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Abstract. Let R be a commutative ring without identity. The zero-divisor

graph of R, denoted by Γ(R) is a graph with vertex set Z(R)\{0} which is the

set of all nonzero zero-divisor elements of R, and two distinct vertices x and

y are adjacent if and only if xy = 0. In this paper, we characterize the rings

whose zero-divisor graphs are ring graphs and outerplanar graphs. Further, we

establish the planar index, ring index and outerplanar index of the zero-divisor

graphs of finite commutative rings without identity.
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1. Introduction

Throughout this paper, R is a finite commutative ring without identity. Let

Z(R) be the set of all zero-divisors and Z(R)∗ = Z(R) \ {0}. In [6], Beck defined

a simple graph from commutative rings, the vertex set of that graph is formed by

all the elements of a commutative ring R and two vertices x and y are adjacent if

and only if xy = 0. In [3], Anderson and Livingston modified that graph structure

and named it the zero-divisor graph Γ(R) of R whose vertex set is Z(R)∗ and two

distinct vertices x and y are adjacent if and only if xy = 0 for commutative rings.

In [2], Anderson and Weber studied the zero-divisor graph of a commutative ring

without identity.

Kuzmina and Maltsev characterized the planar zero-divisor graphs of nilpotent

rings and non-nilpotent rings, in [11] and [12], respectively. In [4], Barati gave a

full characterization of zero-divisor graphs associated to finite commutative rings

with identity with respect to their planar index and outerplanar index.
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A ring R is called local if it has a unique maximal ideal. If R is a non local

commutative ring with identity, then Z(R) need not be an ideal. For every commu-

tative ring without identity, Z(R) = R, Z(R) is an ideal. Therefore, if we focus the

study of zero divisor graphs of commutative ring without identity, then it reveals

the properties of commutative ring without identity. Thus, the zero-divisor graph

of commutative rings without identity is a unique structure than commutative rings

with identity. Moreover, we obtain the planar index, ring index and outerplanar

index of the zero-divisor graphs of finite commutative rings without identity.

2. Preliminaries

Let G be a graph with n vertices and m edges. A chord is an edge joining any

two non-adjacent vertices in a cycle. A primitive cycle is a cycle without chords.

The free rank of G is the number of primitive cycles of G and it is denoted by

frank(G). The cycle rank of G is defined as rank(G) = m − n + r where r is the

number of connected components of G. Note that the cycle rank is the dimension

of the cycle space of G and it satisfies the inequality rank(G) ≤ frank(G). The

family of graphs satisfying that rank(G) = frank(G) is called ring graphs.

The line graph of G (denoted by L(G)) is a graph whose vertex set consists of the

set of all edges of G and two vertices of L(G) are adjacent if the corresponding edges

of G are adjacent. The kth iterated line graph of G (denoted by Lk(G)) is defined

as Lk(G) = L(Lk−1(G)), for every positive integer k. In particular, L0(G) = G and

L1(G) = L(G). Kn and Pn denote the complete graph and the path of n vertices,

respectively. A set of vertices of the graph G is called an independent set if no two

vertices in the set are adjacent to each other. The join of two graphs G1 = (V1, E1)

and G2 = (V2, E2) is a graph G1 +G2 whose vertex set is V1 ∪ V2 and whose edge

set contains the edges joining every vertex from V1 to every vertex in V2. A vertex

v is said to be a cut vertex if removal of the vertex v disconnects the graph G.

For a class of graphs G, the graph G is said to be a forbidden subgraph for G if

no member of G has G as an induced subgraph. We can say that G is a minimal

forbidden subgraph for G if it is a forbidden subgraph for G but none of its proper

induced subgraphs are forbidden subgraphs.

For a graph G, the genus of G is the minimum positive integer n such that G can

be embedded in the surface Sn without edge crossings and it is denoted by g(G).

If a graph G can be embedded in the plane without edge crossings, then it is called

planar, i.e., g(G) = 0. If g(G) ̸= 0, then the graph G is non planar. An outerplanar
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graph is a graph that can be embedded in the plane such that all vertices lie on the

outer face of the drawing; otherwise, the graph is non-outerplanar.

The ring index of a graph G is the smallest integer k such that the kth iterated

line graph of G is not a ring graph and it is denoted by γr(G). The planar index of

a graph G is defined as the smallest k such that Lk(G) is non-planar. We denote

the planar index of G by γp(G). The outerplanar index of a graph G is the smallest

integer k such that the kth iterated line graph of G is non-outerplanar and it is

denoted by γo(G). If L
k(G) is outerplanar (respectively, ring graph or planar) for

all k ≥ 0, we define γo(G) = ∞ (respectively, γr(G) = ∞ or γp(G) = ∞).

Remark 2.1. In [10], I. Gitler et al. proved the relationship between outerplanar

graph, ring graph and planar graph as follows:

outerplanar ⇒ ring graph⇒ planar

(i.e. γo(G) ≤ γr(G) ≤ γp(G)).

In the literature, the notations for the commutative rings without identity are

used in many ways. In this paper, we follow the notations used by Anderson

and Weber in [2]. With respect to isomorphism, we identify the notations of the

commutative rings without identity used in [2] and [11] as follow: N0,2
∼= Z0

2,

N0,3
∼= Z0

3, N0,4
∼= Z0

4, N0,5
∼= Z0

5, N2,2
∼= xZ2[x]

x3Z2[x]
, N3,3

∼= xZ3[x]
x3Z3[x]

, N4
∼= xZ[x]

<4x,x2−2x> ,

N9
∼= xZ[x]

<9x,x2−3x> and N2,4
∼= xZ[x]

<8x,x2−2x> . We denote the ring of integers modulo

n by Zn and Z0
q is the ring with additive group (Zq,+q) and trivial multiplication

(i.e. ab = 0 for all a, b ∈ Zq). The following notations are useful for further reading

of this paper.

Q1 = < a, b | 4a = 0, 2b = 0, a2 = b, ab = ba = 2a, b2 = 0 >;

Q2 = < a, b | 4a = 0, 2b = 0, a2 = 0, ab = ba = 2a, b2 = 0 >;

Q3 = < a, b | 4a = 0, 2b = 0, a2 = 2a, ab = ba = 2a, b2 = 0 >;

Q4 = < a, b | 4a = 0, 2b = 0, a2 = 2a, ab = ba = 0, b2 = 2a >;

Q5 = < a, b, c | 2a = 2b = 2c = 0, a2 = b, b2 = 0, ab = c, c2 = 0 >;

Q6 = < a, b, c | 2a = 2b = 2c = 0, a2 = b2 = 0, ab = −ba = c,

ac = ca = bc = cb = c2 = 0 >;

Q7 = < a, b, c | 2a = 2b = 2c = 0, a2 = c, ab = ba = 0, b2 = c,

ac = ca = bc = cb = c2 = 0 > .
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Remark 2.2. The characterization for planar zero-divisor graphs from all finite

rings were obtained in [11, Theorem 3.1] and [12, Theorem 1 and 2]. In this

characterization, we have exactly 24 (17 from Theorem 3.1 in [11] and 7 from

Theorem 2 in [12]) non-isomorphic (up to isomorphism) commutative rings without

identity whose zero-divisor graphs are planar.

We have restated the notations and combined the results from Theorem 3.1 in

[11] and Theorem 2 in [12] with the restriction that rings are commutative without

identity. From these evidence, we get the following theorem.

Theorem 2.3. Let R be a finite commutative ring without identity and let Fpn be

a finite field with pn elements where p is a prime. Then Γ(R) is planar if and only

if R is isomorphic to one of the following rings:

Z0
2×Z2×Z2, Z0

2×Fpn , Z0
3×Fpn , Z0

2×Z4, Z0
2×

Z2[x]
<x2> , Z2× xZ[x]

<4x,x2−2x> , Z2× xZ2[x]
x3Z2[x]

,

Z0
2 × Z0

2, Z0
2, Z0

3, Z0
4, Z0

5,
xZ2[x]
x3Z2[x]

, xZ3[x]
x3Z3[x]

, xZ[x]
<4x,x2−2x> ,

xZ[x]
<9x,x2−3x> ,

xZ[x]
<8x,x2−2x> , Qi

where 1 ≤ i ≤ 7.

Let q be a prime number. Consider the ring R = Z0
q ×Fpn . Note that Z(R) = R.

Further, the subgraph of Γ(R) induced by (Z0
q)

∗ × {0} is Kq−1 and the subset

R \ (Z0
q × {0}) with (pn − 1)q elements induces an independent set in Γ(R). Also

every element in (Z0
q)

∗ × {0} is adjacent with every element in R \ (Z0
q × {0}) in

Γ(R). Hence we have the following lemma, which gives the structure of Γ(Z0
q×Fpn).

Lemma 2.4. Let p and q be prime numbers and R = Z0
q × Fpn . Then Γ(R) ∼=

Kq−1 +K(pn−1)q.

Lemma 2.5. Let R1 and R2 be finite commutative rings. If Γ(R1) ∼= Γ(R2), then

Γ(S ×R1) ∼= Γ(S ×R2) for any commutative ring S.

Proof. Let ψ : Γ(R1) → Γ(R2) be a graph isomorphism. Let S be a commutative

ring. Consider ϕ : Γ(S × R1) → Γ(S × R2) defined by ϕ((a, b)) = (a, ψ(b)). Let

(a, b) and (c, d) be two nonzero elements in S × R1 which are adjacent in Γ(S ×
R1). From this (ac, bd) = (0, 0) and so ψ(bd) = ψ(b)ψ(d) = 0. Now ϕ((ac, bd)) =

(ac, ψ(bd)) = (ac, ψ(b)ψ(d)) = (0, 0) and so (a, ψ(b))(c, ψ(d)) = (0, 0). Therefore,

ϕ((a, b))ϕ((c, d)) = (0, 0) and so ϕ((a, b)) and ϕ((c, d)) are adjacent in Γ(S × R2).

Similarly one can observe that ϕ((a, b)) and ϕ((c, d)) are not adjacent in Γ(S×R1)

whenever (a, b) and (c, d) are not adjacent in Γ(S × R1). Since ψ is bijective, ϕ is

bijective and so ϕ is a graph isomorphism. □

The following is useful in the sequel of the paper.
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Corollary 2.6. Assume that R1 and R2 are finite commutative rings. If Γ(R1) ∼=
Γ(R2), then g(Γ(S ×R1)) = g(Γ(S ×R2)) for any commutative ring S.

3. The planar index of zero-divisor graphs

In [8], Ghebleh and Khatirinejad characterized connected graphs with respect to

their planar index.

Theorem 3.1. [8, Theorem 10] Let G be a connected graph. Then:

(a) γp(G) = 0 if and only if G is non-planar;

(b) γp(G) = ∞ if and only if G is either a path, a cycle, or K1,3;

(c) γp(G) = 1 if and only if G is planar and either ∆(G) ≥ 5 or G has a vertex

of degree 4 which is not a cut-vertex;

(d) γp(G) = 2 if and only if L(G) is planar and G contains one of the graphs

Hi in Figure 1 as a subgraph;

(e) γp(G) = 4 if and only if G is one of the graphs Xk or Yk (Figure 1) for

some k ≥ 2;

(f) γp(G) = 3 otherwise.
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Figure 1

In [11] and [12], Kuzmina studied planarity for all finite rings. Specially, the

planarity of zero divisor graphs with non zero identity was studied in [7] and ac-

cording to these results, the planar index and outerplanar index of these graphs

were studied in [4]. In this section, we characterize all zero divisor graphs with

respect to the planar index when R is a commutative ring without identity.

Theorem 3.2. Let R be a finite commutative ring without identity. Then

(1) γp(Γ(R)) = ∞ if and only if R is isomorphic to one of the following rings:
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(a) Z0
2 × Z0

2, Z0
2 × Z2;

(b) Z0
2, Z0

3, Z0
4,

xZ[x]
<4x,x2−2x> ,

xZ2[x]
x3Z2[x]

;

(2) γp(Γ(R)) = 1 if and only if R is isomorphic to one of the following rings:

(a) Z0
2 × Z2 × Z2;

(b) Z0
2×Fpn with pn ≥ 4, Z0

3×Fpn , Z0
2×Z4, Z0

2×
Z2[x]
<x2> , Z2× xZ[x]

<4x,x2−2x> ,

Z2 × xZ2[x]
x3Z2[x]

;

(c) xZ[x]
<9x,x2−3x> ,

xZ3[x]
x3Z3[x]

, xZ[x]
<8x,x2−2x> , Qi where 1 ≤ i ≤ 7;

(3) γp(Γ(R)) = 2 if and only if R is isomorphic to Z0
5;

(4) γp(Γ(R)) = 3 if and only if R is isomorphic to Z0
2 × Z3;

(5) γp(Γ(R)) = 0 otherwise.

Proof. For a non planar graph, the planar index is 0 because of Theorem 3.1.

Therefore, we should focused on the case Γ(R) is planar. Let R be a finite commu-

tative ring without identity. Then R ∼= R1 ×R2 × · · · ×Rn and Ri’s are indecom-

posable rings for all i such that 1 ≤ i ≤ n. By Theorem 2.3, it is enough to consider

n ≤ 3.

Case 1. Suppose n = 3. By Theorem 2.3, Γ(R1×R2×R3) is planar if and only

if R ∼= Z0
2 × Z2 × Z2. By Figure 2, ∆(Γ(Z0

2 × Z2 × Z2)) = 6. By Theorem 3.1, we

have γp(Γ(Z0
2 × Z2 × Z2)) = 1.

bc bc bc bc

bc

bc bc

(1,0,1) (1,1,0)(0,1,0) (0,0,1)

(1,0,0)

(1,1,1)(0,1,1)

Figure 2. Γ(Z0
2 × Z2 × Z2)

Case 2. Suppose n = 2. By Theorem 2.3, Γ(R1 × R2) is planar if and only

if R is isomorphic to one of the following rings: Z0
2 × Z0

2, Z0
2 × Fpn , Z0

3 × Fpn ,

Z2 × xZ[x]
<4x,x2−2x> , Z2 × xZ2[x]

x3Z2[x]
, Z0

2 × Z4, Z0
2 ×

Z2[x]
<x2> .

Suppose R ∼= Z0
2 ×Z0

2. The products of trivial multiplication yields that Γ(R) ∼=
K3. Now, by Theorem 3.1, we get that γp(Γ(Z0

2 × Z0
2)) = ∞.

For R ∼= Z0
2 × Fpn , by Lemma 2.4, we have Γ(Z0

2 × Fpn) ∼= K1,2pn−2. If pn ≥ 4,

then ∆(Γ(Z0
2 × Fpn)) ≥ 6. By Theorem 3.1, we have γp(Γ(Z0

2 × Fpn)) = 1 where

pn ≥ 4. If pn = 3, then Γ(Z0
2 × Z3) ∼= K1,4. Since the line graph of any star
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graph is complete, we have L(Γ(Z0
2 × Z3)) ∼= K4 which is planar and H2 is a

subgraph of L(Γ(Z0
2×Z3)). By Theorem 3.1, γp(L(Γ(Z0

2×Z3))) = 2. It implies that

γp(Γ(Z0
2 × Z3)) = 3. Suppose pn = 2. Then R ∼= Z0

2 × Z2. By Lemma 2.4, Γ(R) is

isomorphic to K1,2. Since it is a path, we have γp(Γ(Z0
2 × Z2)) = ∞.

Suppose R ∼= Z0
3 × Fpn . By Lemma 2.4, we have Γ(Z0

3 × Fpn) ∼= K2 +K3pn−3.

Suppose pn ≥ 3. It is easy to see that the graph Γ(Z0
3 × Fpn) is planar and ∆(Z0

3 ×
Fpn) ≥ 6. By Theorem 3.1, γp(Γ(Z0

3 × Fpn)) = 1 for pn ≥ 3. Suppose pn = 2 and

R ∼= Z0
3 × Z2. By Lemma 2.4, Γ(R) is isomorphic to K2 +K3. It is a planar graph

and it has two vertices of degree 4 which are not cut vertices. By Theorem 3.1,

γp(Γ(Z0
3 × Z2)) = 1.

It is not hard to see that

Γ(Z0
2 × Z2) ∼= Γ( xZ[x]

<4x,x2−2x> ) ∼= Γ( xZ2[x]
x3Z2[x]

).

By Corollary 2.6, we have that Γ(Z0
2 × Z2 × Z2) ∼= Γ(Z2 × Z0

2 × Z2) ∼= Γ
(
Z2 ×

xZ[x]
<4x,x2−2x>

) ∼= Γ
(
Z2 × xZ2[x]

x3Z2[x]

)
. We already proved that γp(Γ(Z0

2 × Z2 × Z2)) = 1.

Therefore,

γp(Γ
(
Z2 × xZ[x]

<4x,x2−2x>

)
) = γp(Γ

(
Z2 × xZ2[x]

x3Z2[x]

)
) = 1.

Assume that R is isomorphic to anyone of Z0
2 × Z4 or Z0

2 ×
Z2[x]
<x2> . Then Γ(R) is

isomorphic to G1 represented in Figure 3.

bc

bc

bc

bc

bc

bc

bc

Figure 3. The graph G1

The degree of the vertex (1, 0) in the graphs Γ
(
Z0
2 ×Z4

)
and Γ

(
Z0
2 ×

Z2[x]
<x2>

)
is 6.

By Theorem 3.1, we have

γp(Γ(Z0
2 × Z4)) = γp(Γ

(
Z0
2 ×

Z2[x]
<x2>

)
) = 1.

Case 3. Suppose n = 1. Since Γ(R) is planar, by Theorem 2.3, R is isomorphic

to one of the following rings: Z0
2, Z0

3, Z0
4, Z0

5,
xZ[x]

<4x,x2−2x> ,
xZ2[x]
x3Z2[x]

, xZ[x]
<9x,x2−3x> ,

xZ3[x]
x3Z3[x]

, xZ[x]
<8x,x2−2x> , Qi where 1 ≤ i ≤ 7.
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bcbc

bc

bcbc

bc
2x

3xx x x+ x2

x2

Figure 4(a). Γ( xZ[x]
<4x,x2−2x> ) Figure 4(b). Γ( xZ2[x]

x3Z2[x]
)

Suppose R is isomorphic to either Z0
2 or Z0

3 or Z0
4 or xZ[x]

<4x,x2−2x> or xZ2[x]
x3Z2[x]

.

The rings Z0
2, Z0

3 and Z0
4 have the zero-divisor graphs K1, K2 and K3 respectively.

Moreover, by Figure 4(a) and 4(b), we have that

Γ( xZ[x]
<4x,x2−2x> ) ∼= Γ( xZ2[x]

x3Z2[x]
) ∼= K1,2.

So, by Theorem 3.1, we can conclude that γp(Γ(R)) = ∞.

If R ∼= Z0
5, then Γ(Z0

5)
∼= K4. By Theorem 3.1, we have γp(Γ(Z0

5)) = 2.

bc

bc

bc

bc

bc

bc

bc

4x

3x2x

x

5x6x

7x

Figure 5. Γ( xZ[x]
<8x,x2−2x> )

Suppose that R is isomorphic to either xZ[x]
<8x,x2−2x> or Qi for all i, 1 ≤ i ≤ 7.

Note that, Γ(Q1), Γ(Q2), Γ(Q3), Γ(Q4), Γ(Q5), Γ(Q6) and Γ(Q7) are illustrated

in Figures 1.B, 2.A, 2.B, 3.A, 3.B, 4.A and 4.B of [11], respectively. From these

Figures 1.B to 4.B and by Figure 5, one can easily check that ∆(Γ(R)) = 6 and

Γ(R) is planar. By Theorem 3.1, γp(Γ(R)) = 1.
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<9x,x2−3x> ) Figure 6(b). Γ( xZ3[x]
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)

Suppose R is isomorphic to either xZ[x]
<9x,x2−3x> or xZ3[x]

x3Z3[x]
. By Figures 6(a) and

6(b), Γ(R) ∼= K2 + K6. Clearly, Γ
( xZ[x]
<9x,x2−3x>

)
and Γ

( xZ3[x]
x3Z3[x]

)
are planar and

∆
(
Γ
( xZ[x]
<9x,x2−3x>

))
= ∆

(
Γ
( xZ3[x]
x3Z3[x]

))
= 6. By Theorem 3.1, we get that

γp
(
Γ
( xZ[x]
<9x,x2−3x>

))
= γp

(
Γ
( xZ3[x]
x3Z3[x]

))
= 1. □

4. The ring index and outerplanar index of zero-divisor graphs

In this section, we characterize the rings whose zero-divisor graphs are either

ring graphs or outerplanar graphs. Further, we give a full characterization of zero-

divisor graphs with respect to their ring index and outerplanar index when R is a

commutative ring without identity. In [9], Gitler et al. characterized the forbidden

induced subgraphs for the family of ring graphs. We need some definitions to use

their theorem.

Definition 4.1. (a) A prism is a graph consisting of two vertex-disjoint triangles

C1 = (x1, x2, x3, x1) and C2 = (y1, y2, y3, y1), and three paths P1, P2 and P3 pair-

wise vertex-disjoint, such that each Pi is a path between xi and yi for i = 1, 2, 3

and the subgraph induced by V (Pi) ∪ V (Pj) is a cycle for 1 ≤ i < j ≤ 3 (Figure

7a).

(b) A pyramid is a graph consisting of a vertex w, a triangle C = (z1, z2,

z3, z1), and three paths P1, P2 and P3 such that Pi is between w and zi for i = 1, 2, 3;

V (Pi) ∩ V (Pj) = w and the subgraph induced by V (Pi) ∪ V (Pj) is a cycle for

1 ≤ i < j ≤ 3 and at least one of the P1, P2, P3 has at least two edges (Figure 7b).
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(c) A theta is a graph consisting of two non adjacent vertices x and y, and three

paths P1, P2 and P3 with ends x and y, such that the union of every two of P1, P2

and P3 is an induced cycle (Figure 7c).

(d) A partial wheel is a graph consisting of a cycle C and a vertex z disjoint

from C such that z is adjacent to some vertices of C. The cycle C is called the rim

of W and z is called the center of W. A partial wheel T with rim C and center z is

called a θ−partial wheel if |V (C)| ≥ 4 and there exist two non adjacent vertices in

V (C) ∩NT (z) (Figure 7d).
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Theorem 4.2. [9, Corollary 4.13] The minimal forbidden induced subgraphs for

ring graphs are: prisms, pyramids, theta graphs, θ−partial wheels and K4.

Let d1, d2, . . . , dt are positive integers with n ⪈ d1 + d2 + · · · + dt. We define

I(d1, d2, . . . , dt) as the tree obtained from Pn by adding a leaf to each vertex of Pn

that is at in distance of d1, d1 + d2, . . . , d1 + d2 + · · · + dt (as in Figure 8). In [5],

Barati completely characterized the graphs with respect to their ring index. It can

be recalled in the following theorem.

Theorem 4.3. [5, Theorem 1.3] Let G be a connected graph. Then:

(a) γr(G) = 0 if and only if G is not a ring graph if and only if it has an

induced subgraph which is prism, pyramid, theta graph, θ-partial wheel or

K4;

(b) γr(G) = ∞ if and only if G is either a path, a cycle, or K1,3;

(c) γr(G) = 1 if and only if G is a ring graph and G has a subgraph homeo-

morphic to K1,4 or K1 + P3 in Figure 8;

(d) γr(G) = 2 if and only if L(G) is ring graph andG has a subgraph isomorphic

to one of the graphs G2 or G3 in Figure 8;
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(e) γr(G) = 3 if and only if G ∈ I(d1, d2, . . . , dt) where di ≥ 2 for i = 2, . . . , t−
1, and d1 ≥ 1 (Figure 8).

d1 + d2 + · · ·+ dtd1 + d2 + d3d1 + d2d1

bcbcbcbc

bc bcbcbcbcbcbcbcbcbcbcbcbcbcbc

bce

k ≥ 3
Ck

G3

bc

e

G2
bcbc

bc

bc

bcbc

K1 + P3

bcbc

bc

bc

bc

Figure 8

In [13], Lin et al. studied the outerplanarity of the iterated line graphs and they

characterized all graphs with respect to their outerplanar index. Their theorem is

recalled in the following theorem which is useful for further reading of this paper.

Theorem 4.4. [13, Theorem 3.4] Let G be a connected graph. Then:

(a) γo(G) = 0 if and only if G is non-outerplanar;

(b) γo(G) = ∞ if and only if G is either a path, a cycle, or K1,3;

(c) γo(G) = 1 if and only if G is planar and G has a subgraph homeomorphic

to K2,3, K1,4 or K1 + P3 in Figure 8;

(d) γo(G) = 2 if and only if L(G) is planar and G has a subgraph isomorphic

to one of the graphs G2 or G3 in Figure 8;

(e) γo(G) = 3 if and only if G ∈ I(d1, d2, . . . , dt) where di ≥ 2 for i = 2, . . . , t−
1, and d1 ≥ 1 (Figure 8).

In [1], Afkhami classified all finite commutative rings with identity whose zero-

divisor graphs are ring graphs and outerplanar graphs. In the following theorems,

we classify all finite commutative rings without identity whose zero-divisor graphs

are ring graphs and outerplanar graphs.

Theorem 4.5. Let R be a finite commutative ring without identity. Then Γ(R) is

a ring graph if and only if R is isomorphic to one of the following rings:

Z0
2×Z0

2, Z0
2×Fpn , Z0

3×Fpn , Z0
2×Z4, Z0

2×
Z2[x]
<x2> , Z0

2, Z0
3, Z0

4,
xZ2[x]
x3Z2[x]

, xZ[x]
<4x,x2−2x> ,

xZ3[x]
x3Z3[x]

, xZ[x]
<9x,x2−3x> ,

xZ[x]
<8x,x2−2x> , Q1, Q2, Q5, Q6.
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Proof. Let R ∼= R1 ×R2 × · · · ×Rn. We assume that Γ(R) is a ring graph. Since

every ring graph is planar, by Theorem 2.3, it is enough to consider n ≤ 3.

Case 1. Assume that n = 3 and R ∼= R1 ×R2 ×R3. So R ∼= Z0
2 × Z2 × Z2. Let

S = {(1, 0, 1), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 0)}. Now, by Figure 2, it is easy to see

that the induced subgraph of the graph Γ(Z0
2 ×Z2 ×Z2) by the set S is isomorphic

to a θ-partial wheel. By Theorem 4.2, Γ(Z0
2 × Z2 × Z2) is not a ring graph.

Case 2. Assume that n = 2 and R is isomorphic to one of the following rings:

Z0
2 × Z0

2, Z0
2 × Fpn , Z0

3 × Fpn , Z0
2 × Z4, Z0

2 ×
Z2[x]
<x2> .

Suppose R ∼= Z0
2×Z0

2. Since the multiplication of R is trivial, Γ(R) is isomorphic

to K3. By Theorem 4.2, Γ(R) is a ring graph.

By Lemma 2.4, the graph Γ(Z0
2 × Fpn) ∼= K1 + K2pn−2 and Γ(Z0

3 × Fpn) ∼=
K2+K3pn−3. Since Γ(Z0

2×Fpn) is a star graph, we can deduce that Γ(Z0
2×Fpn) is a

ring graph. Also, it is not hard to see that rank(Γ(Z0
3×Fpn)) = frank(Γ(Z0

3×Fpn)) =

3pn − 3. So, the graph Γ(Z0
3 × Fpn) is a ring graph.

Suppose R ∼= Z0
2 × Z4. Then Γ(R) is isomorphic to G1 in Figure 2 and so

rank(Γ(R)) = frank(Γ(R)) = 1. Therefore Γ(Z0
2×Z4) is a ring graph. Since Γ(Z4) ∼=

Γ( Z2[x]
<x2> ), by Corollary 2.6, we get Γ(Z0

2 × Z4) ∼= Γ(Z0
2 ×

Z2[x]
<x2> ). This implies that

Γ(Z0
2 ×

Z2[x]
<x2> ) is a ring graph.

We know that Γ(Z0
2 × Z2) ∼= Γ( xZ[x]

<4x,x2−2x> ) ∼= Γ( xZ2[x]
x3Z2[x]

). Now, by Corollary

2.6, Γ(Z0
2 × Z2 × Z2) ∼= Γ(Z2 × Z0

2 × Z2) ∼= Γ
(
Z2 × xZ[x]

<4x,x2−2x>

) ∼= Γ
(
Z2 × xZ2[x]

x3Z2[x]

)
.

Since Γ(Z0
2 ×Z2 ×Z2) is not a ring graph, we can conclude that the graphs Γ(Z2 ×

xZ[x]
<4x,x2−2x> ) and Γ(Z2 × xZ2[x]

x3Z2[x]
) are not ring graphs.

Case 3. Assume that n = 1 and R is isomorphic to one of the following rings:

Z0
2, Z0

3, Z0
4, Z0

5,
xZ2[x]
x3Z2[x]

, xZ[x]
<4x,x2−2x> ,

xZ3[x]
x3Z3[x]

, xZ[x]
<9x,x2−3x> ,

xZ[x]
<8x,x2−2x> , Q1, Q2, Q3,

Q4, Q5, Q6, Q7.

Since Γ(Z0
n)

∼= Kn−1, by Theorem 4.2, the graphs Γ(Z0
2), Γ(Z0

3), Γ(Z0
4) are ring

graphs and the graph Γ(Z0
5) is not a ring graph.

If R is isomorphic to either xZ2[x]
x3Z2[x]

or xZ[x]
<4x,x2−2x> , then by Figure 4(a) and 4(b),

Γ(R) is isomorphic to P3. Therefore rank(Γ(R)) = 0 = frank(Γ(R)). So the graphs

Γ( xZ2[x]
x3Z2[x]

) and Γ( xZ[x]
<4x,x2−2x> ) are ring graphs.

Suppose R is isomorphic to either xZ3[x]
x3Z3[x]

or xZ[x]
<9x,x2−3x> . By Figure 6(a) and

6(b), rank(Γ(R)) = 6 = frank(Γ(R)). Therefore Γ( xZ3[x]
x3Z3[x]

) and Γ( xZ[x]
<9x,x2−3x> ) are

ring graphs.

The zero-divisor graph of the rings xZ[x]
<8x,x2−2x> , Q1 and Q5 are isomorphic to the

graph given in Figure 5 and Figures 1.B, 3.B of [11]. Note that rank and frank of
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this graph is the same and both of them are equal to 1. So, these graphs are ring

graphs.

Suppose R is isomorphic to either Q2 or Q6. By Figure 2.A and 4.A of [11], we

have rank(Γ(R)) = 3 = frank(Γ(R)). Hence Γ(Q2) and Γ(Q6) are ring graphs.

Suppose R is isomorphic to either Q3 or Q4 or Q7. By Figure 2.B, 3.A and

4.B of [11], the graphs Γ(Q3), Γ(Q4) and Γ(Q7) are isomorphic. Now, by setting

S = {a, 2a, 3a, a+ b, 3a+ b}, it is easy to see that the induced subgraph by the set

S in the graph Γ(Q3) is a θ-partial wheel. So, the graphs Γ(Q3), Γ(Q4) and Γ(Q7)

are not ring graphs.

By the above arguments and by Theorem 2.3, the result holds. □

Theorem 4.6. Let R be a commutative ring without identity. Then Γ(R) is an

outerplanar graph if and only if R is isomorphic to one of the following:

Z0
2×Z0

2, Z0
2×Fpn , Z0

2×Z4, Z0
2×

Z2[x]
<x2> Z0

2, Z0
3, Z0

4,
xZ2[x]
x3Z2[x]

, xZ[x]
<4x,x2−2x> ,

xZ[x]
<8x,x2−2x> ,

Q1, Q2, Q5, Q6.

Proof. Since every outerplanar graph is a ring graph, it is enough to consider

the rings in Theorem 2.3 whose zero-divisor graphs are ring graphs. By similar

arguments used in Theorem 4.5, we can verify that the zero-divisor graphs of the

rings Z0
2 × Z0

2, Z0
2 × Fpn , Z0

2 × Z4, Z0
2 ×

Z2[x]
<x2> Z0

2, Z0
2, Z0

3, Z0
4,

xZ2[x]
x3Z2[x]

, xZ[x]
<4x,x2−2x> ,

xZ[x]
<8x,x2−2x> , Q1, Q2, Q5 and Q6 are outerplanar. Also, if R is isomorphic to either
xZ3[x]
x3Z3[x]

or xZ[x]
<9x,x2−3x> , then by Figures 7(a) and 7(b), Γ(R) contains K2,3 as a

subgraph. Also, since Γ(Z0
3 × Fpn) ∼= K2 + K3pn−3, the graph Γ(Z0

3 × Fpn) has

a copy of the graph K2,3, too. So, we can deduce that the graphs Γ( xZ3[x]
x3Z3[x]

),

Γ( xZ[x]
<9x,x2−3x> ) and Γ(Z0

3 × Fpn) are not outerplanar graphs. □

In the rest of this section, we study the ring index and outerplanar index of the

zero divisor graphs of commutative rings without identity. By Corollary 3.8 and

Proposition 3.9 of [5], we conclude that the outerplanar index and ring index are

the same when they are equal to 2,3 or ∞. From this classification, we get the

following theorem.

Theorem 4.7. Let R be a finite commutative ring without identity. Then

(a) γr(Γ(R)) = ∞ if and only if R is isomorphic to one of the following: Z0
2 ×

Z2, Z0
2 × Z0

2, Z0
2, Z0

3, Z0
4,

xZ[x]
<4x,x2−2x> ,

xZ2[x]
x3Z2[x]

;

(b) γr(Γ(R)) = 1 if and only if R is isomorphic to one of the following: Z0
2×Fpn

where pn ≥ 3, Z0
3×Fpn , Z0

2×Z4, Z0
2×

Z2[x]
<x2> ,

xZ3[x]
x3Z3[x]

, xZ[x]
<9x,x2−3x> ,

xZ[x]
<8x,x2−2x> ,

Q1, Q2, Q5, Q6;

(c) γr(Γ(R)) = 0 otherwise.
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Proof. Let R ∼= R1×R2×· · ·×Rn. Since the planar index of a non planar graph is

0, we should focused on the case, Γ(R) is planar. For any graph G, by Remark 2.1,

γr(G) ≤ γp(G) together with Theorems 3.2 and Theorem 4.5, would prove assertion

(b). So, it is enough to focus on the proof of assertion (a). By Theorem 4.5, we

have the following cases.

Case 1. Suppose n = 2. Then R is isomorphic to one of the following rings:

Z0
2 × Z0

2, Z0
2 × Z2.

If R ∼= Z0
2 × Z0

2, then Γ(R) ∼= K3. By Theorem 4.3, γr(Γ(R)) = ∞.

Now, suppose R ∼= Z0
2×Fpn . By Lemma 2.4, Γ(R) is isomorphic to K1+K2pn−2.

Therefore if pn = 2, then γr(Γ(Z0
2 × Z2)) = ∞.

Case 2. Suppose n = 1. Then R is isomorphic to one of the following rings: Z0
2,

Z0
3, Z0

4,
xZ[x]

<4x,x2−2x> ,
xZ2[x]
x3Z2[x]

.

We know that if R ∼= Z0
n, then Γ(R) is a complete graph with n − 1 vertices.

Then Γ(Z0
2), Γ(Z0

3) and Γ(Z0
4) are isomorphic to either a path or a cycle, and so

γr(Γ(Z0
n)) = ∞ where n = 2, 3, 4.

The graph Γ( xZ[x]
<4x,x2−2x> ) and Γ( xZ[x]

x3Z2[x]
) are represented in Figures 4(a) and

4(b). By Theorem 4.3, γr(Γ(
xZ[x]

<4x,x2−2x> )) = γr(Γ(
xZ[x]

x3Z2[x]
)) = ∞. □

In [4], Barati classified the outerplanar index of the zero divisor graphs of finite

commutative rings with identity. In the following theorem, we establish the same

idea for the zero divisor graphs of finite commutative rings without identity. In

fact, we give a full characterization of the zero divisor graphs with respect to their

outerplanar index when R is a finite commutative ring without identity.

Theorem 4.8. Let R be a finite commutative ring without identity. Then

(a) γo(Γ(R)) = ∞ if and only if R is isomorphic to one of the following: Z0
2 ×

Z2, Z0
2 × Z0

2, Z0
2, Z0

3, Z0
4,

xZ[x]
<4x,x2−2x> ,

xZ2[x]
x3Z2[x]

;

(b) γo(Γ(R)) = 1 if and only if R is isomorphic to one of the following: Z0
2×Fpn

where pn ≥ 3, Z0
2 × Z4, Z0

2 ×
Z2[x]
<x2> ,

xZ[x]
<8x,x2−2x> , Q1, Q2, Q5, Q6;

(c) γo(Γ(R)) = 0 otherwise.

Proof. For any given graph G, by Remark 2.1 together with Theorems 4.4, 4.6

and 4.7, one can easily verify the assertion (b). By Theorems 4.3 and 4.4, for any

graph G, if γr(G) = ∞, then γo(G) = ∞ and by Theorem 4.7, the assertion (a)

holds. □
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5. Conclusion

In the literature, there are only some few research articles focusing on finite rings

without assuming the multiplicative identity. This paper provides the character-

ization of commutative rings without identity whose zero-divisor graphs are ring

graphs and outerplanar graphs. Also, we obtained the planar index, ring index and

outerplanar index of the zero-divisor graphs of finite commutative rings without

identity. The future work is to address the problem of obtaining various topolog-

ical indices (like Steiner index, Wiener index, etc.,) for zero-divisor graphs from

commutative ring without identity.
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Abstract. Let V be a finite dimensional vector space over the field F. Let

S(V) be the set of all subspaces of V and A ⊆ S∗(V) = S(V)\{0}. In this paper,

we define the Cayley subspace sum graph of V, denoted by Cay(S∗(V),A), as
the simple undirected graph with vertex set S∗(V) and two distinct vertices X

and Y are adjacent if X+Z = Y or Y +Z = X for some Z ∈ A. Having defined
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and girth of several classes of Cayley subspace sum graphs Cay(S∗(V),A) for

a finite dimensional vector space V and A ⊆ S∗(V) = S(V)\{0}.
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1. Introduction

In recent years, lot of attention has been given for construction of graphs from

algebraic structures. In particular, intersection graphs associated with subspaces

of a vector space have been studied by many authors. The subspace inclusion

graph of a vector space is introduced and studied by Das [9] and, further properties

like Hamiltonian, Eulerian, planar, toroidal, independence number and domination

number of the subspace inclusion graph have been studied in [11,13]. Also Das

[11] posed four conjectures out of which two of them are solved by Wong [20] and

remaining two are proved by Peter J. Cameron et al. [7]. Various other graphs

associated with vector spaces like nonzero component union graph and nonzero

component graph of finite dimensional vector spaces have been introduced and

studied in [10,8,16,19]. The Cayley graph is a powerful tool to connect the algebra

and graph theory and there are worthwhile applications for Cayley graphs like

routing networks in parallel computing. The Cayley graph of finite groups and

rings are well studied in the literature and one can see [1,2,4,12,14,17,15]. The both

directed and undirected Cayley sum graph of ideals of commutative rings is defined

in [3] and some basic properties such as connectivity, girth, clique number, planar
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and outer planar are studied. Later Tamizh Chelvam et al. [18] studied about

connectedness, Eulerian, Hamiltonian and toroidal properties of Cayley sum graph

of ideals of commutative rings. Any interested reader can refer the monograph [5]

for complete literature on graphs from rings.

2. Preliminaries

Throughout this paper, V is a finite dimensional vector space of dimension n

over the finite field F containing q elements and B = {α1, α2, . . . , αn} is a basis

of V. In this regard, B(W) denotes a basis of a subspace W of V in general B(V)
denotes a basis of V. Let S(V) be the set of all subspaces of V and let A be a subset

of S∗(V) = S(V)\{0}. The Cayley subspace sum graph of V with respect to A is the

simple undirected graph with vertex set S∗(V) and two distinct vertices X and Y

are adjacent if and only if X +Z = Y or Y +Z = X for some Z ∈ A and the same

is denoted as Cay(S∗(V),A). Any k(≤ n) dimensional subspaceW of V spanned by

{β1, . . . , βk} is written as ⟨β1, . . . , βk⟩. When dim(V ) = n, the number of distinct

subspaces of V with k ≥ 1 dimension is[
n

k

]
q

=
(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)
.

Thus V has
n∑

k=1

[
n

k

]
q

distinct non-zero subspaces and so the Cayley subspace sum

graph Cay(S∗(V),A) contains
n∑

k=1

[
n

k

]
q

vertices.

Now, we recall some definitions and notations on graphs. By a graph G = (V,E),

we mean a simple undirected graph with non-empty vertex set V and edge set E.

The number of elements in V is called the order n of G and the number of elements

in E is called the size m of G. A graph G is said to be complete if any two distinct

vertices in G are adjacent and the complete graph of order n is denoted by Kn. A

graph G is said to be bipartite if the vertex V can be partitioned into two disjoint

subsets with no pair of vertices in one subset is adjacent. A star graph is a bipartite

graph with any one of the subsets in the bipartite graph containing a single vertex

and the same is called as the center of the star. A graph G is n-partite if the vertex

V can be partitioned into n disjoint subsets with no pair of vertices in one subset

is adjacent.

A walk in a graph G is a finite non-null sequence W = v0e1v1e2 . . . ekvk, whose

terms are alternatively vertices and edges, such that, for 1 ≤ i ≤ k and ends of
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ei are vi−1 and vi. The walk W is said to be a trial if the edges e1, . . . , ek of the

walk W are distinct. Further if vertices v0, v1, . . . , vk are distinct, then W is called

a path. A cycle is a path with starting and terminating vertex are same. A graph

is said to be Hamiltonian if it contains a cycle containing all the vertices of G. A

graph G is said to be connected if there exists a path between every pair of distinct

vertices in G. The diameter of a connected graph is the supremum of the shortest

distance between pairs of vertices in G and is denoted by diam(G). The girth of

G is defined as length of the shortest cycle in G and is denoted by gr(G). We take

gr(G) = ∞ if G contains no cycles. A complete subgraph of a graph G is called a

clique. The clique number of G, written as ω(G), is the maximum size of a clique

in G. A subset D of V is called dominating set if any vertex in V \D is adjacent

with at least one vertex in D. The minimum cardinality of D is called domination

number and it is denoted by γ(G). A planar graph is a graph that can be embedded

in the plane and the genus of planar graphs is zero. For undefined terms in graph

theory, we refer [6].

3. Cayley subspace sum graph

Let V be a finite dimensional vector space over a finite field F, S(V) be the

set of all subspaces of V and A ⊆ S∗(V) = S(V)\{0}. The Cayley subspace sum

graph Cay(S∗(V),A) = (V,E) is the simple undirected graph with vertex set S∗(V)
and two distinct vertices X and Y are adjacent Cay(S∗(V),A) if X + Z = Y or

Y + Z = X for some Z ∈ A. In this section, we observe some properties of

Cay(S∗(V),A).

Theorem 3.1. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn} and A = {W1, . . . ,Wk} ⊆ S∗(V). Then Cay(S∗(V),A) is

connected if and only if
k∪

i=1

B(Wi) = B(V) where B(Wi) is a basis of the subspace

Wi of V.

Proof. Let Cay(S∗(V),A) be connected. Without loss of generality one can as-

sume that B(Wi) ⊆ B(V). Suppose
k∪

i=1

B(Wi) ⊂ B(V). Then there exists at least

one vector β ∈ V such that
k∪

i=1

B(Wi)
∪
{β} ⊆ B(V). Let V1 = {X ∈ S∗(V) : βi

and β are linearly independent for all βi ∈ B(X)} and V2 = S∗(V)\V1. For X ∈ V1,

we have X +Wi = X ′ ∈ V1 for all Wi ∈ A,X ∈ V1 and Y +Wi = Y ′ ∈ V2 for

all Wi ∈ A, Y ∈ V2. This implies that two vertices in different partitions V1 and V2
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of S∗(V) are not connected by a path, which is a contradiction to the assumption

that Cay(S∗(V),A) is connected. Hence
k∪

i=1

B(Wi) = B(V).

Conversely, assume that
k∪

i=1

B(Wi) = B(V) where A = {W1, . . . ,Wk} ⊆ S∗(V).

For X ∈ S∗(V), there exists a path P = X−(X+W1)−(X+W1+W2)−· · ·−(X+
ℓ∑

i=1

Wi)−· · ·− (X+
k−1∑
i=1

Wi)−V between X and V. Hence, every vertex X ∈ S∗(V)

is connected with V so Cay(S∗(V),A) is connected. □

Theorem 3.2. Let V be an n(≥ 2) dimensional vector space over a finite field

of order q with basis B = {α1, . . . , αn} and A = {W1, . . . ,Wk} ⊆ S∗(V). If

Cay(S∗(V),A) is connected then, it is not a path or cycle.

Proof. Let Cay(S∗(V),A) be connected and Vn−1 ⊂ S∗(V) be the set of all n− 1

dimensional subspaces of V. Then

|Vn−1| =

[
n

n− 1

]
q

=
qn − 1

q − 1
≥ 3.

We claim that every vertex in Vn−1 is adjacent to V. If not, there exists X ∈ Vn−1

which is not adjacent to V. This in turn implies that there exists β ∈ V such that

B(X) ∪ {β} = B(V) and β is linearly independent with all the elements in B(Wi)

for all Wi ∈ A, 1 ≤ i ≤ k. In this case
k∪

i=1

B(Wi) ⊂ B(V), which is a contradiction

to Theorem 3.1. Hence deg(V) ≥ |Vn−1| = 3 and so Cay(S∗(V),A) can never be a

path or cycle. □

Lemma 3.3. Let V be a finite dimensional vector space over a finite field F. Then
Cay(S∗(V),V) is a star graph.

Proof. Let W ∈ S∗(V) be a non-zero subspace of V. Then W + V = V, i.e, V
is adjacent to all W ∈ S∗(V). Hence Cay(S∗(V),V) is a star graph with V as the

central vertex. □

Now, we observe certain instances where the Cayley subspace sum graph is

connected and they are consequences of Theorem 3.1.

Corollary 3.4. Let V be an n(≥ 2) dimensional vector space over a finite field.

Then Cay(S∗(V),V) is connected and diam(Cay(S∗(V),V) = 2.

Corollary 3.5. Let V be an n(≥ 2) dimensional vector space over a finite field.

Then Cay(S∗(V), S∗(V)) is connected and diam(Cay(S∗(V), S∗(V)) = 2.
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Corollary 3.6. Let p be a prime number and k ≥ 1 be an integer. Let V be

a two dimensional vector space over a finite field F of order q = pk with basis

B = {α1, α2}. Then Cay(S∗(V), S∗(V)) = K1,q+1.

Proof. Let B = {α1, α2} be a basis for V. The set of all non-zero one dimensional

subspaces of V are V1 = {⟨α1⟩, ⟨α2⟩, ⟨α1 + aα2⟩} for 0 ̸= a ∈ F where as V is the

only two dimensional trivial subspace of V. Note that |V1| = pk + 1 and |V2| = 1

and Cay(S∗(V),V) = K1,q+1. □

Now, we find the girth of Cay(S∗(V), S∗(V)).

Theorem 3.7. Let V be an n(≥ 3) dimensional vector space over a finite field with

basis B = {α1, . . . , αn}. Then the girth gr(Cay(S∗(V), S∗(V)))=3.

Proof. For an integerm, 1 ≤ m ≤ n−2, let X = ⟨α1, . . . , αm⟩, Y = ⟨α1, . . . , αm+1⟩
and Z = ⟨α1, . . . , αm+2⟩ be m,m + 1 and m + 2 dimensional subspaces of V re-

spectively. Let X ′ = ⟨αm+1⟩, Y ′ = ⟨αm+2⟩ and Z ′ = ⟨{αm+1, αm+2}⟩ ∈ A. Then
X + X ′ = Y, Y + Y ′ = Z and X + Z ′ = Z. Hence X − Y − Z − X is a cycle of

length 3 in Cay(S∗(V), S∗(V)). □

Theorem 3.8. Let V be a finite dimensional vector space of dimension n(≥ 2)

over a finite field F and A ⊆ S∗(V). Then Cay(S∗(V),A) is an n-partite graph.

Proof. Let S∗
m be the collection of all non-zero m-dimensional subspaces of V.

Then {S∗
m : 1 ≤ m ≤ n} is a partition of S∗(V). To conclude the proof, it is enough

to prove that no two vertices in one partition S∗
m are adjacent in Cay(S∗(V),A).

For, let X,Y ∈ S∗
m for some m. Then X = ⟨β1, . . . , βm⟩ and Y = ⟨β′

1, . . . , β
′
m⟩. Let

Z ∈ A and dim(Z) = ℓ.

Case 1. If Z ⊆ X, then X + Z = X.

Case 2. If Z ⊈ X, then let Y ′ = X + Z. Note that dim(X ∩ Z) < ℓ and so

dim(Y ′) = dim(X) + dim(Z) − dim(X ∩ Z) = m + ℓ − dim(X ∩ Z) > m. Hence

X + Z ̸= Y for any Z ∈ A and so there exists no Z ∈ A such that X + Z = Y. □

Using Theorem 3.8, we obtain the clique number of Cay(S∗(V), S∗(V)) where V
is a finite dimensional vector space.

