

THIRUVALLUVAR UNIVERSITY

SERKKADU, VELLORE-632115

B.Sc. PHYSICS

SEMESTER - II

SYLLABUS

FROM THE ACADEMIC YEAR 2023 – 2024 U28

		StudyCom	onents	Ins.					
S.No.	Part	CourseT	CourseTitle		Credit	Title of the Paper	MaximumMarks		
	SEME	STER II					CIA	Uni. Exam	Total
1.	Ι	Language	Paper-2	6	3	Tamil/OtherLanguages	25	75	100
2.	II	English	Paper-2	4	3	English	25	75	100
3.	II	NMSDC: Language Proficiency for Employability	Paper-1	2	2	Overview of English Communication	25	75	100
4.	III	Core Course –CC III (Theory)	Paper-2	5	5	Heat, Thermodynamics and Statistical Physics	25	75	100
5.	III	Core Course –CC IV (Practical)	Practical-2	5	5	Heat, Thermodynamics and Statistical Physics Practical	25	75	100
6.	III	Elective II Generic/ Discipline Specific (Allied Course II)	Elective II (Allied Paper-2)	6	3	Mathematics II	25	75	100
7.	IV	Skill Enhancement Course SEC-2	Paper2	2	2	Choose any one Course from A. Astrophysics B. Physics of medical Instruments	25	75	100
8.	IV	Skill Enhancement CoursePaper 1SEC-3 (Discipline Specific)Factor		2	2	Communication Systems	25	75	100
		Sem. Total		32	25		200	600	800

COURSE	SECOND SEMESTER – CORE-III
COURSETITLE	Heat, Thermodynamics and Statistical Physics – Core 3
CREDITS	5
COURSE OBJECTIVES	The course focuses to understand a basic in conversion of temperature in Celsius, Kelvin and Fahrenheit scales. Practical exhibition and explanation of transmission of heat in good and bad conductor. Relate the laws of thermodynamics, entropy in everyday life and explore the knowledge of statistical mechanics and its relation

UNITS	COURSEDETAILS
	CALORIMETRY: specific heat capacity – specific heat capacity
	of gases $C_P \& C_V$ – Meyer's relation – Joly's method for
	determination of C_V – Regnault's method for determination of C_P
UNIT-I	LOWTEMPERATUREPHYSICS: Joule-Kelvin effect – porous
	plug experiment – Joule-Thomson effect –Boyletemperature –
	temperature of inversion – liquefaction of gas by Linde's Process –
	adiabatic demagnetisation.
	THERMODYNAMICS-I: zeroth law and first law of
IINIT_II	thermodynamics – P-V diagram – heat engine –efficiency of heat
	engine – Carnot's engine, construction, working and efficiency of
	petrol engine and diesel engines – comparison of engines.
	THERMODYNAMICS-II: second law of thermodynamics –
	entropy of an ideal gas – entropy change in reversible and
	irreversible processes – T-S diagram –thermodynamicalscale of
UNIT-III	temperature – Maxwell's thermodynamical relations – Clasius-
	Clapeyron's equation (first latent heat equation) – third law of
	thermodynamics – unattainability of absolute zero – heat death.
	HEATTRANSFER: modes of heat transfer: conduction,
	convection and radiation.
	<i>Conduction</i> : thermal conductivity – determination of thermal
	conductivity of a good conductor by Forbe's method –
UNIT-IV	determination of thermal conductivity of a bad conductor by Lee's
	disc method.
	<i>Radiation</i> : black body radiation (Ferry's method) – distribution of
	energy in black body radiation – Wien's law and Rayleigh Jean's
-	law –Planck's law of radiation – Stefan's law.
	STATISTICALMECHANICS: definition of phase-space – micro
	and macro states – ensembles –definition of different types of
	ensembles – classical and quantum Statistics – Maxwell-
UNIT-V	Boltzmann statistics – expression for distribution function – Bose-
	Einstein statistics – expression for distribution function – Fermi-
	Dirac statistics –expression for distribution function – comparison
	of three statistics.

