ol> <li>N. Levine, Quantum Chemistry, Allyn&amp; Bacon Inc, 1983, 4th<br/>edition.</li> <li>D.A. McQuarrie and J. D. Simon, Physical Chemistry, A Molecular<br/>Approach, Viva Books<br/>Pvt. Ltd, New Delhi, 2012.</li> <li>R. P. Rastogi &amp; V. K. Srivastava, An Introduction to Quantum<br/>Mechanics of Chemical<br/>Systems, Oxford &amp; IBH Publishing Co., New Delhi, 1999.</li> <li>R.L. Flurry. Jr, Symmetry Group Theory and Chemical applications,<br/>Prentice Hall. Inc, 1980</li> <li>J. M. Hollas, Symmetry in Molecules, Chapman and Hall, London,<br/>2011, Reprint.</li> </ol>                                                                                                                                                            |

| Website and                                                                               | Ind 1. https://nptel.ac.in/courses/104101124                            |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|--|--|
| e-learning source                                                                         | 2. https://ipc.iisc.ac.in/~kls/teaching.html                            |  |  |  |  |  |  |
| <b>Course Learning O</b>                                                                  | outcomes (for Mapping with POs and PSOs)                                |  |  |  |  |  |  |
| Students will be able                                                                     | 2:                                                                      |  |  |  |  |  |  |
| CO1: To discuss the                                                                       | characteristics of wave functions and symmetry functions.               |  |  |  |  |  |  |
| CO2: To classify the symmetry operation and wave equations.                               |                                                                         |  |  |  |  |  |  |
| CO3: To apply the o                                                                       | concept of quantum mechanics and group theory to predict the electronic |  |  |  |  |  |  |
| structure.                                                                                |                                                                         |  |  |  |  |  |  |
| CO4: To specify the appropriate irreducible representations for theoretical applications. |                                                                         |  |  |  |  |  |  |
| CO5: To develop skills in evaluating the energies of molecular spectra.                   |                                                                         |  |  |  |  |  |  |

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1 | S   | S   | S   | S   | М   | S   | S          | S   | S   | Μ    |
| CO 2 | М   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 3 | S   | S   | M   | S   | S   | S   | S          | M   | S   | S    |
| CO 4 | M   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 5 | М   | S   | М   | S   | S   | М   | S          | Μ   | S   | S    |

**CO-PO Mapping (Course Articulation Matrix)** 

| CO /PO                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| C01                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| C05                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to POs | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| 3 - 8 | strong, | 2 – | Medium, | 1 - | Low |
|-------|---------|-----|---------|-----|-----|
|-------|---------|-----|---------|-----|-----|

| Title of the   | CHEMIST      | <b>FRY OF NAT</b>   | URA    | L PRODU      | CTS    |                    |               |
|----------------|--------------|---------------------|--------|--------------|--------|--------------------|---------------|
| Course         |              |                     |        |              |        |                    |               |
| Paper No.      | Elective VII |                     |        |              |        |                    |               |
| Category       | Core         | ore Year II Credits |        |              |        | Course             |               |
|                |              | Semester            | IV     | -            |        | Code               |               |
| Instructional  | Lecture      | Tutorial            | Lab    | Practice     |        | Total              |               |
| hours per week | 4            | 1                   | -      |              |        | 5                  |               |
| Prerequisites  | Basic know   | vledge of gene      | ral ch | emistry      |        | 1                  |               |
| Objectives of  |              |                     |        |              | al im  | portance of b      | iomolecules   |
| the course     | and natural  |                     | 1      | U            |        | 1                  |               |
|                |              | 1                   | nction | s of carboh  | ydrat  | es, proteins, nu   | ucleic acids, |
|                |              | d hormones.         |        |              | •      |                    | -             |
|                | To understa  | and the function    | ons of | alkaloids ar | nd ter | penoids.           |               |
|                | To elucida   | te the structu      | are de | etermination | n of   | biomolecules       | and natural   |
|                | products.    |                     |        |              |        |                    |               |
|                | To extract   | and construc        | t the  | structure of | f new  | v alkaloids and    | terpenoids    |
|                | from differ  | ent methods.        |        |              |        |                    |               |
| Course Outline | UNIT_I · A   | Ikaloids. Intr      | oducti | on occurret  | nce c  | lassification, is  | olation and   |
|                |              | falkaloids. Cla     |        |              |        |                    |               |
|                |              |                     |        | <i>,</i> 0   |        | cture determina    | ation of      |
|                |              |                     |        |              |        | ne, Quinine, Be    |               |
|                |              | eptaphylline, 1     |        | -            | -      | -                  | , indefine,   |
|                | UNIT-II:     | Terpenoid           | -      | Introductio  |        | occurrence,        | Isoprene      |
|                |              | -                   |        |              |        | niningstructure    |               |
|                | determinati  |                     |        |              |        | l, Cadinene,       |               |
|                |              |                     | -      |              |        | tricalisomerism    | - ·           |
|                |              | nd synthesis o      |        |              |        |                    | , ,           |
|                |              |                     |        |              |        | thocyanines:       | Introduction  |
|                |              | nines.Structur      |        | nd gener     |        | methods of         |               |
|                | ofanthocya   |                     |        | nidine       |        | chloride:          | structure     |
|                |              |                     |        |              | porta  | nce of flavone     | es. Structure |
|                | and deter    | mination of         | flavo  | one andflav  | vonoi  | ds. Quercetin      | : Structure   |
|                | determinat   | ion andimporta      | ance.  |              |        |                    |               |
|                |              |                     |        |              |        | oduction, occu     |               |
|                |              |                     |        |              |        | ral properties     |               |
|                |              |                     |        |              |        | of Uric acid an    |               |
|                |              |                     |        |              |        | omenclature, co    | -             |
|                |              | •                   |        |              |        | nistry, classifica |               |
|                | •            | · •                 |        | <b>-</b> ·   |        | r reactions        |               |
|                |              |                     |        | physiolog    | ical   | activity, bios     | ynthesis of   |
|                | cholesterol  | from squalene       | e.     |              |        |                    |               |