Theorem 3.9. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn}. Then ω(Cay(S∗(V), S∗(V))) = n.

Proof. Consider the set of subspaces {W1, . . . ,Wn} where Wi = ⟨α1, . . . , αi⟩ is an
i dimensional subspace of V.
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Given Wi,Wj 1 ≤ i < j ≤ n, let Uij = ⟨αi+1, αi+2, . . . , αi+j⟩ ∈ S∗(V). Then
Wi + Uij = Wj and so the subgraph induced by {Wi : 1 ≤ i ≤ n} is complete and

so ω(Cay(S∗(V), S∗(V))) ≥ n. By Theorem 3.8, ω(Cay(S∗(V), S∗(V))) ≤ n. Hence

ω(Cay(S∗(V), S∗(V))) = n. □

For a finite dimensional vector space V over a finite field F, the subspace inclusion
graph In(V) of V was introduced and studied by Das [9]. The subspace inclusion

graph In(V) of V is the simple undirected graph with the set of all nontrivial

subspaces of V as the vertex set and two vertices are adjacent if one is contained

in other. If V ∈ A, then V is adjacent to all the vertices in Cay(S∗(V),A)). Hence

it is necessary to study about the Cayley subspace sum graph by excluding by

considering V ̸∈ A. Let S∗∗(V) = S(V)\{0,V} and A ⊆ S∗∗(V). Now we prove that

the subspace inclusion graph In(V) can be realized as a Cayley subspace sum graph

with vertex set S∗∗(V) = S(V)\{0,V}.

Theorem 3.10. Let V be an n(≥ 2) dimensional vector space over a finite field.

Then Cay(S∗∗(V), S∗∗(V)) is isomorphic to In(V).

Proof. Note that the vertex sets of both Cay(S∗∗(V), S∗∗(V)) and In(V) are

nontrivial proper subspaces of V. If X and Y are two adjacent vertices in the

graph Cay(S∗∗(V), S∗∗(V)), by definition there exists some Z ∈ S∗∗(V) such that

X + Z = Y or Y + Z = X. This gives that X ⊂ Y or Y ⊂ X. Hence X and Y are

adjacent in In(V).
On the other hand, let X and Y be adjacent in In(V). By definition either

X ⊂ Y or Y ⊂ X. Without loss of generality let us take X ⊂ Y. Then X +W = Y

where W is a subspace isomorphic to quotient space Y/X. From this X and Y are

adjacent in Cay(S∗∗(V), S∗∗(V)). □

Now we characterize all finite dimensional vector spaces V for which

Cay(S∗(V), S∗(V)) is planar. We recall the following well known characterization

for planar graphs.

Theorem 3.11. ([6, Kuratowski’s theorem pp. 151]) A graph is planar if and only

if it contains no subdivision of K5 or K3,3.

Theorem 3.12. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn}. Then Cay(S∗(V), S∗(V)) is planar if and only if n = 2.

Proof. Assume that Cay(S∗(V), S∗(V)) is planar where V is an n-dimensional

vector space. Suppose n ≥ 3. Let α1, α2, α3 ∈ B(V). Consider the subspaces
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W1 = ⟨α1⟩, W2 = ⟨α2⟩, W3 = ⟨α3⟩, W4 = ⟨α1+α2⟩, W5 = ⟨α1+α3⟩, W6 = ⟨α2+

α3⟩, W7 = ⟨α1, α2⟩, W8 = ⟨α1, α3⟩, W9 = ⟨α2, α3⟩, W10 = ⟨α1, α2 + α3⟩, W11 =

⟨α2, α1+α3⟩, W12 = ⟨α3, α1+α2⟩. The subgraph H of Cay(S∗(V), S∗(V)) induced
by {Wi : 1 ≤ i ≤ 12} is given in Fig. 1.

W2

W1

W3

W7 W8

W9

b

b

b

b

b

b

b

b

b

b

b

b

W10

W5

W12
W6

W11

W4

Fig. 1: The graph H

Note that the graph H is a subdivision graph of K3,3 as given in Fig. 2.

W2

W1

W3

W7

W8

W9

b

b

b

b

b b

Fig. 2: K3,3

From this Cay(S∗(V), S∗(V)) contains a subdivision of K3,3 which is a contra-

diction to Theorem 3.11. Hence n = 2.

Conversely, assume that n = 2. By Corollary 3.6 Cay(S∗(V), S∗(V)) is a star

graph and so planar. □

4. Properties of Cay(S∗(V),A)

In this section, we study Cay(S∗(V),A) where V is an n-dimensional vector

space over a finite field of order q with basis B = {α1, α2, . . . , αn} and A =

{⟨α1⟩, . . . , ⟨αn⟩}. In view of Theorem 3.1, we have the following.

Lemma 4.1. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn} and A = {⟨α1⟩, . . . , ⟨αn⟩}. Then Cay(S∗(V),A) is con-

nected.
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Theorem 4.2. Let V be an n(≥ 2) dimensional vector space over a finite field

with basis B = {α1, . . . , αn} and A = {⟨α1⟩, . . . , ⟨αn⟩}. If X and Y are adjacent in

Cay(S∗(V),A), then | dim(X)− dim(Y )| = 1.

Proof. Let the vertices X,Y ∈ S∗(V) be adjacent in Cay(S∗(V),A). By definition,

there exists a subspace ⟨αi⟩ ∈ A such that X + ⟨αi⟩ = Y or Y + ⟨αi⟩ = X for some

αi ∈ B. Suppose X + ⟨αi⟩ = Y and dim(X) = k. Then dim(Y ) = dim(X + ⟨αi⟩) =
k + 1. Hence |dim(X)− dim(Y )| = |k − (k + 1)| = 1. □

Note that the converse of Theorem 4.2 is not true. For, let V be an n(≥ 2)

dimensional vector space with basis B = {α1, α2, α3} and A = {⟨α1⟩, ⟨α2⟩, ⟨α3⟩}.
Let X = ⟨α1⟩ and Y = ⟨α1, α1+α2⟩. Then |dim(X)−dim(Y )| = 1 but there exists

no Z ∈ A such that X + Z = Y or Y + Z = X.

From Theorem 4.2, we have the following corollary.

Corollary 4.3. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn} and A = {⟨α1⟩, . . . , ⟨αn⟩}. Then no two non-zero subspaces

of same dimension are adjacent in Cay(S∗(V),A).

Theorem 4.4. Let V be an n(≥ 2) dimensional vector space over a finite field

with basis B = {α1, . . . , αn} and A = {⟨α1⟩, . . . , ⟨αn⟩}. Then Cay(S∗(V),A) is a

bipartite graph.

Proof. Consider the partition V1 = {X ∈ S∗(V) : dim(X) is odd} and V2 = {X ∈
S∗(V) : dim(X) is even} of S∗(V). LetX and Y be two vertices in the same partition

Vi for i = 1, 2. IfX and Y are of same dimension, then by Corollary 4.3, X and Y are

not adjacent. If X and Y are of different dimension, then | dim(X)− dim(Y )| ≥ 2.

By Theorem 4.2, X and Y cannot be adjacent. Hence no two vertices in the same

partition Vi for i = 1, 2 are adjacent in Cay(S∗(V),A). □

Since a bipartite graph is bi-chromatic, we have the following corollary from

Theorem 4.4.

Corollary 4.5. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn} and A = {⟨α1⟩, . . . , ⟨αn⟩}. Then ω(Cay(S∗(V),A)) = 2.

Also we have following corollary from Theorem 4.4.

Corollary 4.6. Let V be a two dimensional vector space over a finite field of order

q with basis B = {α1, α2} and A = {⟨α1⟩, ⟨α2⟩}. Then Cay(S∗(V),A) is the star

graph K1,q+1.
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Theorem 4.7. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn} and A = {⟨α1⟩, . . . , ⟨αn⟩}. Then the girth of Cay(S∗(V),A))
is given by

gr(Cay(S∗(V),A)) =

4 if n ≥ 3;

∞ if n = 2.

Proof. Case 1. Let V be an n ≥ 3 dimensional vector space with basis B =

{α1, . . . , αn}. By Theorem 4.4, Cay(S∗(V),A) is a bipartite graph and so it contains

no cycle of length 3. Consider the subspaces W1 = ⟨α1⟩, W2 = ⟨α1, α2⟩, W3 =

⟨α1, α2, α3⟩ and W4 = ⟨α1, α3⟩. Note that W1 −W2 −W3 −W4 −W1 is a cycle of

length 4 in Cay(S∗(V),A)) and so gr(Cay(S∗(V),A)) = 4.

Case 2. Let V be a 2 dimensional vector space. By Theorem 4.6 Cay(S∗(V),A)
is a star graph and so in this case gr(Cay(S∗(V),A)) is ∞. □

Theorem 4.8. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn} and A = {⟨α1⟩, . . . , ⟨αn⟩}. Then diam(Cay(S∗(V),A)) =

2(n− 1).

Proof. Let X ∈ S∗(V). Assume that dim(X) = m ≥ 1 and X = ⟨β1, . . . , βm⟩.
Without loss of generality one can assume thatB(X) ⊆ B(V) andB(V) is obtained
from B(X) by adjoining γ1, γ2, . . . , γn−m.

Consider the trial P : X − ⟨γ1, β1, . . . , βm⟩ − ⟨γ1, γ2, β1, . . . , βm⟩ − · · · − ⟨γ1, γ2,
. . . , γn−m, β1, . . . , βm⟩ = V from X to V is of length n−m which contains a (X,V)
path. Similarly, there exists a path of length at most n −m for any other vertex

Y to V. From this, one can visualize a path of length at most 2(n−m) between X

and Y in Cay(S∗(V),A)). Hence diam(Cay(S∗(V),A)) ≤ 2(n−m) ≤ 2(n− 1).

Consider the two one dimensional subspaces U = ⟨α1⟩ and W = ⟨α1 + α2 +

. . . + αn⟩ of V. Then P : U − ⟨α1, α2⟩ − ⟨α1, α2, α3⟩ − · · · − ⟨α1, . . . , αn⟩ is a path

of length n − 1 between U and V and so d(U,V) = n − 1. On the other hand

Q : W − ⟨α1,W ⟩ − ⟨α1, α2,W ⟩ − · · · − ⟨α1, . . . , αn−1,W ⟩ is path of length n − 1

between Y and V and so d(W,V) = n − 1. Therefore d(X,Y ) = 2(n − 1) and so

diam(Cay(S∗(V),A)) = 2(n− 1). □

Now we characterize all finite dimensional vector spaces for which Cay(S∗(V),A)
is planar.

Theorem 4.9. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn} and A = {⟨α1⟩, . . . , ⟨αn⟩}. Then Cay(S∗(V),A)) is planar

if and only if n = 2.
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Proof. Suppose n = 2. By Theorem 3.12, Cay(S∗(V), S∗(V)) is planar. Thus

Cay(S∗(V),A)) ⊆ Cay(S∗(V), S∗(V)) is planar.
Conversely assume that Cay(S∗(V),A) is planar. Suppose n ≥ 3. Consider the

subspaces W1 = ⟨α1⟩, W2 = ⟨α2⟩, W3 = ⟨α3⟩, W4 = ⟨α1 + α2⟩, W5 = ⟨α1 +

α3⟩, W6 = ⟨α2+α3⟩, W7 = ⟨α1+α2+α3⟩, W8 = ⟨α1, α2⟩, W9 = ⟨α1, α3⟩, W10 =

⟨α2, α3⟩, W11 = ⟨α1, α2 + α3⟩, W12 = ⟨α2, α1 + α3⟩, W13 = ⟨α3, α1 + α2⟩, W14 =

⟨α1 + α2, α1 + α3⟩ and W15 = ⟨α1, α2, α3⟩. The induced subgraph H induced by

{Wi : 1 ≤ i ≤ 15} is a subgraph of Cay(S∗(V),A)). The graph H is given in Fig. 3.

b

b

b

b

b

b

b

b

b

b

W8

W2

W10

W3

W9

W5

W12

W7

W13

W4

bb
b
W11

b

W15

W6

b
W14

bW1

Fig. 3: Graph H

Now let us prove that the graph H cannot have a planar embedding. Note that

the subgraph induced by {W2,W3,W4,W5,W7,W8,W9,W10,W12,W13} is the cycle

C1 =W8 −W2 −W10 −W3 −W9 −W5 −W12 −W7 −W13 −W4 −W8.

Case 1. Let us place the vertex W15 in the interior face of C1 as in Fig. 3. Now

we get five cycles C2 = W13 −W15 −W12 −W7 −W13, C3 = W8 −W15 −W13 −
W4 −W8, C4 = W10 −W15 −W8 −W2 −W10, C5 = W9 −W15 −W10 −W3 −W9

and C6 =W12−W15−W9−W5−W12. Now one has to place the vertex W11 in an

interior face of one of the cycles C2, C3, C4, C5 and C6. Without loss of generality

let us place W11 in the interior face of C2 as in the Fig. 3. Similarly place the

vertex W6 in one of the interior faces and without loss of generality let us place

W6 in the interior face of C6 as in Fig. 3. Note that the vertex W6 is adjacent to

W10 and W11. It is clear from Fig. 3 that one cannot draw the edges W6W10 and

W6W11 without crossing another edge. Hence H is not planar.
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Case 2. Now let us consider the possibility that the vertex W15 is placed in the

outer face of C1. Note that the subgraph H ′ induced by {W1,W2,W3,W4,W5,W7,

W8,W9,W10,W11,W12,W13,W15} is given in Fig. 4.

b
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b
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W10
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W9

W5

W12

W7

W13

W4

bb
W1

b
W11

W15

Fig. 4: H ′

Consider the circle C = W1 − W8 − W15 − W9 − W1 in H ′. The vertex W10

is inside C and W11 is outside the circle C. One cannot draw edges W6W10 and

W6W11 in H ′ without crossings. Therefore the graph H is non-planar.

From the above Cay(S∗(V), S∗(V)) is non-planar, which is a contradiction. Hence

n = 2. □

5. Another class of Cay(S∗(V),A)

In this section, we study Cay(S∗(V),A) where A is set of all m(1 ≤ m < n)

dimensional nonzero subspaces of V for some fixed m.

Theorem 5.1. Let V be an n(≥ 2) dimensional vector space over a finite field

with basis B = {α1, . . . , αn} and A be the set of all 1 ≤ m < n dimensional

nonzero subspaces of V. If X and Y are adjacent in Cay(S∗(V),A), then | dim(X)−
dim(Y )| ≤ m.

Proof. Let X,Y ∈ S∗(V) be adjacent in Cay(S∗(V),A). Then there exists some

Z ∈ A such that X + Z = Y or Y + Z = X. Without loss of generality, let us take

X + Z = Y. Then dim(X + Z) = dim(Y ) and so

| dim(X)− dim(Y )| = | dim(X)− dim(X + Z)|

= | dim(X)− (dim(X) + dim(Z)− dim(X ∩ Z))|

= | dim(Z)− dim(X ∩ Z)| ≤ m. □



12 G. KALAIMURUGAN, S. GOPINATH AND T. TAMIZH CHELVAM

Now, we have the following corollary for n− 1 dimensional subspaces of V.

Corollary 5.2. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn} and A be the set of all n−1 dimensional nonzero subspaces

of V. Then V is adjacent to all the vertices in Cay(S∗(V),A).

Theorem 5.3. Let V be an n(≥ 2) dimensional vector space over a finite field

with basis B = {α1, . . . , αn} and A be the set of all m(≥ 1) dimensional nonzero

subspaces of V. Then Cay(S∗(V),A) is connected.

Proof. Let X ∈ S∗(V). Assume that dim(X) = k and {β1, . . . , βk} be a basis of X.

By division algorithm, n = mt+ r where t and r < m are integers. Then P : X −
⟨β1, . . . , βk, α1, . . . , αm⟩−⟨β1, . . . , βk, α1, . . . , α2m⟩−· · · ⟨β1, . . . , βk, α1, . . . , αtm⟩−V
contains a path between the arbitrary vertex X and V and so Cay(S∗(V),A) is

connected. □

Theorem 5.4. Let V be an n(≥ 2) dimensional vector space over a finite field

with basis B = {α1, . . . , αn} and A is the set of all m(≥ 1) dimensional nonzero

subspaces of V. Then the girth of Cay(S∗(V),A)) is 3.

Proof. Let X = ⟨β1, . . . , βm−1⟩, Y = ⟨β1, . . . , βm⟩ and Z = ⟨β1, . . . , βm+1⟩ be

subspaces of V of dimension m,m+ 1 and m+ 2 respectively. Then the subspaces

X ′ = ⟨β1, . . . , βm⟩ and Y ′ = ⟨β2, . . . , βm+1⟩ satisfy X +X ′ = Y, Y + Y ′ = Z and

X + Y ′ = Z. Hence X − Y −Z −X is a cycle in Cay(S∗(V),A)) of length 3 and so

the girth of Cay(S∗(V),A)) is 3. □

Theorem 5.5. Let V be an n(≥ 2) dimensional vector space over a finite field

with basis B = {α1, . . . , αn} and A is the set of all m(≥ 1) dimensional nonzero

subspaces of V. Then diam(Cay(S∗(V),A)) = 2⌈ n
m⌉.

Proof. By division algorithm n = tm + r where t, r be integers with r < m.

Consider the subspaces Yk = ⟨α(k−1)m+1, α(k−1)m+2, . . . , α(k−1)m+m⟩ for 1 ≤ k ≤ t

of dimension m and Yt+1 = ⟨αtm+1, αtm+2, . . . , αn⟩ of V of dimension r. For a

nonzero subspace X ∈ S∗(V), let Z0 = X and Zi = X+
i∑

j=1

Yj for i = 1, 2, . . . , t+1.

Then the trail W : Z0 −Z1 −Z2 − · · ·Zt+1 = V from X to V of length t+1 = ⌈ n
m⌉

contains a (X,V) path. Similarly a trial W ′ between another subspace X ′ ∈ S∗(V)
to V of length t + 1 = ⌈ n

m⌉ contains a (X ′,V) path. Hence there exists a path

of length at most 2⌈ n
m⌉ between two arbitrary subspaces X,X ′ ∈ S∗(V) and so

Cay(S∗(V),A) is connected and diam(Cay(S∗(V),A)) ≤ 2⌈ n
m⌉.



CAYLEY SUBSPACE SUM GRAPH OF VECTOR SPACES 13

Consider the one dimensional subspaces U = ⟨α1⟩ and U ′ = ⟨α1+α2+ . . .+αn⟩
of V. Then P : Z0 −Z1 −Z2 − . . . Zt+1 = V is a path of length ⌈ n

m⌉ between U and

V. Similarly P ′ : U ′ − Z1 − Z2 − . . . Zt+1 = V is a path of length ⌈ n
m⌉ between U ′

and V. Therefore d(U,U ′) = 2⌈ n
m⌉ and so diam(Cay(S∗(V),A)) = 2⌈ n

m⌉. □

6. Properties of Cay(S∗(V),A) where V is 3 dimensional

In this section, we discuss some special properties of Cayley subspace sum graphs

of three dimensional vector spaces over finite field. First we obtain some adjacency

relations of Cay(S∗(V),A) for the different possibilities of A. Let V be the finite

dimensional vector space with {α1, α2, α3} as basis over the finite field F of order

q. One can see that the following are the complete list of non-zero subspaces of V.

One dimensional subspaces

(1) ⟨αi⟩ : i = 1, 2, 3;

(2) ⟨αi + aαj⟩ : i, j = 1, 2, 3; i ̸= j, a ∈ F \ {0};
(3) ⟨α1 + aα2 + bα3⟩ : a, b ∈ F \ {0}.

Two dimensional subspaces

(1) ⟨αi, αj⟩ : i, j = 1, 2, 3; i ̸= j;

(2) ⟨αi, αj + aαk⟩ : i, j, k = 1, 2, 3; i ̸= j ̸= k, a ∈ F \ {0};
(3) ⟨α1 + aα2, α1 + bα3⟩ : a, b ∈ F \ {0}.

Note that total number of nonzero subspaces of V is 2(q2+q)+3. Suppose |Vi| is
the number of i dimensional nonzero subspaces of V, then |V1| = |V2| = q2 + q + 1.

Note that Cay(S∗∗(V),A) is a subgraph of Cay(S∗(V),A) with vertex set S∗∗(V) =
S(V)\{0,V}.

Theorem 6.1. Let V be a three dimensional vector space over a finite field and A
be the set of all one dimensional non-zero proper subspaces of V. Any two vertices

in Cay(S∗∗(V),A) are adjacent if and only if one of them is properly contained in

the other.

Proof. Let X and Y be any two nonzero proper subspaces of V and assume that

they are adjacent in Cay(S∗∗(V),A). This implies there exists Z ∈ A such that

X + Z = Y or Y + Z = X. In the first case X ⊂ Y where as in the second case

Y ⊂ X.

Conversely, let X and Y be two nonzero proper subspaces of V and X ⊂ Y.

Without loss of generality dim(X)=1, dim(Y )=2 and so X = ⟨β⟩ and Y = ⟨β, β′⟩
for β, β′ ∈ V∗. ThenX+Z = Y where Z = ⟨β′⟩ ∈ A, i.e., X and Y are adjacent. □
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Theorem 6.2. Let V be a three dimensional vector space over a finite field and

A be the set of all two dimensional proper subspaces of V. Any two subspaces are

adjacent in Cay(S∗(V),A) if and only if one is properly contained in the other.

Proof. The proof of “only if” part is similar to that of Theorem 6.1.

Conversely, let X and Y in S∗(V) and X ⊂ Y. Then there are three possibilities.

Suppose dim(X)=1, dim(Y )=2, X = ⟨β1⟩ and Y = ⟨β1, β2⟩. Then X+Y = Y , i.e.,

X and Y are adjacent. Similar proof follows in the cases of dim(X)=1, dim(Y )=3;

and dim(X)=2, dim(Y )=3. Thus in all the cases X and Y are adjacent. □

Corollary 6.3. Let V be a three dimensional vector space over a finite field and

A be the set of all two dimensional proper subspaces of V. Any two subspaces are

adjacent in Cay(S∗∗(V),A) if and only if one is properly contained in the other.

In similar to the proof of Theorem 6.2, one can prove the following.

Theorem 6.4. Let V be a four dimensional vector space over a finite field and

A be the set of all two dimensional proper subspaces of V. Any two subspaces are

adjacent in Cay(S∗∗(V),A) if and only if one is properly contained in the other.

Remark 6.5. Let V be a three dimensional vector space and A be either the set

of all one dimensional proper subspaces or the set of all two dimensional proper

subspaces of V. By Theorem 6.1 and Corollary 6.3, Cay(S∗∗(V),A) as same as In(V).
Let V be a four dimensional vector space and A be the set of all two dimensional

proper subspaces of V. By Theorem 6.4, Cay(S∗∗(V),A) as same as In(V). This
property is not true for four dimensional vector spaces with other choices for A.
For let A1 be set of all one dimensional proper subspaces and A2 be the set of all

three dimensional proper subspaces of V. Then the subspaces ⟨α1⟩ and ⟨α1, α2, α3⟩
are not adjacent Cay(S∗∗(V),A1) even though ⟨α1⟩ ⊂ ⟨α1, α2, α3⟩. Similarly ⟨α1⟩
and ⟨α1, α2⟩ are not adjacent in Cay(S∗∗(V),A2) even though ⟨α1⟩ ⊂ ⟨α1, α2⟩.

Remark 6.6. By Theorem 6.4, Cay(S∗∗(V),A) is same as In(V). Also, by [11,

Corollary 6.3] Cay(S∗∗(V),A) is a q + 1-regular graph.

Theorem 6.7. Let V be a three dimensional vector space over a field of order

q ∈ {2, 3, 5, 8, 17} and A be the set of all two dimensional nonzero subspaces of V.
Then Cay(S∗(V),A) is Hamiltonian.

Proof. By [11, Theorem 6.10], Cay(S∗∗(V),A) is Hamiltonian. Since V is adjacent

to all the elements in Cay(S∗(V),A), we see that Cay(S∗(V),A) is Hamiltonian. □
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Theorem 6.8. Let V be a three dimensional vector space over a field of order q and

A be the set of all one dimensional subspaces of V. Then the domination number

γ(Cay(S∗(V),A)) = q + 2.

Proof. Note that Cay(S∗(V),A) is a bipartite graph with vertex partition

V1 = A ∪ {V}

and

V2 = {all two dimensional subspaces of V}.

Consider the set D = {⟨α2, α1 + aα3⟩, ⟨α2, α3⟩,V | a ∈ F}. Then the following

are true.

• ⟨αi⟩ is dominated by ⟨αi, αj⟩ for i, j = 1, 2, 3 and i ̸= j;

• ⟨α1 + aα2⟩ and ⟨α2 + aα3⟩ are dominated by ⟨α1, α2⟩ and ⟨α2, α3⟩ respec-
tively;

• ⟨α1 + aα3⟩ is dominated by ⟨α2, α1 + aα3⟩;
• ⟨α1 + aα2 + bα3⟩ is dominated by ⟨α2, α1 + bα3⟩;
• Set of all two dimensional subspace are dominated by V.

This shows that D is a dominating set of Cay(S∗(V),A) with |D| = q + 2. To

conclude the proof, one has to show that q + 1 elements are not sufficient for a

dominating set in Cay(S∗(V),A). Since V dominates all two dimensional subspaces,

for a minimal dominating set, one has to choose elements in V2 which dominate all

the elements in V1 \ V. By Remark 6.1, Cay(S∗∗(V),A) is a q + 1-regular graph.

Further |V1 \ V| = q2 + q + 1 and q2+q+1
q+1 = q + 1

q+1 . This indicates that at least

q + 1 elements from V2 are needed to dominate all the elements in V1 \ V. Hence

γ(Cay(S∗(V),A)) = q + 2. □

Now, we have the following corollary.

Corollary 6.9. Let V be a three dimensional vector space over a finite field of order

q with basis B = {α1, α2, α3} and A = {⟨α1⟩, ⟨α2⟩, ⟨α3⟩}. Then γ(Cay(S∗(V),A)) =
q + 2.

From Corollary 5.2, V is adjacent to all the vertices and hence we have the

following corollary regarding domination for two dimensional case.

Corollary 6.10. Let V be a three dimensional vector space over a field of order

q with basis B = {α1, α2, α3} and A be the set of all two dimensional of V. Then
γ(Cay(S∗(V),A)) = 1.
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Abstract
This paper is mainly dedicated to the issue of finite-time synchronization of T–S fuzzy
complex-valued neural networks with time-varying delays and inertial terms via directly
constructing Lyapunov functions with separating the original complex-valued neural net-
works into two real-valued subsystems equivalently. First of all, to facilitate the analysis
of the second-order derivative caused by the inertial term, two intermediate variables are
introduced to transfer complex-valued inertial delayed neural networks (CVIDNNs) into the
first-order differential equation form. Next, CVIDNNs are developed using T–S fuzzy rules.
By using the Lyapunov stability theory, inequality scaling skills and adjustable algebraic
criteria for T–S fuzzy CVIDNNs as well as the upper bound of the settling time for synchro-
nization, are derived. Finally, one numerical example with simulations is given to illustrate
the effectiveness of our theoretical results.

Keywords Complex-valued neural networks (CVNNs) · Inertial neural networks · T–S
fuzzy · Finite-time Synchronization

1 Introduction

Dynamical behaviour analyzes for neural networks (NNs) have gotten a lot of interest in the
last few years [1–4]. Particularly, the synchronization of NNs has attracted lots of attention of
researchers due to its practical applications such as brain-like intelligence, image encryption
and secure communication [5–12]. On the other hand, NNs with inertial items exist engineer-
ing and biological backgrounds [13, 14]. Unlike the traditional first-order NNs, inertial neural
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networks (INNs), which are described by second-order derivative, can contribute to chaos
and bifurcation [15]. It was discovered that INNs not only have more sophisticated dynamics
than the traditional resistor-capacitor first-order model [16], but also have a diverse biolog-
ical background. For instance, The membrane of a hair cell in semicircular canals of some
animals, such as pigeons, appear to form circuits with inductance. According to researchers,
INNs play an important role in many practical applications like signal processing, automatic
control, and so on. As a result, it is critical to investigate the dynamics and control of INNs
[17, 18]. Furthermore, in the actual models of the INNs, the introduction of the inertia term
is generally reflected in inductance, contributing to the disordered search of memory and
INNs can perfectly imitate the brain of human, so it is significance to research the dynamical
properties of INNs. Therefore, such an issue is a meaningful topic that can be discussed in
depth, which is a first motivation of this work.

Fuzzy logic systems or NNs have been proved to be universal approximators, i.e., they
can approximate any nonlinear functions. Therefore, fuzzy logic systems and NNs have been
widely adopted for nonlinear systems [19, 20]. In recent years, the fuzzy logic theory has been
efficiently applied to many applications and it is an effective approach to modeling a complex
nonlinear system and dealing with its stability. Takagi–Sugeno (T–S) fuzzy model [21–23] is
generally known as an excellent mathematical model that allows many types of analyzes, of
which synchronization is a promising issue in the fuzzy control field, particularly for nonlinear
dynamics plants. Recently, the challenges of synchronization analysis for T–S fuzzy systems
with NNs have been explored [24, 25]. Furthermore, T–S fuzzy models have been shown to be
effective in dealing with nonlinear INNs. Few author studied the synchronization analysis for
T–S fuzzy INNs [26, 27]. Compared with the asymptotic synchronization [28, 29], the finite-
time synchronization is more attractive in some engineering fields [30, 31]. The finite-time
synchronization of INNs was examined using some of the integral inequality and finite-time
synchronization theorems given in [32–35]. Motivated by the above works, we will attempt
to integrate the the T–S fuzzy logics, which could approximate nonlinear smooth functions
with arbitrary accuracy using linear functions into INNs and take the IF–THEN rule into
account to form a class of T–S fuzzy INNs with time-varying delays. This is our second
motivation.

Motivated by the aforementioned results of real-valued NNs, we proposed in this paper to
investigate results on complex-valued NNs (CVNNs). In addition, the above research results
are all on the basis of the real-valued NNs model with real-valued activation functions, state
variables and connection weights. CVNNs has more complex properties, not just simple
extensions of real-valued one. It is very necessary to study this model into the study of the
dynamic behaviors of nonlinear systems [36–38]. In many realistic systems CVNNs have
been applied to deal with electromagnetic, light, quantum waves, optoelectronics, filtering,
speech synthesis, remote sensing, signal processing, and so on. Nowadays, many of the
researchers are interested to it and paid more attention to analyze the properties of CVNNs.
CVNNs with complex-valued states, activation function, connection weight and input are
an extension of real-valued NNs that have been one of the most important research topics
in many applications [39–42]. In recent year, CVNNs with inertial terms have piqued the
interest of researchers , but only a few results have been published. These two basic meth-
ods have also been applied to analyze the complex-valued INNs (CVINNs) with constant
delays or time-varying delays and a number of meaningful works have been achieved, such
as exponential/asymptotical stability [43], exponential/asymptotical stabilization [44]. The
authors [43], adaptive synchronization problem was discussed for CVIDNNs by employing
non-separation approach. In [44] analyzed the exponential synchronization of state-based
switched CVIDNNs via decomposing approach. As stated in [45], in deep learning appli-
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cation, NNs with complex-valued signals can realize more robust transmission of gradient
information between layers, more accurate forgetting behavior, higher memory capacity and
significantly reduced network scale. At the same time, CVNNs can be applied to handle with
some practical problems which cannot be solved by a real-valued neuron [46]. In addition,
handling the stability of CVINNs requires specific and completely different tools from real-
valued INN ones. To our knowledge, there has been few developed achievements for CVINNs
with time-varying delays and the result of finite-time synchronization problem has not been
reported. Therefore, it is of great significance to study the dynamic behavior of CVINNs for
extending the application scopes of NNs. In this paper is the main motivation.

Based on what has been discussed above, the main aim of this paper is to investigate
finite-time synchronization for T–S fuzzy complex-valued inertial delayed neural networks
via a decomposition approach with time-varying delays. The main highlights of this paper
are as below.

1. This paper establishes a kind of T–S fuzzy CVIDNNs with inertial terms, fuzzy terms,
and time-varying delays, and extends the previously published articles [43, 44]. This
makes the model considered more versatile and practical in practical applications.

2. By dividing the fuzzy inertial complex-valued neural networks into real and imaginary
parts, the model is converted into two fuzzy inertial real-valued NNs.

3. This paper combines with CVIDNNs and fuzzy IF-THEN rules to achieve the finite-time
synchronization of T–S fuzzy CVIDNNs and the fuzzy-dependent technique is more
adaptable and useful for reducing conservatism.

4. To finite-time synchronization of T–S fuzzy CVIDNNs, the linear feedback controller
designed, which are general and different from the linear controllers in [26, 27].

5. Easily-verified algebraic criteria are performed to guarantee finite-time synchronization.
6. To highlight the usefulness of our theoretical result technique, a numerical example and

comparison of synchronization scenarios are provided.

2 ProblemDescription

A class of T–S fuzzy CVDINNs with time delay is as follows:

γ̈α(t) = −φαγα(t) − ψαγ̇α(t) +
n∑

β=1

θαβ(γα(t))gβ(γβ(t))

+
n∑

β=1

ωαβ(γα(t))gβ(γβ(t − σ(t))), (1)

with the initial condition: γ (s) = μ̂(s) ∈ PC([−σ, 0], C
n), γα(t) ∈ C represents neuronal

state, and its second derivative is known as the term of inertia.
φα > 0 and ψα > 0 are feedback template components; θαβ(γα(t)) and ωαβ(γα(t))

are complex-valued state-dependent connection weights; σ(t) represent the time delays that
satisfy 0 ≤ σ(t) ≤ σM and σ̇ (t) ≤ σ < 1; gβ(·) is complex-valued activation function.
Suppose γα(t), θαβ(γα(t)), ωαβ(γα(t)) and gβ(γβ(t)) can be separated into real and imagi-
nary parts; γα(t) = γ R

α (t) + iγ I
α (t), θαβ(γα(t)) = θ R

αβ(γ R
α (t)) + iθ I

αβ(γ I
α (t)), ωαβ(γα(t)) =

ωR
αβ(γ R

α (t)) + iωI
αβ(γ I

α (t)), gβ(γβ(t)) = gR
β (γ R

β (t)) + igI
αβ(γ I

β (t)), in which γ R
α (t),

θ R
αβ(γ R

α (t)), ωR
αβ(γ R

α (t)) and gR
β (γ R

β (t)) are the real parts of γα(t), θαβ(γα(t)), ωαβ(γα(t))

and gβ(γβ(t)), respectively; γ I
α (t), θ I

αβ(γ I
α (t)), ωI

αβ(γ I
α (t)) and gI

β(γ I
β (t)) are the imag-
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inary parts of γα(t), θαβ(γα(t)), ωαβ(γα(t)) and gβ(γβ(t)), respectively. The follow-
ing are the state-dependent coefficients: if |γ R

α (t)| < �̂α, θ R
αβ(γ R

α (t)), ωR
αβ(γ R

α (t)) are

equal to θ̂ R
αβ, ω̂R

αβ and θ̌ R
αβ, ω̌R

αβ if |γ I
α (t)| < �α, θ I

αβ(γ I
α (t)), ωI

αβ(γ I
α (t)) are equal

to θ̂ I
αβ, ω̂I

αβ and θ̌ I
αβ, ω̌I

αβ where �̂α > 0, �α > 0 denotes the threshold level,

θ̂ R
αβ, ω̂R

αβ, θ̌ R
αβ, ω̌R

αβ; θ̂ I
αβ, ω̂I

αβ, θ̌ I
αβ, ω̌I

αβ are constants. Let θ̌ R
αβ = max{|θ̂ R

αβ |, |θ̌ R
αβ |}, ω̌R

αβ =
max{|ω̂R

αβ |, |ω̌R
αβ |}, θ̌ I

αβ = max{|θ̂ I
αβ |, |θ̌ I

αβ |}, ω̌I
αβ = max{|ω̂I

αβ |, |ω̌I
αβ |}.

Remark 2.1 Real-valued INNs have recently received a lot of attention due to their appli-
cations in engineering, and several results on secure communication have been published
[17–19]. These results, however, are all based on real-valued systems. We know from Yu et
al. [43] and Li et al. [44], that CVDINNs have several practical applications as well. To the
best of the authors knowledge, there are limited results on CVDINNs, as inspired by Yu et al.
[43] and Li et al. [44], As a result, this paper has significant implications for further research
on CVDINNs.

Then, system (1) can be divided into two parts: real and imaginary, as shown below:

γ̈ R
α (t) = −φαγ R

α (t) − ψαγ̇ R
α (t) +

n∑

β=1

θ R
αβ(γ R

α (t))gR
β (γ R

β (t))

−
n∑

β=1

θ I
αβ(γ I

α (t))gI
β(γ I

β (t)))

+
n∑

β=1

ωR
αβ(γ R

α (t))gR
α (γ R

α (t − σ(t)))

−
n∑

β=1

ωI
αβ(γ I

α (t))gI
β(γ I

β (t − σ(t))), (2)

and

γ̈ I
α (t) = −φαγ I

α (t) − ψαγ̇ I
α (t) +

n∑

β=1

θ R
αβ(γ R

α (t))gI
β(γ I

β (t))

+
n∑

β=1

θ I
αβ(γ I

α (t))gR
β (γ R

β (t)))

+
n∑

β=1

ωR
αβ(γ R

α (t))gI
β(γ I

β (t − σ(t)))

+
n∑

β=1

ωI
αβ(γ I

α (t))gR
β (γ R

β (t − σ(t))). (3)

Systems (2) and (3) can be expressed as


̈(t) = −�
(t) − �
̇(t) + RI G R(t) + I RG I (t)

+ W RI G R(t − σ(t)) + W I RG I (t − σ(t)), (4)

where 
(t) = (γ R
1 (t), ..., γ R

n (t), γ I
1 (t), ..., γ I

n (t))T , G R(·) = (gR
l (γ R

l (·)), .., gR
n (γ R

n (·)),
gR

1 (γ R
1 (·)), .., gR

n (γ R
n (·)))T , G I (·) = (gI

1 (γ I
1 (·)), ..., gI

n (γ I
n (γ I

n (·)), gI
1 (γ I

1 (·)), ..., gI
n (γ I

n (·)))T ,
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� = diag{φ1, ..., φn, φ1, ..., φn}, � = diag{ψ1, ..., ψn, ψ1, .., ψn},

RI =
(

(θ R
αβ(γ R

α (t)))n×n 0
0 (θ I

αβ(γ I
α (t)))n×n

)
,

I R =
(

−(θ I
αβ(γ I

α (t)))n×n 0
0 (θ R

αβ(γ R
α (t)))n×n

)
,

W RI =
(

(ωR
αβ(γ R

α (t)))n×n 0
0 (ωI

αβ(γ I
α (t)))n×n

)
,

W I R =
(

−(ωI
αβ(γ I

α (t)))n×n 0
0 (ωR

αβ(γ R
α (t)))n×n

)
.

Remark 2.2 The system model in this paper also considers complex domain, IF-THEN fuzzy,
inertial item, time-varying delay, so the discussed CVINNs is a more general case than the
existing system models, including the CVINNs without T–S fuzzy [13, 14], the CVINNs only
with delay [43], the CVNNs without inertial items (see [36–42]) and so on. In additions, the
theoretical results obtained in this work are established in a more general framework and has
a wider field of actual applications such as secure communication compared to the results of
the previous research works (see [36–42]).

Remark 2.3 Many mathematical models for real-world phenomena are inherently nonlinear,
and nonlinear system stability analysis and synthesis problems are typically difficult. The
fuzzy logic theory has been shown to be effective in dealing with a variety of complex
nonlinear systems over the last few decades, and has thus received a great deal of attention in
the literature. The T–S fuzzy INNs model is one of the most popular fuzzy models (see [26,
27]). A nonlinear system is represented in this type of fuzzy model by a set of local linear
models smoothly connected by nonlinear membership functions, which has a convenient and
simple dynamic structure, allowing the existing results for linear systems theory to be easily
extended for this class of nonlinear systems. Therefore, it is of great significance to study
the finite-time synchronization of T–S fuzzy CVINNs for extending the application scopes
of T–S fuzzy INNs [26, 27].

T–S fuzzy sets are consider (4), as shown below:
Plant rule r: IF k1(t) is ϒ

q
1 , k2(t) is ϒ

q
2 , ..., k f (t) is ϒ

q
f , THEN


̈(t) = −�(q)
(t) − �(q)
̇(t) + RI G R(t) + I RG I (t)

+ W RI G R(t − σ(t)) + W I RG I (t − σ(t)), (5)

where �(q) = diag{φ(q)
1 , φ

(q)
2 , ..., φ

(q)
n , φ

(q)
1 , φ

(q)
2 , ..., φ

(q)
n }, �(q) = diag{ψ(q)

1 , ψ
(q)
2 , ...,

ψ
(q)
n , ψ

(q)
1 , ψ

(q)
2 , ..., ψ

(q)
n }, ϒq

p is fuzzy set, kp(t) is premise variable, p ∈ N f , q ∈ Nm and
m is the number of fuzzy IF-THEN rules. System (5) can be inferred from the blending as


̈(t) =
m∑

q=1

�q(k(t))[−�(q)
(t) − �(q)
̇(t) + RI G R(t) + I RG I (t)

+ W RI G R(t − σ(t)) + W I RG I (t − σ(t))], (6)
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where k(t) = (k1(t), k2(t), ..., k f (t))T , and

�q(k(t)) =
∏ f

p=1 ϒ
q
p(kp(t))

∑m
q=1

∏ f
p=1 ϒ

q
p(kp(t))

in which ϒ
q
p(kp(t)) is the grade of membership of kp(t) in ϒ

q
p . We know that based on fuzzy

theory
∑m

q=1 �q(k(t)) = 1 and �q(k(t)) ≥ 0 for q ∈ Nm .

As a result of the drive system (6), the response system is as follows:

�̈(t) =
m∑

q=1

�q(k(t))[−�(q)�(t) − �(q)�̇(t) + ̃RI G̃ R(t) + ̃I R G̃ I (t)

+ W̃ RI G̃ R(t − σ(t)) + W̃ I RG̃ I (t − σ(t)) + �(t)], (7)

where �(t) = (ϕR
1 (t), ..., ϕR

n (t), ϕ I
1 (t), ..., ϕ I

n (t))T will be control designed later;
�(t) = (γ̂ R

1 (t), ..., γ̂ R
n (t), γ̂ I

1 (t), ..., γ̂ I
n (t))T denotes the initial condition of the response

system state variable: γ̂ (s) = μ̌(s) ∈ PC([−σ, 0], C
n), G̃ R(·) = (gR

1 (γ̂ R
1 (·)), ..., gR

n (γ̂ R
n (t)),

gR
1 (γ̂ R

1 (·)), ..., gR
n (γ̂ R

n (·))T , G̃ I (·) = (gI
1 (γ̂ I

1 (·)), ..., gI
n (γ̂ I

n (t)), gI
1 (γ̂ I

1 (·)), ..., gI
n (γ̂ I

n (·))T ,

̃RI =
(

(θ R
αβ(γ̂ R

α (t)))n×n 0
0 (θ I

αβ(γ̂ I
α (t)))n×n

)
,

̃I R =
(

−(θ I
αβ(γ̂ I

α (t)))n×n 0
0 (θ R

αβ(γ̂ R
α (t)))n×n

)
,

W̃ RI =
(

(ωR
αβ(γ̂ R

α (t)))n×n 0
0 (ωI

αβ(γ̂ I
α (t)))n×n

)
,

W̃ I R =
(

−(ωI
αβ(γ̂ I

α (t)))n×n 0
0 (ωR

αβ(γ̂ R
α (t)))n×n

)
.

We define ∈α (t) = γ̂α(t) − γα(t) is the synchronization error as follows:

¨̃∈ (t) =
m∑

q=1

�q(k(t))[−�(q)∈̃(t) − �(q) ˙̃∈ (t) + RI H̃ R(t)

+ I R H̃ I (t) + W RI H̃ R(t − σ(t)) + W I R H̃ I (t − σ(t))

+ ̄RI H̃ R(t) + ̄I R H̃ I (t)) + W̄ RI H̃ R(t − σ(t))

+ W̄ I R H̃ I (t − σ(t)) + ϕ(t)], (8)

where ∈̃(t) = (∈R
1 (t), ...,∈R

n (t), ∈I
1 (t), ...,∈I

n (t))T , H̃ R(t) = (
(H R(t))T , (H R(t)T )

)T
,

H̃ I (t) = (
(H I (t))T , (H I (t))T

)T
, H R(t) = (gR

1 (γ̂ R
1 (t)) − gR

1 (γ R
1 (t)), ..., gR

n (γ̂ R
n (t)) −

gR
n (γ R

n (t)))T , H I (t) = (gI
1 (γ̂ I

1 (t)) − gI
1 (γ I

1 (t)), ..., gI
n (γ̂ I

n (t)) − gI
n (γ I

n (t)))T , ̄RI =
RI − ̃RI , ̄I R = I R − ̃I R, W̄ RI = W RI − W̃ RI , W̄ I R = W I R − W̃ I R .
We designed the feedback controller ϕα(t) = ϕR

α (t) + iϕ I
α(t) is presented as follows:

{
ϕR

α (t) = −(
k R
α (t)|∈̇R

α (t)|ζ̂ + k̂ R
α |∈̇R

α (t)| + ζ R
α (t)| ∈R

α (t)|ζ̂ + ρ̂R
α | ∈R

α (t)| + δR
α

)
sign(∈̇R

α (t)),

ϕ I
α(t) = −(

k I
α(t)|∈̇I

α(t)|ζ̂ + k̂ I
α|∈̇I

α(t)| + ζ I
α (t)| ∈I

α (t)|ζ̂ + ρ̂I
α| ∈I

α (t)| + δ I
α

)
sign(∈̇I

α(t)),
(9)
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where k R
α (t), k̂ R

α (t), ζ R
α (t), δR

α (t), k I
α, k̂ I

α(t), ζ I
α (t), δ I

α are control gains and k̂ = k̂ R
α = k̂ I

α .

Assumption 2.4 The nonlinear functions gR
α (·) and gI

α(·) are differentiable, |gR
α (·)| ≤

M R
α , |gI

α(·)| ≤ M I
α and there exits ℘R

α > 0 and ℘ I
α > 0 such that

|gR
α (u) − gR

α (v)| ≤ ℘R
α |u − v|, |gI

α(u) − gI
α(v)| ≤ ℘ I

α|u − v|,∀ u, v ∈ R.

Definition 2.5 CVIDNNs drive system (6) is said to be in finite-time synchronized with
CVIDNNs response system (7), if there is a constant t∗(∈ (0)) > 0 (t∗(∈ (0))) based on the
initial condition ∈ (0) and ∈ (t) = (∈R

1 (t),∈R
2 (t).....,∈R

n (t),∈I
1 (t),∈I

2 (t).....,∈I
m (t))T ,

such that limt→t∗(∈̃(0))||∈̃(t)|| = 0 and ||∈̃(t)|| ≡ 0 for ∀t > t∗(∈̃(0)), where t∗(∈̃(0)) is
referred as the settling time.

Lemma 2.6 If the following inequality holds for a continuous, positive definite function γ (t)

γ̇ (t) ≤ −ιγ � (t),∀t ≥ t0, γ (t0) ≥ 0,

where ι > 0, 0 < � < 1 are constants. Then γ (t) satisfies

γ 1−� (t) ≤ γ 1−� (t0) − ι(1 − �)(t − t0), t0 ≤ t ≤ T ,

and

γ (t0) = 0,∀t ≥ T .

Also T given by

T = t0 + γ 1−� (t0)

ι(1 − �)
.

3 Main Results

3.1 Finite-Time Synchronization via Feed-Back Controller

Theorem 3.1 Under Assumption 2.4, CVIDNNs drive system (6) is said to be in finite-time
synchronized with CVIDNNs response system (7) are finite-time synchronized via feedback
controller (9), if the following condition holds:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i)
[
φ

(q)
α + ∑n

β=1(θ̌
R
βαρR

α + θ̌ I
βαρR

α )
]

≤ ρ̂R
α

(ii)
[
φ

(q)
α + ∑n

β=1(θ̌
I
βαρR

α + θ̌ R
βαρI

α)
]

≤ ρ̂I
α

(iii) (1 − ψ
q
α ) ≤ k̂α

(iv)
∑n

β=1 2(|θ̂ R
αβ − θ̌ R

αβ | + |ω̂R
αβ − ω̌R

αβ |)M R
β + ∑n

β=1 2(|θ̂ I
αβ − θ̌ I

αβ |
+|ω̂I

αβ − ω̌I
αβ |)M I

β ≤ δR
α + δ I

α + ωR
α + ωI

α < 0,

(10)

and for t ≥ t∗, the settling time t∗ = V 1−ζ̂ (∈(0))



(a)
min(1−ζ̂ )

, where 
a
min = min1≤α≤n{k R

α , k I
α, ζ R, ζ I }.