	I. Brijlal & N. Subramaniam, 2000, Heat and Thermodynamics,
	S.Chand& Co.
	2. Naravanamoorthy&KrishnaRao, 1969.Heat.Triveni Publishers.
	Chennai
	2 V D Khanna & D C Dadi 1000 1 st Edition Taxt healt of Sound
	5. V.K.Khalilaack.S.Beul, 1998 1 Euluoli, Text book of Sound,
TEXT BOOKS	Kedharnaath Publish & Co, Meerut
	4. Brijlal and N. Subramanyam, 2001, Waves and
	Oscillations, Vikas Publishing House, New Delhi.
	5. Ghosh, 1996, Text Book of Sound, S.Chand&Co.
	6 R Murugeshan & Kiruthiga Siyaprasath Thermal Physics
	S Chandle Co
	1. J.B.Rajam & C.L.Arora, 1976, Heat and Thermodynamics, 8 th
	1. J.B.Rajam & C.L.Arora, 1976, Heat and Thermodynamics, 8 th edition, S.Chand& Co. Ltd.
	 J.B.Rajam & C.L.Arora, 1976, Heat and Thermodynamics, 8th edition, S.Chand& Co. Ltd. D.S.Mathur, Heat and Thermodynamics, Sultan Chand & Sons.
	 J.B.Rajam & C.L.Arora, 1976, Heat and Thermodynamics, 8th edition, S.Chand& Co. Ltd. D.S.Mathur, Heat and Thermodynamics, Sultan Chand & Sons. Gupta Kumar, Sharma 2013, Statistical Mechanics, 26th
REFERENCE	 J.B.Rajam & C.L.Arora, 1976, Heat and Thermodynamics, 8th edition, S.Chand& Co. Ltd. D.S.Mathur, Heat and Thermodynamics, Sultan Chand & Sons. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th Edition, S. Chand & Co.
REFERENCE BOOKS	 J.B.Rajam & C.L.Arora, 1976, Heat and Thermodynamics, 8th edition, S.Chand& Co. Ltd. D.S.Mathur, Heat and Thermodynamics, Sultan Chand & Sons. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th Edition, S. Chand & Co. Descripte Hallideev@Wolker 2010, Eurodementals of Drugies, 6th
REFERENCE BOOKS	 J.B.Rajam & C.L.Arora, 1976, Heat and Thermodynamics, 8th edition, S.Chand& Co. Ltd. D.S.Mathur, Heat and Thermodynamics, Sultan Chand & Sons. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th Edition, S. Chand & Co. Resnick, Halliday&Walker,2010, Fundamentals of Physics, 6th Edition
REFERENCE BOOKS	 J.B.Rajam & C.L.Arora, 1976, Heat and Thermodynamics, 8th edition, S.Chand& Co. Ltd. D.S.Mathur, Heat and Thermodynamics, Sultan Chand & Sons. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th Edition, S. Chand & Co. Resnick, Halliday&Walker,2010, Fundamentals of Physics, 6th Edition.
REFERENCE BOOKS	 J.B.Rajam & C.L.Arora, 1976, Heat and Thermodynamics, 8th edition, S.Chand& Co. Ltd. D.S.Mathur, Heat and Thermodynamics, Sultan Chand & Sons. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th Edition, S. Chand & Co. Resnick, Halliday&Walker,2010, Fundamentals of Physics, 6th Edition. Sears, Zemansky, Hugh D. Young,Roger A. Freedman, 2021
REFERENCE BOOKS	 J.B.Rajam & C.L.Arora, 1976, Heat and Thermodynamics, 8th edition, S.Chand& Co. Ltd. D.S.Mathur, Heat and Thermodynamics, Sultan Chand & Sons. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th Edition, S. Chand & Co. Resnick, Halliday&Walker,2010, Fundamentals of Physics, 6th Edition. Sears, Zemansky, Hugh D. Young,Roger A. Freedman, 2021 University Physics with Modern Physics 15th Edition, Pearson.
REFERENCE BOOKS	 J.B.Rajam & C.L.Arora, 1976, Heat and Thermodynamics, 8th edition, S.Chand& Co. Ltd. D.S.Mathur, Heat and Thermodynamics, Sultan Chand & Sons. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th Edition, S. Chand & Co. Resnick, Halliday&Walker,2010, Fundamentals of Physics, 6th Edition. Sears, Zemansky, Hugh D. Young,Roger A. Freedman, 2021 University Physics with Modern Physics 15th Edition, Pearson. https://youtu.be/M_5KYncYNyc
REFERENCE BOOKS WEBLINKS	 J.B.Rajam & C.L.Arora, 1976, Heat and Thermodynamics, 8th edition, S.Chand& Co. Ltd. D.S.Mathur, Heat and Thermodynamics, Sultan Chand & Sons. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th Edition, S. Chand & Co. Resnick, Halliday&Walker,2010, Fundamentals of Physics, 6th Edition. Sears, Zemansky, Hugh D. Young,Roger A. Freedman, 2021 University Physics with Modern Physics 15th Edition, Pearson. <u>https://youtu.be/M_5KYncYNyc</u> <u>https://www.youtube.com/watch?y=4M72kOulGKk&yl=en</u>