|                                 | UNIT-V: NaturalDyes: Occurrence, classification, isolation, purification,   |
|---------------------------------|-----------------------------------------------------------------------------|
|                                 | properties, colour and constitution. Structural determination and synthesis |
|                                 | of indigoitin andalizarin.                                                  |
| Extended                        | Questions related to the above topics, from various competitive             |
| Professional                    | examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to             |
| Component (is a                 | be solved                                                                   |
| part of internal                |                                                                             |
| -                               | (To be discussed during the Tutorial hours)                                 |
| component                       |                                                                             |
| only, Not to be included in the |                                                                             |
|                                 |                                                                             |
| external examination            |                                                                             |
|                                 |                                                                             |
| question paper)                 |                                                                             |
| Skills acquired                 | Knowledge, Problem solving, Analytical ability, Professional                |
| from this course                | Competency, Professional Communication and Transferable skills.             |
| Recommended                     | 1. G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 1,            |
| Text                            | Himalaya Publishing House, Mumbai, 2009.                                    |
|                                 | 2. G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 2,            |
|                                 | Himalaya Publishing House, Mumbai,2009.                                     |
|                                 | 3. O. P. Agarwal, Chemistry of Organic Natural Products, Vol. 1,            |
|                                 | Goel Publishing House, Meerut, 1997.                                        |
|                                 | 4. O. P. Agarwal, Chemistry of Organic Natural Products, Vol. 2,            |
|                                 | Goel Publishing House, Meerut, 1997.                                        |
|                                 | 5. I. L. Finar, Organic Chemistry Vol-2,                                    |
|                                 | 5 <sup>th</sup> edition,PearsonEducation Asia, 1975.                        |
| Reference                       | 1. I. L. Finar, Organic Chemistry Vol-1, 6 <sup>th</sup> edition, Pearson   |
| Books                           | Education Asia,2004.                                                        |
|                                 | 2. Pelletier, Chemistry of Alkaloids, Van Nostrand                          |
|                                 | Reinhold Co,2000.                                                           |
|                                 | 3. Shoppe, Chemistry of the steroids, Butterworthes, 1994.                  |
|                                 | 4. I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal &          |
|                                 | aromatic plants, Vol 1 and Vol 10, Ukkaz Publications,                      |
|                                 | Hyderabad,2004.                                                             |
| Website and                     | https://sites.google.com/site/chemistryebookscollection02/home/organic-     |
| e-learning                      | chemistry/organic                                                           |
| source                          |                                                                             |
|                                 |                                                                             |

Students will be able:

CO1: To understand the biological importance of chemistry of natural products.

CO2: To scientifically plan and perform the isolation and characterization of synthesized natural products.

CO3: To elucidate the structure of alkaloids, terpenoids, carotenoids, falvanoids and anthocyanins.

CO4: To determine the structure of phytochemical constituents by chemical and physical methods.