Proof Construct the Lyapunov-functional as:

V (t) =
n∑

α=1

[| ∈R
α (t)| + | ∈I

α (t)| + |∈̇R
α (t)| + |∈̇I

α(t)|]. (11)
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We reach the following results by taking the time derivative of V (t) along the trajectories of
(8):

D+V (t) =
n∑

α=1

{
sign(∈R

α (t))∈̇R
α (t) + sign(∈I

α (t))∈̇I
α(t)

+ sign(∈̇R
α (t))∈̈R

α (t) + sign(∈̇I
α(t))∈̈I

α(t)
}

≤
n∑

α=1

m∑

q=1

�q(k(t))

{
|∈̇R

α (t)| + |∈̇I
α(t)|

+ φ(q)
α | ∈R

α (t)| − ψ(q)
α |∈̇R

α (t)| +
n∑

β=1

θ̌ R
αβ |H R

β (t)|

+
n∑

β=1

θ̌ I
αβ |H I

β (t)| +
n∑

β=1

ω̌R
αβ |H R

β (t − σ(t))|

+
n∑

β=1

ω̌I
αβ |H I

β (t − σ(t))|

+
n∑

β=1

|θ R
αβ(γ R

α (t)) − θ R
αβ(γ R

α (t))||gR
β (γ R

β (t))|

+
n∑

β=1

|θ I
αβ(γ I

α (t)) − θ I
αβ(γ I

α (t))||gI
β(γ I

β (t))|

+
n∑

β=1

|ωR
αβ(γ R

α (t)) − ωR
αβ(γ R

α (t))||gR
β (γ R

β (t − σ(t)))|

+
n∑

β=1

|ωI
αβ(γ I

α (t)) − ωI
αβ(γ I

α (t))||gI
β(γ I

β (t − σ(t)))|

− sign(∈̇R
α (t))ϕR

α (t) + φ(q)
α | ∈I

α (t)| − ψ(q)
α |∈̇I

α(t)|

+
n∑

β=1

θ̌ R
αβ |H I

β (t)| +
n∑

β=1

θ̌ I
αβ |H R

β (t)|

+
n∑

β=1

ω̌R
αβ |H I

β (t − σ(t))| +
n∑

β=1

ω̌I
αβ |H R

β (t − σ(t))|

+
n∑

β=1

|θ R
αβ(γ R

α (t)) − θ R
αβ(γ R

α (t))||gI
β(γ I

β (t))|

+
n∑

β=1

|θ I
αβ(γ I

α (t)) − θ I
αβ(γ I

α (t))||gR
β (γ R

β (t))|

+
n∑

β=1

|ωR
αβ(γ R

α (t)) − ωR
αβ(γ R

α (t))||gI
β(γ I

β (t − σ(t)))|
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+
n∑

β=1

|ωI
αβ(γ I

α (t)) − ωI
αβ(γ I

α (t))||gR
β (γ R

β (t − σ(t)))|

− sign(∈̇I
α(t))ϕ I

α(t)

}
. (12)

It follows that the Assumption 2.4 and 0 ≤ σ(t) ≤ σM , σ̇ ≤ σ ≤ 1, obtain that

D+V (t) ≤
n∑

α=l

m∑

q=1

�q(k(t))

{
|∈̇R

α (t)| + |∈̇I
α(t)|

+ φ(q)
α | ∈R

α (t)| − ψ(q)
α |∈̇R

α (t)| +
n∑

β=1

θ̌ R
αβ℘R

β | ∈R
β (t)|

+
n∑

β=1

θ̌ I
αβ℘ I

β | ∈I
β (t)| +

n∑

β=1

|θ̂ R
αβ − θ̌ R

αβ |M R
β +

n∑

β=1

|θ̂ I
αβ − θ̌ I

αβ |M I
β

+
n∑

β=1

|ω̂R
αβ − ω̌R

αβ |M R
β +

n∑

β=1

|ω̂I
αβ − ω̌I

αβ |M I
β

− sign(∈̇R
α (t))ϕR

α (t) + φ(q)
α | ∈I

α (t)| − ψ(q)
α |∈̇I

α(t)|

+
n∑

β=1

θ̌ R
αβ℘ I

β | ∈I
β (t)| +

n∑

β=1

θ̌ I
αβ℘R

β | ∈R
β (t)| +

n∑

β=1

|θ̂ R
αβ − θ̌ R

αβ |M I
β

+
n∑

β=1

|θ̂ I
αβ − θ̌ I

αβ |M R
β +

n∑

β=1

|ω̂R
αβ − ω̌R

αβ |M I
β

+
n∑

β=1

|ω̂I
αβ − ω̌I

αβ |M R
β − sign(∈̇I

α(t))ϕ I
α(t)

}

≤
n∑

α=1

m∑

q=1

�q(k(t))

{
(1 − ψ(q)

α )|∈̇R
α (t)| + (1 − ψ(q)

α )|∈̇I
α(t)|

+
⎡

⎣φ(q)
α +

n∑

β=1

(θ̌ R
βα℘R

α + θ̌βα℘R
α )

⎤

⎦ | ∈R
α (t)|

+
n∑

β=1

2(|θ̂ R
αβ − θ̌ R

αβ |)M R
β

+
n∑

β=1

2(|θ̂ I
αβ − θ̌ I

αβ | + |ω̂I
αβ − ω̌I

αβ |)M I
β

− sign(∈̇R
α (t))ϕR

α (t) +
⎡

⎣φ(q)
α +

n∑

β=1

(θ̌ I
βα℘ I

α + θ̌βα℘ I
α)

⎤

⎦ | ∈I
α (t)|

− sign(∈̇I
α(t))ϕ I

α(t)

}
. (13)
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The feedback controller (9), it follows that,

D+V (t) ≤
n∑

α=1

m∑

q=1

�q(k(t))

{
(1 − ψ(q)

α )|∈̇R
α (t)| + (1 − ψ(q)

α )|∈̇I
α(t)|

+
⎡

⎣φ(q)
α +

n∑

β=1

(θ̌ R
βα℘R

α + θ̌ I
βα℘R

α )

⎤

⎦ | ∈R
α (t)|

+
n∑

β=1

2(|θ̂ R
αβ − θ̌ R

αβ | + |ω̂R
αβ − ω̌R

αβ |)M R
β

+
n∑

β=1

2(|θ̂ I
αβ − θ̌ I

αβ | + |ω̂I
αβ − ω̌I

αβ |)M I
β

− k R
α (t)|∈̇R

α (t)|ζ̂ − k̂ R
α |∈̇R

α (t)| − ζ R
α (t)| ∈R

α (t)|ζ̂ − ωR
α

+
⎡

⎣φ(q)
α +

n∑

β=1

(θ̌ I
βα℘ I

α + θ̌ R
βα℘ I

α)| ∈I
α (t)|

⎤

⎦ − ρ̂R
α | ∈R

α (t)| − ρ̂I
α| ∈I

α (t)|

− k I
α(t)|∈̇I

α(t)|ζ̂ − k̂ I
α|∈̇I

α(t)| − ζ I
α (t)| ∈I

α (t)|ζ̂ − ωI
α

}
.

Then,

D+V (t) ≤
n∑

α=1

m∑

β=1

�q(k(t))

{
(1 − ψ(q)

α )|∈̇R
α (t)| + (1 − ψ(q)

α )|∈̇I
α(t)|

+
⎡

⎣φ(q)
α +

n∑

β=1

(θ̌ R
βαρR

α + θ̌ I
βαρR

α )

⎤

⎦ | ∈R
α (t)|

+
⎡

⎣φ(q)
α +

n∑

β=1

(θ̌ I
βαρI

α + θ̌ R
βαρI

α)

⎤

⎦ | ∈I
α (t)|

− k R
α |∈̇R

α (t)|ζ̂ − k I
α|∈̇I

α(t)|ζ̂ − k̂α|∈̇R(t)| − k̂α|∈̇I (t)|
− ρ̂R

α | ∈R
α (t)| − ρ̂I

α| ∈I
α (t)| − ζ R

α | ∈R
α (t)|ζ̂ − ζ I

α | ∈I
α (t)|ζ̂

+
n∑

β=1

2(|θ̂ R
αβ − θ̌ R

αβ | + |ω̂R
αβ − ω̌R

αβ |)M R
β

×
n∑

β=1

2(|θ̂ I
αβ − θ̌ I

αβ | + |ω̂I
αβ − ω̌I

αβ |)M I
β − ωR

α − ωI
α

}
. (14)

If the condition (10) holds, we obtain that

D+V (t) ≤ −k R
α |∈̇R

α (t)|ζ̂ − k I
α|∈̇I

α(t)|ζ̂ − ζ R
α | ∈R

α (t)|ζ̂ − ζ I | ∈I
α (t)|ζ̂

≤ −min1≤α≤n{k R
α , k I

α, ζ R, ζ I }{| ∈R
α (t)|ζ̂ + | ∈I

α (t)|ζ̂ + |∈̇R
α (t)|ζ̂ + |∈̇I

α(t)|ζ̂ }
≤ −


(a)
min V ζ̂ (t)
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where 

(a)
min > 0, 0 < ζ̂ < 1 are constants. Therefore, we get V (∈ (t)) = 0, ∀ t ≥ t∗ and

the settling time t∗ = V 1−ζ̂ (∈(0))



(a)
min(1−ζ̂ )

.

By Definition 2.5, we conclude that the CVIDNNs drive system (6) can be achieved finite-

time synchronized with CVIDNNs response system (7) and the setting time t∗ = V 1−ζ̂ (∈(0))



(a)
min(1−ζ̂ )

.

��
Remark 3.2 Unlike the results for asymptotical and exponential synchronization of CVIDNNs
with and without separate real and imaginary parts in [43, 44], this paper studies finite-time
synchronization of the T–S fuzzy CVIDNNs drive system (6) and CVIDNNs response system
(7) under feed-back controller. Different from previous work which focus on the asymptot-
ical and exponential synchronization, we care more about the length of convergence time
and design a controller to make it be able to adjust to an arbitrary length. It has been proved
that finite-time synchronization has better application in the practical fields, such as signal
processing, pattern recognition, associative memories and optimization problems. Then, by
light of the proposed settling-time techniques in (10), our goal is achieved. Theorem 3.1 gives
the sufficient conditions on finite-time synchronization of T–S fuzzy CVIDNNs with time-
varying delays. The settling time function is bounded above by a priori value that depends
on the design parameters, which is associated to initial conditions. It shows that the reaching
time is secured during a prescribed manner. According to the settling time formula (10), we
know that t∗ is inversely proportional to ζ̂ , ζ R, ζ I , k R

α , and k I
α.

3.2 Asymptotically SynchronizationVia Feed-Back Controller

Next, we investigated asymptotically the synchronization of the CVIDNNs drive system (6)
and CVIDNNs response system (7), under feed-back controller is equivalent to the stability
of error system (8).
The feedback controller designed as

{
φR

α (t) = −(
k̂ R
α |∈̇R

α (t)| + ρ̂R
α | ∈R (t)| + δR

α

)
sign(∈̇R

α )

φ I
α(t) = −(

k̂ I
α|∈̇I

α(t)| + ρ̂I
α| ∈R (t)| + δ I

α

)
sign(∈̇I

α)
(15)

where k̂ R
α , k̂ I

α, ρ̂R
α , ρ̂R

α , δR
α , δ I

α are gains.

Theorem 3.3 Under Assumption 2.4, the CVIDNNs drive system (6) and the CVIDNNs
response system (7) can be achieved asymptotically synchronized via controller (15), if the
following condition are satisfied as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) k̂ R
α ≥ 1 − min1≤q≤m

{
ψ

(q)
α

}

(ii) k̂ I
α ≥ 1 − min1≤q≤m

{
ψ

(q)
α

}

(iii) ρ̂R
α ≥ max1≤q≤m

{
φ

(q)
α

} + ∑n
β=1(θ̌

R
βαρR

α + θ̌ I
βαρR

α )

(iv) ρ̂I
α ≥ max1≤q≤m

{
φ

(q)
α

} + ∑n
β=1(θ̌

I
βαρR

α + θ̌ R
βαρI

α)

(v) δR
α + δ I

α ≥ ∑n
β=1 2(|θ̂ R

αβ − θ̌ R
αβ | + |ω̂R

αβ − ω̌R
αβ |)M R

β

+∑n
β=1 2(|θ̂ I

αβ − θ̌ I
αβ | + |ω̂I

αβ − ω̌I
αβ |)M I

β

(16)

Proof We choose Lyapunov-function same as in (11) and time derivative of V (t), obtain that

D+V (t) ≤
n∑

α=1

m∑

q=1

�q(k(t))

{
(1 − ψq

α )|∈̇R
α (t)| + (1 − ψq

α )|∈̇I
α(t)|
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+
⎡

⎣φq
α +

n∑

β=1

(θ̌ R
βαρR

α + θ̌ I
βαρR

α )

⎤

⎦ | ∈R
α (t)|

+
⎡

⎣φq
α +

n∑

β=1

(θ̌ I
αβρR

α + θ̌ R
βαρI

α)

⎤

⎦ | ∈I
α (t)|

+
n∑

β=1

2(|θ̂ R
αβ − θ̌ R

αβ | + |ω̂R
αβ − ω̌R

αβ |)M R
β

+
n∑

β=1

2(|θ̂ I
αβ − θ̌ I

αβ | + |ω̂I
αβ − ω̌I

αβ |)M I
β

− ωR
α − ωI

α − k̂ R
α |∈̇R

α (t)| − k̂ I
α|∈̇I

α(t)| − ρ̂R
α | ∈R

α (t)| − ρ̂I
α| ∈I

α (t)|
}
. (17)

Then,

D+V (t) ≤
n∑

α=1

m∑

q=1

�q(k(t))

{
(1 − ψ(q)

α − k̂ R
α )|∈̇R

α (t)| + (1 − ψ(q)
α − k̂ I

α)|∈̇I
α(t)|

+
⎡

⎣φ(q)
α +

n∑

β=1

(θ̌ R
βαρR

α + θ̌ I
βαρR

α ) − ρ̂R
α

⎤

⎦ | ∈R
α (t)|

+
⎡

⎣φ(q)
α +

n∑

β=1

(θ̌ I
βαρI

α + θ̌ R
βαρI

α) − ρ̂I
α

⎤

⎦ | ∈I
α (t)|

+
n∑

β=1

2(|θ̂ R
αβ − θ̌ R

αβ | + |ω̂R
αβ − ω̌R

αβ |)M R
β

+
n∑

β=1

2(|θ̂ I
αβ − θ̌ I

αβ | + |ω̂I
αβ − ω̌I

αβ |)M I
β − ωR

α − ωI
α

}
. (18)

If the condition (16) are satisfied, then D+V (t) ≤ 0, ∀ t ≥ 0. Therefore, the error system
(8) are asymptotically stable, i.e; the CVIDNNs response system (6) can synchronized with
the CVIDNNs drive system (7) via controller (15). ��
Remark 3.4 Compared with [43] where the exponential synchronization of CVIDNNs, where
the exponential stabilization of CVIDNNs [44] are studied, we achieve the finite-time syn-
chronization of the T–S fuzzy CVIDNNs in this paper. Unlike previous research results,
which has focused on asymptotical or exponential stabilization and synchronization, we are
more concerned with the length of convergence time and have designed a controller that
can adjust to an arbitrary duration. Many author, it has been demonstrated that finite-time
synchronization is more useful in practical applications such as secure communication.

4 Numerical Examples

In this section, a numerical example is provided to demonstrate the validity of the main results
of Theorem 3.1.
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Example 1 Consider the following drive-response T–S fuzzy CVIDNNs, as well as the two
fuzzy rules:

γ̈α(t) =
2∑

q=1

�q(k(t))

{
[−φ(q)

α γα(t) − ψ(q)
α γ̇α(t)]

+
2∑

β=1

θαβ(γα(t))gβ(γβ(t))

+
2∑

β=1

ωαβ(γα(t))gβ(γβ(t − σ(t)))

}
, (19)

and

¨̂γα(t) =
2∑

q=1

�q(k(t))

{
− φ(q)

α γ̂α(t) − ψ(q)
α γ̂α(t)

+
2∑

β=1

θαβ(γ̂α(t))gβ(γ̂β(t))

+
2∑

β=1

ωαβ(γ̂α(t))gβ(γ̂β(t − σ(t))) + ϕl(t)

}
, (20)

α = 1, 2, time delays σ(t) = et

1+et with σM = 0.78, φ
(1)
1 = ψ

(1)
2 = φ

(1)
2 = ψ

(1)
2 =

2.72, φ
(2)
1 = ψ

(2)
2 = φ

(2)
2 = ψ

(2)
2 = 3.91, θ̌ R

11 = −1.04, θ̂ R
11 = −1.70, θ̌ R

12 =
2.01, θ̂ R

12 = −0.92, θ̌ R
21 = 2.33, θ̂ R

21 = −1.18, θ̌ R
22 = 2.69, θ̂ R

22 = −1.87, θ̌ R
22 = 1.04,

θ̌ I
11 = −1.27, θ̂ I

11 = −0.15, θ̌ I
12 = 1.40, θ̂ I

12 = −1.24, θ̌ I
21 = 0.49, θ̂ I

21 = 1.50, θ̌ I
22 =

0.31, θ̂ I
22 = −2.19, ω̌R

11 = −2.13, ω̂R
11 = −0.92, ω̌R

12 = −2.13, ω̂R
12 = 1.24, ω̌R

21 =
−0.52, ω̂R

21 = 1.49, ω̌R
22 = −2.04, ω̂R

22 = −2.57, ω̌I
11 = 2.10, ω̂I

11 = −3.21, ω̌I
12 =

1.40, ω̂I
12 = 4.12, ω̌I

21 = 3.01, ω̂I
21 = 2.27, ω̌I

22 = 3.37, ω̂I
22 = −3.26, activation func-

tion gβ(·) = tan3h(·) + tan5h(·)i and membership functions �1(k(t)) = e9|k(t)|/(1 +
e9|k(t)|),�2(k(t)) = 1/(1 + e9|k(t)|), where k(t) takes γ1(t) and γ̂1(t) in the drive and
response systems, respectively.

Under the initial values γ1(s) = 2.4−3.1i, γ2(s) = −1.3+2.0i, γ̇1 = −2.5−3.1i, γ̇2(s) =
2.6 − 5.1i, γ̂1(s) = −1.2 + 0.3i, γ̂2(s) = 2.1 + 1.7i, γ1(s) = −0.3 − 2.8i, γ2(s) =
2.5 − 2.8i, s ∈ [−1, 0), the drive-response CVIDNNs (19) and (20) are unsynchronized
without control,as illustrated in Figs. 1, 2, 3 and 4.

Next we designed controller from (9), we select control parameters, k R
1 = 1.2, k R

2 =
2.3, k I

1 = 0.7, k I
2 = −0.9, ζ R

1 = −2.3, ζ R
2 = −4.5, ζ I

1 = 0.9, ζ I
2 = 1.3, ρ̂R

1 = 3.5, ρ̂R
2 =

−3.9, ρ̂I
1 = −5.6, ρ̂I

2 = 0.6, k̂1 = 1.7, k̂2 = 0.8, δR
1 = −3.5, δR

2 = −4.5, δ I
1 = −7.3, δ I

2 =
2.1.

Then, according condition (10) is satisfied. It can be obtained from Theorem 3.1 that the
drive system (19) and response system (20) with above parameters can achieve synchro-
nized in finite-time. Figure 5 and Fig. 6 show the synchronization error trajectories of real
and imaginary part for drive system (19) and response system (20) via the controller (9).

Furthermore, the estimated setting time is obtained as t∗ = V 1−ζ̂ (∈(0))


a
min(1−ζ̂ )

= 0.9372.
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Fig. 1 Time evolutions of the states γ R
1 (t) and γ̂ R

1 (t) for drive -response system (19) and (20) without
controller

Fig. 2 Time evolutions of the states γ R
2 (t) and γ̂ R

2 (t) for drive-response system (19) and (20) without controller

Fig. 3 Time evolutions of the states γ I
1 (t) and γ̂ I

1 (t) for drive-response system (19) and (20) without controller
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Fig. 4 Time evolutions of the states γ I
2 (t) and γ̂ I

2 (t) for drive-response system (19) and (20) without controller

Fig. 5 Synchronization error trajectories ∈R
1 (t), ∈R

2 (t) under controller (9)

Remark 4.1 From Figs. 5 and 6, we find the T–S fuzzy CVIDNNs drive system (19) and
response system (20) successfully realizes the finite-time synchronized under the feed-back
controller (9). From Figs. 7 and 8, we find, the asymptotically synchronized when T–S fuzzy
CVIDNNs drive system (19) and response system (20) via controller (15) is unstable, we
enhance the control strength. The control strength weakens with the T–S fuzzy CVIDNNs
drive system (19) and response system (20) achieving the finite-time synchronized.

Remark 4.2 In the compare with controllers (see [43, 44]), the sufficiently small gains would
lead to small control inputs, but the required synchronization speed may be quite slow. Our
controller designed to achieve synchronization, the controller (10) with parameters ζ̂ , ζ R,

ζ I , k R
α , and k I

α should be selected in accordance with the synchronization speed to be quick
and the control input not to be very large, considering the designer requirements.
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Fig. 6 Synchronization error trajectories ∈I
1 (t), ∈I

2 (t) under controller (9)

Fig. 7 Synchronization error trajectories ∈R
1 (t), ∈R

2 (t) under controller (15)

Fig. 8 Synchronization error trajectories ∈I
1 (t), ∈I

2 (t) under controller (15)
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5 Conclusion

We investigated the finite-time synchronization problem for T–S fuzzy of CVIDNNs in this
study by divided into the real and imaginary parts of complex-valued values. Some easily
verified algebraic criteria to ensure the finite-time synchronization of CVIDNNs are estab-
lished by utilizing the Lyapunov function and inequality analytical techniques. A numerical
example showed the validity of our theoretical results. For further works, we will study the
sampled-data event triggered control of CVIDNNs with time delays.
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ABSTRACT
In this paper, we study the robust H∞ performance for discrete-time T-S
fuzzy switched memristive stochastic neural networks with mixed time-
varying delays and switching signal design. The neural network under
consideration is subject to time-varying and norm bounded parameter
uncertainties. Decomposing of the delay interval approach is employed in
both the discrete delays and distributed delays. By constructing a proper
Lyapunov-Krasovskii functional (LKF) with triple summation terms and
using an improved summation inequality techniques. Sufficient condi-
tions are derived in terms of linear matrix inequalities (LMIs) to guarantee
the considered discrete-time neural networks to be exponentially stable.
Finally, numerical examples with simulation results are given to illustrate
the effectiveness of the developed theoretical results.
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Introduction

As it is well known, in the theoretical modelling of traditional neural circuits, the system parameters
are determined by the electric components such as capacitance and resistance. Recently, the
memristor has received increasing research attention due to its advantages over resistance such as
small size, low energy consumption and storage capacity (Chua, 1971; Strukov, Snider, Stewart, &
Williams, 2008). Due to the rapid development of the memristor, the memristive NNs have stirred a
great deal of research interests and considerable research efforts have been made on the dynamical
behaviour analysis issues of memristive NNs such as stability issues (Anbuvithya, Mathiyalagan,
Sakthivel, & Prakash, 2016; Li et al., 2017b; Mathiyalagan, Anbuvithya, Sakthivel, Park, & Prakash,
2016) and synchronisation problems (Li et al., 2017a; Que et al., 2010; Yang, Luo, Liu, & Li, 2017). It
should be pointed out that, in the existing literature, almost all the memristive NNs concerned are of
continuous time. Actually, the discrete-time NNs could be more suitable to the model digitally
transmitted signals in a dynamical way. Therefore, the memristive NNs of discrete-time case are of
great importance for both theoretical and practical reasons. Very recently, rich body of works have
been done on the dynamic behaviour of the switched NNs, especially for the memristive system
(Gao, Zhu, Alsaedi, Alsaadi, & Hayat, 2017; Jiang & Li, 2016; Syed Ali & Saravanan, 2018).

In the past several decades, memristive NNs have attracted an ever-increasing research interest
due to their superior performance for advanced challenges in applications such as signal processing,
pattern recognition, image processing, associative memory and power systems. In this applications,
most of the NNs are implemented by digital computer, including microprocessor and
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microcontrollers, with necessary input/output hardware. As we know, the fundamental character of
digital computer is that it processes information in discrete steps. Therefore, discrete-time NNs are
better matched than their continuous-time analogs in today’s digital world (Jin, Hen, & Wu, 2016;
Song, Gao, & Zheng, 2009; Song & Wang, 2007). Hence, it is essential to study the dynamical
behaviour of discrete-time NNs. Moreover, time delays are frequently encountered in various
engineering, biological and economic systems. Due to the finite speed of information processing
and the inherent communication time of neurons, the existence of time delays usually causes
oscillation, divergence, or even instability of NNs. Therefore, it is of both theoretical and practical
importance to study the dynamical behaviour of discrete-time system with time delays (Lin, Wu, & Li,
2016; Liu, Wang, & Shu, 2016; Wang, Xue, Fei, & Li, 2013; Wu, Liu, Shi, He, & Yokoyama, 2008; Wu, Su,
Chu, & Zhou, 2010; Yu, Zhang, & Fei, 2010; Zhang, Xu, & Zou, 2008).

In the last few years, the problem of stability analysis of both continuous-time and discrete-time
stochastic NNs has been the crucial topic for researchers (Maharajan, Raja, Cao, & Rajchakit, 2019;
Sowmiya, Raja, Cao, Li, & Rajchakit, 2018; Syed Ali & Marudai, 2011). In practice, the stochastic
disturbances which certainly existed in the NNs are the main source of disturbances. When
compared with the typical neural networks, the stochastic NNs have more practical significance
when the stochastic effects are taken into account (see (Chinnamuniyandi, Raja, Cao, Rajchakit, &
Li, 2018; Deng, Hua, Liu, Peng, & Fei, 2011; Hua, Liu, Deng, & Fei, 2010; Maharajan, Raja, Cao, Ravi, &
Rajchakit, 2018; Selvaraj, Sakthivel, & Kwon, 2018; Sowmiya, Raja, Zhu, & Rajchakit, 2019)). However,
it is well known that the stability of a well-designed neural network may often be destroyed by its
unavoidable uncertainty. In practice, uncertainties often exist in most engineering and commu-
nication systems and may cause undesirable dynamic network behaviours. More specifically, the
connection weights of the neurons are inherently dependent on certain resistance and capaci-
tance values that inevitably bring in uncertainties during the parameter identification process. The
deviations and perturbations in parameters are the main sources of uncertainty. So, it is important
to study the dynamical behaviours of NNs by taking the uncertainty into account (Jarina Banu,
Balasubramaniam, & Ratnavelu, 2015; Kwon, Lee, & Park, 2012; Li & Cao, 2016). A switched system is
a hybrid system which consists of several subsystems and a switching signal that handle the
switching among them (Arunk- umar et al., 2012; Liberzon, 2003; Zhang & Yu, 2009). Switching
among systems may produce many complicated nonlinear system behaviours, such as multiple
limit cycles and chaos. However, it should be mentioned that all these existing studies about the
stability analysis are performed for switched system using the Lyapunov asymptotic stability
theory, which is defined over the infinite-time interval. But in many practical applications, the
transient behaviour of system is concerned over a fixed time interval, in which the system states
need to grip below a prescribed upper bound and larger values are not permitted during this time-
interval. Recently, many biologists are focusing on the transient values of the actual network states.
Practical examples for switched systems are automated highway systems, automotive engine
control system, chemical process, constrained robotics, power systems and power electronics,
robot manufacture and stepper motors (Hou, Zong, & Wu, 2011; Phat & Ratchagit, 2011). Recently,
there are many results that have been reported for switched discrete-time NNs along with switch-
ing signal (see (Lien, Yu, Chang, Chung, & Chen, 2012; 2013, 2014) and references therein).

On the other hand, H1 concept was proposed to reduce the effect of the disturbance input on the
regulated output to within a prescribed level. Analysis and synthesis in H1 setting have good
advantages such as effective disturbance attenuation, less sensitivity to uncertainties and many
practical applications (Zha, Fang, Li, & Liu, 2017; Zhang, Shi, & Shi, 2017; Zhao & Hu, 2017). It is well
known that theH1 performance is closely related to the capability of disturbance rejection. On another
research direction, Takagi-Sugeno (T-S) fuzzy systems have been verified to be a powerful tool for
controlling nonlinear systems owing to their universal approximation characteristics. The T-S fuzzy
model approach combines the flexible fuzzy logic theory and successful linear system theory into a
uniform framework to approximate a broad range of complex nonlinear systems. The advantages in
using a small number of rules to model higher-order nonlinear systems based on T-S fuzzy model were
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exposed in (Dong, Fang, Shi, & Wu, 2019; Qiu, Gao, & Ding, 2016; Takagi & Sugeno, 1985; Tian, Yue, &
Zhang, 2009; Wu, Dong, Shi, Zhang, & Huang, 2019). In general, the switched signals with local input–
output relations are represented by T-S fuzzy systems which can be described by fuzzy IF-THEN rules.
Noting the importance of switching signal design, it is natural to wonder how to address the discrete-
time problem for stochastic NNs by T-S fuzzy approach. The advantages of the memristors good
features such as small scale, pinched hysteresis and plasticity. If the synapses of the neural network is
imitated by memristors, the induced switched memristive NNs become more complicate. One of the
reasons comes from that the memristor circuit itself exhibits some switching behaviours depending on
states. The study on discrete-time T-S fuzzy switched memristor-based on delayed NNs is of interest
and significance. But the research on this field has not been fully covered so far.

Besides, discrete-time switched memristive NNs based on T-S fuzzy approaches are often
subject to instantaneous perturbation and abrupt change, i.e., disturbance, at certain moments.
This can be caused by environmental noises, switching behaviour and control effects in a
dynamic system. Noise can affect dynamical behaviours of the neuron systems. Due to possible
faults, time delays and disturbances, some subsystems of a switched memristive neural network
may be unstable. Therefore, how to stabilise the discrete-time T-S fuzzy switched memristor-
based with unstable subsystems is a challenge. However, to the best of the authors knowledge,
the H1 performance for switched T-S fuzzy discrete-time memristive stochastic NNs with switch-
ing signal has not been adequately addressed in the literature yet, not to mention that the H1
performance index is imposed simultaneously. It is, therefore, the purpose of this paper is to fill
such a gap.

Based on the aforementioned factors, we study the problem of robust H1 analysis for discrete-
time switched memristive stochastic NNs with mixed time varying delay. To guarantee the expo-
nential stability and disturbance attenuation performance, the Lyapunov functional method and
some summation analysis techniques are utilised. The major contributions of this paper are sum-
marised as follows.

(1) The discrete-time switched memristive stochastic NNs with time-varying discrete delay and
bounded distributed delay are firstly proposed.

(2) By constructing a new Lyapunov-Krasovskii functional which including the lower and upper
delay bounds of interval time-varying delays new sufficient conditions that guarantee the
exponential stability are established in terms of linear matrix inequities (LMIs).

(3) Based on the novel summation inequality technique, a new switching signal design approach
is developed to guarantee the H1 performance for consider NNs.

(4) Finally, the effectiveness and advantages of the derived results are demonstrated by numerical
examples.

Notation: Throughout this paper, N stands for the set of positive integers, Rn denotes the n-
dimensional Euclidean space, Rn�m is the set of n�m real matrices. For a matrix B and two

symmetric matrices A and C,
A B
� C

� �
denote the symmetric matrix, where the notation � represents

the entries implied by symmetry. For X 2 R
n�m, the notation X > 0 (respectively, X � 0) means that

the matrix X is a real symmetric positive definite (positive semi-definite). The superscript T represents
the transpose of the matrix (or vector). I denotes the identity matrix of the compatible dimensions,
diag{ … } denotes the block-diagonal matrix and k : k is the Euclidean norm in R

n. λmax and λmin

denote the maximum and minimum eigenvalues respectively. l2½0;1Þ is the space of square-
summable infinite vector sequences over ½0;1Þ.
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Problem description and preliminaries

We consider the following switched memristor discrete-time stochastic NNs with time varying delay
which is represented by a T-S fuzzy model composed of a set of fuzzy implications and each
implication is expressed as a linear system model Wu et al. (2019).

Plant Rule ,: IF γ̂1ðkÞ is π̂,1; γ̂2ðkÞ is π̂,2 and � � � and γ̂rðkÞ is π̂,r
THEN

uðk þ 1Þ ¼ A,ðuðkÞÞuðkÞ þ B,ðuðkÞÞfðuðkÞÞ þ C,ðuðkÞÞfðuðk � dðkÞÞÞ
þD,ðuðkÞÞPτðkÞ

i¼1 fðuðk � iÞÞ þ E,vðkÞ þ σ,ðk; uðkÞ; uðk � dðkÞÞÞwðkÞ;
yðkÞ ¼ A,

1uðkÞ þ D,
1uðk � dðkÞÞ þ G,vðkÞ;

uðlÞ ¼ φðlÞ; l ¼ k0 � d2; :::; k0;

8>>>><
>>>>:

(1)

where uðkÞ ¼ ½u1ðkÞ; u2ðkÞ; :::; unðkÞ�T is the state vector with n neurons; fðuðkÞÞ ¼ ½f1ðu1ðkÞÞ;
f2ðu2ðkÞÞ; :::; fnðunðkÞÞ� denotes the neuron activation function; vðkÞ 2 R

n is the disturbance input
which belongs to l2½0;1Þ; yðkÞ 2 R

m is the measurement output; dðkÞ and τðkÞ denote the discrete
delay and the finite-distributed delay, respectively, and satisfy d1 � dðkÞ � d2 and τ1 � τðkÞ � τ2,
where d2 � d1 > 0 and τ2 � τ1 > 0 are prescribed integers; A,ðuðkÞÞ ¼ diagfa,1ðu1ðkÞÞ; a,2ðu2ðkÞÞ;
:::; a,nðunðkÞÞg is the state feedback matrix; B,ðuðkÞÞ ¼ ðb,ijðuiðkÞÞÞn�n; C

,ðuðkÞÞ ¼ ðc,ijðuiðkÞÞÞn�n

and D,ðuðkÞÞ ¼ ðd,ijðuiðkÞÞÞn�n represents the connection weight matrices. E,; G,; A,
1; D

,
1, are

known constant matrices with appropriate dimensions; φðlÞ is a given initial condition sequence.
In the system (1), the stochastic disturbance term σðk; uðkÞ; uðk � dðkÞÞÞwðkÞ can be viewed as

stochastic perturbations on the neuron states and delayed neuron states with

EfwðkÞg ¼ 0; Efw2ðkÞg ¼ 1; EfwðjÞwðjÞg ¼ 0 ði � jÞ:

The function σðk; u; yÞ : R � R
n � R

n ! R
n is Borel measurable and is locally Lipschitz continuous,

satisfying the following Assumption 2.1:

Assumption 2.1. There exist two positive constants ρ̂1 and ρ̂2 such that

σTðk; u; yÞσðk; u; yÞ � ρ̂1u
Tuþ ρ̂2y

Ty;"k � 0; u; y 2 R
n: (2)

where π̂,j ðj ¼ 1; 2; :::; rÞ is the fuzzy set, γ̂ðkÞ ¼ ½γ̂1ðkÞ γ̂2ðkÞ ::: γ̂rðkÞ�T is the premise variable vector
and q is the number of IF� THEN rules.

Now, the defuzzified output of the T-S fuzzy model (2) is represented as follows:

uðk þ 1Þ ¼Pq
l¼1 ϕ

lðγ̂ðkÞÞ½A,ðuðkÞÞuðkÞ þ B,ðuðkÞÞfðuðkÞÞ þ C,ðuðkÞÞfðuðk � dðkÞÞÞ
þD,ðuðkÞÞPτðkÞ

i¼1 fðuðk � iÞÞ þ E,vðkÞ þ σ,ðk; uðkÞ; uðk � dðkÞÞÞwðkÞ�;
yðkÞ ¼Pq

l¼1 ϕ
lðγ̂ðkÞÞ ½A,

1uðkÞ þ D,
1uðk � dðkÞÞ þ G,vðkÞ�;

uðlÞ ¼ φðlÞ; l ¼ k0 � d2; :::; k0;

8>>>><
>>>>:

(3)

where ϕlðγ̂ðkÞÞ ¼ ρlðγ̂ðkÞÞPq

l¼1
ρlðγ̂ðkÞÞ ; ρ

lðγ̂ðkÞÞ ¼Qr
s¼1 π̂

l
sðγsðkÞÞ, in which π̂ljðγsðkÞÞ is the grade of the

membership function of γsðkÞ in π̂ls. According to the theory of fuzzy sets, we have

ρlðγ̂ðkÞÞ � 0; l ¼ 1; 2; :::; q,
Pq

l¼1 ρ
lðγ̂ðkÞÞ> 0 "k and ϕlðγ̂ðkÞÞ satisfies ϕlðγ̂ðkÞÞ � 0; l ¼ 1; 2; :::q

and
Pq

l¼1 ϕ
lðγ̂ðkÞÞ ¼ 1 "k:
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Assumption 2.2. Given any x; y 2 Rðx�yÞ; j 2 f1; 2; :::; ng; the activation functions fjð�Þ is contin-
uous and bounded, and there exist constants F�j ; F

þ
j as well as Fþ ¼ diagfFþ1 ; Fþ2 ; :::; Fþn g and F� ¼

diagfF�1 ; F�2 ; :::; F�n g such that the following condition holds:

F�j � fjðyÞ � fjðxÞ
y � x

� Fþj : (4)

According to current-voltage characteristics of memristor Chua (1971), the definition of
aiðuiðkÞÞ; bijðuiðkÞÞ; cijðuiðkÞÞ and dijðuiðkÞÞ are considered as follows

aiðuiðkÞÞ ¼
âi; juiðkÞj � ki;

�ai; juiðkÞj > ki;

�

bijðuiðkÞÞ ¼
b̂ij; juiðkÞj � ki;
�bij; juiðkÞj > ki;

(

cijðuiðkÞÞ ¼
ĉij; juiðkÞj � ki;

�cij; juiðkÞj > ki;
�

dijðuiðkÞÞ ¼
d̂ij; juiðkÞj � ki;
�dij; juiðkÞj > ki;

(
(5)

in which switching jumps ki > 0; jâij< 1; ja^ij< 1; b̂ij; b
^

ij; ĉij; c
^

ij; d̂ij; d
^

ij i; j ¼ 1; 2; :::; n are known
constants with respect to memristances.

aiðuiðkÞÞ ¼ 1
C i

Xn
j¼1

ðM ij þ W ijÞ � sgnij þ 1
Ri

" #

bijðuiðkÞÞ ¼ M ij

C i
� sgnij; cijðuiðkÞÞ ¼ M ij

C i
� sgnij; dijðuiðkÞÞ ¼ M ij

C i
� sgnij:

(6)

where sgnij ¼ 1, if i�j holds, otherwise, � 1;C i and Ri stand for the capacitor and resistor, respec-
tively; M ij and W ij are the memductances of memristors. Since the memductance cannot be
negative, it is clear from the description that bijð�Þ; cijð�Þ and dijð�Þ are nonpositive if i ¼ j holds,
otherwise, nonnegative.

a�i ¼ minfâi; �aig; aþi ¼ minfâi; �aig;
b�ij ¼ minfb̂ij; �bijg; bþij ¼ minfb̂ij; �bijg;
c�ij ¼ minfĉij;�cijg; cþij ¼ minfĉij;�cijg;
d�ij ¼ minfd̂ij; �dijg; dþij ¼ minfd̂ij; �dijg;
A� ¼ diagfa�1 ; a�2 ; :::; a�n g;Aþ ¼ diagfaþ1 ; aþ2 ; :::; aþn g;
B� ¼ ðb�ij Þðn�nÞ; B

þ ¼ ðb�ij Þðn�nÞ;

C� ¼ ðc�ij Þðn�nÞ; C
þ ¼ ðcþij Þðn�nÞ;

D� ¼ ðd�ij Þðn�nÞ; D
þ ¼ ðdþij Þðn�nÞ:

(7)

It is clear that A,ðuðkÞÞ 2 ½A�; Aþ�; B,ðuðkÞÞ 2 ½B�; Bþ�; C,ðuðkÞÞ 2 ½C�;Cþ� and D,ðuðkÞÞ 2 ½d�; dþ�.
Define

~A ¼ A� þ Aþ

2
¼ diag

aþ1 þ a�1
2

;
aþ2 þ a�2

2
; :::;

aþn þ a�n
2

� �
;
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~B ¼ B� þ Bþ

2
¼ bþij þ b�ij

2

 !
n�n

; ~C ¼ C� þ Cþ

2
¼ cþij þ c�ij

2

 !
n�n

;

~D ¼ D� þ Dþ

2
¼ dþij þ d�ij

2

 !
n�n

:

The matrices A,ðuðkÞÞ; B,ðuðkÞÞ; C,ðuðkÞÞ; and D,ðuðkÞÞ can be written as A,ðuðkÞÞ ¼
~A, þ ΔA,ðkÞ; B,ðuðkÞÞ ¼ ~B, þ ΔB,ðkÞ; C,ðuðkÞÞ ¼ ~C, þ ΔC,ðkÞ; D,ðuðkÞÞ ¼ ~D, þ ΔD,ðkÞ. Therefore
we have

uðk þ 1Þ ¼Pq
l¼1 ϕ

lðγ̂ðkÞÞf½~A, þ ΔA,ðkÞ�uðkÞ þ ½~B, þ ΔB,ðkÞ�fðuðkÞÞ
þ½~C, þ ΔC,ðkÞ�fðuðk � dðkÞÞÞ þ ½~Dþ ΔD,ðkÞ�PτðkÞ

i¼1 fðuðk � iÞÞ þ E,vðkÞ
þσ,ðk; uðkÞ; uðk � dðkÞÞÞwðkÞg;

yðkÞ ¼Pq
l¼1 ϕ

lðγ̂ðkÞÞfA,
1uðkÞ þ D,

1uðk � dðkÞÞ þ G,vðkÞg;
uðlÞ ¼ φðlÞ; l ¼ k0 � d2; :::; k0;

8>>>>>>><
>>>>>>>:

(8)

where ΔA,ðkÞ ¼Pn
i¼1 kiviðkÞkTi ; ΔB,ðkÞ ¼

Pn
i;j¼1 kitijðkÞkTj ;ΔC,ðkÞ ¼Pn

i¼1 kigijðkÞkTj and ΔD,ðkÞ ¼Pn
i;j¼1 kisijðkÞkTj ; kn 2 R

n is the column vector with the nth element being 1 and others being 0,

viðkÞ; tij; gij and sij are unknown scalars satisfying jviðkÞj � ~ai; jtijðkÞj � ~bij; jgijðkÞj � ~cij and jsijðkÞj �
~dij with ~aj ¼ aþj �a�j

2 ; ~bij ¼ bþij �b�ij
2 ;~cij ¼ cþij �c�ij

2 and ~dij ¼ dþij �d�ij
2 . ΔA,ðkÞ; ΔB,ðkÞ;ΔC,ðkÞ and ΔD,ðkÞ are

the parameter matrices of the following structures

ΔA,ðkÞ ¼ E,F ,ðkÞN,
1; ΔB

,ðkÞ ¼ E,F ,ðkÞN,
2;ΔCðkÞ ¼ E,F ,ðkÞN,

3; ΔDðkÞ ¼ E,F ,ðkÞN,
4: (9)

where E,; N,
1; N

,
2; N

,
3; N

,
4 are known real constant matrices. F ,ðkÞ are unknown time-varying

matrices and satisfy F ,TðkÞF ,ðkÞ � I, where I is the identity matrix with appropriate dimension.

Switched memristive stochastic NNs

Consider the memristive based switched stochastic NNs based on the system (8) as follows:

uðk þ 1Þ ¼
Xq
l¼1

ϕlðγ̂ðkÞÞfA,
σðkÞðuðkÞÞuðkÞ þ B,σðkÞðuðkÞÞfðuðkÞÞ þ C,

σðkÞðuðkÞÞfðuðk � dðkÞÞÞ

þ D,
σðkÞðuðkÞÞ

XτðkÞ
i¼1

fðuðk � iÞÞ þ E,σðkÞvðkÞ þ σ,ðk; uðkÞ; uðk � dðkÞÞÞwðkÞg;

yðkÞ ¼
Xq
l¼1

ϕlðγ̂ðkÞÞfA,
1σðkÞuðkÞ þ D,

1σðkÞuðk � dðkÞÞ þ G,
σðkÞvðkÞg;

uðlÞ ¼ φðlÞ; l ¼ k0 � d2; :::; k0

(10)

The switching signal σ kð Þ : Rn ! ~f ¼ 1; 2; . . . ;Nf g is the switching rule, which is a function depend-
ing on the state at each time and will be designed. A switching function is a rule which determines a
switching sequence for a given switching system. Moreover, σðkÞ ¼ imeans that the ith subsystem is
activated. N is the number of subsystems of the switched system. Firstly, we will introduce the

switching regions and the corresponding switching law. Given P> 0 and Û> 0, define the domains by

ΩiðP; Û; A,
i Þ ¼ fuðkÞ 2 R

n : uTðkÞŶiuðkÞ < 0g; (11)
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where Ŷi ¼ A,T

i PA,
i � Û; i 2 ~f . From the similar proof of Lien et al. (2012); Phat and Ratchagit (2011), it

can be easily obtained that

[N
i¼1

Ωi ¼ R
nnf0g: (12)

Construct the following switching region:

~Ω1 ¼ Ω1; ~Ω2 ¼ Ω2 n~Ω1; ~Ω3 ¼ Ω3 n~Ω1n~Ω2; :::; :

We can obtain
SN

i¼1
~Ωi ¼ R

nnf0g and ~Ωi \ ~Ωj ¼ �ϕ, for all i�j, where �ϕ is an empty set.
After dividing the whole state space R

n into N sub regions, we construct the switching signal as
follows:

σ u kð Þð Þ ¼ i;"u kð Þ 2 ~Ωi i 2 ~f
� �

(13)

Definition 2.3. (Zhang & Yu, 2009) The system (1) is said to be exponentially stable, if there exist a
switching function σð�Þ and positive number c such that any solution uðk;ϕÞ of the system satisfies

k uðkÞ k� cλk�k0 k ϕks;"k � k0; (14)

for any initial conditions ðk0;ϕÞ 2 Rþ � Cn: c> 0 is the decay coefficient, 0< λ � 1 is the decay rate,
and k ϕks ¼ supfk ϕðlÞ k; l ¼ k0 � d2; k0 � d2 þ 1; :::; k0g:

Definition 2.4. (Phat & Ratchagit, 2011) The system of matrices u 2 R
nf0g is said to be strictly

complete if, for every u 2 R
n f0g, such that uTHiu< 0.

It is easy to see that the system of matrices Hif g i 2 ~f
� �

is strictly complete iff
SN

i¼1 Ωi ¼ R
n f0g,

where Ωi ¼ uRn : uTHiu< 0
� 	

i 2 ~f
� �

.

Definition 2.5. (Lien et al., 2014) Consider system (10) with the switching signal in (13) and the
following conditions.

(i) With vðkÞ ¼ 0, the system (10) is exponentially stable with convergence rate 0< α< 1.
(ii) With zero initial conditions, the signals vðkÞ and yðkÞ are bounded by

X1
k¼0

α�2kyTðkÞyðkÞ � κ2
X1
k¼0

α�2kvTðkÞvðkÞ;

for all v 2 L2ðα; 0;1Þ; v � 0 for constants κ > 0 and 0< α< 1. In the above conditions, the system (1)
is exponentially stabilisable with H1 performance κ and convergence rate α by switching signal
in (13).

Lemma 2.6. (Lien et al., 2013) The system of matrices Hif g i 2 ~f
� �

is strictly complete if there exists

α̂i � 0;
PN

i¼1 α̂i such that
PN

i¼1 α̂iHi < 0. If N ¼ 2; then the above condition is also necessary for the
strict completeness.