METHOD OF EVALUATION:

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthe course the studentwillbeableto:

COURSEOUT	CO1	Acquires knowledge on how to distinguish between temperature and heat. Introduce him/her to the field of thermometry and explain practical measurements of high temperature as well as low temperature physics. Student identifies the relationship between heat capacity, specific heat
COMES		capacity. The study of Low temperature Physics sets the basis for the students to understand cryogenics, superconductivity.
		superfluidity and Condensed Matter Physics
	CO2	Derive the efficiency of Carnot's engine. Discuss the
		implications of the laws of Thermodynamics in diesel and
		petrol engines
	CO3	Able to analyze performance of thermodynamic systems viz
		efficiency by problems. Gets an insight into thermodynamic
		properties like enthalpy, entropy

CO4	Study the process of thermal conductivity and apply it to good and bad conductors. Quantify different parameters related to heat, relate them with various physical parameters and analyse them
CO5	Interpret classical statistics concepts such as phase space, ensemble, Maxwell-Boltzmann distribution law. Develop the statistical interpretation of Bose-Einstein and Fermi-Dirac . Apply to quantum particles such as photon and electron

MAPPING WITH PROGRAM OUT COMES:

 $\label{eq:mapping} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG(S), MEDIUM(M) and LOW(L).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	Μ
CO2	М	S	S	S	М	S	S	Μ	М	М
CO3	S	S	S	Μ	S	S	S	Μ	S	Μ
CO4	S	S	S	S	S	S	S	Μ	М	М
CO5	S	S	М	S	S	S	Μ	Μ	S	Μ

COURSE	SECOND SEMESTER – CORE-IV						
COURSETITLE	CORE PRACTICALS						
CREDITS	5						
COURSE	Apply their knowledge gained about the concept of heat and sound						
OBJECTIVES	waves, resonance, calculate frequency of ac mains set up						
	experimentation to verify theories, quantify and analyse, able to do						
	error analysis and correlate results						
HEAT, OSC	ILLATIONS, WAVES & SOUND(Any Eight of the below list)						
1. Determination	n of specific heat by cooling – graphical method.						
2. Determination	n of thermal conductivity of good conductor by Searle's method.						
3. Determination	n of thermal conductivity of bad conductor by Lee's disc method.						
4. Determination	n of thermal conductivity of bad conductor by Charlaton's method.						
5. Determination of specific heat capacity of solid-method of mixtures.							
6. Determination	of specific heat of liquid by Joule's electrical heating method						
(applying rad	ation correction by Barton's correction/graphical method),						
7. Determination	of Latent heat of a vaporization of a liquid.						
8. Determination	n of Stefan's constant for Black body radiation.						
9. Verification of	of Stefan's-Boltzmans law.						
10. Determination	n of thermal conductivity of rubber tube.						
11. Helmholtz res	sonator.						
12. Velocity of so	ound through a wire using Sonometer.						
13. Determination	n of velocity of sound using Kunds tube.						
14. Determination	n of frequency of an electrically maintained tuning fork						
15. To verify the	laws of transverse vibration using sonometer.						
16. To verify the	laws of transverse vibration using Melde's apparatus.						
17. To compare t	he mass per unit length of two strings using Melde's apparatus.						
18. Frequency of	AC by using sonometer.						