CO5: To interpret the experimental data scientifically to improve biological activity of active components.

|             | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|-------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1        | S   | S   | S   | S   | M   | S   | S          | S   | S   | М    |
| CO 2        | М   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 3        | S   | S   | М   | S   | S   | S   | S          | М   | S   | S    |
| <b>CO 4</b> | M   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 5        | Μ   | S   | Μ   | S   | S   | Μ   | S          | Μ   | S   | S    |

**CO-PO Mapping (Course Articulation Matrix)** 

# Level of Correlation between PSO's and CO's

| СО /РО                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| CO1                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| CO5                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

| Title of the         | POLYMER                                                                                                                                  | CHEMISTRY                                      | 7      |             |          |                  |               |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------|-------------|----------|------------------|---------------|
| Course               |                                                                                                                                          |                                                |        |             |          |                  |               |
| Paper No.            | Elective VII                                                                                                                             | I                                              |        |             |          |                  |               |
| Category             | Core                                                                                                                                     | Year                                           | II     | Credits     | 4        | Course           |               |
|                      |                                                                                                                                          | Semester                                       | IV     |             |          | Code             |               |
| Instructional        | Lecture                                                                                                                                  | Tutorial                                       | Lab    | Practice    |          | Total            |               |
| hours per            | 4                                                                                                                                        | 1                                              | -      |             |          | 5                |               |
| week                 |                                                                                                                                          |                                                |        |             |          |                  |               |
| Prerequisites        | Basic knowl                                                                                                                              | edge of general                                | chemi  | stry        |          |                  |               |
| <b>Objectives of</b> |                                                                                                                                          | basic concepts                                 |        |             |          |                  |               |
| the course           |                                                                                                                                          | arious types of                                |        |             |          |                  |               |
|                      |                                                                                                                                          | nd the important                               |        | · · ·       |          | and their synthe | etic uses.    |
|                      |                                                                                                                                          | e the molecular                                | •      | - ·         |          |                  |               |
|                      |                                                                                                                                          | ne degradation of                              |        |             |          |                  |               |
| Course               |                                                                                                                                          | haracterization                                |        |             |          |                  |               |
| Outline              |                                                                                                                                          | secondary bon                                  |        |             |          |                  |               |
|                      |                                                                                                                                          | nemical tests,                                 |        |             | -        |                  |               |
|                      |                                                                                                                                          | ermination of l                                |        |             |          |                  | -             |
|                      |                                                                                                                                          | ass $(M_n)$ and W                              |        |             |          |                  |               |
|                      |                                                                                                                                          | eight determina                                |        |             |          |                  |               |
|                      |                                                                                                                                          | e <mark>chanism and</mark><br>on: Cationic, ar |        |             |          |                  |               |
|                      | polymers:                                                                                                                                |                                                |        | merization. | Reac     |                  |               |
|                      | 1 2                                                                                                                                      | nerization, Degi                               |        |             |          | tion kineties    | s. Step       |
|                      |                                                                                                                                          |                                                |        |             |          | nerDegradatio    | on: Bulk      |
|                      | <b>UNIT-III: Techniques of Polymerization andPolymerDegradation:</b> Bulk,<br>Solution, Emulsion, Suspension, solid, interfacial and gas |                                                |        |             |          |                  |               |
|                      | · · · ·                                                                                                                                  | erization. Types                               | -      |             | -        |                  | $\mathcal{O}$ |
|                      |                                                                                                                                          | egradation, pho                                |        |             |          |                  |               |
|                      | phase polym                                                                                                                              | erization.                                     | C      | -           |          | -                | C             |
|                      | UNIT-IV: 1                                                                                                                               | IndustrialPoly                                 | ners:  | Preparation | of fi    | bre forming p    | olymers,      |
|                      | elastomericn                                                                                                                             |                                                |        |             |          |                  |               |
|                      |                                                                                                                                          | ics:Polyethylen                                |        |             | olystyre | ene,Polyacrylor  | nitrile,Po    |
|                      |                                                                                                                                          | nloride, Poly                                  |        |             | ylene,   | • 1              | polyester.    |
|                      |                                                                                                                                          | ng Plastics: Phe                               |        |             | -        |                  |               |
|                      |                                                                                                                                          | per and synthe                                 |        |             |          |                  | -             |
|                      | U U                                                                                                                                      | Polymers: Eler                                 |        | •           | -        | 1 7 1            |               |
|                      |                                                                                                                                          | ne, poly pyrro                                 |        |             |          | • •              | -             |
|                      |                                                                                                                                          | olyamides,poly                                 | uretha | nes, poly   | ureas,   | polyethylen      | ie and        |
|                      | polypropyler                                                                                                                             | iegiycois.<br>IymerProcessii                   |        | ompounding  | Dolura   | har Additives    | Fillorg       |
|                      |                                                                                                                                          | antioxidants, tl                               | 0      |             | •        |                  |               |
|                      |                                                                                                                                          | Techniques:Cal                                 |        |             |          |                  |               |
|                      | injection                                                                                                                                | -                                              | blow   | moulding    | -        | ndreinforcing.   | Film          |
|                      | 5                                                                                                                                        | mofoaming, Fo                                  |        |             |          | 0                |               |
|                      | -                                                                                                                                        | talyst support,                                | -      | -           |          |                  |               |
|                      | -                                                                                                                                        | nadium, heterog                                | •      | -           |          |                  |               |
| Extended             |                                                                                                                                          | lated to the abo                               |        |             |          |                  | ninations     |
| Professional         |                                                                                                                                          | / NET/ UGC-C                                   |        |             |          |                  |               |
| Component            |                                                                                                                                          | ssed during the                                |        |             |          |                  |               |