Lemma 2.7. (Liu et al., 2016) Let R2 2 R
n�n be a given positive definite matrix. Then for all

y0; y1; y2; :::; yn 2 R
n, the following inequality holds

Xn
k¼0

ΥyTk R2Υyk �
1

nþ 1
ðynþ1 � y0ÞTR2ðynþ1 � y0Þ þ 3

nþ 1
πT1

nþ 2
n

R2π1;

where Υyk ¼ ykþ1 � yk and π1 ¼ ynþ1 þ y0 � 2
nþ2

Pnþ1
k¼0 yk:
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Lemma 2.8 . (Jin et al., 2016) For a positive definite symmetric matrix Z2, any matrix ~J; τðkÞ 2 ½d1; d2�
and ηðkÞ ¼ uðk þ 1Þ � uðkÞ, the sum term <ðkÞ given as <ðkÞ ¼Pk�d1�1

θ¼k�dðkÞ η
TðθÞZ2ηðθÞ þPk�dðkÞ�1

θ¼k�d2
ηTðθÞZ2ηðθÞ can be estimated as

d12<ðkÞ � ζ̂TðtÞ Γ̂1
Γ̂2

� �T �R ~J
� �R

� �
þ

d2�dðkÞ
d12

M̂1 0

� dðkÞ�d1
d12

M̂2

" # !
ζ̂ðtÞ Γ̂1

Γ̂2

� �
:

where

�R ¼ diagfZ2; 3Z2g; M̂1 ¼ �R� J�R
�1
JT ; M̂2 ¼ �R� JT�R

�1
J; d12 ¼ d2 � d1;

ζðtÞ ¼ ½uTðkÞ; uTðk � d1Þ; uTðk � dðkÞÞ; uTðk � d2Þ; b̂T1ðtÞ; b̂T2ðtÞ; b̂T3ðtÞ�T ;

b̂T1ðtÞ ¼
Xk

θ¼k�d1

uðθÞ
d1 þ 1

; b̂T2ðtÞ ¼
Xk�d1

θ¼k�dðkÞ

uðθÞ
dðkÞ � d1 þ 1

; b̂T3ðtÞ ¼
Xk�dðkÞ

θ¼k�d2

uðθÞ
d2 � dðkÞ þ 1

;

Γ̂1 ¼ �e2 � �e3
�e2 þ �e3 � 2�e6

� �
; Γ̂2 ¼ �e3 � �e4

�e3 þ �e4 � 2�e7

� �
;

�es¼ ½0n�ðs�1Þ�n; In�n; 0n�ð7�sÞn�; s ¼ 1; 2; 3; :::; 7:

Lemma 2.9. (Arunkumar et al., 2012) For any symmetric positive-definite matrix Z1 2 R
n�n, the

integers τ2 and τ1; ðτ2 � τ1Þ; xðtÞ : fτ1; τ1þ1; :::; τ2g ! R
n, such that the following sums are well

defined, then

Xτ2
t¼τ1

xðtÞ
 !T

Z1
Xτ2
t¼τ1

xðtÞ
 !

� �τ
Xτ2
t¼τ1

xðtÞTZ1xðtÞ; (15)

holds, where �τ ¼ τ2 � τ1 þ 1.

Lemma 2.10. (Syed Ali & Marudai, 2011) Given constant matrices δ1; δ2; δ3, where δ1 ¼ δT1 > 0 and

δ2 ¼ δT2 > 0 then δ1 þ δT3δ
�1
2 δ3 < 0 if and only if δ1 δT3

δ3 �δ2

� �
< 0:

Lemma 2.11. (Arunkumar et al., 2012) For any vector x; y 2 R
n; matrices A; P;D; E and F are real

matrices of appropriate dimensions with P > 0; FTF � I and scalar �> 0, the following inequalities
hold:

(i) 2xTDFEy � ��1xTDDTx þ �yTETEy.
(ii) If P� �DDT > 0, then ðAþ DFEÞTP�1ðAþ DFEÞ � ATðP� �DDTÞ�1Aþ ��1ETE:

Main results

We design a switching rule for memristive discrete-time stochastic NNs (1) with mixed time-varying
delay and derive the condition to guarantee that the system is exponentially stable. In order to
discuss robust exponential stability of system (1), we consider the following nominal system without
parametric uncertainties:
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uðk þ 1Þ ¼
Xq
l¼1

ϕlðγ̂ðkÞÞf~A,
i uðkÞ þ ~B,i ðuðkÞÞfðuðkÞÞ þ ~C,

i fðuðk � dðkÞÞÞ

þ ~D,
i

X1
i¼1

μifðuðk � iÞÞ þ E,i vðkÞ þ σðk; uðkÞ; uðk � dðkÞÞÞwðkÞg;

yðkÞ ¼
Xq
l¼1

ϕlðγ̂ðkÞÞfA,
1iuðkÞ þ D,

1iuðk � dðkÞÞ þ G,
i vðkÞg;

uðlÞ ¼ φðlÞ; l ¼ k0 � d2; :::; k0:

(16)

The following theorem gives a sufficient condition for the existence of an admissible reasonable
switching rule for system (16) with disturbance input vðkÞ ¼ 0 to be exponentially stable. At first, in
order to make the presentation more sententious, we define:

Δ1 ¼ d1 þ 1
d1 � 1

; Δ2 ¼ ðd2 � d1 þ 1Þ
ðdðkÞ � d1ÞðdðkÞ � d1 � 1Þ ;Δ3 ¼ ðd2 � dðkÞÞ

ðd2 � d1Þ ;

Δ5 ¼ ðdðkÞ � d1Þ
ðd2 � d1Þ ;Δ6 ¼ ðd2 � d1 þ 1Þ

ðdðkÞ � d1ÞðdðkÞ � d1 � 1Þ2 ;
�ηT ¼ fuTðkÞ f TðuðkÞÞg:

Theorem 3.1. For some constants α 2 ð0; 1�, d1; d2; τ1; τ2 and 0 � γi � 1; i 2 ~f;
PN

i¼1 γi ¼ 1, if there

exist positive definite symmetric matrices P; Z1; Z2; R2; R3; S; Û and Q ¼ T2 W
WT T4

� �
, the diagonal

matrices Uiði ¼ 1; 2Þ such that the following LMIs hold:

P< λ�I (17)

Φ ¼
Ψ14;14 ~Γ2 ~Γ3 ~Γ4
� �Z1 0 0
� � �Z2 0
� � � �R2

2
664

3
775< 0; (18)

XN
i¼1

γið~A,
i ÞTP~A,

i < Û; (19)

then the system (16) with time-varying delay is globally exponentially stable with convergence rate

λ̂ ¼ ffiffiffi
α

p
by the switching signal designed by ð13Þ.

Ψ11 ¼ Û� αPþ ðd2 � d1 þ 1Þαd1T2 � R2αd1 � 3αd1Δ1R2 þ λ�ρ̂1 � αd1Z1 � F1U1 � 3αd1Δ1Z1 þ d212R3;

Ψ12 ¼ �R2α
d1 � 3αd1Δ1R2;Ψ13 ¼ αd1Z1 � 3αd1Δ1Z1;Ψ15 ¼ ~A,T

i P~B
,
i þ αd1ðd2 � d1 þ 1ÞW þ F2U1;

Ψ16 ¼ ~A,T
i P~C

,
i ;Ψ17 ¼ 3

d1 � 1
R2αd1 þ 3

d1 � 1
RT2α

d1 ;Ψ19 ¼ 3αd1
Z1

d1 � 1
þ 3αd1

ZT1
d1 � 1

;

Ψ112 ¼ ~A,T
i P~D

,
i ;Ψ22 ¼ �R2αd1 � 3αd1Δ1R2 þ λ�ρ̂2 � 3Δ2α

d1R2 � ðZ2 þ Δ3Z2Þ αd2

ðd2 � d1Þ

� ð3Z2 þ 3Δ3Z2Þ αd2

ðd2 � d1Þ �
αd1

dðkÞ � d1
R2;Ψ23 ¼ αd1

dðkÞ � d1
R2 � 3Δ2α

d1R2
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þ ðZ2 þ Δ3Z2Þ αd2

ðd2 � d1Þ � ð3Z2 þ 3Δ3Z2Þ αd2

ðd2 � d1Þ ;Ψ27 ¼ 3αd1
R2

d1 � 1
þ 3αd1

RT2
d1 � 1

;

Ψ28 ¼ 3Δ2α
d1R2 þ 3Δ6α

d1RT2;Ψ210 ¼ ð3Z2 þ 3Δ3Z2Þ αd2

ðd2 � d1Þ þ ð3ZT
2 þ 3Δ3ZT2 Þ

αd2

ðd2 � d1Þ ;

Ψ33 ¼ αd1

dðkÞ � d1
R2 � 3Δ2α

d1R2 � αd2T2 � F1U2 � αd1Z1 � 3αd1Δ1Z1 � ðZ2 þ Δ3Z2Þ αd2

ðd2 � d1Þ

� ð3ZT
2 þ Δ3ZT

2 Þ
αd2

ðd2 � d1Þ � ðZ2 þ Δ5Z2Þ αd2

ðd2 � d1Þ ;

Ψ34 ¼ d1
d1 � dðkÞ α

d1Z1 � 3d1
d1 � dðkÞΔ4α

d1Z1 þ ðZ2 þ Δ5Z2Þ αd2

ðd2 � d1Þ � ð3Z2 þ 3Δ5Z2Þ αd2

ðd2 � d1Þ ;

Ψ36 ¼ �αd2W þ F2U2;Ψ38 ¼ 3Δ6α
d1R2 þ 3Δ6α

d1RT2 ;Ψ39 ¼ 3αd1
Z1

d1 � 1
þ 3αd1

ZT1
d1 � 1

;

Ψ310 ¼ ð3Z2 þ 3Δ3Z2Þ αd2

ðd2 � d1Þ þ ð3ZT
2 þ 3Δ3ZT

2 Þ
αd2

ðd2 � d1Þ ;

Ψ312 ¼ ð3Z2 þ 3Δ5Z2Þ αd2

ðd2 � d1Þ þ ð3ZT
2 þ 3Δ5ZT

2 Þ
αd2

ðd2 � d1Þ ;

Ψ44 ¼ �ð3Z2 þ 3Δ5Z2Þ αd2

ðd2 � d1Þ �
d1

d1 � dðkÞ 3Δ4α
d1Z1 � ðZ2 þ Δ5Z2Þ αd2

ðd2 � d1Þ ;

Ψ411 ¼ �ð3Z2 þ 3Δ5Z2Þ αd2

ðd2 � d1Þ þ ð3ZT2 þ 3Δ5Z
T
2 Þ

αd2

ðd2 � d1Þ ;

Ψ55 ¼ ~B,
T

i P~B,i þ αd1ðd2 � d1 þ 1ÞT4 þ τ2ðτ2 þ τ1Þðτ2 � τ1 þ 1Þ
2

S� U1;Ψ56 ¼ ~Bi
,T

P~C,
i ;

Ψ512 ¼ ~Bi
,T

P~D,
i ;Ψ66 ¼ ~Ci

,T

P~C,
i � U2 � αd2T4;Ψ612 ¼ ~Ci

,T

P~D,
i ;Ψ77 ¼ �12αd1

R2
ðd1 þ 1Þðd1 � 1Þ ;

Ψ88 ¼ 3
ðd2 � d1 � 1Þ

ðdðkÞ � d1ÞðdðkÞ � d1 þ 1Þ3 α
d1R2;Ψ99 ¼ �12αd1

Z1
ðd1 þ 1Þðd1 � 1Þ ;

Ψ1010 ¼ �12ð3Z2 þ 3Δ3Z2Þ αd2

ðd2 � d1Þ ;Ψ1111 ¼ �4ð3Z2 þ 3Δ5Z2Þ αd2

ðd2 � d1Þ ;

Ψ1212 ¼ �Sþ ~Di
,T

P~D,
i ;W4 ¼ diagfZ2; 3Z2g; λ� ¼ λmaxP;

Ψ1313 ¼ �αd2R3;Ψ1314 ¼ �αd2W2;Ψ1414 ¼ �αd2R3;~Γ2 ¼ ½d1ΞT1Z1�;~Γ3 ¼ ½ðd2 � d1ÞΞT1Z2�;

10 R. VADIVEL ET AL.



~Γ4 ¼ ½
ffiffiffiffiffi
d1

p
ΞT1R2�; Ξ1 ¼ ½Wp1 �Wp2�; Wp1 ¼ ½~A,

i 0 0 0 ~B,i ~C,
i 0 0 0|ffl{zffl}

5 times

~D,
i 0 0�; Wp2 ¼ ½I 0 0 0|ffl{zffl}

13 times

�: (20)

Proof. We consider the Lyapunov-Krasovskii functional for model in (16) as

Vðk; uðkÞÞ ¼
X6
i¼1

Viðk; uðkÞÞ; (21)

where

V1ðk; uðkÞÞ ¼ uðkÞPuðkÞ;

V2ðk; uðkÞÞ ¼ d1
X0

i¼�d1þ1

Xk�1

j¼kþi�1

αk�1�jηTðjÞZ1ηðjÞ;

V3ðk; uðkÞÞ ¼ d12
X�d1

i¼�d2þ1

Xk�1

j¼kþi�1

αk�1�jηTðjÞZ2ηðjÞ;

V4ðk; uðkÞÞ ¼
X�1

i¼�dðkÞ

Xk�1

j¼kþi

αk�1�jηTðjÞR2ηðjÞ;

V5ðk; uðkÞÞ ¼
Xk�1

j¼k�dðkÞ
αk�1�j uðjÞ

fðuðjÞÞ
� �T

Q
uðjÞ

fðuðjÞÞ
� �

þ
X�d1�1

i¼�d2

Xk�1

j¼kþi

αk�1�j uðjÞ
fðuðjÞÞ
� �T

Q
uðjÞ

fðuðjÞÞ
� �

;

V6ðk; uðkÞÞ ¼ d12
X�d1�1

i¼�d2

Xk�1

j¼kþi

αk�1�juðjÞR3uðjÞ þ τ2
Xτ2
β¼τ1

Xβ
v¼1

Xk�1

j¼k�v

αk�1�jf TðuðjÞÞSfðuðjÞÞ;

where ηðkÞ ¼ uðk þ 1Þ � uðkÞ: Next, we will show the decay estimation of Vðk; uðkÞÞ in (21) along the

state trajectory of system (16). To this end, define Vðk þ 1Þ � VðkÞ ¼P6
j¼1

~ΔVjðkÞ; then we have

~ΔV1ðkÞ ¼ uTðk þ 1ÞPuðk þ 1Þ � αuTðkÞPuðkÞ;

¼ ½~A,
i uðkÞ þ ~B,i ðuðkÞÞfðuðkÞÞ þ ~C,

i fðuðk � dðkÞÞÞ þ ~D,
i

X1
i¼1

μifðuðk � iÞÞ

þ σ,i ðk; uðkÞ; uðk � dðkÞÞÞwðkÞ�TP½~A,
i uðkÞ þ ~B,i ðuðkÞÞfðuðkÞÞ þ ~C,

i fðuðk � dðkÞÞÞ

þ ~D,
i

X1
i¼1

μifðxðk � iÞÞ þ σ,i ðk; xðkÞ; xðk � dðkÞÞÞwðkÞ� � αuTðkÞPuðkÞ:

From Assumption 2.1 and condition (17), we have

σi
,T ðk; uðkÞ; uðk � dðkÞÞÞPσ,i ðk; uðkÞ; uðk � dðkÞÞÞ
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� λmaxðPÞσ,Ti ðk; uðkÞ; uðk � dðkÞÞÞσ,i ðk; uðkÞ; uðk � dðkÞÞÞ

� λ�ðρ̂1uTðkÞuðkÞ þ ρ̂2u
Tðk � dðkÞÞuðk � dðkÞÞÞ;

~ΔV2ðkÞ ¼ d1
X0

i¼�d1þ1

Xk
j¼kþi

αk�jηTðjÞZ1ηðjÞ �
Xk�1

j¼kþi�1

αk�j�1ηTðjÞZ1ηðjÞ
( )

¼ d1
X0

i¼�d1þ1

ηTðkÞZ1ηðkÞ þ
Xk�1

j¼kþi

αk�jηTðjÞZ1ηðjÞ �
Xk�1

j¼kþi

αk�jηTðjÞZ1ηðjÞ
(

�ηTðk þ i� 1ÞZ1α�iηðk þ i� 1Þ	

¼ d21η
TðkÞZ1ηðkÞ � d1

X0
i¼�d1þ1

ηTðk þ i� 1ÞZ1α�iηðk þ i� 1Þ

¼ d21η
TðkÞZ1ηðkÞ � d1

Xk�1

j¼k�d1

ηTðjÞZ1αk�jηðjÞ;

~ΔV3ðkÞ ¼ ðd2 � d1Þ
X�d1

i¼d2þ1

Xk
j¼kþi

αk�jηTðjÞZ2ηðjÞ �
Xk�1

j¼kþi�1

αk�1�jηTðjÞZ2ηðjÞ
( )

¼ ðd2 � d1Þ
X�d1

i¼d2þ1

ηTðkÞZ2ηðkÞ þ
Xk�1

j¼kþi

αk�jηTðjÞZ2ηðjÞ � α�iηTðk þ i� 1ÞZ2ηðk þ i� 1Þ
(

�
Xk�1

j¼kþi

αk�jηTðjÞZ2ηðjÞ
)

¼ ðd2 � d1Þ2ηTðkÞZ2ηðkÞ � ðd2 � d1Þ
Xk�d1�1

j¼k�d2

αk�jηTðjÞZ2ηðjÞ;

~ΔV4ðkÞ ¼
X�1

i¼�dðkÞ

Xk
j¼kþiþ1

αk�jηTðjÞR2ηðjÞ �
Xk�1

j¼kþi

αk�1�jηTðjÞR2ηðjÞ
( )

¼
X�1

i¼�dðkÞ
ηTðkÞR2ηðkÞ þ

Xk�1

j¼kþiþ1

αk�jηTðjÞR2ηðjÞ �
Xk�1

j¼kþiþ1

αk�jηTðjÞR2ηðjÞ
(

�α�i�1ηTðk þ iÞR2ηðk þ iÞ	

¼ dðkÞηTðkÞR2ηðkÞ �
Xk�1

j¼k�dðkÞ
αk�jηTðjÞR2ηðjÞ;
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~ΔV5ðkÞ ¼
Xk

j¼k�dðkþ1Þþ1

αk�j~ηTðjÞQ~ηðjÞ �
Xk�1

j¼k�dðkÞ
αk�1�j~ηTðjÞQ~ηðjÞ

þ
X�d1�1

i¼�d2

Xk
j¼kþiþ1

αk�j~ηTðjÞQ~ηðjÞ �
Xk�1

j¼kþi

αk�1�j~ηTðjÞQ~ηðjÞ
( )

¼ ~ηTðkÞQ~ηðkÞ þ
Xk�1

j¼k�dðkþ1Þþ1

αk�j~ηTðjÞQ~ηðjÞ � αdðkÞ~ηTðk � dðkÞÞQ~ηðk � dðkÞÞ

�
Xk�1

j¼k�dðkþ1Þþ1

αk�j~ηTðjÞQ~ηðjÞ þ
X�d1�1

i¼�d2

~ηTðkÞQ~ηðkÞ þ
Xk�1

j¼kþiþ1

αk�j~ηTðjÞQ~ηðjÞ
(

�α�i�1~ηTðk þ iÞQ~ηðk þ iÞ �
Xk�1

j¼kþiþ1

αk�j~ηTðjÞQ~ηðjÞ
)

� ðd12 þ 1Þ~ηTðkÞQ~ηðkÞ � αd2~ηTðk � dðkÞÞQ~ηðk � dðkÞÞ;

~ΔV6ðkÞ ¼
X�d1�1

i¼d2

Xk
j¼kþiþ1

αk�juTðkÞR3uðkÞ �
Xk�1

j¼kþi

αk�1�juTðkÞR3uðkÞ
( )

þ v1fðuðkÞÞTSfðuðkÞÞ � τ2
Xτ2
β¼τ1

Xβ
v¼1

ατ2 f Tðuðk � vÞÞSfðuðk � vÞÞ;

¼ d212u
TðkÞR3uðkÞ � d12

Xk�d1�1

j¼k�d2

αk�juTðjÞR3uðjÞ þ v1fðuðkÞÞTSfðuðkÞÞ

� τ2
XτðkÞ
v¼1

ατ2 f Tðuðk � vÞÞSfðuðk � vÞÞ;

¼ d212u
TðkÞR3uðkÞ � d12

Xk�d1�1

j¼k�d2

αk�juTðjÞR3uðjÞ þ v1fðuðkÞÞTSfðuðkÞÞ

�
XτðkÞ
v¼1

ατ2 f Tðuðk � vÞÞS
XτðkÞ
v¼1

fðuðk � vÞÞ: (22)

While

Xk�1

j¼k�dðkÞ
αk�jηTðjÞR2ηðjÞ ¼

Xk�1

j¼k�d1

αk�jηTðjÞR2ηðjÞ þ
Xk�d1�1

j¼k�dðkÞ
αk�jηTðjÞR2ηðjÞ: (23)

Using Lemma 2.7, we have
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� d1
Xk�1

j¼k�d1

ηTðjÞZ1αk�jηðjÞ � �αd1 ½uðkÞ � uðk � d1Þ�TZ1½uðkÞ � uðk � d1Þ�

� 3αd1 uðkÞ þ uðk � d1Þ � 2
d1 þ 1

Xk
i¼k�d1

uðiÞ
" #T

Z1
d1 þ 1
d1 � 1

uðkÞ þ uðk � d1Þ � 2
d1 þ 1

Xk
i¼k�d1

uðiÞ
" #

;

¼ ��TðkÞ�T
1

Z1 0

0 3 d1þ1
ðd1�1Þ Z1

" #
�1�ðkÞ;

(24)

where ei ¼ ½0n�ði�1Þn; I; 0n�ð14�iÞn�n�14n; i ¼ 1; 2; :::; 14 and �1 ¼ ½eT1 � eT3; e
T
1 þ eT3 � 2eT9�.

�
Xk�d1�1

j¼k�dðkÞ
αk�jηTðjÞR2ηðjÞ � αd1

�1
dðkÞ � d1

½uðk � d1Þ � uðk � dðkÞÞ�TR2½uðk � d1Þ � uðk � dðkÞÞ�

� αd1
3ðdðkÞ � d1 þ 1Þ

ðdðkÞ � d1ÞðdðkÞ � d1 � 1Þ ½uðk � d1Þ þ uðk � dðkÞÞ

� 2
dðkÞ � d1 þ 1

Xk�d1

j¼k�dðkÞ
uðjÞ�TR2½uðk � d1Þ þ uðk � dðkÞÞ

� 2
dðkÞ � d1 þ 1

Xk�d1

j¼k�dðkÞ
uðjÞ�:

Xk�1

j¼k�d1

αk�jηTðjÞR2ηðjÞ � αd1
uðkÞ � uðk � d1Þ

uðkÞ þ uðk � d1Þ � 2
d1þ1

Pk
j¼k�d1 uðjÞ

� �T � R2
d1

0

0 �3 d1þ1
d1ðd1�1Þ R2

" #

uðkÞ � uðk � d1Þ
uðkÞ þ uðk � d1Þ � 2

d1þ1

Pk
j¼k�d1

uðjÞ
� �

: (25)

According to Lemma 2.9, we have

�
Xk�d1�1

j¼k�d2

αk�juTðjÞR3uðjÞ � ��TðkÞ e13
e14

� �T
R3 W2

� R3

� �
e13
e14

� �
�ðkÞ: (26)

Then, for any matrix W4, the improved summation inequality in Lemma 2.8 is employed to estimate
other sum terms possessed time-varying delay dðkÞ in ΔV3ðk; uðkÞÞ, we have

ðd2 � d1Þαd2
Xk�d1�1

i¼k�d2

ηTðiÞZ2ηðiÞ ¼ αd2
Xk�dðkÞ�1

i¼k�d2

ηTðiÞZ2ηðiÞ þ
Xk�d1�1

i¼k�dðkÞ
ηTðiÞZ2ηðiÞ

8<
:

9=
;;

� Λ2ðkÞ:

14 R. VADIVEL ET AL.



Where

Λ2ðkÞ ¼ Γ̂1
Γ̂2

� �T
W4 V2
� W4

� �
þ

d2�dðkÞ
d2�d1

ðW4 � V2W�1
4 VT

2 Þ 0

0 dðkÞ�d1
d2�d1

ðW4 � VT
2W

�1
4 V2Þ

" # !
Γ̂1
Γ̂2

� �
:

Thus, it is clear that

ΔV4iðkÞ � ðd2 � d1Þ2ηTðkÞZ2ηðkÞ � Λ2ðkÞ: (27)

where j ¼ 1; 2; :::; n thus, there exist matrices U1 ¼ diagfu11; u12; :::; u1ng> 0; U2 ¼ diagfu21; u22;
:::; u2ng> 0, such that

Xn
j¼1

rj
uðkÞ

fðuðkÞÞ
� �T F�j F

þ
j κjκ

T
j � F�j þFþj

2 κjκ
T
j

� F�j þFþj
2 κjκ

T
j κjκ

T
j

2
4

3
5 uðkÞ

fðuðkÞÞ
� �

� 0;

uðkÞ
fðuðkÞÞ
� �T

U1F1 �U1F2
�U1F2 U1

� �
uðkÞ

fðuðkÞÞ
� �

� 0:

Similar to this, one can get

uðk � dðkÞÞ
fðuðk � dðkÞÞÞ
� �T

U2F1 �U2F2
�U2F2 U2

� �
uðk � dðkÞÞ

fðuðk � dðkÞÞÞ
� �

� 0: (28)

Combining ð21Þ to ð28Þ and using Schur complement Lemma, it yields

~ΔjðkÞ � �TðkÞ
Ψ14;14 ~Γ2 ~Γ3 ~Γ4
� �Z1 0 0
� � �Z2 0
� � � �R2

2
664

3
775�ðkÞ þ uTðkÞŶiuðkÞ;

�TðkÞ ¼ uTðkÞ uTðk � d1Þ uTðk � dðkÞÞ uTðk � d2Þ f TðuðkÞÞ f Tðuðk � dðkÞÞÞ�
Xk

i¼k�d1

uTðiÞ
Xk�d1�1

i¼k�dðkÞþ1

uTðiÞ
Xk

i¼k�dðkÞ
uTðiÞ

Xk�d1

i¼k�dðkÞ
uTðiÞ

Xk�dðkÞ

i¼k�d2

uTðiÞ

XτðkÞ
v¼1

f Tðuðk � vÞÞ
Xk�d1�1

i¼k�dðkÞ
uTðiÞ

Xk�dðkÞ�1

i¼k�d2

uTðiÞ
3
5:

By using Definition 2.4 and condition (19), we know that the system of matrices Ŷi ¼ ~A,
i

 �T
P~A,

i �
Û; i 2 ~f is strictly complete, and the sets Ωi and ~Ωi are well defined, such that

[N
i¼1

Ωi ¼ Rn f0g;
[N
i¼1

~Ωi ¼ Rn f0g;

~Ωi \ ~Ωi ¼ Φ; i�j:

Therefore, for any uðkÞ 2 Rn; k > 0; there always exists an i 2 f1; 2; :::;Ng such that uðkÞ 2 ~Ωj.
Choosing the switching rule (13) with condition (19), leads to

ΔVðkÞjvðkÞ¼0 ¼ Vðk þ 1Þ � VðkÞ � 0;
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Vðk þ 1Þ � VðkÞ; (29)

From (21), there exist two positive constants c1 and c2, such that

c1 k uðkÞk2 � VðkÞ; Vð0Þ � c2 k uð0Þk2: (30)

Where

c1 ¼ λminðPÞ

c2 ¼ λmaxðPÞ þ 4d21λmaxðZ1Þ þ 4ðd2 � d1Þ2λmaxðZ2Þ þ d1λmaxðR2Þ

þ ð1þ d2 � d1ÞλmaxðQÞ þ 2d21λmaxðR3Þ þ d2λmaxðSÞ:
From (29) and (30), one obtains

k uðkÞ k�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2
λminðPÞ

r
αk k uð0Þks: (31)

By Definition 2.3, we know that the system (16) is exponentially stable with decay rate λ ¼ ffiffiffi
α

p
. This

completes the proof. □
Theorem 3.2. For some constants α 2 ð0; 1�, d1; d2; τ1; τ2 and 0 � γi � 1;

PN
i¼1 γi ¼ 1 i 2 ~f

� �
, if

there exist positive definite symmetric matrices P; Z1; Z2; R2; R3; Û;Q ¼ T2 W
WT T4

� �
; S, the diagonal

matrices Uiði ¼ 1; 2Þ such that the following LMIs hold:

P< λ�I (32)

Φ ¼

Ψ14;14 Υa
~Γ2 ~Γ3 ~Γ4 Υb 0

� Ψ15;15 0 0 0 0 0
� � �Z1 0 0 0 0
� � � �Z2 0 0 0
� � � � �R2 0 0
� � � � � �I 0
� � � � � � �κ2

2
666666664

3
777777775
< 0; (33)

XN
i¼1

γið~A,
i ÞTP~A,

i < Û; (34)

then the system (16) is globally exponentially stable with convergence rate λ̂ ¼ ffiffiffi
α

p
and H1

performance κ by the switching signal designed by (13).
Here

ΥT
a ¼ ½ΥT

a1 0 0 0 ΥT
e1 Υ

T
f1 0 0 0|ffl{zffl}

5 times

ΥT
g1 0 0�; Υb ¼ ½A,

1i 0 D1i 0 0 0|ffl{zffl}
11 times

Gi�T ; Υa1 ¼ ~Ai
,TPE,i ;

Υe1 ¼ ~Bi,TPE,i ; Υ f1 ¼ ~Ci,TPE,i ; Υg1 ¼ ~Di
,TPE,i ; Ψ15;15 ¼ Ei,TPE,i : (35)
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Proof. In the case of the initial condition is zero, consider the performance index,

JðnÞ ¼
X1
k¼0

½yTðkÞyðkÞ � κ2vTðkÞvðkÞ�; (36)

for all non zero vðkÞ, by following the proof of Theorem 3.1, the performance index can be
converted to

JðnÞ ¼
X1
k¼0

½yTðkÞyðkÞ � κ2vTðkÞvðkÞ þ ΔVjðkÞ� � �T2ðtÞΨ�2ðtÞ; (37)

where �T2ðtÞ ¼ ½�TðtÞ vTðtÞ�T . In the view of LMI (33), we have JðnÞ � 0; that is,

X1
k¼0

½yTðkÞyðkÞ � κ2vTðkÞvðkÞ� � 0;

X1
k¼0

yTðkÞyðkÞ �
X1
k¼0

κ2vTðkÞvðkÞ;"vðkÞ 2 L2ðα; 0;1Þ: (38)

By Definition 2.5, the system (16) is exponentially stable with convergence rate 0< α< 1 and H1
performance index λ ¼ ffiffiffi

α
p

. □

Robust switched memristive stochastic nns

Now, we can extend Theorem 3.1 and 3.2 to obtain the corresponding results for switched uncertain
memristive NNs (10), set

½ΔA,
i ΔB,i ΔC,

i ΔD,
i � ¼ E,

i F ,
i ðkÞ½N,

1i N,
2i N,

3i N,
4i�: (39)

The following theorem provides the robust exponential stability conditions for uncertain switched
memristive stochastic NNs (10).

Theorem 3.3. For some constants α 2 ð0; 1�, d1; d2; τ1; τ2, and 0 � γi � 1;
PN

i¼1 γi ¼ 1 ði 2 Þ , if

there exist positive definite symmetric matrices P; Z1; Z2; R2; R3;Q ¼ T2 W
WT T4

� �
, the diagonal

matrices Uiði ¼ 1; 2Þ and scalars �1i > 0; �2i > 0 such that the following LMIs hold:

P< λ�I (40)

Φ ¼

Ψ14;14 Υa 0 ~Γ17 ~Γ18 Υb Υc Υd

� Ψ15;15 0 0 0 0 0 0
� � �κ2 0 0 0 0 0
� � � ~Γ16;16 0 0 0 0
� � � � ~Γ17;17 0 0 0
� � � � � �I 0 0
� � � � � � ��1i 0
� � � � � � � ��2i

2
66666666664

3
77777777775
< 0; (41)

then the system (10) is globally exponentially stable with convergence rate λ̂ ¼ ffiffiffi
α

p
and H1

performance κ by the switching signal designed by (13).
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Where

~Γ17 ¼ ½~A,
i 0 0 0 ~B,i ~C,

i 0 0 0|ffl{zffl}
5 times

~D,
i 0 0 E,i �;~Γ18 ¼ ½~A,

i � I 0 0 0 ~B,i ~C,
i 0 0 0|ffl{zffl}

5 times

~D,
i 0 0 E,i �;

Wp2 ¼ ½I 0 0 0|ffl{zffl}
7 times

0 0 0|ffl{zffl}
6 times

�;~Γ16;16 ¼ �Pþ �1E iET
i ;

~Γ17;17 ¼ �W þ �2E iET
i ;

W ¼ d1Z1 þ ðd2 � d1Þ2Z2 þ R2; Υc ¼ ½N,
1i 0 0 0 N,

2i N
,
3i 0 0 0|ffl{zffl}

5 times

N,
4i 0 0 0�;

Υd ¼ ½N,
1i 0 0 0 N,

2i N
,
3i 0 0 0|ffl{zffl}

5 times

N,
4i 0 0 0�:

(42)

and the remaining terms are defined in Theorem 3.1.

Proof. The result is carried out by using the techniques and the similar lines of proof in Theorem 3.1
and 3.2. Thus we have,

~ΔjðkÞ þ yTðkÞyðkÞ � κ2vTðkÞvðkÞ � �T2ðkÞ
Ψ14;14 Υa

� Ψ15;15

� �
�2ðkÞ þ ηTðkÞWηðkÞ

þ uTðk þ 1ÞPuðk þ 1Þ þ yTðkÞyðkÞ � κ2vTðkÞvðkÞ;
(43)

here

uTðk þ 1ÞPuðk þ 1Þ ¼ ½½~A,
i þ ΔA,

i ðkÞ�uðkÞ þ ½~B,i þ ΔB,i ðkÞ�fðuðkÞÞ þ ½~C,
i þ ΔC,

i ðkÞ�fðuðk � dðkÞÞÞ

þ ½~D,
i þ ΔD,

i ðkÞ�
XτðkÞ
i¼1

fðuðk � iÞÞ þ E,i vðkÞ þ σðk; uðkÞ; uðk � dðkÞÞÞwðkÞ�TP

½½~A,
i þ ΔA,

i ðkÞ�uðkÞ þ ½~B,i þ ΔB,i ðkÞ�fðuðkÞÞ þ ½~C,
i þ ΔC,

i ðkÞ�fðuðk � dðkÞÞÞ

þ ½~D,
i þ ΔD,

i ðkÞ�
XτðkÞ
i¼1

fðuðk � iÞÞ þ E,i vðkÞ þ σðk; uðkÞ; uðk � dðkÞÞÞwðkÞ�

¼ ½~A,
i uðkÞ þ ~B,i fðuðkÞÞ þ ~C,

i fðuðk � dðkÞÞÞ þ ~D,
i

XτðkÞ
i¼1

fðuðk � iÞÞ þ E,i vðkÞ

þ σðk; uðkÞ; uðk � dðkÞÞÞwðkÞ�TðP�1 � �1iE,
i E i

,TÞ�1½~A,
i uðkÞ þ ~B,i fðuðkÞÞ

þ ~C,
i fðuðk � dðkÞÞÞ þ ~D,

i

XτðkÞ
i¼1

fðuðk � iÞÞ þ E,i vðkÞ þ σðk; uðkÞ; uðk � dðkÞÞÞwðkÞ�;

(44)

Similarly,

ηTðkÞWηðkÞ ¼ ½~A,
i uðkÞ þ ~B,i fðuðkÞÞ þ ~C,

i fðuðk � dðkÞÞÞ þ ~D,
i

XτðkÞ
i¼1

fðxðk � iÞÞ þ E,i vðkÞ

þ σðk; xðkÞ; xðk � dðkÞÞÞwðkÞ � uðkÞ�TðW�1 � �2iE iET
i Þ�1½~A,

i uðkÞ þ ~B,i fðuðkÞÞ

þ ~C,
i fðuðk � dðkÞÞÞ þ ~D,

i

XτðkÞ
i¼1

fðxðk � iÞÞ þ E,i vðkÞ þ σðk; xðkÞ; xðk � dðkÞÞÞwðkÞ � uðkÞ�:

(45)

Combining (43)–(45), using Schur complement Lemma and following the ideas in proof Theorem 3.1,
we get (41). This completes the proof. □
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Remark 3.4. In Theorems 3.1 and 3.3, the criteria that ensure the exponential stability of discrete time
neural networks with time-varying delay are established in terms of LMIs. If there is no parametric
uncertainties, stochastic terms, T-S fuzzy and switching signals then the DNNs (1) is reduced to the
following neural network model

uðk þ 1Þ ¼ AuðkÞ þ BfðuðkÞÞ þ Cfðuðk � dðkÞÞÞ; (46)

where the time varying delay dðkÞ satisfies d1 � dðkÞ � d2, where d1 and d2 are constants. According to
Theorem 3.1, we have the following Corollary 3.5, for the asymptotic stability of discrete time NNs (46).

Corollary 3.5. For some constants d1; d2; τ1; τ2, if there exist positive definite symmetric matrices

P; Z1; Z2; R2; R3; and Q ¼ T2 W
WT T4

� �
, the diagonal matrices Uiði ¼ 1; 2Þ such that the following LMIs

hold:

Φ ¼
Ψ13;13 ~Γ2 ~Γ3 ~Γ4
� �Z1 0 0
� � �Z2 0
� � � �R2

2
664

3
775< 0; (47)

where

Ψ11 ¼ ðd2 � d1 þ 1Þαd1T2 � R2αd1 � 3αd1Δ1R2 � αd1Z1 � F1U1 � 3αd1Δ1Z1 þ d212R3;

Ψ12 ¼ �R2αd1 � 3αd1Δ1R2;Ψ13 ¼ αd1Z1 � 3αd1Δ1Z1;Ψ15 ¼ ATPB, þ αd1ðd2 � d1 þ 1ÞW þ F2U1;

Ψ16 ¼ ATPC,;Ψ17 ¼ 3
d1 � 1

R2αd1 þ 3
d1 � 1

RT2α
d1 ;Ψ19 ¼ 3αd1

Z1
d1 � 1

þ 3αd1
ZT
1

d1 � 1
;

Ψ22 ¼ �R2αd1 � 3αd1Δ1R2 � 3Δ2α
d1R2 � ðZ2 þ Δ3Z2Þ αd2

ðd2 � d1Þ � ð3Z2 þ 3Δ3Z2Þ αd2

ðd2 � d1Þ

� αd1

dðkÞ � d1
R2;Ψ23 ¼ αd1

dðkÞ � d1
R2 � 3Δ2α

d1R2 þ ðZ2 þ Δ3Z2Þ αd2

ðd2 � d1Þ

� ð3Z2 þ 3Δ3Z2Þ αd2

ðd2 � d1Þ ;Ψ27 ¼ 3αd1
R2

d1 � 1
þ 3αd1

RT2
d1 � 1

;

Ψ28 ¼ 3Δ2α
d1R2 þ 3Δ6α

d1RT2;Ψ210 ¼ ð3Z2 þ 3Δ3Z2Þ αd2

ðd2 � d1Þ þ ð3ZT
2 þ 3Δ3ZT

2 Þ
αd2

ðd2 � d1Þ ;

Ψ33 ¼ αd1

dðkÞ � d1
R2 � 3Δ2α

d1R2 � αd2T2 � F1U2 � αd1Z1 � 3αd1Δ1Z1 � ðZ2 þ Δ3Z2Þ αd2

ðd2 � d1Þ

� ð3ZT2 þ Δ3ZT
2 Þ

αd2

ðd2 � d1Þ � ðZ2 þ Δ5Z2Þ αd2

ðd2 � d1Þ ;

Ψ34 ¼ d1
d1 � dðkÞ α

d1Z1 � 3d1
d1 � dðkÞΔ4α

d1Z1 þ ðZ2 þ Δ5Z2Þ αd2

ðd2 � d1Þ � ð3Z2 þ 3Δ5Z2Þ αd2

ðd2 � d1Þ ;
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Ψ36 ¼ �αd2W þ F2U2;Ψ38 ¼ 3Δ6α
d1R2 þ 3Δ6α

d1RT2;Ψ39 ¼ 3αd1
Z1

d1 � 1
þ 3αd1

ZT
1

d1 � 1
;

Ψ310 ¼ ð3Z2 þ 3Δ3Z2Þ αd2

ðd2 � d1Þ þ ð3ZT2 þ 3Δ3Z
T
2 Þ

αd2

ðd2 � d1Þ ;

Ψ44 ¼ �ð3Z2 þ 3Δ5Z2Þ αd2

ðd2 � d1Þ �
d1

d1 � dðkÞ 3Δ4α
d1Z1 � ðZ2 þ Δ5Z2Þ αd2

ðd2 � d1Þ ;

Ψ411 ¼ �ð3Z2 þ 3Δ5Z2Þ αd2

ðd2 � d1Þ þ ð3ZT
2 þ 3Δ5ZT2 Þ

αd2

ðd2 � d1Þ ;

Ψ55 ¼ ~Bi
,T

P~B,i þ αd1ðd2 � d1 þ 1ÞT4 þ τ2ðτ2 þ τ1Þðτ2 � τ1 þ 1Þ
2

S� U1;Ψ56 ¼ ~Bi
,T

P~C,
i ;

Ψ66 ¼ ~Ci
,T

P~C,
i � U2 � αd2T4;Ψ77 ¼ �12αd1

R2
ðd1 þ 1Þðd1 � 1Þ ;

Ψ88 ¼ 3
ðd2 � d1 � 1Þ

ðdðkÞ � d1ÞðdðkÞ � d1 þ 1Þ3 α
d1R2;Ψ99 ¼ �12αd1

Z1
ðd1 þ 1Þðd1 � 1Þ ;

Ψ1010 ¼ �12ð3Z2 þ 3Δ3Z2Þ αd2

ðd2 � d1Þ ;Ψ1111 ¼ �4ð3Z2 þ 3Δ5Z2Þ αd2

ðd2 � d1Þ ;

Ψ1212 ¼ �αd2R3;Ψ1213 ¼ �αd2W2;Ψ1313 ¼ �αd2R3:

and the other terms are same as defined in Theorem 3.1.

Proof. Consider the same L-K functional as defined in Theorem 3.1. The proof immediately Follows
From The Similar Way Of Proof of Theorem 3.1, hence it is omitted. □

Remark 3.6. The Equation (1) is described by a discrete-time T-S fuzzy switched memristive neural
networks modelled in (10). In this model the system dynamics are captured by a set of fuzzy IF-THEN rules
with switching signals that represent local linear input-output relations of a nonlinear system.

Remark 3.7. Primarily, computational complexity will be a big issue based on how large are the LMIs
and how more are the decision variables. In Theorems 3.1 and 3.3 we have used maximum number of
decision variables in our LMIs. However, large size of LMIs yield better performance. The results in
Theorems 3.1 and 3.3 are derived based on the construction of proper L-K functional with quadratic,
triple summation terms, and by using a newly introduced summation inequality techniques which
produces tighter bounds than what the existing ones such as the Auxiliary function based integral
inequality and Reciprocally convex approach produce. It should be mentioned that the obtained H1
performance for the considered NNs with switching signal and mixed time-varying delays are less
conservative than the existing ones in the literature, it is easy to see in Table 1. Meanwhile, it should
also be noticed that the relaxation of the derived results is acquired at the cost of more number of
decision variables. As far the results to be efficient enough it is more comfortable to have larger
maximum allowable upper bounds but still in order to reduce computation complexity burden and
time computation, our future work will be reducing the number of decision variables by applying Finsler’s
Lemma in our work
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Remark 3.8. Theorem 3.1 develops a globally exponentially stability criterion of discrete-time T-S fuzzy
switched memristive stochastic NNs. Theorem 3.1 makes full use of the information of the subsystems
upper bounds of the time-varying delays, which also brings us the less conservativeness.

Remark 3.9. It is very interesting to note that, in this paper, the reduced conservatism is primarily from
the construction of the suitable Lyapunov-Krasovskii functional and the use of bounding techniques in
summation terms. In recent years, some researchers have used the inequality techniques, such as
Wirtinger based integral inequality and novel summation inequality techniques. These two inequalities
are the best techniques to reduce conservatism. In addition, these above summation technique is given
to take fully the relationship between the terms in the frame work of linear matrix inequalities (LMIs) into
account, which gives the conservatism of our results.

Remark 3.10. Generally, switching signal design with memristive concept, T-S fuzzy and uncertain
parameters are not simply applied to stochastic NNs in discrete time case. Some research publications
have tackled such problems. However, the authors used very simple LKFs to solve the stability problems
in those articles. A new LKF with the information of time-varying delay (like discrete, distributed delay
involving both upper and lower bounds, i.e., τ1 � τðkÞ � τ2; d1 � dðkÞ � d2Þ is proposed for the
stability analysis of H1 performance with switching signal in this paper, considering that some
computational complexity can occur in our method. However, Robust H1 performance for discrete
time T-S fuzzy switched memristive was completely studied for stochastic NNs with mixed time delays,
which is the main contribution and motivation of our work.

Remark 3.11. It should be highly pointed out that, in the previous literature authors in [12,13,15,16]
investigated the problems with simple delayed NNs with various stability criteria. So far, it is noted that
unfortunately in the existing literature memristive stochastic NNs with the presence of T-S fuzzy,
switching signal, and uncertain parameters has not been considered yet. The model considered in the
present study is more practical than that proposed by [23,38,39], because they consider only stochastic
NNs with switching signal design, but in this paper they consider both memristive and uncertain
parameters with switching signal for the available neural network model. Moreover, in the proof of
theorems and corollaries, we utilise the wirtinger and novel summation inequality technique has been
widely employed to tackle time-varying delay such as defined in Vsðk; uðkÞÞðs ¼ 3; 4Þ and was shown
more tighter than the ones based on Jensen’s inequality formula.

Numerical examples

In this section, we provide numerical examples with simulation results to illustrate the effectiveness
and advantages of the proposed theory.