• Choose minimum of any 8 experiments

METHOD OF EVALUATION:

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

COURSE OUTCOMES:

Attheendofthecourse, the student will be able to:

	CO1	Understand various postulates of special theory of relativity.
	CO2	Appreciate the importance of transformation equations and
		also the general theory of relativity.
COURSEO	CO3	Realise the wave nature of matter and understand its
UTCOMES		importance
	CO4	Derive Schrodinger equation and also realize the use of
		operators.
	Apply Schrödinger equation to simple problems.	
		6

MAPPING WITH PROGRAM OUT COMES:

 $\label{eq:mapping} Mapcourse outcomes (CO) for each course with program outcomes (PO) in the 3-points cale of STRONG(S), MEDIUM(M) and LOW(L).$

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	S	S	Μ	S	М	Μ	S	Μ	Μ	М
CO3	М	Μ	S	Μ	S	S	Μ	S	S	S
CO4	М	S	S	S	S	S	S	М	М	М
CO5	S	М	S	S	М	М	S	М	М	S

SKILL ENHANCEMENT COURSE SEC-2

	A. ASTROPHYSICS			
Learning Object	ive: This course intends to introduce principles of astrophysics describing			
the science of formation and evolution of stars and interpretation of various heavenly				
phenomena and provide an understanding of the physical nature of celestialbodies along				
with the instrumentation and techniques used in astronomical research				
UNITS	COURSE DETAILS			
	TELESCOPES: Optical telescopes – magnifying power, brightness,			
LINIT I	resolving power and f/a ratio – types of reflecting and refracting			
0111-1	telescopes - detectors and image processing - radio telescopes -			
	Hubble space telescope.			
	SOLAR SYSTEM: Bode's law of planetary distances – meteors,			
UNIT-II	meteorites, comets, asteroids – Kuiper belt – Oort cloud – detection of			
	gravitational waves – recent advances in astrophysics.			
	ECLIPSES: types of eclipses – solar eclipse – total and partial solar			
UNIT-III	eclipse – lunar eclipse – total and partial lunar eclipse – transits.			
	THE SUN: physical and orbital data – solar atmosphere – photosphere			
	– chromosphere – solar corona – prominences – sunspots – 11year			
	solar cycle – solar flares.			
	STELLAR EVOLUTION: H-R diagram – birth & death of low mass,			
	intermediate mass and massive stars – Chandrasekar limit – white			
UNIT-IV	dwarts – neutron stars – pulsars – black holes – supernovae.			
	GALAXIES: classification of galaxies – galaxy clusters –interactions			
	of galaxies, dark matter and super clusters – evolving universe.			
	ACTIVITIES IN ASTROPHYSICS:			
	(1) Basic construction of telescope (ii) Davidon models to demonstrate collinges/alenatory motion			
UNIT-V	(ii) Develop models to demonstrate eclipses/planetary motion			
	(iii) Night SKy observation (iv) Conduct case study partaining to any tonic in this paper			
	(iv) Conduct case study pertaining to any topic in this paper (v) Visit to any one of the National Observatories			
	Any three activities to be done compulsorily			
	1 BaidyanathBasu (2001) An introduction to Astronhysics Second			
	nrinting Prentice – Hall of India (P) I to New Delhi			
TEXT BOOKS	2 K S Krishnaswamy (2002) Astronhysics – a modern perspective			
	New Age International (P) Ltd New Delhi			
	3. Shylaja, B.S. & Madhusudan, H.R. (1999), Eclipse: A Celestial			
	Shadow Play, Orient BlackSwan,			

METHOD OF EVALUATION:

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

	B. PHYSICS OF MEDICAL INSTRUMENTS			
Learning Objective: The students will be exposed to instruments like ECG, EEG, EMG,				
medical imaging, diagnostic specialties, operation theater and its safety which will kindle				
interest to specialize in instrument servicing.				
UNITS	COURSE DETAILS			
	BIO-POTENTIALS AND ELECTRODES: transport of ions through			
	cell membrane- resting and action potential - Characteristics of resting			
UNIT-I	potential – bio-electric potential – design of medical instruments –			
	components of bio-medical instrumentation – electrodes – electrode			
	potential – metal microelectrode – depth and needle electrodes – types			
	of surface electrode – the pH electrode.			
	Bio-potential based Instrumentation: Electrocardiography (ECG) –			
	origin of cardiac action potential - ECG lead configuration –block			
UNIT-II	diagram of ECG recording set up (qualitative) –			
	Electroencephalography (EEG) – origin of EEG – action and evoked			
	potentials - brain waves – block diagram of modern EEG set up –			
	electromyography (EMG) – block diagram of EMG recording setup.			
	OPERATION THEATRE AND SAFETY: diathermy – block			
	diagram of the electrosurgical diathermy– shortwave, microwave,			
UNIT-III	ultrasonic diathermy – ventilators – servo controlled systems –			
	RADIATION SAFETY: units of radiation - pocket dosimeter –			
	pocket type radiation alarm – thermo-luminescence dosimeter.			
	MEDICAL IMAGING: nuclear imaging technique –computer			
	tomography (C1) – principle – mathematical basis of image			
UNIT-IV	construction –block diagram of C1 scanner – ultrasonic imaging			
	systems – construction of transducer – display modes – MRI principle			
	and instrumentation.			
	fluoroscopy comparison image intensifiers engiography			
	applications of V roy exemination (problems)			
UNIT-V	I ASED IN MEDICINE laser interactions with biomologulos			
	LASER IN MEDICINE. laser interactions with biomolecules –			
	their operation (qualitative)			
	1 Biomedical Instrumentation and measurement Leslie Cromwell			
	PHI 2015			
	2 Medical Instrumentation M Arumugam Anuradha agencies 1992			
TEXT BOOKS	3 Medical Electronics M I Kumar Doss Prathibha Publishers 1987			
	4 Medical Physics John R. Cameron and James G. Skofronick			
	Thrift books. Atlanta, 1985			
	5. Electronic Instruments and Instrumentation Technology M			
	M.M.Anand, PHI, 2015			

METHOD OF EVALUATION:

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	

SKILL ENHANCEMENT COURSE SEC-3

COMMUNICATION PHYSICS
ve:To get a thorough knowledge on transmission and reception of
different types of communication like fibre optic, radar, satellite,
COURSE DETAILS
RADIO TRANSMISSION AND RECEPTION: transmitter –
modulation - types of modulation – amplitude modulation –
limitations of amplitude modulation – frequency modulation –
comparison of FM and AM – demodulation- essentials in
demodulation – receivers: AM radio receivers – types of AM radio
receivers –superheterodyne radio receiver, advantages – FM
receiver – difference between FM and AM receivers.
FIBER OPTIC COMMUNICATION: introduction – basic
principle of fiber optics – advantages – construction of optical fiber
– classification based on the refractive index profile – classification
based on the number of modes of propagation – losses in optical
fibers – attenuation–advantages of fiberoptic communication.
RADAR COMMUNICATION: introduction - basic radar system
-radar range equation – antenna scanning –pulsed radar system –
search radar – tracking radar – moving target indicator- Doppler
effect-MTI principle – CW Doppler radar.
SATELLITE COMMUNICATION: introduction- history of
satellites – satellite communication systems– satellite orbits – basic
components of satellite communication system – commonly used
frequency in satellite – communication –multiple access
communication – satellite communication in India.
MOBILE COMMUNICATION: introduction – concept of cell –
basic cellular mobile radio system – cellphone – facsimile –
important features of fax machine – application of facsimile –
VSAT (very small aperture terminals) modem IPTV (internet
protocol television) -Wi-Fi-4G (basic ideas)
1. V.K.Metha, Principles of Electronics, S. Chand & CoLtd., 2013
2. Anokh Singh and Chopra A.K., Principles of communication
Engineering, S.Chand& Co, 2013
1. J.S. Chitode, Digital Communications, 2020, Unicorn
publications
2. Senior John. M, Optical Fiber Communications: Principles and
Practice, 2009, Pearson Education.

METHOD OF EVALUATION:

Continuous InternalAssessment	End Semester Examination	Total	Grade
25	75	100	