| (is a part of   |                                                                                    |
|-----------------|------------------------------------------------------------------------------------|
| internal        |                                                                                    |
| component       |                                                                                    |
| only, Not to    |                                                                                    |
| be included in  |                                                                                    |
| the external    |                                                                                    |
| examination     |                                                                                    |
| question        |                                                                                    |
| paper)          |                                                                                    |
| Skills          | Knowledge, Problem solving, Analytical ability, Professional Competency,           |
| acquired from   | Professional Communication and Transferable skills.                                |
| this course     |                                                                                    |
| Recommend       | 1. V.R. Gowariker, <i>Polymer Science</i> , Wiley Eastern, 1995.                   |
| ed Text         | 2. G.S. Misra, <i>Introductory Polymer Chemistry</i> , New Age International       |
|                 | (Pvt) Limited,1996.                                                                |
|                 | 3. M.S. Bhatnagar, A Text Book of Polymers, vol-I & II, S.Chand &                  |
|                 | Company, New Delhi, 2004.                                                          |
| Reference       | 1. F. N. Billmeyer, <i>Textbook of Polymer Science</i> , Wiley Interscience, 1971. |
| Books           | 2. A. Kumar and S. K. Gupta, Fundamentals and Polymer Science and                  |
|                 | Engineering, Tata McGraw-Hill,1978.                                                |
| Course Learn    | ing Outcomes (for Mapping with POs and PSOs)                                       |
|                 |                                                                                    |
| Students will b |                                                                                    |
| CO1: To under   | stand the bonding in polymers.                                                     |
|                 | ifically plan and perform the various polymerization reactions                     |

CO2: To scientifically plan and perform the various polymerization reactions.

CO3: To observe and record the processing of polymers.

CO4: To calculate the molecular weight by physical and chemical methods.

CO5: To interpret the experimental data scientifically to improve the quality of synthetic polymers.

|      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 |
|------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|
| CO 1 | S   | S   | S   | S   | M   | S   | S          | S   | S   | Μ    |
| CO 2 | М   | S   | S   | S   | S   | M   | S          | S   | S   | S    |
| CO 3 | S   | S   | M   | S   | S   | S   | S          | М   | S   | S    |
| CO 4 | М   | S   | S   | S   | S   | Μ   | S          | S   | S   | S    |
| CO 5 | М   | S   | М   | S   | S   | М   | S          | М   | S   | S    |

## **CO-PO Mapping (Course Articulation Matrix)**

| СО /РО                                               | PSO1 | PSO2 | PSO3 | PSO4 | PSO5 |
|------------------------------------------------------|------|------|------|------|------|
| C01                                                  | 3    | 3    | 3    | 3    | 3    |
| CO2                                                  | 3    | 3    | 3    | 3    | 3    |
| CO3                                                  | 3    | 3    | 3    | 3    | 3    |
| CO4                                                  | 3    | 3    | 3    | 3    | 3    |
| CO5                                                  | 3    | 3    | 3    | 3    | 3    |
| Weightage                                            | 15   | 15   | 15   | 15   | 15   |
| Weighted percentage of Course<br>Contribution to Pos | 3.0  | 3.0  | 3.0  | 3.0  | 3.0  |

Level of Correlation between PSO's and CO's

3 – Strong, 2 – Medium, 1 - Low

### Title of the Course: CORE INDUSTRIAL MODULES

#### PaperNumber:COREX

# SuggestivetopicsforCoreIndustryModules: 1. IndustrialProcessesRecommended

Text:

- H.A.Strobel, ChemicalInstrumentation: ASystematicapproach, 2<sup>nd</sup>Edition( 1973)AdditionWesley, Reading, Mass
- R.L.Pecsok,L.D.Shields,T.CavinsandL.C.Mcwilliam,2<sup>nd</sup>Edition(1976),jo hnWiley&Sons,NewYork
- 3. E.W.Berg, Chemical Methods of Separations, 1<sup>st</sup>Edition (1963), McGrawHill, NewYork

### 2. Chemometrics and quality control

### inindustryRecommendedText:

- 4. G.D.Christian, Analytical chemistry, 5<sup>th</sup>edition (1994), John Wiley & Sons, New York
- 5. M.A.SharatandD.L.Illuran,Chemometrics,JohnWiley,NewYork
- 6. Canlcutt

and R. Roddy, Statistics for Analytical Chemists, Chapman and Hall, New York.

| Title of the<br>Course | PROJECT    | Γ VIVA                                        |     |          |   |        |  |  |  |
|------------------------|------------|-----------------------------------------------|-----|----------|---|--------|--|--|--|
| Paper No.              | Elective V | Elective VIII                                 |     |          |   |        |  |  |  |
| Category               | Core       | Year                                          | II  | Credits  | 9 | Course |  |  |  |
|                        |            | Semester                                      | IV  |          |   | Code   |  |  |  |
| Instructional          | Lecture    | Tutorial                                      | Lab | Practice |   | Total  |  |  |  |
| hours per week         |            |                                               |     |          |   | 10     |  |  |  |
| Prerequisites          | Basic knov | Basic knowledge of General Chemistry Research |     |          |   |        |  |  |  |

| Title of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | COMPL                                                                                                                                                                                                      | <b>TATIONA</b>                                                                                                                                                                                                                                  | L Cl                                                                                                                                    | HEMISTF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                            | _                                                                                                                                                                                                                                               |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                        |
| Paper No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                            | hancement<br>Year                                                                                                                                                                                                                               | Coui<br>I                                                                                                                               | rse<br>Credits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Course                                                                                                                                                                                                                               | DOCUTODO                                                                                                                                                                                                                                                                                                                                               |
| Category                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Core                                                                                                                                                                                                       | PCCHTSE2                                                                                                                                                                                                                                        |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                            | Semester                                                                                                                                                                                                                                        | II                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Code                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                 |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                 |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                        |
| Prerequisites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Knowled                                                                                                                                                                                                    | lge of Comp                                                                                                                                                                                                                                     | uters                                                                                                                                   | and inform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | natic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on about Chen                                                                                                                                                                                                                        | nistry                                                                                                                                                                                                                                                                                                                                                 |
| <b>Objectives of the</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                 |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                        |
| course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                 |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                        |
| Course OutlineUnit I<br>Basics of Computers: Hardware and Software – Types of Languages: H<br>level and lower languages, examples. BIOS and RAM: Significance. –<br>Central Processing Unit and GPU Input Devices and Types of computing<br>Parallel and Sequential. Types: Personal Computers, Notebook, Worksta<br>Servers and Supercomputers- Definitions and examples. Storage Device<br>Magnetic tapes vs Solid State disks. Memory devices: OLED and OFET<br>descriptionsUnit II<br>Approach to computing: Flowcharts: Significance of flowcharts and ex<br>to compute simple examples in chemistry like pH of a solution, Temp<br> |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                 |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nificance. –<br>of computing:<br>ook, Workstation,<br>orage Device:<br>ED and OFET<br>where the state of the state of the state<br>of the state of the state of the state of the state<br>of the state of the state of the state of the state of the state<br>of the state of the st |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quantum<br>using Co<br>Theories<br>and hiera<br>Overview<br>properties<br>length, ar<br>and NBO<br><u>Unit IV</u><br>Computa<br>empirical<br>Significar<br>(Opensou<br>submissic<br>coordinat<br>Ethylene, | Chemistry a<br>mputational of<br>like HF, SCF<br>rchy of compu-<br>s. Analysis of<br>ngle and torsi<br>charges and p<br><b>ational Met</b> l<br>methods, ab-<br>nce. Introduc<br>rce like AMH<br>on). Input ger<br>es for Water,<br>Benzene and | nd its<br>chemi<br>and 2<br>utatic<br>ter a<br>optini<br>ional<br>popul<br>hods<br>initic<br>tion 1<br>3ER,<br>heratic<br>Hyd<br>I Anil | s applicatio<br>(stry softwar<br>Approximational require<br>(ided Drug<br>mized structional angle. Char<br>(angle. Char)<br>(angle. Char<br>(angle. Char)<br>(angle. Cha | ns, P<br>ires, f<br>ion n<br>ment<br>Des<br>ture f<br>rge c<br>tware<br>ty Fu<br>e ava<br>GAM<br>bordin<br>xide,<br>ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rediction of M<br>Overview of C<br>nethods and the<br>s. Basis Sets us<br>sign and pred<br>for geometry pa<br>on the atoms –<br>e: Molecular<br>nctional Theor<br>ilable for all<br>ESS) including<br>nates and z ma<br>Formaldehyde | ry: Computational<br>lolecular Properties<br>Quantum Chemistry<br>eir level of accuracy<br>sed in computation.<br>iction of Material<br>arameters like bond<br>Mulliken, Lowdin<br>Dynamics, Semi-<br>y – Definitions and<br>the above methods<br>g web based (online<br>atrix. Generation of<br>e, Methane, Ethane,<br>rom these methods,<br>iption). |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | include H<br>Fukui fu                                                                                                                                                                                      | HOMO, LUN<br>inctions for                                                                                                                                                                                                                       | /IO, f<br>pred                                                                                                                          | Softness, H<br>icting read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lardn<br>ctivit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ess, Dipole m<br>y of molecul                                                                                                                                                                                                        | ular descriptors to<br>noment and log P.<br>es using FMO -<br>on in eV and their                                                                                                                                                                                                                                                                       |