Example 4.1. Consider the following T-S fuzzy memristor based stochastic uncertain NNs with time
varying delays and switching signal:

uðk þ 1Þ ¼
Xq
l¼1

ϕlðγ̂ðkÞÞ½~A,
i þ ΔA,

i ðkÞ�uðkÞ þ ½~B,i þ ΔB,i ðkÞ�fðuðkÞÞ þ ½~C,
i þ ΔC,

i ðkÞ�fðuðk � dðkÞÞÞ

þ ½~D,
i þ ΔD,

i ðkÞ�
XτðkÞ
i¼1

fðuðk � iÞÞ þ E,i vðkÞ þ σðk; xðkÞ; xðk � dðkÞÞÞwðkÞ;
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yðkÞ ¼
Xq
l¼1

ϕlðγ̂ðkÞÞ½A,
1iuðkÞ þ D,

1iuðk � dðkÞÞ þ G,
i vðkÞ�;

uðlÞ ¼ ϕðlÞ; l ¼ k0 � d2; :::; k0: (48)

The parameters of the first subsystem are

a11ðu1ð�ÞÞ ¼
0:4; ju1ð�Þ � 1j;
0:6; ju1ð�Þ> 1j;

�
a12ðu2ð�ÞÞ ¼

0:4; ju2ð�Þ � 1j;
0:6; ju2ð�Þ> 1j;

�

b111ðu1ð�ÞÞ ¼
0:5; ju1ð�Þ � 1j;
0:2; ju1ð�Þ > 1j;

�
b112ðu1ð�ÞÞ ¼

0:2; ju1ð�Þ � 1j;
�0:3; ju1ð�Þ > 1j;

�

b121ðu2ð�ÞÞ ¼
0:3; ju2ð�Þ � 1j;
0:15; ju2ð�Þ > 1j;

�
b122ðu2ð�ÞÞ ¼

0:6; ju2ð�Þ � 1j;
�0:18; ju2ð�Þ > 1j;

�

c111ðu1ð�ÞÞ ¼
0:2; ju1ð�Þ � 1j;
0:5; ju1ð�Þ> 1j;

�
c112ðu1ð�ÞÞ ¼

0:3; ju1ð�Þ � 1j;
0:2; ju1ð�Þ > 1j;

�

c121ðu2ð�ÞÞ ¼
0:2; ju2ð�Þ � 1j;
�0:1; ju2ð�Þ � 1j;

�
c122ðu2ð�ÞÞ ¼

�0:3; ju2ð�Þ � 1j;
0:1; ju2ð�Þ > 1j;

�

d111ðu1ð�ÞÞ ¼
�0:8; ju1ð�Þ � 1j;
�0:7; ju1ð�Þ > 1j;

�
d112ðu1ð�ÞÞ ¼

0:6; ju1ð�Þ � 1j;
0:7; ju1ð�Þ > 1j;

�

d121ðu2ð�ÞÞ ¼
0:8; ju2ð�Þ � 1j;
0:9; ju2ð�Þ > 1j;

�
d122ðu2ð�ÞÞ ¼

�0:9; ju2ð�Þ � 1j;
�1:0; ju2ð�Þ > 1j;

�

a21ðu1ð�ÞÞ ¼
0:5; ju1ð�Þ � 1j;
0:7; ju1ð�Þ> 1j;

�
a22ðu2ð�ÞÞ ¼

0:45; ju2ð�Þ � 1j;
0:8; ju2ð�Þ> 1j;

�

b211ðu1ð�ÞÞ ¼
0:6; ju1ð�Þ � 1j;
0:3; ju1ð�Þ > 1j;

�
b212ðu1ð�ÞÞ ¼

0:3; ju1ð�Þ � 1j;
�0:4; ju1ð�Þ > 1j;

�

b221ðu2ð�ÞÞ ¼
0:14; ju2ð�Þ � 1j;
0:15; ju2ð�Þ > 1j;

�
b222ðu2ð�ÞÞ ¼

0:7; ju2ð�Þ � 1j;
�0:2; ju2ð�Þ > 1j;

�

c211ðu1ð�ÞÞ ¼
0:3; ju1ð�Þ � 1j;
0:4; ju1ð�Þ> 1j;

�
c212ðu1ð�ÞÞ ¼

0:4; ju1ð�Þ � 1j;
0:3; ju1ð�Þ > 1j;

�

c221ðu2ð�ÞÞ ¼
0:4; ju2ð�Þ � 1j;
�0:2; ju2ð�Þ> 1j;

�
c222ðu2ð�ÞÞ ¼

�0:2; ju2ð�Þ � 1j;
0:3; ju2ð�Þ > 1j;

�

d211ðu1ð�ÞÞ ¼
�0:7; ju1ð�Þ � 1j;
�0:8; ju1ð�Þ > 1j;

�
d212ðu1ð�ÞÞ ¼

0:8; ju1ð�Þ � 1j;
0:9; ju1ð�Þ > 1j;

�

d221ðu2ð�ÞÞ ¼
0:72; ju2ð�Þ � 1j;
0:8; ju2ð�Þ > 1j;

�
d222ðu2ð�ÞÞ ¼

�0:8; ju2ð�Þ � 1j;
�1:0; ju2ð�Þ > 1j;

�
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The parameters of the second subsystem are

a31ðu1ð�ÞÞ ¼
0:6; ju1ð�Þ � 1j;
0:85; ju1ð�Þ> 1j;

�
a32ðu2ð�ÞÞ ¼

0:34; ju2ð�Þ � 1j;
0:7; ju2ð�Þ> 1j;

�

b311ðu1ð�ÞÞ ¼
0:55; ju1ð�Þ � 1j;
0:4; ju1ð�Þ > 1j;

�
b312ðu1ð�ÞÞ ¼

0:4; ju1ð�Þ � 1j;
�0:64; ju1ð�Þ > 1j;

�

b321ðu2ð�ÞÞ ¼
0:25; ju2ð�Þ � 1j;
0:5; ju2ð�Þ > 1j;

�
b322ðu2ð�ÞÞ ¼

0:6; ju2ð�Þ � 1j;
�0:35; ju2ð�Þ > 1j;

�

c311ðu1ð�ÞÞ ¼
0:5; ju1ð�Þ � 1j;
0:2; ju1ð�Þ> 1j;

�
c312ðu1ð�ÞÞ ¼

0:6; ju1ð�Þ � 1j;
0:45; ju1ð�Þ > 1j;

�

c321ðu2ð�ÞÞ ¼
0:5; ju2ð�Þ � 1j;
�0:35; ju2ð�Þ> 1j;

�
c322ðu2ð�ÞÞ ¼

�0:56; ju2ð�Þ � 1j;
0:45; ju2ð�Þ > 1j;

�

d311ðu1ð�ÞÞ ¼
�0:6; ju1ð�Þ � 1j;
�0:45; ju1ð�Þ > 1j;

�
d312ðu1ð�ÞÞ ¼

0:6; ju1ð�Þ � 1j;
�0:55; ju1ð�Þ> 1j;

�

d321ðu2ð�ÞÞ ¼
0:01; ju2ð�Þ � 1j;
0:3; ju2ð�Þ > 1j;

�
d322ðu2ð�ÞÞ ¼

�0:6; ju2ð�Þ � 1j;
0:8; ju2ð�Þ> 1j;

�

a41ðu1ð�ÞÞ ¼
0:46; ju1ð�Þ � 1j;
0:8; ju1ð�Þ> 1j;

�
a42ðu2ð�ÞÞ ¼

0:35; ju2ð�Þ � 1j;
0:6; ju2ð�Þ> 1j;

�

b411ðu1ð�ÞÞ ¼
0:54; ju1ð�Þ � 1j;
�0:3; ju1ð�Þ> 1j;

�
b412ðu1ð�ÞÞ ¼

0:4; ju1ð�Þ � 1j;
�0:65; ju1ð�Þ > 1j;

�

b421ðu2ð�ÞÞ ¼
0:34; ju2ð�Þ � 1j;
0:64; ju2ð�Þ > 1j;

�
b422ðu2ð�ÞÞ ¼

0:5; ju2ð�Þ � 1j;
�0:43; ju2ð�Þ > 1j;

�

c411ðu1ð�ÞÞ ¼
0:23; ju1ð�Þ � 1j;
0:54; ju1ð�Þ > 1j;

�
c412ðu1ð�ÞÞ ¼

�0:3; ju1ð�Þ � 1j;
0:3; ju1ð�Þ> 1j;

�

c421ðu2ð�ÞÞ ¼
0:67; ju2ð�Þ � 1j;
�1:2; ju2ð�Þ > 1j;

�
c422ðu2ð�ÞÞ ¼

�1:2; ju2ð�Þ � 1j;
1:3; ju2ð�Þ> 1j;

�

d411ðu1ð�ÞÞ ¼
�1:2; ju1ð�Þ � 1j;
�1:8; ju1ð�Þ > 1j;

�
d412ðu1ð�ÞÞ ¼

0:2; ju1ð�Þ � 1j;
0:3; ju1ð�Þ > 1j;

�

d421ðu2ð�ÞÞ ¼
0:54; ju2ð�Þ � 1j;
0:67; ju2ð�Þ > 1j;

�
d422ðu2ð�ÞÞ ¼

�0:6; ju2ð�Þ � 1j;
�2:0; ju2ð�Þ > 1j;

�

E1 ¼ 1 0
0 1

� �
; E2 ¼ 0:5 0

0 0:5

� �
;N11 ¼ N21 ¼ N31 ¼ N41 ¼ diagf0:1; 0:1g;
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N12 ¼ N22 ¼ N32 ¼ N42 ¼ diagf0:2; 0:2g:
The membership functions for Rules 1 and 2 are ϕ1ðu1ðkÞÞ ¼ 1=expð�2u1ðkÞÞ;ϕ2ðu1ðkÞÞ ¼
1� ϕ1ðu1ðkÞÞ. The activation functions are described by f1ðyÞ ¼ 1

20 ðjaþ 1j þ ja� 1jÞ, f2ðyÞ ¼
1
10 ðjaþ 1j þ ja� 1jÞ. It can be verified that Assumption 2.1 is satisfied with

F�1 ¼ �0:1; Fþ1 ¼ 0:1; F�2 ¼ �0:2; Fþ2 ¼ 0:2. Therefore, we can obtain

F1 ¼ �0:01 0
0 �0:04

� �
; F2 ¼ 0 0

0 0

� �
:

If we choose ρ̂1 ¼ ρ̂2 ¼ 0:1; α ¼ 0:5, assumed that the distributed delay τðkÞ satisfies 5 � τðkÞ � 9,
that is, τ1 ¼ 5 and τ2 ¼ 9 and the time delay lower bound d1 ¼ 2 and upper bound d2 ¼ 8, then by
solving the LMIs in Theorem 3.3 using Matlab-LMI control toolbox, we get the feasible solutions are
as follows:

P ¼ 104
7:6469 0:0007
0:0007 7:6525

� �
; Z1 ¼ 76:6670 0:5967

0:5967 81:6048

� �
; Z2 ¼ 103

4:9264 0:0027
0:0027 4:9477

� �
;

T2 ¼ 26:8707 �0:0241
�0:0241 26:6600

� �
; T4 ¼ 980:7714 �0:8760

�0:8760 971:1925

� �
;W ¼ 95:1496 �0:1099

�0:1099 94:2281

� �
;

R2 ¼ 104
136:6891 0:3123
0:3123 139:2056

� �
; R3 ¼ 6:9083 �0:0061

�0:0061 6:8549

� �
; S ¼ 103

2:2745 �0:0020
�0:0020 2:2571

� �
;

U1 ¼ 104
1:7314 0

0 1:7209

� �
;U2 ¼ 104

8:0768 0
0 8:0766

� �
; �1 ¼ 104 � 8:3494;

�2 ¼ 104 � 6:4585; λ� ¼ 10:5241:

Select the switching signal by σðuðkÞÞ ¼ i; uðkÞ 2 �Ωi; i ¼ 1; 2: Therefore, it follows from Theorem 3.3
that the memristive based stochastic neural network (48) with switching signal and T-S fuzzy effect is

exponentially stable. For given initial state ½2;�2�T , Figure 1 shows that the state trajectories of the
considered neural network converges, which provides that the discrete time stochastic neural
network is stable.

Example 4.2. Consider the following memristive based stochastic NNs with time varying delays and
switching signal:

uðk þ 1Þ ¼ AiuðkÞ þ BiðuðkÞÞfðuðkÞÞ þ Cifðuðk � dðkÞÞÞ

þ Di

X1
i¼1

μifðuðk � iÞÞ þ EivðkÞ þ σðk; xðkÞ; xðk � dðkÞÞÞwðkÞ;

yðkÞ ¼ A1iuðkÞ þ D1iuðk � dðkÞÞ þ GivðkÞ;

uðlÞ ¼ ϕðlÞ; l ¼ k0 � d2; :::; k0

Consider the same input known matrices from Example 4.1 and let d1 ¼ 2; d2 ¼ 8, the activation
function are taken as follows: f1ðyÞ ¼ f2ðyÞ ¼ tanhðyÞ: It can be verified that Assumption 2.1 is
satisfied with F�1 ¼ 0; Fþ1 ¼ 0; F�2 ¼ 1; Fþ2 ¼ 1: Thus,

24 R. VADIVEL ET AL.



F1 ¼ 0 0
0 0

� �
; F2 ¼ 0:5 0

0 0:5

� �
:

By using the Matlab LMI control Toolbox solve the LMIs in Theorem 3.1, we obtain a set of feasible
solutions as

P ¼ 104
3:1010 0:0001
0:0001 3:1020

� �
; Z1 ¼ 49:9511 �0:0656

�0:0656 49:8721

� �
; Z2 ¼ 103

2:2342 �0:0020
�0:0020 2:2284

� �
;

T2 ¼ 28:5132 0:0034
0:0034 28:4704

� �
; T4 ¼ 994:3211 0:1083

0:1083 991:3597

� �
;W ¼ 95:8580 0:0024

0:0024 95:5614

� �
;

R2 ¼ 104
88:1245 �0:0655
�0:0655 87:8132

� �
; R3 ¼ 103

4:2691 0:0004
0:0004 4:2630

� �
; S ¼ 103

1:8646 0:0002
0:0002 1:8619

� �
;

U1 ¼ 104
1:0344 0

0 1:0317

� �
;U2 ¼ 104

3:1824 0
0 3:1821

� �
; λ� ¼ 15:3742:

select the switching signal by σðuðkÞÞ ¼ i; uðkÞ 2 �Ωi; i ¼ 1; 2: On the other side, by setting the upper
delay bound d2 ¼ 8, we have the H1 performance κ ¼ 0:8947: Thus, it can be concluded that the
memristive stochastic NNs (16) is exponentially stable and the state trajectories of the dynamical

system are converge to the zero equilibrium point with an initial state ½3;�3�T , it is shown in Figure 2.

Example 4.3. Consider the following discrete NNs (46) with the following parameters:

A ¼ 0:1 0
0 0:3

� �
; B ¼ 0:02 0

0 0:004

� �
;C ¼ �0:01 0:01

�0:02 �0:01

� �
:

and the activation function satisfies fðkÞ ¼ tanhðk1Þ
tanhðk2Þ
� �

satisfies Assumption 2.2.
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Figure 1. State responses of MNNs (46) in Example 4.1.
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For different values of d1, the upper bounds of delay d2 are obtained by various approaches,
which guarantee the asymptotic stability of the NNs (46). From the values listed in Table 1, one can
easily see that the stability criterion proposed in Corollary 3.5 is less conservative than those in Refs.
Jarina Banu et al. (2015); Wang et al. (2013); Wu et al. (2010).

Example 4.4. Consider the following discrete NNs (46) with the following parameters:

A ¼ 0:8 0
0 0:9

� �
; B ¼ 0:001 0

0 0:005

� �
;C ¼ �0:1 0:01

�0:2 �0:1

� �
:

and the activation functions satisfy Assumption 2.2 with F�1 ¼ F�2 ¼ 0; Fþ1 ¼ Fþ2 ¼ 1. By using the
MATLAB LMI toolbox, we can solve the LMI in Corollary 3.5. This ensures the asymptotic stability of
the system (46). For different values of d1, the allowable upper bounds of time delay d2 are obtained
by various approaches, and they are listed in Table 3. Moreover, the number of decision variables in
(Jarina Banu et al., 2015; Kwon et al., 2012; Selvaraj et al., 2018) are 15n2+ 5n, 17.5n2+ 4.5n and 28.5n2

+ 7.5n. In this paper, the number of decision variables of Corollary 3.5 is 4n2+ 6n. Therefore, from the
values listed in Table 3 and number of decision variables in Table 2, one can easily see that the
stability criterion proposed in Corollary 3.5 yields less conservatism than those in Jarina Banu et al.
(2015); Kwon et al. (2012); Lin et al. (2016); Selvaraj et al. (2018); Song et al. (2009); Song and Wang
(2007); Wu et al. (2008); Yu et al. (2010).
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Figure 2. State responses of MNNs (16) in Example 4.2.

Table 1. Calculated maximum d2 for given d1 for Example 4.3.

d1 2 4 6 8

(Wang et al., 2013) 13 16 17 19
(Wu et al., 2010) 15 17 18 20
(Jarina Banu et al., 2015) 30 32 34 36
Corollary 3.5 32 34 35 38
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Conclusion

In this paper, the problem of robust H1 performance for discrete-time T-S fuzzy switched memristive
stochastic NNs with mixed time varying delays. By employing, some novel summation inequality
techniques and LMI approach, we designed switching signal such that the resulting closed-loop
neural network is robustly exponential stable with a prescribed H1 performance. The obtained
results are all in the form of an effective linear matrix inequality (LMI), which can be easily optimised
by MATLAB-LMI control toolbox. Finally, numerical examples are given to show the superiority of our
proposed stability conditions. In the end, we would like to conclude that the results we presented
here are quite general and the conditions are relatively easy to check. Therefore, it is believed that all
the results obtained in this paper can be extendable to complex-valued NNs and state estimation
issues of general-switched systems with multiple channels subject to random packet dropouts.
Moreover, the model proposed in this work can be also extended event-triggered mechanism to
the coupled NNs with imperfect communication, such as packet dropouts and quantisation. We will
also target on the complex phenomena like the randomly occurring uncertainties, incomplete
measurements, MJSs with repeated scalar nonlinearities, T-S fuzzy-based piecewise Lyapunov func-
tion and decentralised event triggered with asynchronous sampling. Which makes the model more
practical. Which will be investigated in our future work.

Acknowledgement

The work of second author was supported by the CSIR project No. 25(0274)/17/EMR-II dated 27/04/2017. Also, the work
of third author was supported by the Basic Science Research Program through the National Research Foundation of
Korea (NRF) funded by the Ministry of Education (NRF-2016R1A6A1A03013567) and by the Korea Institute of Energy
Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of
Korea (No. 20,174,030,201,670).

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by the Council of Scientific and Industrial Research, India [CSIR . 25(0274)/17/EMR-II dated 27/
04/2017].

Table 2. Number of decision variables involved in various papers.

No of decision variables

(Selvaraj et al., 2018) 15n2+ 5n
(Jarina Banu et al., 2015) 17.5n2+ 4.5n
(Kwon et al., 2012) 28.5n2+ 7.5n
This paper 4n2+ 6n

Table 3. Calculated maximum d2 for given d1 for Example 4.4.

d1 2 4 6 8

(Song et al., 2009) 11 11 12 13
(Song & Wang, 2007) 11 12 13 14
(Wu et al., 2008) 15 16 17 18
(Yu et al., 2010) 13 15 17 19
(Lin et al., 2016) 15 17 18 19
Corollary 3.5 18 19 21 22
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ABSTRACT
This paper deals with the problem ofH∞/passive non-fragile synchronisation for a class of complex
dynamical networks subject to Markovian jumping time-varying coupling delays. Gain variation is
represented by a stochastic variable that is assumed to satisfy the Bernoulli distribution with white
sequences. The synchronisation error system became stable through our designed controller. By
Lyapunov–Krasovskii stability theory, a new stochastic synchronisation criterion is established for
the considered network in terms of linear matrix inequality (LMI). An illustration is given to show
effectiveness of the proposed theoretical results.
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1. Introduction

In the last few years, the spearheading works of Watts
and Strogatz in Watts and Strogatz (1998), New-
man (2003), Syed Ali and Yogambigai (2016), and X.
Wang and Chen (2003), which investigated complex
networks have gained much attention as a result of
its theoretical relevance and potential applications in
most significant real-world networks, such as trans-
portation networks, communication networks, social
networks, biological networks, electric power grids
and others. Complex network is commonly envis-
aged as a large set of interconnected nodes, in which
each node represents a dynamical system and the
edges represent connections. Particularly, the unpre-
dictable system see has ended up being very productive
and turns into a key way to deal with researching
complex networks of connecting objects. Thus, stud-
ies of complex behaviours in complex systems have
in the fields of science and engineering (see Abhijit
& Lewis, 2010;W. Guo et al., 2010; Lu &Ho, 2010; Qiu
et al., 2020, 2019; Strogatz, 2001; Sun et al., 2020; M.
Wang et al., 2020, 2018a, 2018b; Wu, Shi, et al., 2013;
Yu et al., 2011; W. Zhang et al., 2014, and references
therein).

CONTACT O. M. Kwon madwind@chungbuk.ac.kr School of Electrical Engineering, Chungbuk National University, Chungdae-ro 1, Cheongju 28644,
Republic of Korea

Synchronization as a collective behaviour of net-
works, appears in a widespread field, ranging from
natural networks to artificial networks such as flush-
ing fireflies, brainweb, yeast cell, semiconductor lasers,
sensor networks. Because of the ubiquitousness of
synchronisation, scientists attempt to understand the
mechanism behind the phenomena and the way it
works to get its advantages. For example, in sensor net-
works, the clock should be synchronised so that the
sensor network can process data more correctly and
in semiconductor lasers, they need to be synchronised
in order to generate large power lasers (Behinfaraz
& Badamchizadeh, 2018; Behinfaraz et al., 2019; Yu
et al., 2011). Consisting of large amount of nodes, com-
plex dynamical networks (CDNs) have been observed
to show synchronisation in many cases, including
both the manmade and the natural networks. Thus,
the synchronisation phenomenon has received much
attention among researchers (Cai et al., 2016; Du
& Xu, 2014; Karimi & Gao, 2010; Lee et al., 2012; Qi
et al., 2010; Yu & Cao, 2007; Yue & Lam, 2005; Zeng
& Cao, 2011; Zhao & Zeng, 2010).

H∞ synchronisation control is an available mech-
anism for attenuating the effect of disturbances in
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networks (X. G. Guo et al., 2015; H. Shen et al., 2015).
H∞ synchronisation control is generally applied to
the problem of optimal control. Designing an H∞
synchronisation controller for the stability of error
system will refrain the interference. For example,
H∞ synchronisation of complex networks the stud-
ied in B. Shen et al. (2011). Passive synchronisa-
tion analysis and design of complex systems, have
paid much attention in the last decades (Selivanov
et al., 2015). In Yao et al. (2009), passivity analy-
sis for complex dynamical systems with and with-
out coupling delay was investigated. The passivity
theory becomes a powerful mechanism to synthesis-
ing complex neutrons (Gao et al., 2007). Research
on the H∞ and passive filtering, for a more flex-
ible design where studied by many authors (Fang
& Park, 2013; Wu, Park, Su, Song, et al., 2013; Yang
et al., 2013).

On the other hand, Markovian jump systems intro-
duced by Krasovskii and Lidskii (1961) have a crucial
role in the area of control and operations research
communities. Dynamic systems can be modelled by
a special class of hybrid system such as Markovian
jump complex dynamical networks. Markovian jump-
ing systems have been one of the important research
topics in the area of signal processing, control sys-
tems, and a good deal of results were available in the
literature (see Alfa, 2004; Asmussenn & Kella, 2000;
Barron, 2018a, 2018b, 2019; Barron & Yechiali, 2017;
Breuer, 2010; Ross, 1969; Ruiz-Castro, 2016; Yang
et al., 2013 and references therein). Markov jump sys-
tems are a class of hybrid systems and have attracted
considerable attention because of their extensive appli-
cation in modelling many practical systems with ran-
dom abrupt changes in their structure and parame-
ters including manufacturing systems, aerospace sys-
tems, etc. In Desouza and Fragoso (1993) and Wu
et al. (2011), it has been shown that the switching
between different modes can be governed by aMarko-
vian chain and hence the neural networks with such
a jumping character are actually a class of special
Markovian jumping system (Dong et al., 2012). So
far, a lot of results have been obtained on various
analysis problems for Markovian jumping neural net-
works, for stability analysis and for passivity analysis.
In literature, several works have been illustrated on
Markovian jump complex dynamical networks (see
Ma & Zheng, 2015; Yi et al., 2013 and references
therein).

Actually, the evolution of many practical systems
is always affected by various stochastic disturbances
and uncertainties from unpredictable environmental
conditions. Thus, stochastic modelling has been of
great consequence in branches such as neurotransmit-
ters. Dynamical behaviours of complex systems are
mainly affected by the external disturbances. There-
fore, synchronisation analysis for stochastic systems
has received much research interest. A robust resilient
control problem of discrete-time Markov jump non-
linear systems has been solved by employing the linear
matrix inequality and stochastic analysis techniques
(Y. Zhang et al., 2017). Based on the dissipative theory
and the event-triggered sampling scheme, the non-
fragile control design problem for a class of network-
based singular systems with input time-varying delay
and external disturbances has been addressed (Sak-
thivel et al., 2017). Therefore, it is reasonable to con-
sider the non-fragile control design in the study of
synchronisation of CDNs. Consequently, so far, inves-
tigations on H∞/passive non-fragile synchronisation
ofMarkovian jump stochastic complex dynamical net-
works with time-varying delays have not been consid-
ered until, now, which motivates this study.

ThisMotivates to study theH∞/passive non-fragile
synchronisation of Markovian jump stochastic CDNs
with time-varying delays.

(1) We proposed a mixed H∞ and passive perfor-
mance index for dealing with the synchronisation
control problem for CDNs. The synchronisation
control problem based on the proposed index is a
more general case.

(2) The role of the designed controllers is analysed
in detail by constructing a suitable comparison
system.

(3) The synchronisation criteria are derived accord-
ing to whether the node systems in the CDNs
or the goal system satisfies the corresponding
conditions.

(4) Anovel Lyapunov functional is constructedwhich
includes details of time-varying and non-fragile
state feedback controllers.

(5) Finally, an example is given to illustrate the effec-
tiveness of our proposed method.

Notation: R
n denotes the n-dimensional Euclidean

space and R
m×n is the m × n real matrices, respec-

tively. T1 > 0 is real symmetric and positive definite.
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AT means the transpose of matrix A and the aster-
isk ‘∗’ in a matrix is used to represent the term which
is induced by symmetry. I is the identity matrix with
compatible dimension. The symbol ‘⊗’ stands for Kro-
necker product. E is the mathematical expectation
operator. Let (�, E ,Q) be aComplete probability space
which relatives to an increasing family (Et)t>0 of σ -
algebras (Et)t>0 ⊂ E , where � is the sample space, E is
σ -algebra of subsets of the sample space and Q is the
probability measure on E .

2. Problem formulation and preliminaries

The complex dynamical networks (CDNs)withMarko-
vian jump parameters, outer coupling and stochas-
tic noise, which consists of N identical nodes and is
defined over the Wiener process is described as

čxi(ş) =
⎡⎣A(η(ş))xi(ş) + f (ş, xi(ş))

+
N∑
j=1

EijC(η(ş))xj(ş − Q(ş))

+ ui(ş) + wi(ş)

⎤⎦ čş

+ σ(ş, xi(ş), xi(ş − Q(ş)))čř(ş),

Z(ş) = J (η(ş))xi(ş), i = 1, 2, . . . .,N,

(1)

where xi(ş) ∈ R
n is the state variables of the ith

node of the network and ui(ş) ∈ R
n is the control

input of the ith node; Z(ş) is the output; f (·, ·) ∈
R
n represents a non-linear vector-valued function;

{η(ş) (ş > 0)} is the continuous-time Markov pro-
cess which describes the evolution of the mode
at time ş; A(η(ş)) is a constant matrix with suit-
able dimensions; the function σ(·, ·, ·) : R × R

n ×
R
n → R

n is the noise intensity vector-valued func-
tion; ř(ş) = [ř1(ş),ř2(ş), . . . .,řm(ş)]T ∈ R

m is an
m-dimensional Brownianmotion defined on the prob-
ability space (�, E ,Q)withE{ř(ş)} = 0,E{ř2(ş)} = 1
and E{ř(s)ř(ş)} = 0 for s �= ş, where E is the math-
ematical expectation; C(η(ş)) ∈ R

n×n is a constant
inner-coupling matrix of the nodes; E = (Eij)N×N
matrix of the outer-coupling matrix representing the
topological structure of the complex networks;wi(ş) ∈
R
p stands for external disturbance which belongs to

L2[0,∞), J (η(ş)) is a known matrix with appropri-
ate dimension. Which is defined as follows: if there
is a connection between node i and j (i �= j), then
Eij = 1, if i and j has connection (i �= j), if there is no
connection Eij = 0.

Thematrix E of diagonal elements for i = 1, 2, . . . ..,
N is defined as

Eii = −
N∑

j=1,j�=i

Eij. (2)

The function Q(ş) satisfies,

0 ≤ Q1 ≤ Q(ş) ≤ Q2, 0 ≤ Q̇(ş) ≤ μ, (3)

with Q1, Q2, μ, are scalars.
The process {η(ş), ş ≥ 0} is a right continuous-time

homogeneous Markovian process, it takes values S =
{1, 2, . . . ,N }. More precisely, η(ş) is associated with
the transition probability matrix � = {πρj}, ∀ ρ, j ∈ S
which is given by the following transition rates:

Pr(η(ş +Δş) = j | η(ş) = ρ)

=
{

πρjΔş + o(Δş), if ρ �= j

1 + πρρΔş + o(Δş), if ρ = j,
(4)

where Δş > 0 and limΔş→0(o(Δş)/Δş) = 0 and
πρj ≥ 0 for ρ �= j is the transition rate from mode
ρ at time ş to mode j at time ş +Δ and πρρ =
− ∑N

j=1,j�=ρ πρj.
For convenience, each possible value of η(ş) is

denoted by ρ, ρ ∈ S in the sequel. Then we have

A(η(ş)) = Aρ, C(η(ş)) = Cρ, J (η(ş)) = Jρ,

where Aρ, Cρ, Jρ, for any ρ ∈ S , are known constant
matrices of appropriate dimensions.

čxi(ş) =
⎡⎣Aρxi(ş) + f (ş, xi(ş))

+
N∑
j=1

EijCρxj(ş − Q(ş))

+ ui(ş) + wi(ş)

⎤⎦ čş

+ σ(ş, xi(ş), xi(ş − Q(ş)))čř(ş),

Z(ş) = Jρxi(ş), i = 1, 2, . . . ..,N,

(5)
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To synchronise all the N identical nodes in the net-
work (5) to a common value, let us define the synchro-
nisation error vector as ei(ş) = xi(ş) − s(ş), where
s(ş) ∈ R

n is the state vector of the unforced isolated
node that can be expressed as

čs(ş) = [Aρs(ş) + f (ş, s(ş))]čş, (6)

and is assumed to be noise-free, that is, σ(ş, s(ş), s(ş −
Q(ş))) = 0. Based on this error vector, we now choose
a robust state feedback controller (1), which is insensi-
tive to the uncertain perturbations or gain fluctuations
and of the form:

ui(ş) = (Kρ + β(ş)ΔKρ(ş))ei(ş), i = 1, 2, . . . .,N,
(7)

where Kρ is the controller gain matrix that is to
be determined in the forthcoming section, The real-
valuedmatrixΔKρ(ş) representing the controller gain
fluctuations, and β(ş) is a stochastic variable describ-
ing the randomly occurring controller gain fluctua-
tions. It is here assumed that ΔKρ(ş) takes the form
ΔKρ(ş) = Mρ�ρ(ş)Nρ, whereMρ andNρ are known
real constant matrices and �ρ(ş) is an unknown time-
varying matrix satisfying �T

ρ (ş)�ρ(ş) ≤ I. Further, it
is assumed that the stochastic variable β(ş) obeys
the Bernoulli distribution with the following probabil-
ity rules: (i) Prob{β(ş) = 1} = E{β(ş)} = β̄ , and (ii)
Prob{β(ş) = 0} = 1 − E{β(ş)} = 1 − β̄ , where β̄ ∈
[0, 1].

Subtracting (6) from (5) then by using (7), we can
obtain the following closed-loop form of the error
systems:

čei(ş) =
⎡⎣Aρei(ş) + g(ş, ei(ş))

+
N∑
j=1

EijCρej(ş − Q(ş)) + (Kρ

+ β(ş)ΔKρ(ş))ei(ş) + wi(ş)

⎤⎦ čş

+ σ̂ (ş, ei(ş), ei(ş − Q(ş)))čř(ş),

Ẑ(ş) = Jρei(ş), i = 1, 2, . . . .,N,

(8)

where g(ş, ei(ş)) = f (ş, xi(ş)) − f (ş, s(ş)) and σ̂ (ş,
ei(ş), ei(ş − Q(ş))) = σ(ş, xi(ş), xi(ş − Q(ş))) − σ(ş,
s(ş), s(ş − Q(ş))). By using the Kronecker product

properties and mathematical manipulations, the error
system (8) can be written in the following compact
form:

če(ş) =
[
(Aρ + Kρ + β̄Mρ�ρ(t)Nρ

+ (β(ş) − β̄)Mρ�ρ(ş)Nρ)e(ş) + G(ş, e(ş))

+ (E ⊗ Cρ)e(ş − Q(ş)) + w(ş)
]
čş

+ σ̂ (ş, e(ş), e(ş − Q(ş)))čř(ş),

Z̃(ş) = Jρe(ş),
(9)

where

e(ş) :=
[
eT1 (ş), eT2 (ş), . . . ., eTN(ş)

]T
,

G(ş, e(ş)) :=
[
gT(ş, e1(ş)), gT(ş, e2(ş)),

× . . . .., gT(ş, eN(ş))
]T

,

σ̂ (ş, e(ş), e(ş − Q(ş)))

:=
[
σ̂T(ş, e1(ş), e1(ş − Q(ş))),

× σ̂T(ş, e2(ş), e2(ş − Q(ş))),

× . . . · · · ., σ̂ (ş, eN(ş),

× eN(ş − Q(ş)))
]T

,

w(t) :=
[
wT
1 (t),wT

2 (t), . . . ..,wT
N(t)

]T
.

Assumption 2.1 (SyedAli, 2014): The noise intensity
function σ(·, ·, ·) : R

+ × R
n × R

n → R
n×m is uni-

formly Lipschitz continuous and also satisfies the lin-
ear growth conditions. Moreover,

Trace
{
σ̂T(ş, xi(ş), xi(ş − Q(ş)))

σ̂ (ş, xi(ş), xi(ş − Q(ş)))
}

≤ xTi (ş)Xxi(ş) + xTi (ş − Q(ş))Yxi(ş − Q(ş)),

where X and Y are positive diagonal matrices with
appropriate dimensions.

Assumption 2.2 (Z. Wang et al., 2006): For any j ∈
{1, 2, . . . ., n}, fj(0) = 0 and their exist constants F−

j
and F+

j such that

F−
j ≤ fj(α1) − fj(α2)

α1 − α2
≤ F+

j , ∀ α1 �= α2. (10)
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Definition 2.1 (Joby et al., 2016): Given a weighting
scalar σ ∈ [0, 1], the synchronisation error system (9)
is said to be asymptotically stable with a prescribed
H∞ performance δ > 0 if for all non-zero w(ş) ∈
L2[0,∞), the response Z̃(ş)under the initial condition
satisfies∫ Tp

0

[
− σ Z̃T(ş)Z̃(ş) + 2(1 − σ)δZ̃T(ş)w(ş)

]
čş

≥ −δ2
∫ Tp

0
[wT(ş)w(ş)]čş, (11)

for any Tp ≥ 0 and any non-zero w(ş) ∈ L2[0,∞).

Remark 2.1: It should be pointed out that the per-
formance index in (11) is a mixed H∞/passive index,
whichmay reduce to theH∞ performance index or the
passivity performance by tuning the weighting param-
eter σ . More specifically, when σ = 0, the expres-
sion in (11) becomes the passivity performance index;
and when σ = 1, the expression in (11) degenerates
into the H∞ performance index. When σ ∈ (0, 1),
the expression (11) stands for the mixed H∞/passive
performance index. Therefore, from an application
viewpoint, our mixed H∞/passive non-fragile con-
troller design method is more convenient for users
than some existing passive non-fragile controller
design methods or H∞ non-fragile controller design
methods.

Remark 2.2: The authors in Xu et al. (2006) and
Lien et al. (2007), studied the non-fragile control for
dynamical systemswith time delays. InXu et al. (2006),
authors discussed the stabilisation andH∞ control for
uncertain stochastic time delay systems via non-fragile
controllers. The non-fragile observer-based control
for linear systems via LMI approach was investi-
gated in Lien et al. (2007). In Chen et al. (2011),
authors pointed out the non-fragile observer-based
H∞ control for neutral stochastic hybrid systems
with time-varying delay. The non-fragile synchroni-
sation of neural networks with time-varying delay
and randomly occurring controller gain fluctuation
have been studied in Fang and Park (2013). In
Wu, Park, Su, and Chu (2013), authors analysed the
non-fragile synchronisation control for complex net-
works with missing data. But in this paper, we have
introduced the synchronisation for Markovian jump-
ing CDNs with time-varying coupling delays. More-
over, we have introduced the non-fragile controller

and derived the sufficient conditions in terms of
LMIs, using H∞/passive synchronisation of stochas-
tic analysis technique which makes the results less
conservative.

Remark 2.3: The stochastic variable β(ş) is intro-
duced by the motivation of Li et al. (2012), wherein
the Bernoulli distributed sequence β(ş) was used to
model the missing information of the system. In our
work, we have used this to describe the probabil-
ity of the random time-varying delay in different
intervals.

Remark 2.4: It should be noted that, so far in the liter-
ature, several control approaches have been proposed
for the synchronisation problem of several CDNs
(Cai et al., 2016; Lee et al., 2012; M. J. Park et al.,
2012), wherein the interconnection topology among
the nodes are assumed to be fixed. However, in prac-
tice, this assumption is practically difficult or even
impossible. However, yet now, there were no results
reported in the existing literature for the synchroni-
sation analysis of stochastic CDNs with Markovian
jump parameters. According to this fact, in this paper,
H∞/passive synchronisation problem of Markovian
jump stochastic CDNs with time-varying delays is
investigated. Furthermore, due to random behaviour
in the dynamics of stochastic CDNs, it is very difficult
to determine the exact fixed control value. Therefore,
in this paper, the feedback control gain is considered
with uncertain terms, which is more significant to
reflect the realistic scenarios.

Remark 2.5: As like the system defined in Syed Ali
and Yogambigai (2018), my problem also contains the
same system but by employing the innovative LKFs
and utilising the Lemmas name we get the less con-
servative results.

Lemma 2.2 (N. Wang et al., 2016): For any constant
matrix M ∈ R

n×n, MT = M > 0, scalars α and β

with α > β and vector x : [β ,α] → R
n, such that the

following integrations are well defined, then

− (α − β)

∫ α

β

xT(s)Mx(s)čs

≤ −
(∫ α

β

x(s)čs
)T

M
(∫ α

β

x(s)čs
)
,
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− (α − β)2

2

∫ α

β

∫ α

u
xT(s)Mx(s)čsču

≤ −
(∫ α

β

∫ α

u
x(s)čsču

)T

× M
(∫ α

β

∫ α

u
x(s)čsču

)
.

Lemma 2.3 (P. Park et al., 2011): Assume that �,
Mi and Ei are real matrices with appropriate dimen-
sions and FTi Fi ≤ I. Then, the inequality� + MiFiEi +
ETi F

T
i M

T
i < 0 holds if and only if there exists a

scalar ε > 0 satisfying� + ε−1MiMT
i + εETi Ei < 0 or

equivalently ⎡⎣� Mi εETi
∗ −εI 0
∗ ∗ −εI

⎤⎦ < 0. (12)

Lemma 2.4 (Langville & Stewart, 2004): The proper-
ties of Kronecker product have the following properties:

(1) (βX) ⊗ Y = X ⊗ (βY);
(2) (X + Y) ⊗ Z = X ⊗ Z + Y ⊗ Z;
(3) (X ⊗ Y)(Z ⊗ W) = (XZ) ⊗ (YW);
(4) (X ⊗ Y)T = XT ⊗ YT.

3. Main results

In this section, we present results for non-fragile syn-
chronisation of complex dynamical networks with
Markovian jumping parameters and stochastic
noise.

Theorem 3.1: For given positive scalars Q1, Q2, μ,
δ, β̄ ∈ [0, 1], matrices Jρ, the network (9) is asymp-
totically stable in mean square with prescribed mixed
H∞ and passivity performance level δ > 0 under the
non-fragile control (7), if there exist matrices Pρ >

0, T1 > 0, T2 > 0, T3 > 0, U1 > 0, U2 > 0, U3 >

0, L1 > 0, positive diagonal matrix Y , and positive
scalars λ1, ε1 such that the following matrix inequalities
hold:

Pρ < λ1I, ρ ∈ S (13)

�̄ρ =

⎡⎢⎣[�ρlm]10×10 ε1ϑρ υT
ρ

∗ −ε1I 0
∗ ∗ −ε1I

⎤⎥⎦ < 0, (14)

where

�ρ11 = PρAρ+AT
ρPT
ρ +PρKρ+KT

ρPT
ρ

+
N∑
j=1

πρjPj + λ1R3 + T1 + T2 + T3

+ Q2
1U1 + Q2

2U2 + Q2
2U3 −F1Y + 2σJ T

ρ Jρ,

�ρ12 = Pρ(E ⊗ Cρ), �ρ15 = Pρ + F2Y ,

�ρ19 = Pρ − 2(1 − σ)δJ T
ρ ,

�ρ22 = λ1R4 − (1 − μ)T3,

�ρ33 = −T1 + Q2
12L1, �ρ44 = −T2, �ρ55 = −Y ,

�ρ66 = −U1, �ρ77 = −(1 − μ)U2, �ρ88 = −U3,

�ρ99 = −δ2I, �ρ1010 = −L1, Q12 = Q2 − Q1,

ϑρ = [
β̄PρMρ 0 0 0 0 0 0 0 0 0

]T ,
υρ = [

Nρ 0 0 0 0 0 0 0 0 0
]
.

Proof: For each ρ ∈ S , define eş = e(ş + s), −Q2 ≤
s ≤ 0. Construct Lyapunov–Krasovskii functional as

V(eş, ş, ρ) =
4∑

n=1
Vn(eş, ş, ρ), (15)

where,

V1(eş, ş, ρ) = eT(ş)Pρe(ş), (16)

V2(eş, ş, ρ) =
∫ ş

ş−Q1

eT(s)T1e(s)čs

+
∫ ş

ş−Q2

eT(s)T2e(s)čs

+
∫ ş

ş−Q(ş)
eT(s)T3e(s)čs, (17)

V3(eş, ş, ρ) = Q1

∫ 0

−Q1

∫ ş

ş+θ

eT(s)U1e(s)čsčθ

+ Q12

∫ −Q1

−Q2

∫ ş−Q1

ş+θ

eT(s)L1e(s)čsčθ ,

(18)

V4(eş, ş, ρ) = Q2

∫ 0

−Q(ş)

∫ ş

ş+θ

eT(s)U2e(s)čsčθ

+ Q2

∫ 0

−Q2

∫ ş

ş+θ

eT(s)U3e(s)čsčθ , (19)

with Pρ > 0, Tv (v = 1, 2, 3), Uv (v = 1, 2, 3), L1,
Q12 = Q2 − Q1. �
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Based on Ito’s differential formula (He et al., 2016),
stochastic derivative of V(eş, ş, ρ) can be calculated by

čV(eş, ş, ρ) = LV(eş, ş, ρ) + Ve(eş, ş, ρ)σ (ş, e(ş),

× e(ş − Q(ş)))čw(ş), (20)

where

LV(eş, ş, ρ) = LV1(eş, ş, ρ) + LV2(eş, ş, ρ)

+ LV3(eş, ş, ρ) + LV4(eş, ş, ρ) and

Ve(eş, ş, ρ) = ∂V(eş, ş, ρ)
∂e

.

The derivative of V(eş, ş, ρ) along trajectories of (9),
can be calculated as,

LV1(eş, ş, ρ) = 2eT(ş)Pρ[(Aρ + Kρ
+ β(ş)(Mρ�ρ(ş)Nρ)
+ (β(ş) − β̄)(Mρ�ρ(ş)Nρ)e(ş)
+ G(ş, e(ş)) + (E ⊗ Cρ)e(ş − Q(ş))

+ w(ş)]čş +
N∑
j=1

πρjeT(ş)Pje(ş)

+ Trace
{
σ̂T(ş, e(ş), e(ş − Q(ş)))

× Pρσ̂ (ş, e(ş), e(ş − Q(ş)))
}
, (21)

LV2(eş, ş, ρ) ≤ eT(ş)(T1 + T2 + T3)e(ş)

− eT(ş − Q1)T1e(ş − Q1)

− eT(ş − Q2)T2e(ş − Q2)

− (1−μ)eT(ş − Q(ş))T3e(ş − Q(ş)),
(22)

LV3(eş, ş, ρ) = Q2
1e

T(ş)U1e(ş)

− Q1

∫ ş

ş−Q1

eT(s)U1e(s)čs

+ Q2
12e

T(ş − Q1)L1e(ş − Q1)

− Q12

∫ ş−Q1

ş−Q2

eT(s)čsL1e(s)čs, (23)

LV4(eş, ş, ρ) = Q2
2e

T(ş)(U2 + U3)e(ş)

− Q2(1 − μ)

∫ ş

ş−Q(ş)
eT(s)U2e(s)čs

− Q2

∫ ş

ş−Q2

eT(s)U3e(s)čs. (24)

Further, by using Jensen’s single integral inequality (N.
Wang et al., 2016) in (24) and (25), we can get the
following inequalities:

− Q1

∫ ş

ş−Q1

eT(s)U1e(s)čs

≤ −
∫ ş

ş−Q1

eT(s)čsU1

∫ ş

ş−Q1

e(s)čs, (25)

− Q12

∫ ş−Q1

ş−Q2

eT(s)čsL1e(s)čs

≤ −
∫ ş−Q1

ş−Q2

eT(s)čsL1

∫ ş−Q1

ş−Q2

e(s)čs, (26)

− Q2

∫ ş

ş−Q(ş)
eT(s)U2e(s)čs

≤ −
∫ ş

ş−Q(ş)
eT(s)čsU2

∫ ş

ş−Q(ş)
e(s)čs, (27)

− Q2

∫ ş

ş−Q2

eT(s)U3e(s)čs

≤ −
∫ ş

ş−Q2

eT(s)čsU3

∫ ş

ş−Q2

e(s)čs. (28)

On the other hand, Assumption 2.1 and condition (13)
gives that

Trace
{
σT(ş, (ş), e(ş − Q(ş)))Pρ · σ(ş, (ş)

×, e(ş − Q(ş)))
}

≤ λ1 · Trace
{
σT(ş, (ş), e(ş − Q(ş)))σ (ş, (ş),

× e(ş − Q(ş)))
}

≤ λ1 ·
[
eT(ş)R3e(ş) + eT(ş − Q(ş))

× R4e(ş − Q(ş))
]
, (29)

where λ1 are positive scalars and R3, R4 are known
constant matrices.

Moreover, according toAssumption 2.2, for positive
diagonal matrix Y , the following inequality hold:

[
e(ş)

F(ş, e(ş))

]T [
F1Y −F2Y

−F2Y Y

] [
e(ş)

F(ş, e(ş))

]
≤ 0.

(30)
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From, (20)–(30), taking both sides mathematical
expectation we get,

E

[
čV(eş, ş, ρ)

čş

]
= E[LV(eş, ş, ρ)],

= E

[
ηT(ş)

(
�̂ + ϑρ�ρ(ş)υρ

+ (ϑρ�ρ(ş)υρ)
T
)
η(ş)

]
, (31)

where

�̂ =
[
�̂l,m

]
, l,m = 1, 2, . . . ., 10,

with

�̂11 = PρAρ + AT
ρPT
ρ + PρKρ + KT

ρPT
ρ

+
N∑
j=1

πρjPj + λ1R3 + T1 + T2 + T3

+ Q2
1U1 + Q2

2U2 + Q2
2U3 − F1Y ,

�̂12 = Pρ(E ⊗ Cρ), �̂15 = Pρ + F2Y ,
�̂19 = Pρ, �̂22 = λ1R4 − (1 − μ)T3,

�̂33 = −T1 + Q2
12L1, �̂44 = −T2,

�̂55 = −Y , �̂66 = −U1, �̂77 = −(1 − μ)U2,

�̂88 = −U3, �̂99 = 0, �̂1010 = −L1,

Q12 = Q2 − Q1.

Based on Lemma 2.3 for any positive scalar ε1, the
right-hand side of (31) can equivalently be written as

�̂10×10 + ϑρ�ρ(ş)υρ + (ϑρ�ρ(ş)υρ)
T

≤ �̂10×10 + ε1ϑρυρ + ε1ϑ
T
ρ υρ. (32)

By applying Schur complement Lemma, the inequali-
ties (32) becomes,

�̄ρ =

⎡⎢⎣�̂10×10 ε1ϑρ υT
ρ

∗ −ε1I 0
∗ ∗ −ε1I

⎤⎥⎦ < 0, (33)

we get

E[LV(eş, ş, ρ)] ≤ E

[
ηT(ş)�̄ρη(ş)

]
< 0. (34)

Hence, using Lyapunov stability approach, we can con-
clude, the stochastic system (9) is asymptotically stable
in mean square.

Next, we study the mixed H∞ passivity perfor-
mance of system (9) with non-zero disturbance input
(w(ş) �= 0) for any ş > 0. Now, we define

Jzv(ş) = E

{∫ Tp

0

[
σ Z̃T(ş)Z̃(ş) − 2(1− σ)δZ̃T(ş)w(ş)

− δ2wT(ş)w(ş)
]
čş

}
, ş ≥ 0, (35)

and we can see that,

Jzv(ş) = E

{∫ Tp

0

[
σ Z̃T(ş)Z̃(ş) − 2(1− σ)δZ̃T(ş)w(ş)

− δ2wT(ş)w(ş) + LV(eş, ş, ρ)
]
čş

}
− E

[
LV(eş, ş, ρ)

]
,

≤ E

[∫ ş

0
ηT(ş)�̄ρη(ş)čş

]
, (36)

where

η(ş) =
[
eT(ş) eT(ş − Q(ş)) eT(ş − Q1)

eT(ş − Q2) FT(ş, e(ş))
∫ ş

ş−Q1

eT(s)čs∫ ş

ş−Q(ş)
eT(s)čs

∫ ş

ş−Q2

eT(s)čs

wT(ş)

∫ ş−Q1

ş−Q2

eT(s)čs
]T

,

and �̄ρ is given (14). Hence for w(ş) �= 0 we get,
Jzv(ş) < 0, and (11) satisfies. Therefore, for any non-
zero w(ş) ∈ [0,∞), (11) holds for all ş > 0.

Hence byDefinition 2.1, gives the asymptotic stabil-
ity in mean square of the system (9).