|                        | significance. QSAR and QSPR: Relating bio-reactivity with structure using simple $IC_{50}$ values. Use of Hammett-Taft equation and Lipinski Rule – Drug Designing basics to include action mechanism and using PDB structures for docking with software and Score prediction. Conformational Analysis – Ramachandran Plot. Protein Data Base and its significance. |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extended               | Questions related to the above topics, from various competitive                                                                                                                                                                                                                                                                                                     |
| Professional           | examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others                                                                                                                                                                                                                                                                                                        |
| Component (is a        | to be solved                                                                                                                                                                                                                                                                                                                                                        |
| part of internal       | (To be discussed during the Tutorial hours)                                                                                                                                                                                                                                                                                                                         |
| component only,        |                                                                                                                                                                                                                                                                                                                                                                     |
| Not to be included     |                                                                                                                                                                                                                                                                                                                                                                     |
| in the external        |                                                                                                                                                                                                                                                                                                                                                                     |
| examination            |                                                                                                                                                                                                                                                                                                                                                                     |
| question paper)        |                                                                                                                                                                                                                                                                                                                                                                     |
| Skills acquired        | Knowledge, Problem solving, Analytical ability, Professional                                                                                                                                                                                                                                                                                                        |
| from this course       | Competency, Professional Communication and Transferable skills.                                                                                                                                                                                                                                                                                                     |
| Recommended            | 1. Molecular Modeling – Principles and Applications, A. R. Leach                                                                                                                                                                                                                                                                                                    |
| Text                   | <ul><li>(Addison Wesley Longman)</li><li>2. Introduction to Computational Chemistry, F. Jensen (Wiley)</li></ul>                                                                                                                                                                                                                                                    |
|                        | Essentials of Computational Chemistry – Theories and Models, C. J. Cramer                                                                                                                                                                                                                                                                                           |
|                        | (Wiley)                                                                                                                                                                                                                                                                                                                                                             |
|                        | 3. Computational Chemistry – A Practical Guide fo Applying                                                                                                                                                                                                                                                                                                          |
|                        | Techniques to Real World Problems, David Young (Wiley)                                                                                                                                                                                                                                                                                                              |
|                        | 4. Exploring Chemistry with Electronic Structure Methods, J. B.                                                                                                                                                                                                                                                                                                     |
|                        | Foresman and A. Frisch (Gaussian Inc.)                                                                                                                                                                                                                                                                                                                              |
| <b>Reference Books</b> | 6.                                                                                                                                                                                                                                                                                                                                                                  |
| Website and            | https://ocw.mit.edu/courses/5-04-principles-of-inorganic-chemistry-ii-                                                                                                                                                                                                                                                                                              |
| e-learning source      | fall-2008/pages/syllabus/                                                                                                                                                                                                                                                                                                                                           |

| Title of the             | INDUS         | INDUSTRIAL CHEMISTRY                                            |        |              |        |                  |                      |  |  |
|--------------------------|---------------|-----------------------------------------------------------------|--------|--------------|--------|------------------|----------------------|--|--|
| Course                   |               |                                                                 |        |              |        |                  |                      |  |  |
| Paper No.                | Skill En      | Skill Enhancement Course                                        |        |              |        |                  |                      |  |  |
| Category                 | Core          | Year                                                            | Ι      | Credits 2    |        | Course           |                      |  |  |
|                          |               | Semester                                                        | II     |              |        | Code             |                      |  |  |
|                          |               |                                                                 |        |              |        |                  |                      |  |  |
|                          |               |                                                                 |        |              |        |                  |                      |  |  |
| Prerequisites            | Analytic      | Analytical techniques in chemistry and fundamentals of industry |        |              |        |                  |                      |  |  |
| <b>Objectives of the</b> |               |                                                                 |        |              |        |                  |                      |  |  |
| course                   |               |                                                                 |        |              |        |                  |                      |  |  |
| <b>Course Outline</b>    | <u>Unit I</u> |                                                                 |        |              |        |                  |                      |  |  |
|                          |               |                                                                 |        |              |        |                  | ent of data. Control |  |  |
|                          | charts, Pe    | erformance Ev                                                   | valuat | ion uncerta  | inties | s in measuremen  | nt. Validation of    |  |  |
|                          | analytica     | l methods. Qu                                                   | ality  | Assurance:   | Elen   | nents of quality | Assurance,           |  |  |
|                          | Quality N     | Management S                                                    | yster  | n Quality m  | nanag  | ement concepts   | and principles:      |  |  |
|                          | ISO 9001      | 1:2000 QMS (                                                    | Case s | studies on I | SO 9   | 001: 2000 in ch  | emical industries.   |  |  |
|                          | ISO 1400      | 0 Series of St                                                  | anda   | rds. TQM in  | n Che  | emical Industry. | Six Sigma            |  |  |
|                          |               |                                                                 |        |              |        | o chemical Indu  |                      |  |  |
|                          |               |                                                                 |        |              |        |                  | l Pharmaceutical     |  |  |

|                                       | Industries Accreditation of QC laboratories: Tools and Mechanisms ICH Guidelines on Drug substances and Products.                                                   |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | Unit II                                                                                                                                                             |
|                                       | Distillation Unit Process: Introduction, volatility, relative volatility, general                                                                                   |
|                                       | equipment for distillation, types of distillation processes, concept of batch                                                                                       |
|                                       | and continuous distillation, simple steam distillation, advantages and                                                                                              |
|                                       | disadvantages of steam distillation, application of steam distillation in various<br>chemical processes. Evaporation and Drying Introduction, factors affecting the |
|                                       | rate of evaporation and choice of evaporators, application of evaporation in                                                                                        |
|                                       | chemical process industries, equipment- climbing film evaporator,                                                                                                   |
|                                       | Introduction of drying process, free moisture, bound moisture and equilibrium                                                                                       |
|                                       | moisture content, purpose of drying, equipment- rotary dryer.                                                                                                       |
|                                       | Unit III<br>Difference in the second se                                         |
|                                       | <b>Purification and Filtration</b> : Introduction, filter media and filter aids, characteristics of ideal filter aids, factors affecting the rate of filtration and |
|                                       | choice of filter media, equipment- bag filters and candle filters. Absorption                                                                                       |
|                                       | Introduction, desorption or gas stripping, equipment-spray column for                                                                                               |
|                                       | absorption. Material Balance Introduction, steady and unsteady state of flow                                                                                        |
|                                       | processes, material balance equation without chemical reactions, flow/block                                                                                         |
|                                       | diagrams for various industrially important chemical engineering operations                                                                                         |
|                                       | such as distillation, absorption and crystallization and their overall material balance equation.                                                                   |
|                                       |                                                                                                                                                                     |
|                                       | Unit IV                                                                                                                                                             |
|                                       | Metallurgical operations: Definition, crushing and pulverization,                                                                                                   |
|                                       | concentration methods, gravity separation, magnetic concentration, froth flotation process, chemical methods- calcination and roasting, reduction using             |
|                                       | carbon and carbon monoxide, Alumino thermite reduction, auto reduction,                                                                                             |
|                                       | reduction using precipitation method, refining methods polling, parting and                                                                                         |
|                                       | electrolyte refining. Metallurgical Extraction Metallurgical extraction and                                                                                         |
|                                       | refining of the following metals from their important ores: Lead from galena,                                                                                       |
|                                       | Aluminum from bauxite and Zinc from Zinc blende.                                                                                                                    |
|                                       | Unit V                                                                                                                                                              |
|                                       | Industrial hygiene & Safety: Concept, air and biological monitoring, occupational disease, operational control measures, personal protective                        |
|                                       | equipments; Industrial hazards and Safety: Process hazards checklists, hazard                                                                                       |
|                                       | surveys, safety program, Hazop safety reviews. Industrial pollution:                                                                                                |
|                                       | Classification of hazards chemicals, storage, transportation, handling, risk                                                                                        |
|                                       | assessments, challenges/solutions. Ecofriendly effluents disposal: Water                                                                                            |
|                                       | pollutants, health hazards, sampling and analysis of water, water treatment,<br>different industrial and domestic affluents and their treatment and disposal        |
|                                       | different industrial and domestic effluents and their treatment and disposal,<br>advanced waste water treatment, effluent quality standards and laws, chemical      |
|                                       | industries, tannery, dairy, textile effluents, common treatment. Sensors:                                                                                           |
|                                       | Concept of molecular sensors its properties and applications                                                                                                        |
| Extended                              | Questions related to the above topics, from various competitive                                                                                                     |
| Professional                          | examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others                                                                                                        |
| Component (is a                       | to be solved                                                                                                                                                        |
| part of internal                      | (To be discussed during the Tutorial hours)                                                                                                                         |
| component only,<br>Not to be included |                                                                                                                                                                     |
| in the external                       |                                                                                                                                                                     |
| examination                           |                                                                                                                                                                     |
| question paper)                       |                                                                                                                                                                     |
| question paper)                       |                                                                                                                                                                     |