Theorem 3.2: For given positive scalars Q1, Q2, μ, δ,
β̄ ∈ [0, 1], matrices Jρ, the network (9) is asymptoti-
cally stable in mean square with prescribed mixed H∞
and passivity performance level δ under the non-fragile
control (7), if there exist symmetric matrices Xρ >

0, P̂ρ > 0, T̂lρ > 0 (l = 1, 2, 3), Ûvρ > 0 (v = 1, 2, 3),
L̂1ρ > 0, any matricesZρ with appropriate dimensions,
positive diagonal matrix Y , and positive scalars λ̂1 > 0,
ε1 such that the following matrix inequalities hold:

Xρ − λ̂1I > 0, ρ ∈ S , (37)̂̄�ρ =
[
�̂ρlm

]
15×15

< 0, (38)
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where

�̂ρ11 = AρXρ + XρAT
ρ + Zρ + ZT

ρ + T̂1ρ + T̂2ρ
+ T̂3ρ + Q2

1Û1ρ + Q2
2Û2ρ + Q2

2Û3ρ − F1Ŷ
+ πρρ(h)Xρ, �̂ρ12 = (E ⊗ Cρ)Xρ,

�̂ρ15 = P̂ρ + F2Ŷ , �̂ρ19 = I − 2(1 − σ)δXρJ T
ρ ,

�̂ρ111 = β̄Mρ, �̂ρ112 = XρNρ, �̂ρ113 = Xρ
√
R3,

�̂ρ114 =
[√

πρ1X T
ρ , . . . ..,

√
πρ(ρ−1)X T

ρ ,

× √
πρ(ρ+1)X T

ρ , . . . .,
√

πρNX T
ρ

]
,

�̂ρ115 = XρJρ, �̂ρ22 = −(1 − μ)T̂3ρ,

�̂ρ213 = Xρ
√
R4, �̂ρ33 = −T̂1ρ + Q2

12L̂1ρ,

�̂ρ44 = −T̂2ρ, �̂ρ55 = Ŷ , �̂ρ66 = −Û1ρ,

�̂ρ77 = −(1 − μ)Û2ρ, �̂ρ88 = −Û3ρ,

�̂ρ99 = −δ2I, �̂ρ1010 = −L̂1ρ, �̂ρ1111 = −ε1I,

�̂ρ1212 = −ε1I, �̂ρ1313 = −̂λ1I,

�̂ρ1414 = −diag
[
X1, . . . · · · .,Xρ−1,

× Xρ+1, . . . .,XN

]
,

�̂ρ1515 = −σ I, λ̂1 = − 1
λ1

,

Other terms �̂ρlm are defined in Theorem 3.2. The feed-
back controller gain matrices in (7) are computed by
Kρ = ZρX−1

ρ .

Proof: Let Xρ = P−1
ρ and pre and post multiply

thematrix �̄ρ by diag{Xρ,Xρ,Xρ,Xρ,Xρ,Xρ,Xρ,Xρ, I,
Xρ, I, I}.

Now, we introduce the following new variables:
XρTlXρ = T̂lρ (l = 1, 2, 3),XρUvXρ = Ûvρ (v = 1, 2, 3),
XρL1Xρ = L̂1ρ, XρPρXρ = P̂ρ and Zρ = KρXρ.

Moreover, the conditions in (37) can be obtained
from (13), (14), respectively, which are the desired
conditions. Hence, the proof is completed. �

Remark 3.1: The two stochastic variables satisfying
Bernoulli random binary distributions are adopted to
character the randomly occurring phenomena in the
synchronisation problem for complex dynamical net-
works. It can be observed that when β̄ = 1, the con-
trollers (9) are degenerated to the general non-fragile
controllers. By utilising the stochastic information, a

better synchronisation performance can be obtained
with less conservatism.

Remark 3.2: It is noted that the non-fragile stochastic
Markov jump synchronisation problem for CDNs (9)
in Theorem 3.2 and the desired controllers can be
obtained when LMIs (36) are feasible then it is solvable
(Figure 1).

4. Numerical example

In this section, a numerical example is presented to
demonstrate the effectiveness of the proposed syn-
chronisation control scheme for the complex dynami-
cal network (9).

Example 4.1: Stochastic Markov jump CDNs with 3-
nodes and modes 2, is considered as

če(ş) =
[
(Aρ + Kρ + β̄Mρ�ρ(ş)Nρ

+ (β(ş) − β̄)Mρ�ρ(ş)Nρ)e(ş) + G(ş, e(ş))

+ (E ⊗ Cρ)e(ş − Q(ş)) + w(ş)
]
čş

+ ρ̂(ş, e(ş), e(ş − Q(ş)))čř(ş),

Z̃(ş) = Jρe(ş),

with the parameters

A1 =
[
0.5 0
0 0.5

]
, C1 =

[
0.3 0
0 0.3

]
,

A2 =
[
2.5 0
0 2.5

]
, C2 =

[
0.2 0
0 0.4

]
,

F2 =
[
0.5 0
0 0.5

]
.

It is clear to see that f (ş, xi(ş)) satisfies Assumption 2.2,
and F1 = 0. In this example, we consider the Markov
jump topology with two modes, the outer coupling
matrix is assumed to be

E =
⎡⎣−2 1 1

1 −1 0
1 0 −1

⎤⎦ .

Then it is easy to verify that Q1 = 0.1327, Q2 = 0.04,
σ = 0.5, μ = 0.01, δ = 0.4036 and

R3 =
[
0.5 0
0 0.5

]
, R4 =

[
0.6 0
0 0.6

]
,

J1 =
[
2 4
3 4

]
.
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Figure 1. Flow graph of the proposed method.

The stochastic variable representing the controller gain
fluctuations is chosen as β(ş) = 0.25 + 0.25 sin(ş).
Furthermore, the uncertain matrices in the control
gain are taken as

M1 =
[
0.01 0.1
0.02 0.02

]
, M2 =

[
0.02 0.02
0.03 0.01

]
,

N1 =
[
0.01 0.02
0.01 0.03

]
, N2 =

[
0.02 0.01
0.01 0.01

]
,

and �ρ(ş) = sin(ş). By solving (37), (38) we get the
following solutions:

P1 =
[−5.7174 0.0044
0.0044 −5.7131

]
,

P2 =
[−5.7136 0.0033
0.0033 −5.7163

]
,

Y =
[
11.9073 0

0 11.9073

]
,

T11 =
[
10.6298 0.0214
0.0214 10.5908

]
,

T21 =
[
10.5379 0.0214
0.0214 10.4989

]
,

T31 =
[
10.5645 −0.0288
−0.0288 10.5385

]
,

T12 =
[
10.6007 0.0270
0.0270 10.6096

]
,

T22 =
[
10.5088 0.0270
0.0270 10.5178

]
,

T32 =
[
10.5097 −0.0484
−0.0484 10.5345

]
,

U11 =
[
11.4159 0.0004
0.0004 11.4152

]
,

U21 =
[
11.5294 0.0000
0.0000 11.5293

]
,

U31 =
[
11.4159 0.0004
0.0004 11.4152

]
,

U12 =
[
11.4153 0.0005
0.0005 11.4155

]
,

U22 =
[
11.5293 0.0001
0.0001 11.5293

]
,

U32 =
[
11.4153 0.0005
0.0005 11.4155

]
,

Z1 =
[−25.7784 1.2256

1.2256 −26.9589

]
,

Z2 =
[−26.7399 1.5280

1.5280 −26.3696

]
,
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Figure 2. Error trajectories of the system in Examplewith node 3.

X1 =
[
0.1391 0.1353
0.1353 0.1384

]
,

X2 =
[
0.1033 0.0990
0.0990 0.1018

]
,

L11 =
[
11.4178 0.0002
0.0002 11.4175

]
,

L12 =
[
11.4175 0.0003
0.0003 11.4176

]
.

The corresponding non-fragile controller gain matri-
ces obtained are as follows (Figure 2):

K1 = 103
[−3.9494 3.8698
4.0378 −4.1422

]
,

K2 = 103
[−4.0304 3.9358
3.8810 −4.0340

]
,

ε1 = 12.2138, λ̂1 = − 1
λ1

= 12.0978.

Remark 4.1: In Examples of Sakthivel et al. (2018),
authors have taken the discrete time-varying delays as
τ1(ş) = sin(ş), τ2(ş) = sin(ş). It followed thatμ = 0.5
and Bernoulli distributed sequence β̄ = 0.9. But in
this paper, in Example 4.1 discrete time-varying delays
are chosen asQ1(ş) = 0.1327 + sin(ş),Q2(ş) = 0.04 +
sin(ş), σ = 0.5, μ = 0.01, δ = 0.4036, we can con-
clude that our results are better than those in Sakthivel
et al. (2018)

5. Conclusion

In this study, H∞ and passive non-fragile synchroni-
sation of Markovian jump stochastic CDNs with
time-varying delays, randomly occurring gain vari-
ation and stochastic noise is investigated. Moreover,
we have introduced a stochastic variable satisfying
the Bernoulli distribution to represent the random
gain variations in the non-fragile controller. Lya-
punov–Krasovskii stability theory and some stoch-
astic techniques are employed. We developed a new
H∞ and passive performance stochastic synchronisa-
tion criterion for the investigated system in terms of
LMIs and given a design algorithm for the proposed
non-fragile state feedback controller to a solution of
the attain set of LMIs. At long last, a numerical exam-
ple is given to validate the efficiency and feasibility of
these technique expected in this paper. We can extend
the present results to the analysis of synchronization of
H∞ filter design with discrete-time Markovian jump
CDNs.
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ABSTRACT This paper addresses an adaptive fuzzy feedback controller design problem for finite-time
Mittag-Leffler synchronization (FTMLS) of fractional-order quaternion-valued reaction-diffusion T-S fuzzy
molecular modeling of delayed neural networks. A novel approach is proposed to effectively deal with
the joint effects from fuzzy rules and reaction-diffusion terms for the class of T-S fuzzy fractional-order
reaction-diffusion delayed quaternion-valued neural networks (FORDDQVNNs) under consideration.
By employing Lyapunov stability theory, Caputo fractional derivative, several algebraic criteria are estab-
lished to guarantee the FTMLS of T-S fuzzy FORDDQVNNs via designed fuzzy feedback controller.
Moreover, the adaptive controller and parameter update laws are designed via adaptive control methods.
Compared with existing results in the literature, we also show that our results are less conservative than
existing ones with these illustrative T-S fuzzy FORDDQVNNs. A numerical example is presented to verify
the analysis results and illustrate the effectiveness of the proposed FTMLS conditions.

INDEX TERMS Quaternion-valued neural networks (QVNNs), fractional derivatives, reaction-diffusion
terms, Takagi-Sugeno fuzzy, adaptive control law.

I. INTRODUCTION
Based on these biological knowledge, the stability of
molecular models of genetic regulatory networks, neural
networks (NNs) and etc., has received more and more
attention [1]–[3]. Note that these applications have impor-
tant relationships with their dynamic behaviors, the internal
dynamics of NNs, such as stability, multistability, synchro-
nization, and so on, and have received increasing atten-
tion in past decades [4], [5]. In order to describe physical

The associate editor coordinating the review of this manuscript and

approving it for publication was Seyedali Mirjalili .

phenomena more accurately, fractional-order neural net-
works (FONNs) are recognized as a significant improve-
ment over the integer-order NNs because of their long-term
memory and hereditary properties [6], [7]. Subsequently,
FONNs as a kind of important biological networks, have
attracted increasing interests [8], [9]. In the study of FONNs,
the discussion of dynamical behaviors is always a hot topic,
such as Mittag-Leffler synchronization [10], stability [11]
and so forth [12], [13]. Time delays, such as leakage
delays, distributed delays, discrete delays, and neutral delays
are widespread and inevitable in NNs [14]–[17]. It is
a source of oscillation, divergence, instability, chaos and
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poor performance. Therefore, investigation of delayed
NNs is not only of theoretical significance but also of practi-
cal significance.

As a typical collective behavior, synchronization has
attracted considerable attention due to its theoretical
importance and practical applications in various fields
such as the modeling brain activity, cryptography, clock
synchronization of sensor networks [18]–[20]. Until now,
the problem of synchronization for fractional-order systems,
particularly, dynamical networks [21] has been much ana-
lyzed, and widely control strategies, including the sliding
mode control [22], impulsive control [23], the pinning con-
trol [24], and the adaptive control [10] have been concentrated
on this topic. The above mentioned types of synchronization
are shows that the trajectories of the response system can
reach the trajectories of deriving system over the infinite
horizon. In the application point of view, the synchronization
should be realized in finite-time which is more and more
important. Thus, it is necessary to analyze the finite-time
synchronization of FONNs. Recently, many authors have
paid their attention and interest for the analysis of finite-time
synchronization of FONNs and some good results has been
reported in [25]–[27]. For instance, the author [28] investi-
gated the FTMLS of memristive BAM FONNs with time
delays via state-feedback control. Chen et al. [29] studied
FTMLS of memristor-based FONNs with parameters uncer-
tainty by using Lyapunov-like method.

Reaction-diffusion NNs (RDNNs), in which the neuron
states are dependent on both time and space, can perfectly
describe the time and spatial evolutions. In comparison with
the traditional NNs, RDNNs could realize better approxima-
tions of actual systems. It is thus reasonable and important to
consider NNs with diffusion effects. Recently, many elegant
achievements on qualitative analysis of dynamical behaviors
for various RDNN models have been reported in [30]–[32].
In recent years, many efforts have been dedicated
to investigating synchronization of RDNNs with time
delays [33]–[35]. Also, relatively recently, reaction-diffusion
terms have been incorporated into some fractional-order
models [36], [37]. For example, Stamova and Stamov [38]
developed impulsive control on Mittag-Leffler synchroni-
zation of FONNs with time-varying delays and
reaction-diffusion terms. On the other hand, recent years
have witnessed a rapid growing interest in adaptive
control [39], [40] which is an important control technique and
has beenwidely used to synchronization of NNswith reaction
effects. These days, adaptive control has been applied to
adjust control gains to achieve synchronization of FONNs
with reaction effects. Based on the Caputo partial fractional
derivative and adaptive control technique, some sufficient
conditions for ensuring coupled networks synchronization
of fractional-order reaction-diffusion systems were discussed
in [41].

Takagi-Sugeno (T-S) fuzzy model [42] is widely rec-
ognized as an effective mathematical model, which sup-
ports various kinds of analyzes of which synchronization is

a promising topic in the fuzzy control community, espe-
cially for nonlinear systems. Among various kinds of fuzzy
methods, the T-S fuzzy systems are widely accepted as
a useful tool for design and analysis of fuzzy control
system [43]–[45]. Recently, the T-S fuzzy rules have been
connected with the RDNNs and several accomplishments
have been achieved. Based on the T-S fuzzy model, a fuzzy
controller of state-feedback type was considered for fuzzy
memristive-based RDNNs in [46]. In [47], the fuzzy adaptive
stabilization problem was discussed for T-S fuzzy memris-
tive RDNNs by employing the event-triggered sampled-data
control. Authors in [48] analyzed the synchronization of
RDNNs subject to partial couplings and T-S fuzzy nodes
under pinning control. In [49], another fuzzy sampled-data
controller was adopted to deal with the synchronization of
T-S fuzzy RDNNs.

Above all, although the corresponding methods and
techniques for studying real-valued NNs (RVNNs) or
complex-valued NNs (CVNNs) cannot be directly used to
investigate QVNNs, QVNNs can be converted into four
real-valued systems by applying Hamilton rules to quater-
nion multiplication [50], [51]. Considering the simple rep-
resentation of quaternion, which is easy to understand the
geometrical meanings, QVNNs can be applied to various
fields of science and engineering. Up to now, direct quater-
nion approach [52], plural decomposition approach [53], real
decomposition approach [54], and have been proposed to
investigate the dynamical analysis and synchronization for
integer-order QVNNs. Recently, some researchers attempted
to investigate the advantages of quaternions into FONNs.
It is also necessary to point out that fractional-order QVNNs
have many applications in engineering and science, such
as wave propagation, electromagnetic waves, diffusion, and
viscoelastic systems. So far, there have been some results
on the dynamic properties of fractional-order QVNNs, but
there are few results to propose Mittag-Leffler synchroniza-
tion criteria for fractional-order QVNNs [55]–[57]. Further-
more, the FTMLS problem of fractional-order QVNNs by
using linear feedback controllers have been investigated [58].
Since reaction-diffusion of CVNNs and QVNNs have
storage capacity advantages in comparison to RVNNs,
the synchronization issues of CVNNs and QVNNs with
reaction-diffusion terms have received growing research
interest in recent years [59]–[62]. However, to the best of
our knowledge, these results are under the assumption that
the reaction-diffusion QVNNs are of integer-order, and there
are no results on the FTMLS of fractional-order systems via
adaptive fuzzy feedback controller. Therefore, it is highly
important and indeed imperative to study the FTMLS prob-
lem of FORDDQVNNs both in theoretical interest and prac-
tical applications.

Inspired by the above-mentioned arguments, in this
paper aims to design an adaptive fuzzy feedback controller
scheme for FTMLS problem of T-S fuzzy FORDDQVNNs.
By virtue of the Green formula, Caputo fractional deriva-
tive and inequality technique, several algebraic criteria are
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established to guarantee the FTMLS problem of the proposed
model. The main contributions of this paper are listed as
below:

(i) First, the quaternion algebra is introduced in
fractional-order reaction-diffusion system. To avoid the non-
commutativity of quaternion multiplication, the QVNNs are
decomposed into four RVNNs by using plural decomposition
approach based on Hamilton rules: i2 = −1, j2 = −1,
k2 = −1, ij = k, ji = −k, jk = i, kj = −i, ki = j, and
ik = −j.
(ii) This paper is one of the first paper that combines

the fuzzy IF-THEN rules and the quaternion algebra with
fractional-order RDNNs and attempts to achieve the FTMLS
of T-S fuzzy FORDDQVNNs and the fuzzy-dependent
adjustable matrix inequality technique is more flexible and
helpful to reduce the conservatism.

(iii) By the construction of fuzzy feedback controller,
Lyapunov functional, and some novel easily verifiable alge-
braic inequality conditions is established to achieve the
FTMLS of T-S fuzzy FORDDQVNNs. It is worth noting
that the effect of the reaction-diffusion on the FTMLS is
considered in our results. Also the suitable adaptive controller
is designed with adaptive law which guarantees the FTMLS
of the proposed model.

(iv) Based on the previous papers on QVNNs, such as
without reaction-diffusion terms [50]–[58], without fuzzy
rules in [62], and without fractional-order [62], the effects
of reaction-diffusion on the fractional-order system are addi-
tionally proposed in this paper, which means that our consid-
ered QVNNs are more general and may better meet practical
requirements. Several corollaries are provided to show the
advantages of the obtained results. It is noted that our results
are comprehensive and include some existing ones [59]–[61]
as special cases.

(v) To further illustrate the effectiveness of our theoretical
result approach is demonstrated by numerical example and
from the simulation results to comparing control scenarios
are given.

Notation: Real numbers, complex numbers, and quater-
nion numbers are referred as R,C, and Q respectively.
Rn×n,Cn×n,Qn×n represents the set of all n×n real-valued,
complex-valued, quaternion-valued matrices, respectively.
The Caputo fractional derivative operator CDλ0 is chosen
for fractional-order derivative with order λ. For ℘ =

(℘1, ℘2, . . . , ℘n)T ∈ Qn, let |℘| = (|℘1|, |℘2|, . . . , |℘n|)T

be the modulus of ℘, and ‖℘‖ =
(∑n

θ=1 |℘θ |
2
) 1
2 be the

norm of ℘.

II. MODEL DESCRIPTION AND PRELIMINARIES
A. QUATERNION ALGEBRA
Quaternions are an associative algebra defined over the real
field R. A real quaternion, simply called quaternion, can be
written in the form

h̄ = h̄r+h̄ii+h̄jj+h̄kk ∈ Q

with real coefficients h̄r , h̄i, h̄j and h̄k comprises a real part
denoted byR(h̄) = h̄r , and a vector part with three imaginary
components, denoted by I (h̄) = h̄ii+h̄jj+h̄kk.
The imaginary units, i, j, and k obey the following rules:

i2 = j2 = k2 = −1,
ij = −ji = k,
jk = −kj = i,
ki = −ik = j,

which implies immediately that the quaternion multiplication
is not commutative.
For two quaternions p = pr+pii+pjj+p(k)k and h̄ = h̄(r)+
h̄(i)i+h̄(j)j+h̄(k)k, the addition between them is defined by

p+h̄ = (pr+h̄r )+(pi+h̄i)i+(pj+h̄j)j+(pk+h̄k )k.

The product between them is defined as

ph̄ = (pr h̄r−pih̄i−pjh̄j−pk h̄k )
+(pr h̄i+pih̄r )+pjh̄k−pk h̄j)i
+(pr h̄j+pjh̄r−pih̄k+pk h̄i)j
+(pr h̄k+pk h̄r+pih̄j−pjh̄i)k.

For a quaternion h̄ = h̄r+h̄ii+h̄jj+h̄kk, the conjugate of h̄,
denoted by h̄∗ or ¯̄h, is defined as

h̄∗ = ¯̄h = h̄r−h̄ii−h̄jj−h̄kk,

and the modulus of h̄, denoted by |h̄|, is defined as

|h̄| =
√
h̄h̄∗ =

√
(h̄r )2+(h̄i)2+(h̄j)2+(h̄k )2.

Definition 1 [38]: For any t > 0, Caputo fractional
derivative of order λ(0 < λ < 1) for a function χ (t, z) ∈
C1[[0, b]×�,R] is defined by

∂λχ (t, z)
∂tλ

=
1

0(1−λ)

∫ t

0

∂χ (s, z)
∂s

ds
(t−s)λ

,

where 0(υ) =
∫
∞

0 e−t tυ−1dt. In the case when, ∂
λχ (t,·)
∂tλ =

dλχ (t)
dtλ =

CDλ0χ (t).

Definition 2 [10]: The one-parameter Mittag-Leffler
function is defined as

Eλ(x) =
∞∑
n=0

xn

0(nλ+1)
,

where λ > 0, and x ∈ C.
In this paper, the fractional-order quaternion-valued

reaction-diffusion molecular model of neural networks with
time delay is considered as the following form:

∂λ=θ (t, z)
∂tλ

=

m∑
α=1

∂

∂zα

(
qθα

∂=θ (t, z)
∂zα

)
−aθ=θ (t, z)+

n∑
ϕ=1

bθϕ fϕ(=ϕ(t, z))

+

n∑
ϕ=1

dθϕgϕ(=ϕ(t−σ (t), z))+Iθ ,
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(or) the vector form

∂λ=(t, z)
∂tλ

= 1=(t, z)−A=(t, z)+BF(=(t, z))
+DG(=(t−σ (t), z))+I, (1)

where λ ∈ (0, 1), θ = 1, 2, . . . , n; � is a bounded
domain with smooth boundary ∂� in Rm, and the
space vector z = (z1, z2, . . . , zm) ∈ �; =(t, z) =(
=1(t, z),=2(t, z), . . . ,=n(t, z)

)T
∈ Qn

; 1=(t, z) =
∑m
α=1

∂
∂zα

(
Q ∂=θ (t,z)

∂zα

)
; Q = diag(q1α, q2α, . . . , qnα) ∈ Rn×n

with Q > 0 is transmission diffusion operator;
A = diag(a1, a2, . . . , an) ∈ Rn×n with aθ > 0;
B = (bθϕ)n×n ∈ Qn×n and D = (dθϕ)n×n ∈

Qn×n are stands for the interconnection weight matrix;
F(=(t, z)) =

(
f1(=1(t, z)), f2(=2(t, z)), . . . , fn(=n(t, z))

)T
∈

Qn and G(=(t−σ (t), z)) =
(
g1(=1(t−σ (t), z)), g2(=2(t−

σ (t), z)), . . . , gn(=n(t−σ (t), z))
)T
∈ Qn define without

and with time delay, the activation function respectively;
I = (I1, I2, . . . , In) ∈ Qn is the external input; =θ (t, z) ∈ Q
is the quaternion-valued state variable for the θ th unit at
time t and in space z and obesisously, =θ = =rθ+=

i
θ i+

=
j
θ j+=

k
θk; bθϕ = brθϕ+b

i
θϕ i+b

j
θϕ j+b

k
θϕk; dθϕ = d rθϕ+d

i
θϕ i+

d jθϕ j+d
k
θϕk; fϕ(=ϕ(t, z)) = f rϕ (=

r
ϕ(t, z))+f

i
ϕ(=

i
ϕ(t, z))i+f

j
ϕ(=

j
ϕ

(t, z))j+f kϕ (=
k
ϕ(t, z))k; gϕ(=ϕ(t−σ (t), z)) = grϕ(=

r
ϕ(t−σ (t),

z))+giϕ(=
i
ϕ(t−σ (t), z))i+g

j
ϕ(=

j
ϕ(t−σ (t), z))j+gkϕ(=

k
ϕ(t−σ (t),

z))k; Iθ = Irθ+I
i
θ i+I

j
θ j+I

k
θ k. The initial and boundary

values of (1) are set as{
=(t, z) = 0, (t, z) ∈ [−σ,+∞)×∂�,
=(s, z) = ψ ι(s, z), (s, z) ∈ [−σ, 0]×�,

where ψ ι(s, z) is bounded and continuous on [−σ, 0]×�,
ψ ι(s, z) = (ψ ι1(s, z), ψ

ι
2(s, z) . . . , ψ

ι
n(s, z))

T
; ψ ι(s, z) =

ψ ιr (s, z)+ψ ιi(s, z)i+ψ ιj(s, z)j+ψ ιk (s, z)k.
Viewing system (1) as the drive system, we introduce the

response system as

∂λZθ (t, z)
∂tλ

=

m∑
α=1

∂

∂zα

(
qθα

∂Zθ (t, z)
∂zα

)
−aθZθ (t, z)+

n∑
ϕ=1

bθϕ fϕ(Zϕ(t, z))

+

n∑
ϕ=1

dθϕgϕ(Zϕ(t−σ (t), z))+Iθ+uθ (t, z),

(or) the vector form

∂λZ(t, z)
∂tλ

= 1Z(t, z)−AZ(t, z)+BF(Z(t, z))

+DG(Z(t−σ (t), z))+I+û(t, z), (2)

where λ ∈ (0, 1), 1Z(t, z) =
∑m
α=1

(
qθα

∂Zθ (t,z)
∂zα

)
; Z(t, z) =(

Z1(t, z), . . . ,Zn(t, z)
)T
∈ Qn

; û(t, z) = (u1(t, z), . . . ,
un(t, z))T ∈ Qn is the controller which will be designed.

Moreover,{
Z(t, z) = 0, (t, z) ∈ [−σ,+∞)×∂�,
Z(s, z) = ψς (s, z), (s, z) ∈ [−σ, 0]×�,

where ψς (s, z) is bounded and continuous on [−σ, 0]×�,
ψς (s, z) = (ψς1 (s, z), ψ

ς
2 (s, z) . . . , ψ

ς
n (s, z))T ; ψς (s, z) =

ψςr (s, z)+ψς i(s, z)i+ψς j(s, z)j+ψςk (s, z)k.

B. FUZZY LOGIC MOLECULAR MODELING
A fuzzy dynamic model has been proposed by Takagi and
Sugeno [42] to represent different linear/nonlinear systems
of different rules. Based on this, we shall construct T-S fuzzy
system to describe molecular model of FOQVRDNNs struc-
ture. Similar to [47]–[49], we consider a T-S fuzzy molecular
model, in which the ξ th rule is formulated in the following
form:

Plant rule ξ : If β1(t) is 4
ξ
1, β2(t) is 4

ξ
2, . . . , βr (t) is 4

ξ
r .

Then

∂λ=(t, z)
∂tλ

= 1=(t, z)−Aξ=(t, z)+BξF(=(t, z))

+DξG(=(t−σ (t), z))+I,
=(t, z) = 0, (t, z) ∈ [−σ,+∞)×∂�,
=(s, z) = ψ ι(s, z), (s, z) ∈ [−σ, 0]×�,

(3)

where β`(t) (` = 1, 2, . . . , r) and 4ξ` (ξ = 1, 2, . . . , ζ )
show the premise variable vectors and fuzzy sets, respec-
tively; ζ is the number of fuzzy If-Then rules; Aξ =

diag(aξ1, aξ2, . . . , aξn) with Aξ > 0; Bξ = (bξθϕ) ∈ Qn×n
;

Dξ = (dξθϕ) ∈ Qn×n.

By employing the weighted average fuzzy blending
approach, the overall T-S fuzzy FORDDQVNNs (3) can be
described as

∂λ=(t, z)
∂tλ

=
∑ζ
ξ=19ξ (β(t))

{
1=(t, z)−Aξ=(t, z)

+BξF(=(t, z))+DξG(=(t−σ (t), z))+I
}
,

=(t, z) = 0, (t, z) ∈ [−σ,+∞)×∂�,
=(s, z) = ψ ι(s, z), (s, z) ∈ [−σ, 0]×�,

(4)

where β(t) = (β1(t), β2(t), . . . , βr (t))T , 9ξ (β(t)) =∏r
`=1 4

ζ
` (β`(t))∑ζ

ξ=1
∏r
`=1 4

ξ
` (β`(t))

, in which 4ζ` (β`(t)) is the grade of mem-

bership of β`(t) is 4ζ` . According to the fuzzy theory it
follows that

∑ζ
ξ=19ξ (β(t)) = 1 and 9ξ (β(t)) ≥ 0 for

(ξ = 1, 2, . . . , ζ ).
The considered T-S fuzzy response (2) is in the similar

form (4),

∂λZ(t, z)
∂tλ

=
∑ζ
ξ=19ξ (β(t))

{
1Z(t, z)−AξZ(t, z)

+BξF(Z(t, z))+DξG(Z(t−σ (t), z))
+I+ûξ (t, z)

}
,

Z(t, z) = 0, (t, z) ∈ [−σ,+∞)×∂�,
Z(s, z) = ψκ (s, z), (s, z) ∈ [−σ, 0]×�,

(5)

where ûξ = (uξ1, uξ2, . . . , uξn)T .
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By applying the non-commutativity of quaternionmultipli-
cation with hamiltonian rules (4) and (5) be rewritten as the
following four real-valued equations

∂λ=r (t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1=r (t, z)−Aξ=

r (t, z)+BrξF
r (=r (t, z))

−BiξF
i(=i(t, z))−BjξF

j(=j(t, z))−BkξF
k (=k (t, z))

+Dr
ξG

r (=r (t−σ (t), z))−Di
ξG

i(=i(t−σ (t), z))

−Dj
ξG

j(=j(t−σ (t), z))−Dk
ξG

k (=k (t−σ (t), z))

+Ir
}
, (6)

∂λ=i(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1=i(t, z)−Aξ=

i(t, z)+BrξF
i(=i(t, z))

+BiξF
r (=r (t, z))+BjξF

k (=k (t, z))−BkξF
k (=j(t, z))

+Dr
ξG

i(=i(t−σ (t), z))+Di
ξG

r (=r (t−σ (t), z))

+Dj
ξG

k (=k (t−σ (t), z))−Dk
ξG

J (=J (t−σ (t), z))

+I i
}
, (7)

∂λ=j(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1=j(t, z)−Aξ=

j(t, z)+BrξF
j(=j(t, z))

−BiξF
k (=k (t, z))+BjξF

r (=r (t, z))+BkξF
i(=i(t, z))

+Dr
ξG

j(=j(t−σ (t), z))−Di
ξG

k (=k (t−σ (t), z))

+Dj
ξG

r (=r (t−σ (t), z))+Dk
ξG

i(=i(t−σ (t), z))

+I j
}
, (8)

∂λ=k (t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1=k (t, z)−Aξ=

k (t, z)+BrξF
k (=k (t, z))

+BiξF
j(=j(t, z))−BjξF

i(=i(t, z))+BkξF
r (=r (t, z))

+Dr
ξG

k (=k (t−σ (t), z))+Di
ξG

j(=j(t−σ (t), z))

−Dj
ξG

i(=i(t−σ (t), z))+Dk
ξG

r (=r (t−σ (t), z))

+Ik
}
, (9)

(or) two complex-valued equations of drive system

∂λ=R(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1=R(t, z)−Aξ=

R(t, z)

+BRξ F
R(=R(t, z))−BIξF

I (=I (t, z))

+DR
ξ G

R(=R(t−σ (t), z))

−DI
ξG

I (=I (t−σ (t), z))+IR
}
, (10)

∂λ=I (t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1=I (t, z)−Aξ=

I (t, z)

+BRξ F
I (=I (t, z))+BIξF

R(=R(t, z))

+DR
ξ G

I (=I (t−σ (t), z))

+DI
ξG

R(=R(t−σ (t), z))+II
}
, (11)

and

∂λZr (t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1Zr (t, z)−AξZ

r (t, z)

+BrξF
r (Zr (t, z))−BiξF

i(Zi(t, z))−BjξF
j(Zj(t, z))

−BkξF
k (Zk (t, z))+Dr

ξG
r (Zr (t−σ (t), z))

−Di
ξG

i(Zi(t−σ (t), z))−Dj
ξG

j(Zj(t−σ (t), z))

−Dk
ξG

k (Zk (t−σ (t), z))+Ir+ûrξ (t, z)
}
, (12)

∂λZi(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1Zi(t, z)−AξZ

i(t, z)

+BrξF
i(Zi(t, z))+BiξF

r (Zr (t, z))+BjξF
k (Zk (t, z))

−BkξF
k (Zj(t, z))+Dr

ξG
i(Zi(t−σ (t), z))

+Di
ξG

r (Zr (t−σ (t), z))+Dj
ξG

k (Zk (t−σ (t), z))

−Dk
ξG

J (ZJ (t−σ (t), z))+I i+ûiξ (t, z)
}
, (13)

∂λZj(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1Zj(t, z)−AξZ

j(t, z)

+BrξF
j(Zj(t, z))−BiξF

k (Zk (t, z))+BjξF
r (Zr (t, z))

+BkξF
i(Zi(t, z))+Dr

ξG
j(Zj(t−σ (t), z))

−Di
ξG

k (Zk (t−σ (t), z))+Dj
ξG

r (Zr (t−σ (t), z))

+Dk
ξG

i(Zi(t−σ (t), z))+I j+ûjξ (t, z)
}
, (14)

∂λZk (t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1Zk (t, z)−AξZ

k (t, z)

+BrξF
k (Zk (t, z))+BiξF

j(Zj(t, z))−BjξF
i(Zi(t, z))

+BkξF
r (Zr (t, z))+Dr

ξG
k (Zk (t−σ (t), z))

+Di
ξG

j(Zj(t−σ (t), z))−Dj
ξG

i(Zi(t−σ (t), z))

+Dk
ξG

r (Zr (t−σ (t), z))+Ik+ûkξ (t, z)
}
, (15)
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(or) two complex-valued equations of response system

∂λZR(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1ZR(t, z)−AξZ

R(t, z)

+BRξ F
R(ZR(t, z))−BIξF

I (ZI (t, z))

+DR
ξ G

R(ZR(t−σ (t), z))

−DI
ξG

I (ZI (t−σ (t), z))+IR+ûRξ (t, z)
}
, (16)

∂λZI (t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1ZI (t, z)−AξZ

I (t, z)

+BRξ F
I (ZI (t, z))+BIξF

R(ZR(t, z))

+DR
ξ G

I (ZI (t−σ (t), z))

+DI
ξG

R(ZR(t−σ (t), z))+II+ûIξ (t, z)
}
. (17)

Associated with system (6)-(9) and (12)-(15), initial and
boundary value conditions are as follows

=
η(t, z) = 0, (t, z) ∈ [−σ,+∞)×∂�,
=
η(s, z) = ψ ιη(s, z), (s, z) ∈ [−σ, 0]×�,

Zη(t, z) = 0, (t, z) ∈ [−σ,+∞)×∂�,
Zη(s, z) = ψςη(s, z), (s, z) ∈ [−σ, 0]×�.

(18)

Assumption 1: Throughout, this paper, we assume that
f ηθ (·) and g

η
θ (·) (θ = 1, 2, . . . , n, η = r, i, j, k) are respec-

tively of function fθ (·) and gθ (·) satisfy the following inequal-
ities for any ϑ1, ϑ2 ∈ R,

|f ηθ (ϑ1)−f
η
θ (ϑ2)| ≤ Fη

θ |ϑ1−ϑ2|,

|gηθ (ϑ1)−g
η
θ (ϑ2)| ≤ Gηθ |ϑ1−ϑ2|,

where Fη
θ ,G

η
θ (η = r, i, j, k) are positive constants.

Assumption 2: For any θ = 1, 2, . . . , n, α = 1, 2, . . . ,m,
the constants qθα are such that qθα > q̂θα ≥ 0.
Now define the error℘(t, z) = Z(t, z)−=(t, z) , ℘r (t, z)+

i℘i(t, z)+j℘j(t, z)+k℘k (t, z), namely ℘r (t, z) = Zr (t, z)−
=
r (t, z), ℘i(t, z) = Zi(t, z)−=i(t, z), ℘j(t, z) = Zj(t, z)−
=
j(t, z), ℘k (t, z) = Zk (t, z)−=k (t, z). Simplicity we denote

tσ = t−σ (t). Then the error dynamics system between
(6)-(9) and (12)-(15), can be obtained with four parts as:

∂λ℘r (t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1℘r (t, z)−Aξ℘

r (t, z)

+Brξ
[
F r (Zr (t, z))−F r (=r (t, z))

]
−Biξ

[
F i(Zi(t, z))−F i(=i(t, z))

]
−Bjξ

[
F j(Zj(t, z))−F j(=j(t, z))

]
−Bkξ

[
Fk (Zk (t, z))−Fk (=k (t, z))

]
+Dr

ξ

[
Gr (Zr (tσ , z))−Gr (=r (tσ , z))

]
−Di

ξ

[
Gi(Zi(tσ , z))−Gi(=i(tσ , z))

]
−Dj

ξ

[
Gj(Zj(tσ , z))−Gj(=j(tσ , z))

]
−Dk

ξ

[
Gk (Zk (tσ , z))−Gk (=k (tσ , z))

]
+ûrξ (t, z)

}
, (19)

∂λ℘i(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1℘i(t, z)−Aξ℘

i(t, z)

+Brξ
[
F i(Zi(t, z))−F i(=i(t, z))

]
+Biξ

[
F r (Zr (t, z))−F r (=r (t, z))

]
+Bjξ

[
Fk (Zk (t, z))−Fk (=k (t, z))

]
−Bkξ

[
F j(Zj(t, z))−F j(=j(t, z))

]
+Dr

ξ

[
Gi(Zi(tσ , z))−Gi(=i(tσ , z))

]
+Di

ξ

[
Gr (Zr (tσ , z))−Gr (=r (tσ , z))

]
+Dj

ξ

[
Gk (Zk (tσ , z))−Gk (=k (tσ , z))

]
−Dk

ξ

[
Gj(Zj(tσ , z))−Gj(=j(tσ , z))

]
+ûiξ (t, z)

}
, (20)

∂λ℘j(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1℘j(t, z)−Aξ℘

j(t, z)

+Brξ
[
F j(Zj(t, z))−F j(=j(t, z))

]
−Biξ

[
Fk (Zk (t, z))−Fk (=k (t, z))

]
+Bjξ

[
F r (Zr (t, z))−F r (=r (t, z))

]
+Bkξ

[
F i(Zi(t, z))−F i(=i(t, z))

]
+Dr

ξ

[
Gj(Zj(tσ , z))−Gj(=j(tσ , z))

]
−Di

ξ

[
Gk (Zk (tσ , z))−Gk (=k (tσ , z))

]
+Dj

ξ

[
Gr (Zr (tσ , z))−Gr (=r (tσ , z))

]
+Dk

ξ

[
Gi(Zi(tσ , z))−Gi(=i(tσ , z))

]
+ûjξ (t, z)

}
, (21)

∂λ℘k (t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1℘k (t, z)−Aξ℘

k (t, z)

+Brξ
[
Fk (Zk (t, z))−Fk (=k (t, z))

]
+Biξ

[
F j(Zj(t, z))−F j(=j(t, z))

]
−Bjξ

[
F i(Zi(t, z))−F i(=i(t, z))

]
+Bkξ

[
F r (Zr (t, z))−F r (=r (t, z))

]
+Dr

ξ

[
Gk (Zk (tσ , z))−Gk (=k (tσ , z))

]
+Di

ξ

[
Gj(Zj(tσ , z))−Gj(=j(tσ , z))

]
−Dj

ξ

[
Gi(Zi(tσ , z))−Gi(=i(tσ , z))

]
+Dk

ξ

[
Gr (Zr (tσ , z))−Gr (=r (tσ , z))

]
+ûkξ (t, z)

}
. (22)

The initial and boundary values of (19)-(22) are set as{
℘η(t, z) = 0, (t, z) ∈ [−σ,+∞)×∂�,
℘η(s, z) = ψ̂η(s, z), (s, z) ∈ [−σ, 0]×�,

where ψ̂η(s, z) = ψςη(s, z)−ψ ιη(s, z) (η = r, i, j, k).
We define, ℘(t, z) =

(
(℘r (t, z))T , (℘i(t, z))T , (℘j(t, z))T ,

(℘k (t, z))T
)T
, 1℘(t, z) =

(
(1℘r (t, z))T , (1℘i(t, z))T ,

(1℘j(t, z))T , (1℘k (t, z))T
)T
, Ûξ (t, z) =

(
(ûrξ (t, z))

T ,
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(ûiξ (t, z))
T , (ûjξ (t, z))

T , (ûkξ (t, z))
T
)T
, F̂(℘̂(t, z)) =

(
(F r (Zr

(t, z))−F r (=r (t, z)))T , (F i(Zi(t, z))−F i(=i(t, z)))T , (F j(Zj(t,
z))−F j(=j(t, z)))T , (Fk (Zk (t, z))−Fk (=k (t, z)))T

)T
, Ĝ(℘̂(tσ ,

z)) =
(
(Gr (Zr (tσ , z))−Gr (=r (tσ , z)))T , (Gi(Zi(tσ , z))−

Gi(=i(tσ , z)))T , (Gj(Zj(tσ , z))−Gj(=j(tσ , z)))T , (Gk (Zk (tσ ,

z))−Gk (=k (tσ , z)))T
)T
,

Âξ = diag(Aξ ,Aξ ,Aξ ,Aξ ),

B̂ξ =


Brξ −Biξ −Bjξ −Bkξ
Biξ Brξ −Bkξ Bjξ
Bjξ Bkξ Brξ −Biξ
Bkξ −Bjξ Biξ Brξ

 ,

Ĉξ =


Crξ −Ciξ −Cjξ −Ckξ
Ciξ Crξ −Ckξ Cjξ
Cjξ Ckξ Crξ −Ciξ
Ckξ −Cjξ Ciξ Crξ

 .
Then the system (19)-(22) can be expressed as

∂λ℘(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1℘(t, z)−Âξ℘(t, z)

+B̂ξ F̂(℘̂(t, z))+Ĉξ Ĝ(℘̂(tσ , z))+Ûξ (t, z)
}
. (23)

The initial and boundary values related to system (23) are
of the form{

℘(t, z) = 0, (t, z) ∈ [−σ,+∞)×∂�,
℘(s, z) = ψ̂(s, z), (s, z) ∈ [−σ, 0]×�,

(24)

where ψ̂(s, z) =
(
(ψ̂ r (s, z))T , (ψ̂ i(s, z))T , (ψ̂ j(s, z))T ,

(ψ̂k (s, z))T
)T
.

Definition 3 [60]: The drive system (4) is said to be
finite-time Mittag-Leffler synchronized with response system
(5) for proposed controllers. That is, the state of error sys-
tem (23) is said to be Mittag-Leffler stable in finite-time
under initial condition (24), if there exist positive con-
stants {δη, εη,2, ω, T } (η = r, i, j, k), δ =

∑j,k
η=r,i{δ

η
},

ε =
∑j,k
η=r,i{ε

η
}, ε > δ, ‖ψ̂η(s, z)‖ ≤ δη, and

‖ψ̂(s, z)‖ ≤ δ, such that ‖℘η(t, z)‖ ≤ εη and ‖℘(t, z)‖ ≤
‖ψ̂(s, z)‖{Eλ(−2tλ)}ω < ε, hold (t ≥ 0, t ∈ z and z is the
interval [0,T )).
Lemma 1 [36]: For a continuously differentiable with

respect to its first argument function ρ : [0, ν]×� → R,
ν > 0, we have

1
2
∂λρ2(t, z)
∂tλ

≤ ρ(t, z)
∂λρ(t, z)
∂tλ

, t ≥ 0, z ∈ �,

where 0 < λ < 1.
Lemma 2 [36]: Let� be cube |zk | < lk (k = 1, 2, . . . ,m)

and ϑ(z) = ϑ(z1, z2, . . . , zm) be a real-valued function which
defines on ϑ(z) ∈ C1(�) and it vanishes on the boundary ∂�
of �, i.e., ϑ(z)|z∈∂� = 0. Then∫

�

ϑ2(z)dz ≤ l2k

∫
�

(∂ϑ(z)
∂zk

)2
dz.

Lemma 3 [38]: Assume that the function V ∈ V0 is
such that for t > 0 and the inequality CDλ0V(t, ρ̂(t, z)) ≤
−π̂V(t, ρ̂(t, z)), where λ ∈ (0, 1) and π̂ > 0. Then

V(t, ρ̂(t, z)) ≤ sup
−σ≤s≤0

V(0, ρ̂(0, z))Eλ(π̂ tλ), t > 0.

III. MAIN RESULTS
In this section, some sufficient conditions are derived by
designing suitable controllers respectively to achieve FTMLS
of the drive-response system (4) and (5). To achieve the
FTMLS of drive-response system, the following controllers
are designed

ûηξ (t, z) = −µ
η
ξθ℘

η
θ (t, z), (25)

where ξ = 1, 2, . . . , ζ ; µηξθ (η = r, i, j, k) are fuzzy
feedback control gains to be determined later.
Remark 1: The control gains µηξθ are considered to be

not same in ûrξ , û
i
ξ , û

j
ξ and û

k
ξ , so the conservatism can be

improved.
Theorem 1: Under Assumption 1 and 2, the system (4) and

(5) achieve the FTMLS via controller (25) if the following
conditions holds:

(i) 2 = (f−L) > 0, (26)

(ii) Eλ(−2tλ) <
ε2

δ2
, (27)

where,

f = min
1≤θ≤n

{fr
θ ,f

i
θ ,f

j
θ ,f

k
θ },L = max

1≤θ≤n
{Lrθ ,L

i
θ ,L

j
θ ,L

k
θ },

Q̂ =
q̂θα
l2α
,

fr
θ = min

1≤θ≤n

{1
2

[
2(aξθ+Q̂+µrξθ )−

n∑
ϕ=1

(
F r
ϕ |b

r
ξθϕ |

−F i
ϕ |b

i
ξθϕ |−F

j
ϕ |b

j
ξθϕ |−F

k
ϕ |b

k
ξθϕ |+F

r
ϕ(|b

r
ξϕθ |

+|biξϕθ |+|b
j
ξϕθ |+|b

k
ξϕθ |)+G

r
ϕ |d

r
ξθϕ |−G

i
ϕ |d

i
ξθϕ |

−Gjϕ |d
j
ξθϕ |−G

k
ϕ |d

k
ξθϕ |

)]}
,

fi
θ = min

1≤θ≤n

{1
2

[
2(aξθ+Q̂+µiξθ )−

n∑
ϕ=1

(
F i
ϕ |b

r
ξθϕ |

+F r
ϕ |b

i
ξθϕ |+F

k
ϕ |b

j
ξθϕ |−F

j
ϕ |b

k
ξθϕ |+F

i
θ (|b

r
ξϕθ |

−|biξϕθ |+|b
k
ξϕθ |−|b

j
ξϕθ |)+G

i
ϕ |d

r
ξθϕ |+G

r
ϕ |d

i
ξθϕ |

+Gkϕ |d
j
ξθϕ |−G

j
ϕ |d

k
ξθϕ |

)]}
,

fj
θ = min

1≤θ≤n

{1
2

[
2(aξθ+Q̂+µjξθ )−

n∑
ϕ=1

(
F j
ϕ |b

r
ξθϕ |

−Fk
ϕ |b

i
ξθϕ |+F

r
ϕ |b

j
ξθϕ |+F

i
ϕ |b

k
ξθϕ |+F

j
θ (|b

r
ξϕθ |

−|bjξϕθ |−|b
k
ξϕθ |+|b

i
ξϕθ |)+G

j
ϕ |d

r
ξθϕ |−G

k
ϕ |d

i
ξθϕ |

+Grϕ |d
j
ξθϕ |+G

i
ϕ |d

k
ξθϕ |

)]}
,
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fk
θ = min

1≤θ≤n

{1
2

[
2(aξθ+Q̂+µkξθ )−

n∑
ϕ=

(
Fk
ϕ |b

r
ξθϕ |

+F j
ϕ |b

i
ξθϕ |−F

i
ϕ |b

j
ξθϕ |+F

r
ϕ |b

k
ξθϕ |+F

k
θ (|b

r
ξϕθ |

−|bkξϕθ |+|b
j
ξϕθ |−|b

i
ξϕθ |)+G

k
ϕ |d

r
ξθϕ |+G

j
ϕ |d

i
ξθϕ |

−Giϕ |d
j
ξθϕ |+G

r
ϕ |d

k
ξθϕ |

)]}
,

Lrθ = max
1≤θ≤n

{1
2

n∑
ϕ=1

Grθ
(
|d rξϕθ |+|d

i
ξϕθ |+|d

j
ξϕθ |+|d

k
ξϕθ |

)}
,

Liθ = max
1≤θ≤n

{1
2

n∑
ϕ=1

Giθ
(
|d rξϕθ |−|d

i
ξϕθ |−|d

j
ξϕθ |+|d

k
ξϕθ |

)}
,

L
j
θ = max

1≤θ≤n

{1
2

n∑
ϕ=1

Gjθ
(
|d rξϕθ |+|d

i
ξϕθ |−|d

j
ξϕθ |−|d

k
ξϕθ |

)}
,

Lkθ = max
1≤θ≤n

{1
2

n∑
ϕ=1

Gkθ
(
|d rξϕθ |−|d

i
ξϕθ |+|d

j
ξϕθ |−|d

k
ξϕθ |

)}
.