| Recommended     | 1. Physical chemistry by B.R Puri, I.R Sharma and M.S Pathania.        |  |  |  |  |  |  |  |
|-----------------|------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Text            | Study Material in Vocational Subject to Industrial Chemistry (B.Sc. I, |  |  |  |  |  |  |  |
|                 | UGC) Sponsored (Text Book)                                             |  |  |  |  |  |  |  |
|                 | 2. Principles of Extractive Metallurgy, Herbashi Vol. 1 and 2.         |  |  |  |  |  |  |  |
|                 | 3. Introduction to Chemical Engineering W.L. Badger and J.T.           |  |  |  |  |  |  |  |
|                 | Banchero, Mc Graw- Hill Book Co., USA.                                 |  |  |  |  |  |  |  |
|                 | 4. Unit Operations in Chemical Engineering W.L. McCabe and             |  |  |  |  |  |  |  |
|                 | J.C Smith, Mc Graw- Hill Books co., New York.                          |  |  |  |  |  |  |  |
|                 | 5. Physical Chemistry, G.M. Barrow, Tata McGraw-Hill.                  |  |  |  |  |  |  |  |
|                 | 6. Riegel's Handbook of Industrial Chemistry, J.A. Kent, J.A.(ed),     |  |  |  |  |  |  |  |
|                 | CBS Publishers, New Delhi.                                             |  |  |  |  |  |  |  |
|                 | 7. Saxena Ruchi, Srivastava Alok Kumar, "Read & Do Practical           |  |  |  |  |  |  |  |
|                 | Chemistry", Kitab Mahal, New Delhi, India (2016).                      |  |  |  |  |  |  |  |
|                 | 8. Skoog D. A., West. D.M and Holler .F.J., "Analytical                |  |  |  |  |  |  |  |
|                 | Chemistry: An Introduction", 7th edition, Saunders college             |  |  |  |  |  |  |  |
|                 | publishing, Philadelphia (2010).                                       |  |  |  |  |  |  |  |
|                 | 9. G. Larry Hargis, "Analytical Chemistry: Principles and              |  |  |  |  |  |  |  |
|                 | Techniques" Pearson© (1988)                                            |  |  |  |  |  |  |  |
| Suggested links | Suggested links for e-resources:                                       |  |  |  |  |  |  |  |
| for e-resources | https://swayam.gov.in/                                                 |  |  |  |  |  |  |  |
|                 | https://nptel.ac.in/courses/112/104/112104113/                         |  |  |  |  |  |  |  |
|                 | https://onlinecourses.nptel.ac.in/noc19_ph14/preview                   |  |  |  |  |  |  |  |
|                 | http://heecontent.upsdc.gov.in/Home.aspx                               |  |  |  |  |  |  |  |
|                 | https://ncert.nic.in/textbook.php?kech1=0-7                            |  |  |  |  |  |  |  |
|                 | https://www.labster.com/chemistry-virtual-labs/                        |  |  |  |  |  |  |  |
|                 | http://chemcollective.org/vlab                                         |  |  |  |  |  |  |  |