Proof: Consider a Lyapunov function as follows

V(t, ℘(t, z)) =
j,k∑
η=r,i

∫
�

n∑
θ=1

1
2
(℘ηθ )

2(t, z)dz. (28)

By calculating the Caputo fractional derivative of
V(t, ℘(t, z)) with λ ∈ (0, 1), along the trajectory of the error
system, we can obtain

dλV(t, ℘(t, z))
dtλ

=

j,k∑
η=r,i

{1
2
dλ

dtλ

( ∫
�

n∑
θ=1

(℘ηθ )
2(t, z)dz

)}

=

j,k∑
η=r,i

1
2

n∑
θ=1

{ dλ
dtλ

( ∫
�

(℘ηθ )
2(t, z)dz

)}
.

(29)

In particular, we have

dλ

dtλ

( ∫
�

(℘ηθ )
2(t, z)dz

)
=

1
0(1−λ)

∫ t

0

( d
ds

∫
�

(℘ηθ )
2(t, z)dz

) ds
(t−s)λ

=

∫
�

1
0(1−λ)

( ∫ t

0

∂(℘ηθ )
2(t, z)

∂s
ds

(t−s)λ

)
dz

=

∫
�

∂λ(℘ηθ )
2(t, z)

∂tλ
dz. (30)

From (29) and (30), we get

dλV(t, ℘(t, z))
dtλ

=

j,k∑
η=r,i

{1
2

n∑
θ=1

∫
�

∂λ(℘ηθ )
2(t, z)

∂tλ
dz
}
.

It follows from Lemma 1 that

dλV(t, ℘(t, z))
dtλ

≤

j,k∑
η=r,i

{ n∑
θ=1

∫
�

℘
η
θ (t, z)

∂λ℘
η
θ (t, z)

∂tλ
dz
}
.

That is,

CDλ0V(t, ℘(t, z)) ≤
n∑
θ=1

∫
�

℘rθ (t, z)
∂λ℘rθ (t, z)

∂tλ
dz

+

n∑
θ=1

∫
�

℘iθ (t, z)
∂λ℘iθ (t, z)

∂tλ
dz

+

n∑
θ=1

∫
�

℘
j
θ (t, z)

∂λ℘
j
θ (t, z)

∂tλ
dz

+

n∑
θ=1

∫
�

℘kθ (t, z)
∂λ℘kθ (t, z)

∂tλ
dz.

We denote,

W1 =

n∑
θ=1

∫
�

℘rθ (t, z)
∂λ℘rθ (t, z)

∂tλ
dz,

W2 =

n∑
θ=1

∫
�

℘iθ (t, z)
∂λ℘iθ (t, z)

∂tλ
dz,

W3 =

n∑
θ=1

∫
�

℘
j
θ (t, z)

∂λ℘
j
θ (t, z)

∂tλ
dz,

W4 =

n∑
θ=1

∫
�

℘kθ (t, z)
∂λ℘kθ (t, z)

∂tλ
dz.

Then,

W1 ≤

ζ∑
ξ=1

9ξ (β(t))
n∑
θ=1

∫
�

℘rθ (t, z)
{ m∑
α=1

∂

∂zα

(
qθα

∂℘rθ (t, z)

∂zα

)
−aξθ℘rθ (t, z)+

n∑
ϕ=1

brξθϕ
[
f rϕ (Z

r
ϕ(t, z))−f

r
ϕ (=

r
ϕ(t, z))

]
−

n∑
ϕ=1

biξθϕ
[
f iϕ(Z

i
ϕ(t, z))−f

i
ϕ(=

i
ϕ(t, z))

]
−

n∑
ϕ=1

bjξθϕ
[
f jϕ(Z

j
ϕ(t, z))−f

j
ϕ(=

j
ϕ(t, z))

]
−

n∑
ϕ=1

bkξθϕ
[
f kϕ (Z

k
ϕ(t, z))−f

k
ϕ (=

k
ϕ(t, z))

]
+

n∑
ϕ=1

d rξθϕ
[
grϕ(Z

r
ϕ(tσ , z))−g

r
ϕ(=

r
ϕ(tσ , z))

]
−

n∑
ϕ=1

d iξθϕ
[
giϕ(Z

i
ϕ(tσ , z))−g

i
ϕ(=

i
ϕ(tσ , z))

]
−

n∑
ϕ=1

d jξθϕ
[
gjϕ(Z

j
ϕ(tσ , z))−g

j
ϕ(=

j
ϕ(tσ , z))

]
−

n∑
ϕ=1

dkξθϕ
[
gkϕ(Z

k
ϕ(tσ , z))−g

k
ϕ(=

k
ϕ(tσ , z))

]
−µrξθ℘

r
θ (t, z)

}
. (31)
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By the boundary conditions and Green’s formula, we have
m∑
α=1

∫
�

℘rθ (t, z)
∂

∂zα

(
qθα

∂℘rθ (t, z)

∂zα

)
dz

= −

m∑
α=1

∫
�

qθα
(∂℘rθ (t, z)

∂zα

)2
dz.

By using Assumption 2 and the light of Lemma 2, we have
m∑
α=1

∫
�

℘rθ (t, z)
∂

∂zα

(
qθα

∂℘rθ (t, z)

∂zα

)
dz

≤ −

m∑
α=1

∫
�

q̂θα
(∂℘rθ (t, z)

∂zα

)2
dz

≤ −

m∑
α=1

∫
�

q̂θα
l2α

(℘rθ )
2(t, z)dz

≤ −Q̂
∫
�

(℘rθ )
2(t, z)dz. (32)

According to Assumption 1 and the inequality 2|x||y| ≤
x2+y2, we have
n∑
ϕ=1

brξθϕ

∫
�

℘rθ (t, z)
[
f rϕ (Z

r
ϕ(t, z))−f

r
ϕ (=

r
ϕ(t, z))

]
dz

≤

n∑
ϕ=1

F r
ϕ |b

r
ξθϕ |

∫
�

|℘rθ (t, z)||℘
r
ϕ(t, z)|dz

≤
1
2

n∑
ϕ=1

F r
ϕ |b

r
ξθϕ |

∫
�

(
(℘rθ )

2(t, z)+(℘rϕ)
2(t, z)

)
dz, (33)

n∑
ϕ=1

biξθϕ

∫
�

℘iθ (t, z)
[
f iϕ(Z

i
ϕ(t, z))−f

i
ϕ(=

i
ϕ(t, z))

]
dz

≤
1
2

n∑
ϕ=1

F i
ϕ |b

i
ξθϕ |

∫
�

(
(℘iθ )

2(t, z)+(℘iϕ)
2(t, z)

)
dz, (34)

n∑
ϕ=1

bjξθϕ

∫
�

℘
j
θ (t, z)

[
f jϕ(Z

j
ϕ(t, z))−f

j
ϕ(=

j
ϕ(t, z))

]
dz

≤
1
2

n∑
ϕ=1

F j
ϕ |b

j
ξθϕ |

∫
�

(
(℘jθ )

2(t, z)+(℘jϕ)
2(t, z)

)
dz, (35)

n∑
ϕ=1

bkξθϕ

∫
�

℘kθ (t, z)
[
f kϕ (Z

k
ϕ(t, z))−f

k
ϕ (=

k
ϕ(t, z))

]
dz

≤
1
2

n∑
ϕ=1

Fk
ϕ |b

k
ξθϕ |

∫
�

(
(℘kθ )

2(t, z)+(℘kϕ)
2(t, z)

)
dz, (36)

n∑
ϕ=1

d rξθϕ

∫
�

℘rθ (t, z)
[
grϕ(Z

r
ϕ(tσ , z))−g

r
ϕ(=

r
ϕ(tσ , z))

]
dz

≤
1
2

n∑
ϕ=1

Grϕ |d rξθϕ |
∫
�

(
(℘rθ )

2(t, z)+(℘rϕ)
2(tσ , z)

)
dz, (37)

n∑
ϕ=1

d iξθϕ

∫
�

℘iθ (tσ , z)
[
giϕ(Z

i
ϕ(tσ , z))−g

i
ϕ(=

i
ϕ(tσ , z))

]
dz

≤
1
2

n∑
ϕ=1

Giϕ |d iξθϕ |
∫
�

(
(℘iθ )

2(t, z)+(℘iϕ)
2(tσ , z)

)
dz, (38)

n∑
ϕ=1

d jξθϕ

∫
�

℘
j
θ (tσ , z)

[
gjϕ(Z

j
ϕ(tσ , z))−g

j
ϕ(=

j
ϕ(tσ , z))

]
dz

≤
1
2

n∑
ϕ=1

Gjϕ |d
j
ξθϕ |

∫
�

(
(℘jθ )

2(t, z)+(℘jϕ)
2(tσ , z)

)
dz, (39)

n∑
ϕ=1

dkξθϕ

∫
�

℘kθ (tσ , z)
[
gkϕ(Z

k
ϕ(tσ , z))−g

k
ϕ(=

k
ϕ(tσ , z))

]
dz

≤
1
2

n∑
ϕ=1

Gkϕ |dkξθϕ |
∫
�

(
(℘kθ )

2(t, z)+(℘kϕ)
2(tσ , z)

)
dz. (40)

Substituting (32)-(40) into (31), we obtain that

W1 ≤

ζ∑
ξ=1

9ξ (β(t))
{
−
1
2

n∑
θ=1

[
2(aξθ+Q̂+µrξθ )

−

n∑
ϕ=1

(
F r
ϕ |b

r
ξθϕ |−F

i
ϕ |b

i
ξθϕ |−F

j
ϕ |b

j
ξθϕ |−F

k
ϕ |b

k
ξθϕ |

+F r
θ |b

r
ξϕθ |+G

r
ϕ |d

r
ξθϕ |−G

i
ϕ |d

i
ξθϕ |−G

j
ϕ |d

j
ξθϕ |

−Gkϕ |dkξθϕ |
)] ∫

�

(℘rθ )
2(t, z)dz

−
1
2

n∑
θ=1

n∑
ϕ=1

F i
θ |b

i
ξϕθ |

∫
�

(℘iθ )
2(t, z)dz

−
1
2

n∑
θ=1

n∑
ϕ=1

F j
θ |b

j
ξϕθ |

∫
�

(℘jθ )
2(t, z)dz

−
1
2

n∑
θ=1

n∑
ϕ=1

Fk
θ |b

k
ξϕθ |

∫
�

(℘kθ )
2(t, z)dz

+
1
2

n∑
θ=1

n∑
ϕ=1

Grθ |d
r
ξϕθ |

∫
�

(℘rθ )
2(tσ , z)dz

−
1
2

n∑
θ=1

n∑
ϕ=1

Giθ |d
i
ξϕθ |

∫
�

(℘iθ )
2(tσ , z)dz

−
1
2

n∑
θ=1

n∑
ϕ=1

Gjθ |d
j
ξϕθ |

∫
�

(℘jθ )
2(tσ , z)dz

−
1
2

n∑
θ=1

n∑
ϕ=1

Gkθ |d
k
ξϕθ |

∫
�

(℘kθ )
2(tσ , z)dz

}
. (41)

Similarly,

W2 ≤

ζ∑
ξ=1

9ξ (β(t))
{1
2

n∑
θ=1

n∑
ϕ=1

F r
θ |b

i
ξϕθ |

∫
�

(℘rθ )
2(t, z)dz

−
1
2

n∑
θ=1

[
2(aξθ+Q̂+µiξθ )−

n∑
ϕ=1

(
F i
ϕ |b

r
ξθϕ |

+F r
ϕ |b

i
ξθϕ |+F

k
ϕ |b

j
ξθϕ |−F

j
ϕ |b

k
ξθϕ |+F

i
θ |b

i
ξϕθ |

+Giϕ |d rξθϕ |+G
r
ϕ |d

i
ξθϕ |+G

k
ϕ |d

j
ξθϕ |
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−Gjϕ |dkξθϕ |
)] ∫

�

(℘iθ )
2(t, z)dz

−
1
2

n∑
θ=1

n∑
ϕ=1

F j
θ |b

k
ξϕθ |

∫
�

(℘jθ )
2(t, z)dz

+
1
2

n∑
θ=1

n∑
ϕ=1

Fk
θ |b

j
ξϕθ |

∫
�

(℘kθ )
2(t, z)dz

+
1
2

n∑
θ=1

n∑
ϕ=1

Grθ |d
i
ξϕθ |

∫
�

(℘rθ )
2(tσ , z)dz

+
1
2

n∑
θ=1

n∑
ϕ=1

Giθ |d
r
ξϕθ |

∫
�

(℘iθ )
2(tσ , z)dz

−
1
2

n∑
θ=1

n∑
ϕ=1

Gjθ |d
k
ξϕθ |

∫
�

(℘jθ )
2(tσ , z)dz

+
1
2

n∑
θ=1

n∑
ϕ=1

Gkθ |d
j
ξϕθ |

∫
�

(℘kθ )
2(tσ , z)dz

}
, (42)

W3 ≤

ζ∑
ξ=1

9ξ (β(t))
{1
2

n∑
θ=1

n∑
ϕ=1

F r
θ |b

j
ξϕθ |

∫
�

(℘rθ )
2(t, z)dz

+
1
2

n∑
θ=1

n∑
ϕ=1

F i
θ |b

k
ξϕθ |

∫
�

(℘iθ )
2(t, z)dz−

1
2

n∑
θ=1

[
2(aξθ

+Q̂+µjξθ )−
n∑
ϕ=1

(
F j
ϕ |b

r
ξθϕ |−F

k
ϕ |b

i
ξθϕ |+F

r
ϕ |b

j
ξθϕ |

+F i
ϕ |b

k
ξθϕ |+F

j
θ |b

r
ξθϕ |+G

j
ϕ |d

r
ξθϕ |−G

k
ϕ |d

i
ξθϕ |

+Grϕ |d
j
ξθϕ |+G

i
ϕ |d

k
ξθϕ |

)] ∫
�

(℘jθ )
2(t, z)dz

−
1
2

n∑
θ=1

n∑
ϕ=1

Fk
θ |b

i
ξϕθ |

∫
�

(℘kθ )
2(t, z)dz

+
1
2

n∑
θ=1

n∑
ϕ=1

Grθ |d
j
ξϕθ |

∫
�

(℘rθ )
2(tσ , z)dz

+
1
2

n∑
θ=1

n∑
ϕ=1

Giθ |d
k
ξϕθ |

∫
�

(℘iθ )
2(tσ , z)dz

+
1
2

n∑
θ=1

n∑
ϕ=1

Gjθ |d
r
ξϕθ |

∫
�

(℘jθ )
2(tσ , z)dz

−
1
2

n∑
θ=1

n∑
ϕ=1

Gkθ |d
i
ξϕθ |

∫
�

(℘kθ )
2(tσ , z)dz

}
, (43)

and

W4 ≤

ζ∑
ξ=1

9ξ (β(t))
{1
2

n∑
θ=1

n∑
ϕ=1

F r
θ |b

k
ξϕθ |

∫
�

(℘rθ )
2(t, z)dz

−
1
2

n∑
θ=1

n∑
ϕ=1

F i
θ |b

j
ξϕθ |

∫
�

(℘iθ )
2(t, z)dz

+
1
2

n∑
θ=1

n∑
ϕ=1

F j
θ |b

i
ξϕθ |

∫
�

(℘jθ )
2(t, z)dz

−
1
2

n∑
θ=1

[
2(aξθ+Qθ+µ

k
ξθ )−

n∑
ϕ=1

(
Fk
ϕ |b

k
ξθϕ |

+F j
ϕ |b

i
ξθϕ |−F

i
ϕ |b

j
ξθϕ |+F

r
ϕ |b

k
ξθϕ |+F

k
θ |b

r
ξθϕ |

+Gkθ |d
r
ξθϕ |+G

j
θ |d

i
ξθϕ |−G

i
θ |d

j
ξθϕ |

+Grθ |d
k
ξθϕ |

) ∫
�

(℘kθ )
2(t, z)dz

+
1
2

n∑
θ=1

n∑
ϕ=1

Grθ |d
k
ξϕθ |

∫
�

(℘rθ )
2(tσ , z)dz

−
1
2

n∑
θ=1

n∑
ϕ=1

Giθ |d
j
ξϕθ |

∫
�

(℘iθ )
2(tσ , z)dz

+
1
2

n∑
θ=1

n∑
ϕ=1

Gjθ |d
i
ξϕθ |

∫
�

(℘jθ )
2(tσ , z)dz

+
1
2

n∑
θ=1

n∑
ϕ=1

Gkθ |d
r
ξϕθ |

∫
�

(℘kθ )
2(tσ , z)dz

}
. (44)

Combining from (41)-(44), we have

CDλ0V(t, ℘(t, z))

≤

ζ∑
ξ=1

9ξ (β(t))
{
−
1
2

n∑
θ=1

[
2(aξθ+Q̂+µrξθ )

−

n∑
ϕ=1

(
F r
ϕ |b

r
ξθϕ |−F

i
ϕ |b

i
ξθϕ |−F

j
ϕ |b

j
ξθϕ |−F

k
ϕ |b

k
ξθϕ |

+F r
ϕ(|b

r
ξϕθ |+|b

i
ξϕθ |+|b

j
ξϕθ |+|b

k
ξϕθ |)+G

r
ϕ |d

r
ξθϕ |

−Giϕ |d iξθϕ |−G
j
ϕ |d

j
ξθϕ |−G

k
ϕ |d

k
ξθϕ |

)] ∫
�

(℘rθ )
2(t, z)dz

−
1
2

n∑
θ=1

[
2(aξθ+Q̂+µiξθ )−

n∑
ϕ=1

(
F i
ϕ |b

r
ξθϕ |+F

r
ϕ |b

i
ξθϕ |

+Fk
ϕ |b

j
ξθϕ |−F

j
ϕ |b

k
ξθϕ |+F

i
θ (|b

r
ξϕθ |−|b

i
ξϕθ |+|b

k
ξϕθ |

−|bjξϕθ |)+G
i
ϕ |d

r
ξθϕ |+G

r
ϕ |d

i
ξθϕ |+G

k
ϕ |d

j
ξθϕ |−G

j
ϕ |d

k
ξθϕ |

)]
×

∫
�

(℘iθ )
2(t, z)dz−

1
2

n∑
θ=1

[
2(aξθ+Q̂+µjξθ )

−

n∑
ϕ=1

(
F j
ϕ |b

r
ξθϕ |−F

k
ϕ |b

i
ξθϕ |+F

r
ϕ |b

j
ξθϕ |+F

i
ϕ |b

k
ξθϕ |

+F j
θ (|b

r
ξϕθ |−|b

j
ξϕθ−|b

k
ξϕθ |+|b

i
ξϕθ |)+G

j
ϕ |d

r
ξθϕ |

−Gkϕ |d iξθϕ |+G
r
ϕ |d

j
ξθϕ |+G

i
ϕ |d

k
ξθϕ |

)] ∫
�

(℘jθ )
2(t, z)dz

−
1
2

n∑
θ=1

[
2(aξθ+Q̂+µkξθ )−

n∑
ϕ=1

(
Fk
ϕ |b

r
ξθϕ |+F

j
ϕ |b

i
ξθϕ |

−F i
ϕ |b

j
ξθϕ |+F

r
ϕ |b

k
ξθϕ |+F

k
θ (|b

r
ξϕθ |−|b

k
ξϕθ+|b

j
ξϕθ |

−|biξϕθ |)+G
k
ϕ |d

r
ξθϕ |+G

j
ϕ |d

i
ξθϕ |−G

i
ϕ |d

j
ξθϕ |+G

r
ϕ |d

k
ξθϕ |

)]
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×

∫
�

(℘kθ )
2(t, z)dz+

1
2

n∑
θ=1

n∑
ϕ=1

Grθ
(
|d rξϕθ |+|d

i
ξϕθ |

+|d jξϕθ |+|d
k
ξϕθ |

) ∫
�

(℘rθ )
2(tσ , z)dz+

1
2

n∑
θ=1

n∑
ϕ=1

Giθ

×
(
|d rξϕθ |−|d

i
ξϕθ |−|d

j
ξϕθ |+|d

k
ξϕθ |

) ∫
�

(℘iθ )
2(tσ , z)dz

+
1
2

n∑
θ=1

n∑
ϕ=1

Gjθ
(
|d rξϕθ |+|d

i
ξϕθ |−|d

j
ξϕθ |−|d

k
ξϕθ |

)
×

∫
�

(℘jθ )
2(tσ , z)dz+

1
2

n∑
θ=1

n∑
ϕ=1

Gkθ
(
|d rξϕθ |−|d

i
ξϕθ |

+|d jξϕθ |−|d
k
ξϕθ |

) ∫
�

(℘kθ )
2(tσ , z)dz

}
.

Thus,

CDλ0V(t, ℘(t, z))

≤

ζ∑
ξ=1

9ξ (β(t))
{
−
1
2

n∑
θ=1

fr
θ

∫
�

(℘rθ )
2(t, z)dz

−
1
2

n∑
θ=1

fi
θ

∫
�

(℘iθ )
2(t, z)dz−

1
2

n∑
θ=1

fj
θ

∫
�

(℘jθ )
2(t, z)dz

−
1
2

n∑
θ=1

fk
θ

∫
�

(℘kθ )
2(t, z)dz+

1
2

n∑
θ=1

Lrθ

∫
�

(℘rθ )
2(tσ , z)dz

+
1
2

n∑
θ=1

Liθ

∫
�

(℘iθ )
2(tσ , z)dz+

1
2

n∑
θ=1

L
j
θ

∫
�

(℘jθ )
2(tσ , z)dz

+
1
2

n∑
θ=1

Lkθ

∫
�

(℘kθ )
2(tσ , z)dz

}

≤ −f
j,k∑
η=r,i

∫
�

n∑
θ=1

1
2
(℘ηθ )

2(t, z)dz

+L

j,k∑
η=r,i

∫
�

n∑
θ=1

1
2
(℘ηθ )

2(tσ , z)dz

≤ −fV(t, ℘(t, z))+ sup
tσ≤s≤t

LV(tσ , ℘(tσ , z)). (45)

As the above inequalities satisfies the Razumikhin condi-
tion [11], we have

V(s, ℘(s, z)) ≤ V(t, ℘(t, z)), tσ ≤ s ≤ t, t ≥ 0. (46)

From (45) and (46), we have

CDλ0V(t, ℘(t, z)) ≤ −2V(t, ℘(t, z)). (47)

Applying Lemma 3 in inequality (47), it follows that

V(t, ℘(t, z)) ≤ sup
σ≤s≤0

V(0, ψ̂(s, ·))Eλ(−2tλ), t > 0.

So, the equivalent inequality (28) can be derived as follows

j,k∑
η=r,i

∫
�

n∑
θ=1

(℘ηθ )
2(t, z)dz

≤

j,k∑
η=r,i

(
sup
σ≤s≤0

∫
�

n∑
θ=1

(ψ̂ηθ )
2(s, z)dz

)
Eλ(−2tλ).

Denote ‖ψ̂η(s, z)‖=
(
supσ≤s≤0

∫
�

∑n
θ=1(ψ̂

η
θ )

2(s, z)dz
) 1

2
,

then
j,k∑
η=r,i

∫
�

n∑
θ=1

(℘ηθ )
2(t, z)dz ≤

j,k∑
η=r,i

‖ψ̂η(s, z)‖2Eλ(−2tλ).

According to inequality (27) and Definition 3, it follows
that

j,k∑
η=r,i

‖℘η(t, z)‖2 ≤ δ2
ε2

δ2
.

Therefore,

j,k∑
η=r,i

‖℘η(t, z)‖ ≤ ε. (48)

Based on Definition 3, and the inequality (48), we can
conclude that the system (4) is said to be FTMLS with the
system (5) under controllers (25). �
Remark 2: Compared with the results in [62], the model

in this paper has the fuzzy rules, fractional-order case
and thus, our models are new and more general. Although
Song et al. [62] studied finite-time anti-synchronization of
memristiveQVNNswith reaction-diffusion, and the controller
was state feedback controller not adaptive fuzzy controller.
Thus, to efficiently adjust the fuzzy control gains so that save
control cost, we introduce adaptive control approach in (49).
This is the first time to use an adaptive control method to study
the FTMLS of T-S FORDDQVNNs.
The adaptive fuzzy controller is presented as follows:û

η
ξ (t, z) = −$

η
ξθ℘

η
θ (t, z),

CDλ0$
η
ξθ = γ

η
ξθ (℘

η
θ )

2(t, z)−
%η

2
($ η

ξθ (t)−$
η)2,

(49)

for θ = 1, 2, . . . , n; ξ = 1, 2, . . . , ζ, where $ η > 0 are
tunable constants, $ η

ξθ (t) > 0 are tunable functions, %η > 0
and γ ηξθ > 0 are constants.
Theorem 2: Under Assumption 1 and 2, the system (4) and

(5) achieve the FTMLS via adaptive controller (49) if the
following conditions holds:

(i) 8 = N−%̂ > 0, (50)

(ii) Eλ(−8tλ) <
ε2

Kδ2
. (51)

where,

N = K̂−P̂, %̂ = min{%r , %i, %j, %k}, Q̂ =
q̂θα
l2α
,
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K̂ = min
1≤θ≤n

{Krθ ,K
i
θ ,K

j
θ ,K

k
θ },

P̂ = max
1≤θ≤n

{Pr
θ ,P

i
θ ,P

j
θ ,P

k
θ },

Krθ = min
1≤θ≤n

{1
2

[
2(aξθ+Q̂+$ r )−

n∑
ϕ=1

(
F r
ϕ |b

r
ξθϕ |

−F i
ϕ |b

i
ξθϕ |−F

j
ϕ |b

j
ξθϕ |−F

k
ϕ |b

k
ξθϕ |+F

r
ϕ(|b

r
ξϕθ |

+|biξϕθ |+|b
j
ξϕθ |+|b

k
ξϕθ |)+G

r
ϕ |d

r
ξθϕ |−G

i
ϕ |d

i
ξθϕ |

−Gjϕ |d
j
ξθϕ |−G

k
ϕ |d

k
ξθϕ |

)]}
,

Kiθ = min
1≤θ≤n

{1
2

[
2(aξθ+Q̂+$ i)−

n∑
ϕ=1

(
F i
ϕ |b

r
ξθϕ |

+F r
ϕ |b

i
ξθϕ |+F

k
ϕ |b

j
ξθϕ |−F

j
ϕ |b

k
ξθϕ |+F

i
θ (|b

r
ξϕθ |

−|biξϕθ |+|b
k
ξϕθ |−|b

j
ξϕθ |)+G

i
ϕ |d

r
ξθϕ |

+Grϕ |d iξθϕ |+G
k
ϕ |d

j
ξθϕ |−G

j
ϕ |d

k
ξθϕ |

)]}
,

K
j
θ = min

1≤θ≤n

{1
2

[
2(aξθ+Q̂+$ j)−

n∑
ϕ=1

(
F j
ϕ |b

r
ξθϕ |

−Fk
ϕ |b

i
ξθϕ |+F

r
ϕ |b

j
ξθϕ |+F

i
ϕ |b

k
ξθϕ |+F

j
θ (|b

r
ξϕθ |

−|bjξϕθ |−|b
k
ξϕθ |+|b

i
ξϕθ |)+G

j
ϕ |d

r
ξθϕ |−G

k
ϕ |d

i
ξθϕ |

+Grϕ |d
j
ξθϕ |+G

i
ϕ |d

k
ξθϕ |

)]}
,

Kkθ = min
1≤θ≤n

{1
2

[
2(aξθ+Q̂+$ k )−

n∑
ϕ=1

(
Fk
ϕ |b

r
ξθϕ |

+F j
ϕ |b

i
ξθϕ |−F

i
ϕ |b

j
ξθϕ |+F

r
ϕ |b

k
ξθϕ |+F

k
θ (|b

r
ξϕθ |

−|bkξϕθ |+|b
j
ξϕθ |−|b

i
ξϕθ |)+G

k
ϕ |d

r
ξθϕ |+G

j
ϕ |d

i
ξθϕ |

−Giϕ |d
j
ξθϕ |+G

r
ϕ |d

k
ξθϕ |

)]}
,

Pr
θ = max

1≤θ≤n

{1
2

n∑
ϕ=1

Grθ
(
|d rξϕθ |+|d

i
ξϕθ |+|d

j
ξϕθ |+|d

k
ξϕθ |

)}
,

Pi
θ = max

1≤θ≤n

{1
2

n∑
ϕ=1

Giθ
(
|d rξϕθ |−|d

i
ξϕθ |−|d

j
ξϕθ |+|d

k
ξϕθ |

)}
,

P
j
θ = max

1≤θ≤n

{1
2

n∑
ϕ=1

Gjθ
(
|d rξϕθ |+|d

i
ξϕθ |−|d

j
ξϕθ |−|d

k
ξϕθ |

)}
,

Pk
θ = max

1≤θ≤n

{1
2

n∑
ϕ=1

Gkθ
(
|d rξϕθ |−|d

i
ξϕθ |+|d

j
ξϕθ |−|d

k
ξϕθ |

)}
.

Proof: Construct a Lyapunov function of the following
form:

V(t, ℘(t, z)) = V̂(t, ℘(t, z))+Ŵ(t, ℘(t, z)),

where,

V̂(t, ℘(t, z)) =
j,k∑
η=r,i

∫
�

n∑
θ=1

1
2
(℘ηθ )

2(t, z)dz,

Ŵ(t, ℘(t, z)) =
j,k∑
η=r,i

∫
�

n∑
θ=1

1

2γ ηξθ

( ζ∑
ξ=1

9ξ (β(t))

×($ η
ξθ (t)−$

η)2
)
dz.

By computing the Caputo fractional derivative of
V(t, ℘(t, z)), one has

CDλ0V(t, ℘(t, z)) ≤
j,k∑
η=r,i

( ∫
�

n∑
θ=1

℘
η
θ (t, z)

∂λ℘
η
θ (t, z)

∂tλ
dz
)

+

j,k∑
η=r,i

( ∫
�

n∑
θ=1

1

γ
η
ξθ

{ ζ∑
ξ=1

9ξ (β(t))

×($ η
ξθ (t)−$

η)CDλ0$
η
ξθ

}
dz
)
.

Denote,

Ŵ1 =

j,k∑
η=r,i

( ∫
�

n∑
θ=1

℘
η
θ (t, z)

∂λ℘
η
θ (t, z)

∂tλ
dz
)
,

Ŵ2 =

j,k∑
η=r,i

( ∫
�

n∑
θ=1

1

γ
η
ξθ

{ ζ∑
ξ=1

9ξ (β(t))

×($ η
ξθ (t)−$

η)CDλ0$
η
ξθ

}
dz
)
,

and then

Ŵ1

≤

ζ∑
ξ=1

9ξ (β(t))
{
−
1
2

n∑
θ=1

[
2(aξθ+Q̂)−

n∑
ϕ=1

(
F r
ϕ |b

r
ξθϕ |

−F i
ϕ |b

i
ξθϕ |−F

j
ϕ |b

j
ξθϕ |−F

k
ϕ |b

k
ξθϕ |+F

r
ϕ(|b

r
ξϕθ |

+|biξϕθ |+|b
j
ξϕθ |+|b

k
ξϕθ |)+G

r
ϕ |d

r
ξθϕ |−G

i
ϕ |d

i
ξθϕ |

−Gjϕ |d
j
ξθϕ |−G

k
ϕ |d

k
ξθϕ |

)] ∫
�

(℘rθ )
2(t, z)dz

−
1
2

n∑
θ=1

[
2(aξθ+Q̂)−

n∑
ϕ=1

(
F i
ϕ |b

r
ξθϕ |+F

r
ϕ |b

i
ξθϕ |

+Fk
ϕ |b

j
ξθϕ |−F

j
ϕ |b

k
ξθϕ |+F

i
θ (|b

r
ξϕθ |−|b

i
ξϕθ |

+|bkξϕθ |−|b
j
ξϕθ |)+G

i
ϕ |d

r
ξθϕ |+G

r
ϕ |d

i
ξθϕ |

+Gkϕ |d
j
ξθϕ |−G

j
ϕ |d

k
ξθϕ |

)] ∫
�

(℘iθ )
2(t, z)dz

−
1
2

n∑
θ=1

[
2(aξθ+Q̂)−

n∑
ϕ=1

(
F j
ϕ |b

r
ξθϕ |−F

k
ϕ |b

i
ξθϕ |

+F r
ϕ |b

j
ξθϕ |+F

i
ϕ |b

k
ξθϕ |+F

j
θ (|b

r
ξϕθ |−|b

j
ξϕθ |

−|bkξϕθ |+|b
i
ξϕθ |)+G

j
ϕ |d

r
ξθϕ |−G

k
ϕ |d

i
ξθϕ |

+Grϕ |d
j
ξθϕ |+G

i
ϕ |d

k
ξθϕ |

)] ∫
�

(℘jθ )
2(t, z)dz

−
1
2

n∑
θ=1

[
2(aξθ+Q̂)−

n∑
ϕ=1

(
Fk
ϕ |b

r
ξθϕ |+F

j
ϕ |b

i
ξθϕ |

−F i
ϕ |b

j
ξθϕ |+F

r
ϕ |b

k
ξθϕ |+F

k
θ (|b

r
ξϕθ |−|b

k
ξϕθ |+|b

j
ξϕθ |
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−|biξϕθ |)+G
k
ϕ |d

r
ξθϕ |+G

j
ϕ |d

i
ξθϕ |−G

i
ϕ |d

j
ξθϕ |+G

r
ϕ |d

k
ξθϕ |

)]
×

∫
�

(℘kθ )
2(t, z)dz−

∫
�

n∑
θ=1

$ r
ξθ (℘

r
θ )

2(t, z)dz

−

∫
�

n∑
θ=1

$ i
ξθ (℘

i
θ )

2(t, z)dz−
∫
�

n∑
θ=1

$
j
ξθ (℘

j
θ )

2(t, z)dz

−

∫
�

n∑
θ=1

$ k
ξθ (℘

k
θ )

2(t, z)dz+
1
2

n∑
θ=1

n∑
ϕ=1

Grθ
(
|d rξϕθ |

+|d iξϕθ |+|d
j
ξϕθ |+|d

k
ξϕθ |

) ∫
�

(℘rθ )
2(tσ , z)dz

+
1
2

n∑
θ=1

n∑
ϕ=1

Giθ
(
|d rξϕθ |−|d

i
ξϕθ |−|d

j
ξϕθ |+|d

k
ξϕθ |

)
×

∫
�

(℘iθ )
2(tσ , z)dz+

1
2

n∑
θ=1

n∑
ϕ=1

Gjθ
(
|d rξϕθ |+|d

i
ξϕθ |

−|d jξϕθ |−|d
k
ξϕθ |

) ∫
�

(℘jθ )
2(tσ , z)dz+

1
2

n∑
θ=1

n∑
ϕ=1

Gkθ

×
(
|d rξϕθ |−|d

i
ξϕθ |+|d

j
ξϕθ |−|d

k
ξϕθ |

) ∫
�

(℘kθ )
2(tσ , z)dz

}
.

Next,

Ŵ2

≤

ζ∑
ξ=1

9ξ (β(t))
{ ∫

�

( n∑
θ=1

1
γ rξθ

($ r
ξθ (t)−$

r )CDλ0$
r
ξθ (t)

)
dz

+

∫
�

( n∑
θ=1

1

γ iξθ
($ i

ξθ (t)−$
i)CDλ0$

i
ξθ (t)

)
dz

+

∫
�

( n∑
θ=1

1

γ
j
ξθ

($ j
ξθ (t)−$

r )CDλ0$
j
ξθ (t)

)
dz

+

∫
�

( n∑
θ=1

1

γ kξθ
($ k

ξθ (t)−$
k )CDλ0$

k
ξθ (t)

)
dz
}

≤

ζ∑
ξ=1

9ξ (β(t))
{ ∫

�

n∑
θ=1

1
γ rξθ

($ r
ξθ (t)−$

r )

×
{
γ rξθ (℘θ )

2(t, z)−
%r

2
($ r

ξθ−$
r )
}
dz

+

∫
�

n∑
θ=1

1

γ iξθ
($ i

ξθ (t)−$
i)
{
γ iξθ (℘θ )

2(t, z)

−
%i

2
($ i

ξθ−$
i)
}
dz+

∫
�

n∑
θ=1

1

γ
j
ξθ

($ j
ξθ (t)−$

j)

×
{
γ
j
ξθ (℘θ )

2(t, z)−
%j

2
($ j

ξθ−$
j)
}
dz

+

∫
�

n∑
θ=1

1

γ kξθ
($ k

ξθ (t)−$
k )
{
γ kξθ (℘θ )

2(t, z)

−
%k

2
($ k

ξθ−$
k )
}
dz
}

≤

ζ∑
ξ=1

9ξ (β(t))
{ ∫

�

n∑
θ=1

($ r
ξθ (t)−$

r )(℘rθ )
2(t, z)dz

+

∫
�

n∑
θ=1

($ i
ξθ (t)−$

i)(℘iθ )
2(t, z)dz

+

∫
�

n∑
θ=1

($ j
ξθ (t)−$

j)(℘jθ )
2(t, z)dz

+

∫
�

n∑
θ=1

($ k
ξθ (t)−$

k )(℘kθ )
2(t, z)dz

−%r
∫
�

n∑
θ=1

1
2γ rξθ

($ r
ξθ (t)−$

r )2dz

−%i
∫
�

n∑
θ=1

1

2γ iξθ
($ i

ξθ (t)−$
i)2dz

−%j
∫
�

n∑
θ=1

1

2γ jξθ
($ j

ξθ (t)−$
j)2dz

−%k
∫
�

n∑
θ=1

1

2γ kξθ
($ k

ξθ (t)−$
k )2dz

}
.

On the basis of above mentioned work, we can drive that

CDλ0V(t, ℘(t, z))

≤

ζ∑
ξ=1

9ξ (β(t))
{
−
1
2

n∑
θ=1

[
2(aξθ+Q̂+$ r )

−

n∑
ϕ=1

(
F r
ϕ |b

r
ξθϕ |−F

i
ϕ |b

i
ξθϕ |−F

j
ϕ |b

j
ξθϕ |−F

k
ϕ |b

k
ξθϕ |

+F r
ϕ(|b

r
ξϕθ |+|b

i
ξϕθ |+|b

j
ξϕθ |+|b

k
ξϕθ |)+G

r
ϕ |d

r
ξθϕ |

−Giϕ |d iξθϕ |−G
j
ϕ |d

j
ξθϕ |−G

k
ϕ |d

k
ξθϕ |

)] ∫
�

(℘rθ )
2(t, z)dz

−
1
2

n∑
θ=1

[
2(aξθ+Q̂+$ i)−

n∑
ϕ=1

(
F i
ϕ |b

r
ξθϕ |+F

r
ϕ |b

i
ξθϕ |

+Fk
ϕ |b

j
ξθϕ |−F

j
ϕ |b

k
ξθϕ |+F

i
θ (|b

r
ξϕθ |−|b

i
ξϕθ |+|b

k
ξϕθ |

−|bjξϕθ |)+G
i
ϕ |d

r
ξθϕ |+G

r
ϕ |d

i
ξθϕ |+G

k
ϕ |d

j
ξθϕ |−G

j
ϕ |d

k
ξθϕ |

)]
×

∫
�

(℘iθ )
2(t, z)dz−

1
2

n∑
θ=1

[
2(aξθ+Q̂+$ j)

−

n∑
ϕ=1

(
F j
ϕ |b

r
ξθϕ |−F

k
ϕ |b

i
ξθϕ |+F

r
ϕ |b

j
ξθϕ |+F

i
ϕ |b

k
ξθϕ |

+F j
θ (|b

r
ξϕθ |−|b

j
ξϕθ |−|b

k
ξϕθ |+|b

i
ξϕθ |)+G

j
ϕ |d

r
ξθϕ |

−Gkϕ |d iξθϕ |+G
r
ϕ |d

j
ξθϕ |+G

i
ϕ |d

k
ξθϕ |

)] ∫
�

(℘jθ )
2(t, z)dz

−
1
2

n∑
θ=1

[
2(aξθ+Q̂+$ k )−

n∑
ϕ=

(
Fk
ϕ |b

r
ξθϕ |+F

j
ϕ |b

i
ξθϕ |

−F i
ϕ |b

j
ξθϕ |+F

r
ϕ |b

k
ξθϕ |+F

k
θ (|b

r
ξϕθ |−|b

k
ξϕθ |+|b

j
ξϕθ |

−|biξϕθ |)+G
k
ϕ |d

r
ξθϕ |+G

j
ϕ |d

i
ξθϕ |−G

i
ϕ |d

j
ξθϕ |+G

r
ϕ |d

k
ξθϕ |

)]
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×

∫
�

(℘kθ )
2(t, z)dz+

1
2

n∑
θ=1

n∑
ϕ=1

Grθ
(
|d rξϕθ |+|d

i
ξϕθ |+|d

j
ξϕθ |

+|dkξϕθ |
) ∫

�

(℘rθ )
2(tσ , z)dz+

1
2

n∑
θ=1

n∑
ϕ=1

Giθ
(
|d rξϕθ |

−|d iξϕθ |−|d
j
ξϕθ |+|d

k
ξϕθ |

) ∫
�

(℘iθ )
2(tσ , z)dz

+
1
2

n∑
θ=1

n∑
ϕ=1

Gjθ
(
|d rξϕθ |+|d

i
ξϕθ |−|d

j
ξϕθ |−|d

k
ξϕθ |

)
×

∫
�

(℘jθ )
2(tσ , z)dz+

1
2

n∑
θ=1

n∑
ϕ=1

Gkθ
(
|d rξϕθ |−|d

i
ξϕθ |

+|d jξϕθ |−|d
k
ξϕθ |

) ∫
�

(℘kθ )
2(tσ , z)dz

−%r
∫
�

n∑
θ=1

1
2γ rξθ

($ r
ξθ (t)−$

r )2dz

−%i
∫
�

n∑
θ=1

1

2γ iξθ
($ i

ξθ (t)−$
i)2dz

−%j
∫
�

n∑
θ=1

1

2γ jξθ
($ j

ξθ (t)−$
j)2dz

−%k
∫
�

n∑
θ=1

1

2γ kξθ
($ k

ξθ (t)−$
k )2dz

}

≤

ζ∑
ξ=1

9ξ (β(t))
{
−
1
2

n∑
θ=1

Krθ

∫
�

(℘rθ )
2(t, z)dz

−
1
2

n∑
θ=1

Kiθ

∫
�

(℘iθ )
2(t, z)dz−

1
2

n∑
θ=1

K
j
θ

∫
�

(℘jθ )
2(t, z)dz

−
1
2

n∑
θ=1

Kkθ

∫
�

(℘kθ )
2(t, z)dz+

1
2

n∑
θ=1

Pr
θ

∫
�

(℘rθ )
2(tσ , z)dz

+
1
2

n∑
θ=1

Pi
θ

∫
�

(℘iθ )
2(tσ , z)dz+

1
2

n∑
θ=1

P
j
θ

∫
�

(℘jθ )
2(tσ , z)dz

+
1
2

n∑
θ=1

Pk
θ

∫
�

(℘kθ )
2(tσ , z)dz

−%r
∫
�

n∑
θ=1

1
2γ rξθ

($ r
ξθ (t)−$

r )2dz

−%i
∫
�

n∑
θ=1

1

2γ iξθ
($ i

ξθ (t)−$
i)2dz

−%j
∫
�

n∑
θ=1

1

2γ jξθ
($ j

ξθ (t)−$
j)2dz

−%k
∫
�

n∑
θ=1

1

2γ kξθ
($ k

ξθ (t)−$
k )2dz

}

≤ −K̂

j,k∑
η=r,i

∫
�

n∑
θ=1

1
2
(℘ηθ )

2(t, z)dz

+P̂

j,k∑
η=r,i

∫
�

n∑
θ=1

1
2
(℘ηθ )

2(tσ , z)dz

−%̂

j,k∑
η=r,i

∫
�

n∑
θ=1

1

2γ ηξθ

ζ∑
ξ=1

9ξ (β(t))($
η
ξθ (t)−$

k )2dz

≤ −K̂V̂(t, ℘(t, z))+P̂ sup
tσ≤s≤t

V̂(tσ , ℘(tσ , z))

−%̂Ŵ(t, ℘(t, z)).

For tσ ≤ s ≤ t, t ≥ 0, based on the above inequality,
the error state℘(t, z) satisfies the Razumikhin condition [11],
which gives,
CDλ0V(t, ℘(t, z)) ≤ −(K̂−P̂)V̂(t, ℘(t, z))−%̂Ŵ(t, ℘(t, z))

≤ −NV̂(t, ℘(t, z))−%̂Ŵ(t, ℘(t, z))
≤ −8V(t, ℘(t, z)).

From Lemma 3, we have that

V(t, ℘(t, z)) ≤ sup
σ≤s≤0

V(0, ψ̂(s, z))Eλ(−8tλ), t > 0.

It means that
j,k∑
η=r,i

∫
�

n∑
θ=1

1
2
(℘ηθ )

2(t, z)dz

≤

j,k∑
η=r,i

∫
�

n∑
θ=1

1
2
(℘ηθ )

2(t, z)dz+
j,k∑
η=r,i

∫
�

n∑
θ=1

1

2γ ηξθ

×

( ζ∑
ξ=1

9ξ (β(t))($
η
ξθ (t)−$

η)2
)
dz

≤

{ j,k∑
η=r,i

(
sup
σ≤s≤0

∫
�

n∑
θ=1

(ψ̂ηθ )
2(s, z)dz

)
+

j,k∑
η=r,i

∫
�

n∑
θ=1

1

2γ ηξθ

×

( ζ∑
ξ=1

9ξ (β(t))($
η
ξθ (0)−$

η)2
)
dz
}
Eλ(−8tλ).

In view of ($ η
ξθ (0)−$

η) is finite, it is obvious that there
exists a positive constant K leading to

j,k∑
η=r,i

(
sup
σ≤s≤0

∫
�

n∑
θ=1

(ψ̂ηθ )
2(s, z)dz

)
+

j,k∑
η=r,i

∫
�

n∑
θ=1

1

2γ ηξθ

×

( ζ∑
ξ=1

9ξ (β(t))($
η
ξθ (0)−$

η)2
)
dz

≤ K
j,k∑
η=r,i

(
sup
σ≤s≤0

∫
�

n∑
θ=1

(ψ̂ηθ )
2(s, z)dz

)
.

Finally, we obtain that
j,k∑
η=r,i

∫
�

n∑
θ=1

1
2
(℘ηθ )

2(t, z)dz

≤ K
j,k∑
η=r,i

(
sup
σ≤s≤0

∫
�

n∑
θ=1

(ψ̂ηθ )
2(s, z)dz

)
Eλ(−8tλ).
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According to inequality (51) and Definition 3, it follows
that

j,k∑
η=r,i

‖℘η(t, z)‖2 ≤ Kδ2
ε2

Kδ2
.

That is
j,k∑
η=r,i

‖℘η(t, z)‖ ≤ ε.

According to Definition 3, we can conclude that the drive
system (4) is said to be FTMLS with the response system (5)
under adaptive controllers (49). �
Remark 3: Most industrial processes are spatiotemporal

in nature, and the mathematical models of these nonlin-
ear processes are generally expressed by nonlinear PDEs.
In this paper, we designed adaptive fuzzy feedback controller
scheme for FTMLS problem of T-S fuzzy FORDDQVNNs. Up
to now, many interesting works concerning the property of
fractional-order QVNNswithout reaction-diffusion terms and
fuzzy rules have been obtained, see [50]–[57]. Furthermore,
the FTMLS problem of fractional-order QVNNs by using lin-
ear feedback controllers have been investigated [58]. In [62],
finite/fixed-time synchronization problem was discussed for
memristive QVNNs with integer-order case. To the best of our
knowledge, the present study is the first attempt to analyze
the FTMLS of T-S fuzzy FORDDQVNNs under adaptive fuzzy
feedback controller scheme. Therefore, the theoretical results
established in this paper are new and extend some previous
ones.
Remark 4: In the implementation, due to the restric-

tions of equipments and influence of the environment, the
reaction-diffusion phenomenon and fuzzy rules in CVNNs.
Different from the existing reaction-diffusion CVNNs and
without T-S fuzzy rules in [59]–[61], reaction-diffusion
CVNNs without fractional-order case in [59]–[61], and the
T-S fuzzy fractional-order reaction-diffusion CVNNs is newly
built in (10), (11) and (16), (17), which not only consid-
ers the effect of the reaction-diffusion phenomenon but the
fuzzy-dependent adjustable matrix inequality technique is
more flexible and helpful to reduce the conservatism and
compared with integer-order neurons, fractional-order neu-
rons are helpful for effective signal detection and extraction.
Thus, compared with the models in [59]–[61], the model
in (10), (11) and (16), (17) is more applicable. T-S fuzzy
FORDDQVNNs can be regarded as a generalization of
fractional-order reaction-diffusion CVNNs, thus Theorem 1
and Theorem 2 can be used to estimate the FTMLS of T-S
fuzzy fractional-order reaction-diffusion CVNNs.

Combining (10), (11) and (16), (17), can derive the follow-
ing error system

∂λ℘R(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1℘R(t, z)−Aξ℘

R(t, z)

+BRξ
[
FR(ZR(t, z))−FR(=R(t, z))

]

−BIξ
[
F I (ZI (t, z))−F I (=I (t, z))

]
+DR

ξ

[
GR(ZR(tσ , z))−GR(=R(tσ , z))

]
−DI

ξ

[
GI (ZI (tσ , z))−GI (=I (tσ , z))

]
+ûRξ (t, z)

}
, (52)

∂λ℘I (t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1℘I (t, z)−Aξ℘

I (t, z)

+BRξ
[
F I (ZI (t, z))−F I (=I (t, z))

]
+BIξ

[
FR(ZR(t, z))−FR(=R(t, z))

]
+DR

ξ

[
GI (ZI (tσ , z))−GI (=I (tσ , z))

]
+DI

ξ

[
GR(ZR(tσ , z))−GR(=R(tσ , z))

]
+ûIξ (t, z)

}
. (53)

According to (52) and (53) can be rewritten as

∂λ℘̃(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1℘̃(t, z)−Ãξ ℘̃(t, z)

+B̃ξ F̃(℘̃(t, z))+C̃ξ G̃(℘̃(tσ , z))+Ũξ (t, z)
}
, (54)

where, ℘̃(t, z) =
(
(℘R(t, z))T , (℘I (t, z))T

)T
, 1℘̃(t, z) =(

(1℘R(t, z))T , (1℘I (t, z))T
)T
, F̃(℘̃(t, z))=

(
(FR(ZR(t, z))−

FR(=R(t, z)))T , (F I (ZI (t, z))−F I (=I (t, z)))T
)T
, G̃(℘̃(tσ ,

z)) =
(
(GR(ZR(tσ , z))−GR(=R(tσ , z)))T , (GI (ZI (tσ , z))−

GI (=I (tσ , z)))T
)T
, Ũξ (t, z) =

(
(ûRξ (t, z))

T , (ûIξ (t, z))
T
)T
,

Ãξ = diag(Aξ ,Aξ ), B̃ξ =

[
BRξ −B

I
ξ

BIξ BRξ

]
, C̃ξ =[

CRξ −C
I
ξ

CIξ CRξ

]
.

In the following, we use the fuzzy feedback scheme to
realize FTMLS between the system (54), then the controller
can be designed as

ûRξ (t, z) = −µ̂
R
ξθ ℘̃

R
θ (t, z), ûIξ (t, z) = −µ̂

I
ξθ ℘̃

I
θ (t, z), (55)

where µ̂Rξθ and µ̂
I
ξθ represents the control gain.

Corollary 1: Under Assumption 1 and 2, the system (54)
achieve the FTMLS via controller (55) if the following condi-
tions holds:

(i) 3 = (B−E) > 0,

(ii) Eλ(−3tλ) <
ε2

δ2
,

where,

B = min
1≤θ≤n

{BR
θ ,B

I
θ },E = max

1≤θ≤n
{ERθ ,E

I
θ },

BR
θ = min

1≤θ≤n

{1
2

[
2(aξθ+Q̂+µ̃Rξθ )−

n∑
ϕ=1

(
FR
ϕ |b

R
ξθϕ |

−F I
ϕ |b

I
ξθϕ |+F

R
ϕ (|b

R
ξϕθ |+|b

I
ξϕθ |)+G

R
ϕ |d

R
ξθϕ |

−GIϕ |d Iξθϕ |)
]}
,

130876 VOLUME 9, 2021



G. Narayanan et al.: Adaptive Fuzzy Feedback Controller Design for FTMLS

BI
θ = min

1≤θ≤n

{1
2

[
2(aξθ+Q̂+µ̃Iξθ )−

n∑
ϕ=1

(
F I
ϕ |b

R
ξθϕ |

+FR
ϕ |b

I
ξθϕ |+F

I
θ (|b

R
ξϕθ |−|b

I
ξϕθ |)+G

I
ϕ |d

R
ξθϕ |

+GRϕ |d Iξθϕ |
)]}
,

ERθ = max
1≤θ≤n

{1
2

n∑
ϕ=1

GRθ
(
|dRξϕθ |+|d

I
ξϕθ |)

}
,

EIθ = max
1≤θn

{1
2

n∑
ϕ=1

GIθ
(
|dRξϕθ |−|d

I
ξϕθ |

)}
.

Designing an adaptive controller ûRξ (t, z) and ûIξ (t, z) as
follows:

ûRξ (t, z) = −$
R
ξθ℘

η
θ (t, z),

ûIξ (t, z) = −$
I
ξθ℘

η
θ (t, z),

CDλ0$
R
ξθ = γ

R
ξθ (℘

R
θ )

2(t, z)−
%R

2
($R

ξθ (t)−$
R)2,

CDλ0$
I
ξθ = γ

I
ξθ (℘

I
θ )

2(t, z)−
%I

2
($ I

ξθ (t)−$
I )2,

(56)

for θ = 1, 2, . . . , n; ξ = 1, 2, . . . , ζ, where $R > 0,
$ I > 0 are tunable constants; $R

ξθ (t) > 0, $ I
ξθ (t) > 0 are

tunable functions; %R > 0, %I > 0 and γ Rξθ > 0, γ Iξθ > 0 are
constants.
Corollary 2: Under Assumption 1 and 2, the system (54)

achieve the FTMLS via adaptive controller (56) if the follow-
ing conditions holds:

(i) 8̂ = T−%̄ > 0,

(ii) Eλ(−8̂tλ) <
ε2

Kδ2
.

where,

T = Ŝ−Ẑ, Ŝ = min
1≤θ≤n

{SRθ ,S
I
θ },

Ẑ = max
1≤θ≤n

{ZR
θ ,Z

I
θ }, %̄ = min{%R, %I },

SRθ = min
1≤θ≤n

{1
2

[
2(aξθ+Q̂+$R)−

n∑
ϕ=1

(
FR
ϕ |b

R
ξθϕ |

−F I
ϕ |b

I
ξθϕ |+F

R
ϕ (|b

R
ξϕθ |+|b

I
ξϕθ |)+G

R
ϕ |d

R
ξθϕ |

−GIϕ |d Iξθϕ |
)]}
,

SIθ = min
1≤θ≤n

{1
2

[
2(aξθ+Q̂+$ I )−

n∑
ϕ=1

(
F I
ϕ |b

R
ξθϕ |

+FR
ϕ |b

I
ξθϕ |+F

I
θ (|b

R
ξϕθ |−|b

I
ξϕθ |)+G

I
ϕ |d

R
ξθϕ |

+GRϕ |d Iξθϕ |
)]}
,

ZR
θ = max

1≤θ≤n

{1
2

n∑
ϕ=1

GRθ
(
|dRξϕθ |+|d

I
ξϕθ |

)}
,

Z I
θ = max

1≤θ≤n

{1
2

n∑
ϕ=1

GIθ
(
|dRξϕθ |−|d

I
ξϕθ |

)}
.

Remark 5: The result of Corollary 1 and 2 can also
be applied to T-S fuzzy fractional-order reaction-diffusion
CVNNs. Moreover, T-S fuzzy fractional-order reaction-
diffusion RVNNs are also applicable to the results in this
paper. This shows that the outcomes of this paper are more
general.

If transmission delay term are not considered, T-S fuzzy
FORDDQVNNs (4) is reduced to T-S fuzzy fractional-order
reaction-diffusion QVNNs

∂λ=(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1=(t, z)−Aξ=(t, z)

+BξF(=(t, z))+I
}
. (57)

and T-S FORDDQVNNs (5) is reduced to the controlled T-S
fuzzy fractional-order reaction-diffusion QVNNs,

∂λZ(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1Z(t, z)−AξZ(t, z)

+BξF(Z(t, z))+I+ûξ (t, z)
}
. (58)

In this case, we have the following corollary.
Corollary 3: Under Assumption 1 and 2, the system (57)

and (58) achieve the FTMLS via controller (25) if the follow-
ing conditions holds:

(i) 9 > 0,

(ii) Eλ(−9tλ) <
ε2

δ2
,

where,

9 = min
1≤θ≤n

{ℵ
r
θ ,ℵ

i
θ ,ℵ

j
θ ,ℵ

k
θ },

ℵ
r
θ =

1
2

[
2(aξθ+Q̂+µrξθ )−

n∑
ϕ=1

(
F r
ϕ |b

r
ξθϕ−F

i
ϕ |b

i
ξθϕ |

−F j
ϕ |b

j
ξθϕ |−F

k
ϕ |b

k
ξθϕ |+F

r
ϕ(|b

r
ξϕθ |+|b

i
ξϕθ |

+|bjξϕθ |+|b
k
ξϕθ |)

)]
,

ℵ
i
θ =

1
2

[
2(aξθ+Q̂+µiξθ )−

n∑
ϕ=1

(
F i
ϕ |b

r
ξθϕ |+F

r
ϕ |b

i
ξθϕ |

+Fk
ϕ |b

j
ξθϕ |−F

j
ϕ |b

k
ξθϕ |+F

i
θ (|b

r
ξϕθ |−|b

i
ξϕθ |

+|bkξϕθ |−|b
j
ξϕθ |)

)]
,

ℵ
j
θ =

1
2

[
2(aξθ+Q̂+µjξθ )−

n∑
ϕ=1

(
F j
ϕ |b

r
ξθϕ |−F

k
ϕ |b

i
ξθϕ |

+F r
ϕ |b

j
ξθϕ |+F

i
ϕ |b

k
ξθϕ |+F

j
θ (|b

r
ξϕθ |−|b

j
ξϕθ |

−|bkξϕθ |+|b
i
ξϕθ |)

)]
,

ℵ
k
θ =

1
2

[
2(aξθ+Q̂+µkξθ )−

n∑
ϕ=1

(
Fk
ϕ |b

r
ξθϕ |+F

j
ϕ |b

i
ξθϕ |

−F i
ϕ |b

j
ξθϕ |+F

r
ϕ |b

k
ξθϕ |+F

k
θ (|b

r
ξϕθ |−|b

k
ξϕθ |

+|bjξϕθ |−|b
i
ξϕθ |)

)]
.
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Corollary 4: Under Assumption 1 and 2, the system (57)
and (58) achieve the FTMLS via adaptive controller (49) if
the following conditions holds:

(i) ϒ = Î−%̂ > 0,

(ii) Eλ(−ϒ tλ) <
ε2

Kδ2
.

where,

Î = min
1≤θ≤n

{̂Irθ , Î
i
θ , Î

j
θ , Î

k
θ }, %̂ = {%

r , %i, %j, %k},

Îrθ =
1
2

[
2(aξθ+Qθ+$

r )−
n∑
ϕ=1

(
F r
ϕ |b

r
ξθϕ |−F

i
ϕ |b

i
ξθϕ |

−F j
ϕ |b

j
ξθϕ |−F

k
ϕ |b

k
ξθϕ |+F

r
ϕ(|b

r
ξϕθ |+|b

i
ξϕθ |

+|bjξϕθ |+|b
k
ξϕθ |)

)]
,

Îiθ =
1
2

[
2(aξθ+Qθ+$

i)−
n∑
ϕ=1

(
F i
ϕ |b

r
ξθϕ |+F

r
ϕ |b

i
ξθϕ |

+Fk
ϕ |b

j
ξθϕ |−F

j
ϕ |b

k
ξθϕ |+F

i
θ (|b

r
ξϕθ |−|b

i
ξϕθ |

+|bkξϕθ |−|b
j
ξϕθ |)

)]
,

Î
j
θ =

1
2

[
2(aξθ+Qθ+$

j)−
n∑
ϕ=1

(
F j
ϕ |b

r
ξθϕ |−F

k
ϕ |b

i
ξθϕ |

+F r
ϕ |b

j
ξθϕ |+F

i
ϕ |b

k
ξθϕ |+F

j
θ (|b

r
ξϕθ |−|b

j
ξϕθ |

−|bkξϕθ |+|b
i
ξϕθ |)

)]
,

Îkθ =
1
2

[
2(aξθ+Q̂+$ k )−

n∑
ϕ=1

(
Fk
ϕ |b

r
ξθϕ |+F

j
ϕ |b

i
ξθϕ |

−F i
ϕ |b

j
ξθϕ |+F

r
ϕ |b

k
ξθϕ |+F

k
θ (|b

r
ξϕθ |−|b

k
ξϕθ |

+|bjξϕθ |−|b
i
ξϕθ |)

)]
.

IV. NUMERICAL EXAMPLE
In this section, we present a example to demonstrate our main
results. In order to verify the effectiveness of the proposed
control strategies for the synchronization between drive sys-
tem (59) and response system (60).
Example: Consider the following 2D-dimensional drive

system with two plant rules.

∂λ=(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1=(t, z)−Aξ=(t, z)

+BξF(=(t, z))+DξG(=(t−σ (t), z))+I
}
. (59)

Plant Rule 1: If β1(t) is 41
1, then,

∂λ=(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1=(t, z)−A1=(t, z)

+B1F(=(t, z))+D1G(=(t−σ (t), z))+I
}
.

Plant Rule 2: If β2(t) is 42
2, then,

∂λ=(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1=(t, z)−A2=(t, z)

+B2F(=(t, z))+D2G(=(t−σ (t), z))+I
}
.

The parameters are as follows
1=(t, z) =

∑m
α=1

(
qθα

∂=θ (t,z)
∂zα

)
, m = n = 2,

l1 = 3, l2 = 5, � = {z : z = (z1, z2)T ,
|zα| < 1}, α = 1, 2, λ = 0.93, A1 =

diag(3.2, 3.9), A2 = diag(4.7, 4.3), =(t, z) = =r (t, z)+
=
i(t, z)i+=j(t, z)j+=k (t, z)k, F(=(t, z)) = ((f1(=(t, z)))T ,

(f2(=(t, z)))T )T , G(=(t−σ (t), z)) = ((g1(=(t−σ (t), z)))T ,
(g2(=(t−σ (t), z)))T )T , σ (t) = 3et

10+7et , 91(β(t)) =
cos2

(
5tanh(‖=1‖+‖=2‖)

)
, 92(β(t)) = sin2

(
5tanh(‖=1‖+

‖=2‖)
)
, I(t) =

[
2cos(t)−3sin(t)i−cos(t)j+2sin(t)k
3sin(t)+cos(t)i+2cos(t)j−sin(t)k

]
,

(qθα)2×2 =
[
1.9 0.2
0.2 2.9

]
, B1 =

[
b111 b112
b121 b122

]
, B2 =[

b211 b212
b221 b222

]
, D1 =

[
d111 d112
d121 d122

]
, D2 =

[
d211 d212
d221 d222

]
,

where,
b111 = 1.3−0.9i−1.3j+0.9k, b112 = 2.1+1.2i−0.9j−
2.1k, b121 = −1.9+2.3i+1.9j−2.3k, b122 = −1.4+0.9i+
1.1j+0.9k, b211 = 2.3−1.9i+1.3j+0.7k, b212 = −1.3+
0.9i−2.3j+1.9k, b221 = 2.1−1.7i−1.3j−0.9k, b222 =
0.9+1.9i+2.3j−1.5k, d111 = −3.7+2.9i−3.3j−2.9k,
d112 = 3.1−3.3i+2.9j−3.1k, d121 = 1.9−2.7i+1.9j−2.7k,
d122 = 2.4−1.9i−2.1j−1.9k, d211 = 3.3−2.9i+2.3j+2.7k,
d212 = 2.9+2.3i−2.9j−2.3k, d221 = 2.1+1.7i+1.3j+2.9k,
d222 = 2.9−3.9i+1.3j+1.7k.With the original initial condi-
tions set as =1(0, z) = −3.1 cos(z)+2.3 cos(z)i+1.8 sin(z)j−
1.6cos(z)k and=2(0, z) = 2.4 sin(z)−3.1 cos(z)i+2.6sin(z)j+
0.6sin(z)k, the drive system state trajectories can be described
as in Fig. 1.
The controlled response system is depicted by

∂λZ(t, z)
∂tλ

=

ζ∑
ξ=1

9ξ (β(t))
{
1Z(t, z)−AξZ(t, z)

+BξF(Z(t, z))+DξG(Z(t−σ (t), z))
+I+Ûξ (t, z)

}
, (60)

where λ = 0.93, other parameters are the same as of as drive
system (59).
Case 1: We choose f rϕ (·) = grϕ(·) = 2.17tanh(·)+

0.03sign(·), f iϕ(·) = giϕ(·) = 1.49tanh(·)+0.01sign(·),
f jϕ(·) = gjϕ(·) = 2.17tanh(·)+0.03sign(·), f kϕ (·) = gkϕ(·) =
1.49tanh(·)+0.01sign(·), as the activation function. Thus,
Assumption (H1) are F r

ϕ =
1
4 , F

i
ϕ =

1
2 , F

j
ϕ =

1
4 , F

k
ϕ =

1
2 ,

Grϕ = 0, Giϕ = 1
2 , G

j
ϕ = 0, Gkϕ = 1

2 , (ϕ = 1, 2) and also (H2)

are q̂11 = 1.7, q̂22 = 2.7, q̂12 = q̂21 = 0.
Then, for controller (25), the parameters are designed as

µr11 = 3.7, µr12 = 3.1, µr21 = 2.5, µr22 = 2.9, µi11 =
2.3, µi12 = 3.5, µi21 = 2.7, µi22 = 3.7, µj11 = 2.7,
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FIGURE 1. State trajectory of (a) =r (t, z), (b) =i (t, z), (c) =j (t, z), and
(d ) =k (t, z) of system (59) without control.

FIGURE 2. Synchronization error (a) ℘r (t, z), (b) ℘i (t, z), (c) ℘j (t, z), and
(d ) ℘k (t, z) of system (59) and (60) via fuzzy feedback controller (25)
with fractional-order λ = 0.93..
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FIGURE 3. Synchronization error (a) ℘r (t, z), (b) ℘i (t, z), (c) ℘j (t, z), and
(d ) ℘k (t, z) of system (59) and (60) via adaptive controller (49) with
fractional-order λ = 0.93..

µ
j
12 = 4.1, µj21 = 3.1, µj22 = 2.8, µk11 = 1.7, µk12 = 2.7,
µk21 = 3.2, and µk22 = 3.9, combining with the proposed
criteria in Theorem 1, one obtains the following results:

fr
θ = 9.4550,fi

θ = 1.1525, fj
θ = 4.8025, fk

θ = 4.0025,

Lrθ = 0, Liθ = 1.4000, Ljθ = 0, Lkθ = 0.0025,

and, 2 = (f−L) = 0.2400 > 0, holds and we can
evaluate the finite time is about t = 2.5 according to the
condition Eλ(−2tλ) < ε2

δ2
, when we assume ε = 6.70,

δ = 1.5.Therefore, the drive system (59) can achieve FTMLS
with response system (60) under the designed controller (25).
Fig. 2 are synchronization errors ℘η(t, z) (η = r, i, j, k)
respectively, which have verified the feasibility and validness
of the established theoretical results.
Case 2: We choose same as the activation function in

case 1. Thus, Assumption (H1) are F r
ϕ = 1, F i

ϕ = 0,
F j
ϕ = 1, Fk

ϕ = 0, Grϕ = 0, Giϕ = 2
5 , G

j
ϕ = 0, Gkϕ = 2

5 , (ϕ =
1, 2) and (H2) are q̂11 = 1.5, q̂22 = 2, q̂12 = q̂21 = 0.
Then, for adaptive controller (49), the parameters are

designed as γ r11 = 4.09, γ r12 = 2.70, γ r21 = 2.08, γ r22 =
3.10, γ i11 = 2.53, γ i12 = 3.70, γ i21 = 3.07, γ i22 = 4.07,
γ
j
11 = 3.11, γ j12 = 3.97, γ j21 = 4.13, γ j22 = 2.97, γ k11 =

3.63, γ k12 = 3.07, γ k21 = 3.80, γ k22 = 3.36, $ r
= 2.71,

$ i
= 0.93, $ j

= 1.57, $ k
= 0.89, %r = 0.73, %i = 0.21,

%j = 0.97, and %k = 1.03. By Theorem 2, we obtains the
results:

Krα = 1.5200, Kiα = 2.1700, Kjα = 1.7800, Kkα = 1.5900,

Pr
α = 0, Pi

α = 1.1200, Pj
α = 0, Pk

α = 0.0400,

N = K̂−P̂ = 0.4000, and 8 = N−%̂ = 0.1900 > 0
holds, we can evaluate the finite-time is about t = 0.6 accord-
ing to the condition Eλ(−8tλ) < ε2

Kδ2 , when we assume
ε = 7.23, δ = 1.9,K = 1.05. Therefore, the drive system
(59) can achieve FTMLSwith response system (60) under the
designed controller (49). The simulation results are shown
in Fig. 3, where the synchronization errors ℘η(t, z)(η =
r, i, j, k), trend to be zero quickly with regard to time t.

V. CONCLUSION
In this paper, we introduces adaptive fuzzy feedback con-
trol schemes to investigate the FTMLS of T-S fuzzy
FORDQVNNs. First, mainly by employing Hamilton rules,
the studied multidimensional systems have been divided
into the relevant real-valued ones. By designing new
state-feedback controller and fuzzy adaptive controllers, then
constructing a suitable Lyapunov functional and employing
algebraic inequality methods, a novel FTMLS criterion of the
proposed system can be obtained. Finally, a simulation exam-
ple has been given to demonstrate the merits of the proposed
approach. However, there are still two unsolved problems
in this paper: (i) Stochastic factors are not considered in
modeling, which is not consistent with some actual systems,
and (ii) The impulsive controller would further reduce the
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contact consumption of the system compared to the contin-
uous controllers. Therefore, inspired by [4], [32], [36], the
FTMLS problem of stochastic FORDQVNNs via impulsive
controller scheme will be studied in our future work.
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Asynchronous Extended Dissipative Filtering for
T–S Fuzzy Markov Jump Systems

Yufeng Tian and Zhanshan Wang , Senior Member, IEEE

Abstract—This article is concerned with the asynchronous
reliable extended dissipative filtering problem for a class of
continuous-time T–S fuzzy Markov jump systems. The modes
of the encountered sensor failures and the designed filter are
considered to be asynchronous with the original systems, which
can be described by two mutually independent hidden Markov
processes. By proposing double variables-based decoupling prin-
ciple and variable substitution principle, a new condition is
presented to guarantee the filtering error system to be stochasti-
cally stable and extended dissipative. Compared with the existing
works, the proposed method does not impose constraints on
Lyapunov variables and slack variables, and some unnecessary
constraints on the system structure are removed. These directly
lead to less conservative and more general results. An example
is provided to illustrate the effectiveness of the proposed design
method.

Index Terms—Asynchronous reliable extended dissipative fil-
tering, double variables-based decoupling principle (DVDP),
Takagi–Sugeno (T–S) fuzzy Markov jump systems (MJSs), vari-
able substitution principle (VSP).

I. INTRODUCTION

S INCE many mathematical models of physical systems are
nonlinear with complex uncertainties, causing many dif-

ficulties in the control and analysis, researchers have been
trying to seek effective methods for controlling nonlinear
systems [1]–[3]. It is known that Takagi–Sugeno (T–S) fuzzy
inference plays a popular way in modeling nonlinearities, such
as saturations and dead zones [4], [5]. It has been shown that
a complex nonlinear system can be described in terms of a
family of IF-THEN rules since the T–S model behaves like
a linear system [6]. On this basis, many works for stability
analysis and the controller/filter design problems have been
published [7]–[9].
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Markov jump systems (MJSs) experience abrupt changes
in their parameters and structure, and have been an attractive
research topic [10]–[14]. A lot of results have been reported
to solve filtering problems [15]–[17]. In [17], the reliable
exponential H∞ filtering problem has been studied for sin-
gular MJSs with sensor failures. Sensor failures may arise
unexpectedly and they can affect system performance or even
bring about damages. Thus, plenty of literature on reliable
filtering for MJSs has been reported [9], [18]. It is worth
pointing out that the aforementioned results were developed in
the context of linear MJSs. With rapid development of fuzzy
system theory, more and more problems of T–S fuzzy MJSs
have been studied [19]–[21], in which the system mode is
assumed to be available to the filters at any time through
the sensor. Unfortunately, utilization of mode will be lim-
ited because of some deviant behaviors, such as time-delays
and data dropouts. Unlike some published papers [15]–[21],
another nonsynchronous mechanism has been applied to deal
with some concerned asynchronous phenomena, namely, hid-
den Markov model (HMM) [22]. Afterward, the asynchronous
filtering by HMM has been extended to many works [23]–[28].
Although a number of results on the asynchronous filtering
have been achieved for T–S fuzzy MJSs, few results focus
on the asynchronous reliable filtering for T–S fuzzy MJSs
except [23]. In [23], the asynchronous reliable L2 − L∞ filter-
ing problem for T–S fuzzy MJSs with sensor failures has been
considered. However, the constrained structure of Lyapunov

variables (such as Pd =
[

P1d P2

PT
2 P2

]
) may bring conserva-

tiveness. Although the constrained Lyapunov variables can be
avoided by introducing slack variables (Finsler’s lemma), such
as in [24]–[26], the introduced slack matrices are still con-

strained (such as Gs =
[

G1s Xs

G2s Xs

]
in [25]). It may also lead

to conservativeness.
On the other hand, the extended dissipative filtering, which

includes H∞, L2 − L∞, passive, and dissipative filtering by
tuning weighting parameters, is first proposed for continuous-
time MJSs in [29]. Afterward, the extended dissipative filtering
problem for continuous-time dynamic systems has been widely
investigated [30]–[33]. For example, Li et al. [30] investigated
the extended dissipative filter design problems for continuous-
time fuzzy systems with time-varying delays. However, some
unnecessary constraints on the filtering error system have to
be imposed, which may lead to some limitations in practical
applications. Moreover, the above mentioned works [29]–[32]
only focus on the synchronous cases Thus, without constraints,

2168-2216 c© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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how to handle the asynchronous extended dissipative filtering
for continuous-time T–S fuzzy MJSs is an important topic.

Summarizing the above discussions, this article studies the
problem of the asynchronous reliable extended dissipative fil-
tering for T–S fuzzy MJSs. First, by employing HMM, two
independently stochastic variables are introduced to describe
the encountered sensor failures and filter, respectively. Second,
a new condition, associated with the modes of plant, sensor
failures, and filter are proposed to ensure the stochastic sta-
bility and extended dissipativity of the filtering error systems.
The main contributions and novelty are given as follows.

1) By proposing double variables-based decoupling princi-
ple (DVDP) and variable substitution principle (VSP),
the asynchronous reliable extended dissipative filter
design condition is presented for T–S fuzzy MJSs.
Compared with the existing methods [23]–[26], this
article fully considers the free structure of Lyapunov
variables and slack variables, which provides extra free
dimensions in the solution space. It directly leads to the
reduction of conservativeness in the filtering solution.

2) Compared with the existing works [29]–[32], some
unnecessary constraints on the system structure are
relaxed by introducing a set of positive scalars and sym-
metric positive matrices with the aid of S-procedure
lemma, which leads to more general results.

3) Based on 1) and 2), the asynchronous reliable extended
dissipative filtering is achieved for T–S fuzzy MJSs,
which unifies the reliable filtering, extended dissipative
filtering, and asynchronous filtering in a framework.

The remainder of this article is organized as follows. System
description and preliminaries are presented in Section II and
the main results are discussed in Section III. In Section IV,
an example is provided and conclusions are presented in
Section V.

Notation: Throughout this article, Rn represents the
n-dimensional Euclidean space; XT denotes the transpose
of X; “*” in LMIs represents the symmetric term of the
matrix; Sym[X] means X + XT; λmax(X) represents the
maximum eigenvalue of X; E(X) denotes the mathematical
expectation operator of X; L2[0,∞) refers to the space of
square-integrable vector functions over [0,∞); |X| denotes the
Euclidean norm for vectors of X; col[X,Y] denotes [XT,YT]T;
diag{· · · } represents a block diagonal matrix; and vec[X,Y]
represents [X,Y]T.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider the following T–S fuzzy MJSs.
Plant Rule i: IF θ1(t) is �i1, . . . , θp(t) is �ip, then⎧⎨

⎩
ẋ(t) = Aq(t)ix(t)+ Bq(t)iw(t)
y(t) = Cq(t)ix(t)+ Dq(t)iw(t)
z(t) = Eq(t)ix(t)+ Fq(t)iw(t)

(1)

where �ij(i ∈ V = {1, 2, . . . , v}, j ∈ {1, 2, . . . , p}) and θj(t)
are fuzzy set with v fuzzy rules and the premise variable,
respectively. Aq(t)i, Bq(t)i, Cq(t)i, Dq(t)i, Eq(t)i, and Fq(t)i are
known system matrices. x(t) ∈ Rn, y(t) ∈ Rm, z(t) ∈ Rp, and
w(t) ∈ Rq (belongs to L2[0,∞)) are the system state, the mea-
surement output, and the disturbance input, respectively. The

variable q(t) stands for a continuous-time Markov jump pro-
cess with TRM � = [λqc]. It takes value in Q = {1, 2, . . . ,Q}
with TPs given by

Pr{q(t + b) = c|q(t) = q} =
{
λqcb + o(b), q �= c
1 + λccb + o(b), q = c

where λcc = − ∑Q
c=1,q�=c λqc,

∑Q
c=1 λqc = 0, and

lim�→0(o(b)/b) = 0.
When q(t) = q, the overall fuzzy model is obtained by T–S

fuzzy inference method⎧⎨
⎩

ẋ(t) = Aq(h)x(t)+ Bq(h)w(t)
y(t) = Cq(h)x(t)+ Dq(h)w(t)
z(t) = Eq(h)x(t)+ Fq(h)w(t)

(2)

where

Aq(h) =
v∑

i=1

hi(θ(t))Aqi,Bq(h) =
v∑

i=1

hi(θ(t))Bqi

Cq(h) =
v∑

i=1

hi(θ(t))Cqi,Dq(h) =
v∑

i=1

hi(θ(t))Dqi

Eq(h) =
v∑

i=1

hi(θ(t))Eqi,Fq(h) =
v∑

i=1

hi(θ(t))Fqi

hi(θ(t)) =
∏p

j=1 �ij(θj(t))∑v
i=1

∏p
j=1 �ij(θj(t))

θ(t) = [
θ1(t), θ2(t), . . . , θp(t)

]
where hi((θ(t)) and �ij(θj(t)) represent the normalized fuzzy
weighting function and grade of membership of θj(t) in �ij,
respectively. For ∀t > 0, we assume

∏p
j=1 �ij(θj(t)) > 0. It

implies hi(θ(t)) > 0 and
∑v

i=1 hi(θ(t)) = 1.
When the sensors experience failures, the following sensor

failure model is adopted in this article:

yF
i = fρ(t)i(t)yi(t), i ∈ {1, 2, . . . ,m} (3)

where yF
i is the attainable signal from the ith sensor. The

stochastic failure phenomenon can be described by variable
s(t) ∈ S = {1, 2, . . . , S}, which applies to HMM theory with
the conditional probability matrix (CPM) S = [ρqs](ρqs > 0)
satisfying Pr{s(t) = s|q(t) = q} = ρqs, where

∑S
s=1 ρqs = 1.

Besides, the variable fsi(t)(s(t) = s) describes the ith failure
level under the sth mode satisfying

0 ≤ f
si

≤ fsi ≤ f̄si ≤ 1 (4)

where f
si

and f̄si represent the given lower and upper bounds of
fsi, respectively. If f

si
= f̄si = 0 [i.e., fsi(t) = 0], the ith sensor

under the sth mode loses its function and outage happens.
When f

si
= f̄si = 1 [i.e., fsi(t) = 1], it works efficiently without

failures. Partial failures will occur if 0 < fsi(t) < 1. In this
case, fsi(t) can be described as

fsi(t) = f̂si + δsi(t) (5)

where f̂si = (f
si

+ f̄si)/2. We can conclude

yF(t) = Fs(t)y(t) =
(

F̂s +�s(t)
)

y(t) (6)
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where

�s(t) = diag{δs1(t), δs2(t), . . . , δsm(t)}
F̂s(t) = diag{f̂s1, f̂s2, . . . , f̂sm}
F̌s(t) = diag{f̌s1, f̌s2, . . . , f̌sm}

�T
s (t)�s(t) ≤ F̌T

s F̌s ≤ I.

In this article, the HMM theory is used to design an asyn-
chronous filter for estimating the plant. κ(t)(κ(t) ∈ K =
{1, 2, . . . ,K}) is used to depict this situation. Furthermore,
it has the same features with s(t). That is, it satisfies the CPM
K = [τqk](τqk > 0) with Pr{κ(t) = k|q(t) = q} = τqk, where∑K

k=1 τqk = 1. Although asynchronous modes of the sensor
and the filter are controlled by the plant mode directly, they
are conditionally independent, i.e.,

Pr{s(t) = s, k(t) = k|q(t) = q}
= Pr{s(t) = s|q(t) = q} × Pr{k(t) = k|q(t) = q}
= ρqsτqk. (7)

In order to estimate the signal z(t) in system (2), the fol-
lowing asynchronously reliable filter is designed with k(t) = k
and hi(θ(t)) = hi:{

ẋf (t) = Ak(h)xf (t)+ Bk(h)yF(t)
zf (t) = Ek(h)xf (t)

(8)

where

Ak(h) =
v∑

i=1

hiAki,Bk(h) =
v∑

i=1

hiBki

Ek(h) =
v∑

i=1

hiEki.

Defining x̄(t) = [xT(t), xT
f (t)]

T and z̄(t) = z(t) − zf (t),
combining (2), (6), and (8), the filtering error system can be
given as⎧⎨

⎩
˙̄x(t) = (

Āqsk(h)+ B̄1k(h)�s(t)C̄q(h)
)
x̄(t)

+ (
B̄2qsk(h)+ B̄1k(h)�s(t)D̄q(h)

)
w(t)

z̄(t) = Ēqk(h)x̄(t)+ F̄qk(h)w(t)
(9)

where

Āqsk(h) =
[

Ā1
qsk(h)

Ā2
qsk(h)

]
=

v∑
i=1

v∑
j=1

hihjĀqskij

Āqskij =
[

Aqi 0
BkjF̂sCqi Akj

]

B̄2qsk(h) =
[

B̄1
2qsk(h)

B̄2
2qsk(h)

]
=

v∑
i=1

v∑
j=1

hihjB̄2qskij

B̄2qskij =
[

Bqi

BkjF̂sDqi

]

B̄1k(h) =
[

B̄1
1k(h)

B̄2
2k(h)

]
=

v∑
j=1

hjB̄1kj, B̄1kj =
[

0
Bkj

]

Ēqk(h) =
v∑

j=1

v∑
j=1

hihjĒqkij, Ēqkij = [
Eqi − Ekj

]

C̄q(h) =
v∑

i=1

hiC̄qi, C̄q(h) = [
Cqi 0

]

D̄q(h) =
v∑

i=1

hiDqi, F̄q(h) =
v∑

i=1

hiFqi.

Remark 1: Note that actual factors, such as time delays
and data dropouts make synchronization hard to maintain.
In [10], the piecewise homogeneous Markov jump principle
has been adopted to describe asynchronization of nonlinear
MJSs. Compared with the piecewise homogeneous Markov
principle in [10], HMM is only dependent on the current mode
of original system (9). And HMM approach just requires a
conditional transition probability matrix to characterize the
asynchronous phenomenon instead of several transition prob-
ability matrices in [10]. Thus, HMM has a simpler structure
and is easier to understand.

The aim of this article is to design an asynchronous reliable
extended dissipative filter (8) such that (9) is stochastically
stable and extended dissipative. For the simplicity of analysis,
we establish the following block matrix:

[
A1(h)
A2(h)

]
=

[
A1

qsk(h) B1
2qsk(h) B1

1k(h)

A2
qsk(h) B2

2qsk(h) B2
1k(h)

]
. (10)

The advantage of the structure of the block matrix lies in sep-
aration of system matrices A1(h) and filter matrices A2(h),
which enables us to parameterize filter matrices by slack matri-
ces in next section. Before ending this section, some technical
preconditions are introduced for easily deriving LMI filter
design conditions.

Assumption 1: Matrices �1, �2, �3 = �T
3 , and � satisfying

the following conditions.
1) �1 = �T

1 = −�T
1�1 with �̄1 ≥ 0.

2) � = �T = �̄T�̄ with �̄ ≥ 0.
3) BT

2�1B2 + He[BT
2�2] +�3 > 0.

4) (||�1|| + ||�2||) · ||�|| = 0.
Definition 1 [29]: For prescribed matrices �1, �2, �3, and

� satisfying Assumption 1, filtering error system (9) is said
to be extended dissipative, if there exists a scalar  such that
the following inequality holds for w(t) ∈ L2[0,+∞) and any
tf > 0:

∫ tf

0
J(s)ds ≥ z̄T(t)�z̄(t)+  (11)

where

J(s) = z̄T(s)�1z̄(s)+ 2z̄T(s)�2w(s)+ wT(s)�3w(s). (12)

Remark 2: The asynchronous extended dissipative filtering
considered in this article can be reduced to the synchronous
extended dissipative filtering investigated in [29]–[32] if
Q = K and τqq = 1. It can be concluded that the asyn-
chronous extended dissipative filtering can be reduced to the
asynchronous H∞ filtering, the asynchronous L2 − L∞ filter-
ing, the asynchronous passive filtering, and the asynchronous
dissipative filtering by tuning parameters �1, �2, �3, and �,
respectively, (shown in Table I).
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TABLE I
EXTENDED DISSIPATIVE PERFORMANCE

Lemma 1 (Double Variables-Based Decoupling Principle):
For a scalar β �= 0, matrices A, M, T , F, and N with appro-
priate dimensions, the following propositions are equivalent:

℘1 � T + MA + ATMT < 0 (13)

℘2 �
[

T + He[FA] β(M − F)+ ATNT

∗ − βN − βNT

]
< 0. (14)

Proof: Two steps will be given as follows.
1) ℘1⇒ ℘2: Inequality (13) holds, then there exist scalars

β and λ such that

[
T + He[ATMT] − λ

β
ATA λAT

∗ −βλI

]
< 0. (15)

Setting FT = MT − (1/2β)λA, N = (1/2λ)I, then (14)
is obtained.

2) ℘2⇒ ℘1: Pre- and post-multiplying (14) by [I, (1/β)AT]
and its transpose, respectively, the inequality (13)
is obtained. This proof of the equivalence is
completed. �

Remark 3: In order to decouple the cross terms between A
and M, different from the existing methods (Finsler’s lemma)
in [24]–[26], a new decoupling principle is proposed in this
article by introducing two slack variables F and N in (14),
which can be named DVDP. In the DVDP, two slack vari-
ables F and N are independent from each other. Thus, some
stability criteria, controller design or filter design conditions
with less conservatism can be obtained by choosing free and
independent variables F and N. Compared with the single
variable-based decoupling principles (SVDPs) by introduc-
ing a variable N in [15], [20], [34]–[36], three advantages
of Lemma 1 in this article are shown as follows: 1) the
mathematical proof of the necessity and sufficiency is pro-
vided; 2) DVDP provides more degrees of freedom than
SVDPs; and 3) SVDPs are special cases of the DVDP. For
example, if F = 0, then Lemma 1 of present article reduces
to that in [15] and [20]. If F = 0, β = 1, then Lemma 1 of
present article reduces to that in [34]. If T < 0, F = 0, then
Lemma 1 of present article reduces to that in [35], [36].

Lemma 2 (Variable Substitution Principle): Given matrix N,
symmetric matrices M1 and M2 with appropriate dimensions,
if there exist matrices Q1, Q2, and R satisfying

j1 �
[

Q1 R − N
∗ Q2

]
≥ 0 (16)

j2 �
[

M1 + Q1 R
∗ M2 + Q2

]
< 0 (17)

Algorithm 1 Infinite Iteration Algorithm
Relax N in (18)

Step 1: Let (18i) be (18). Relax N in (18i) by (16) and
(17). Let (16i) be (16) and (17) be (17i).

Step 2: Store (17i). Let (18ii) be (16i). Relax N in
(18ii) by (16ii) and (17ii).

Step 3: Store (17ii). Repeat Step 2 for n times. Store
(17iii), . . . , (17n), and (16n).

Step 4: Obtain the relaxed conditions (17i), (17ii), . . . ,
(17n), and (16n).

then the following inequality holds:

j3 �
[

M1 N
∗ M2

]
< 0. (18)

Proof: Noticing the fact j2 = j1 + j3, from j1 ≥ 0 and
j2 < 0, it yields j3 < 0. But not vice versa. �

Remark 4: Note that a fixed N in j3 will lead to some inflex-
ibility, so a slack variable R is introduced to relax j3, which
yields j2. Variable R can be chosen freely, which is indepen-
dent of fixed variable N. Thus, we name Lemma 2 (VSP).
Compared with j3, j2 is more general and flexible. If j1 = 0,
then j2 reduces to j3. Different from the DVDP/SVDPs in
Lemma 1 of present article and [15], [20], [34]–[36] separat-
ing the product terms (i.e., AM in Lemma 1), the VSP is used
to substitute a fixed matrix N by a slack variable R. Although
VSP can increase the flexibility of the final conditions, there
still exists some room to be further improved. For example,
the following algorithm is one of them. From Algorithm 1, it
can be seen that if n → +∞, then fixed matrix N may be
removed.

III. MAIN RESULTS

Note that many works on extended dissipative filtering for
continuous-time MJSs have been reported [29]–[32]. However,
these works assume that the modes of the filter and plant
are synchronous. It is known that synchronization becomes
unrealistic since there exist some practical factors, such as
data dropouts and time delays. Thus, in this section, the
asynchronous reliable extended dissipative filtering will be
developed. First, we will analyze the stochastic stability and
extended dissipativity for system (9).

Theorem 1: Given scalars ϑ > 0, αq �= 0, βq �= 0, matri-
ces F̂s, F̌s, and �̄1, �2, �3, �̄ satisfying Assumption 1,
system (9) is stochastically stable and extended dissipative if
there exist scalars ϑq ≤ ϑ , ρq > 0, symmetric positive def-
inite matrices Uq, Pq, matrices Wq(h), M1q, M2q, �q, Yq1,
Yq2, N, Âki, B̂ki, Êki, and diagonal positive definite matrices
Rs such that the following inequalities hold for q ∈ Q, s ∈ S,
and k ∈ K:

Pq − ϑGq + ρqI > 0 (19)

�qsk(h) < 0 (20)

�qsk(h) < 0 (21)

ϒqk(h) < 0 (22)
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where

�qsk(h) =
K∑

s=1

S∑
s=1

ρqsτqkSym
[
�qÃ

2
F(h)

]
− Wq(h)

�qsk(h) =
⎡
⎣�

11
qsk(h) �12

qsk(h) �13
qk(h)

∗ −βqN − βqN 0
∗ ∗ −I

⎤
⎦

ϒqk(h) =
⎡
⎣−ϑqI ϒ12

q (h)�̄
T ϒ13

q (h)�̄
T

∗ −Pq 0
∗ ∗ −Uq

⎤
⎦

�11
qsk(h) = �qsk(h)+ Wq(h)

�12
qsk(h) = βq

(
�q −�q

) +
[
Ã2

F(h)
]T

NT

�13
qk(h) = vec

[
ĒT

qk(h)�̄
T
1 , F̄T

q (h)�̄
T
1 , 04

]

�qsk(h) =
[
�1qsk(h) αq

(Pq − Mq
) + [

Ā1(h)
]T

YT
q1

∗ −αqYq − αqYT
q

]

�1qsk(h) = �qsk(h)+ Sym
[
Mq1Ã

1(h)
]

�qsk(h) =

⎡
⎢⎢⎣

∑Q
c=1 λqcPc −ĒT

qi�2 0 C̄T
q (h)Rs

∗ �22
q (h) 0 D̄T

q (h)Rs

∗ ∗ −Rs 0
∗ ∗ ∗ −Rs

⎤
⎥⎥⎦

�22
q (h) = −Sym

[
F̄T

q (h)�2

]
−�3, Ã

2
F(h) =

[
Ā2

F(h), 03

]

Ā2
F(h) =

[
Ā2

qsk(h), B̄2
2qsk(h), B̄2

1k(h)F̌s

]
Pq = vec

[
Pq, 03

]
,�q = vec

[
Mq2,Yq2

]
Mq2 = vec

[
Mq21,Mq22,Mq23,Mq24

]
Yq = [

Yq1 Yq2
] =

[
Yq11 Yq12

YT
q12 Yq13

]

Mq1 = vec
[
Mq11,Mq12,Mq13,Mq14

]
ϒ12

q (h) =
[√
τq1ĒT

q1(h), . . . ,
√
τqKĒT

qK(h)
]

ϒ13
q (h) =

[√
τq1F̄T

q1(h), . . . ,
√
τqKF̄T

qK(h)
]

Ã1(h) =
[
A1(h), 0

]
.

Proof: The proof will be completed by the following three
steps. For simplicity, set

∑
s,k ρsτk = ∑K

s=1
∑S

s=1 ρqsτqk.
1) Two-Step Decoupling: By Schur complement, it follows

from (21):

�̄qsk(h) =
[
�̄11

qsk(h) �12
qsk(h)

∗ −βqN − βqN

]
< 0 (23)

where

�̄11
qsk(h) = �qsk(h)+ Wq(h)+�13

qk(h)
[
�13

qk(h)
]T
.

Combining
∑S

s=1 ρqs = 1,
∑K

k=1 τqk = 1, and (20), we have

�̃qsk(h) =
∑
s,k

ρsτk

[
�̃11

qsk(h) �12
qsk(h)

∗ −βqN − βqN

]
< 0 (24)

where

�̃11
qsk(h) = �qsk(h)+�13

qk(h)
[
�13

qk(h)
]T + Sym

[
�qÃ

2
F(h)

]
.

By Lemma 1 for the first time, we have

�̃qsk(h) =
∑
s,k

ρsτk

{[
�qsk(h)+�13

qk(h)
[
�13

qk(h)
]T

+ Sym
[
�qÃ

2
F(h)

]}
< 0. (25)

It equals

�̃qsk(h) =
∑
s,k

ρsτk

[
�̃11

qsk(h) �̃12
qsk(h)

∗ −αqYq − αqYT
q

]
< 0

where

�̃11
qsk(h) = �qsk(h)+ �̃13

qk (h)
[
�̃13

qk (h)
]T

+ Sym
[
Mq1A

1(h)
]

+ Sym
[
Mq2Ā

2(h)
]

�̃12
qsk(h) = αq

(Pq − Mq
) +

[
A1(h)

]T
YT

q1 +
[
Ā2

F(h)
]T

YT
q2

�̃13
qk (h) = vec

[
ĒT

qk(h)�̄
T
1 , F̄T

q (h)�̄
T
1 , 02

]
.

From Mq = vec[Mq1,Mq2] and Yq = vec[Yq1,Yq2], we have

�̃11
qsk(h) = �qsk(h)+ �̃13

qk (h)
[
�̃13

qk (h)
]T + Sym

[
Mq(h)

]
�̃12

qsk(h) = αq
(Pq − Mq

) + T(h)YT
q

(h) =
[

A1(h)
Ā2

F(h)

]
=

[
Āqsk(h), B̄2qsk(h), B̄1k(h)F̌s

]
.

By Lemma 1 for the second time, we can get

�̂qsk(h) =
∑
s,k

ρsτk

{
�qsk(h)+ �̃13

qk (h)
[
�̃13

qk (h)
]T

+ Sym
[Pq(h)

]}
< 0. (26)

By Schur complement lemma, �̂qsk(h) < 0 can be
transformed as

�̄qsk(h) < 0 (27)

where

�̄qsk(h) =
∑
s,k

ρsτk

⎡
⎣�

1
qsk(h) �2

qk(h)F̌s �3
q (h)Rs

∗ −Rs 0
∗ ∗ −Rs

⎤
⎦

�1
qsk(h) =

[
�11

qsk(h) �12
qsk(h)

∗ �22
q (h)

]

�2
qk(h) =

[
PqB̄1k(h)

0

]
, �3

q (h) =
[

C̄T
q (h)

D̄T
q (h)

]

�11
qsk(h) = PqĀqsk(h)+

Q∑
c=1

λqcPc − ĒT
qk(h)�1ĒT

qk(h)

�12
qsk(h) = PqB̄2qsk(h)− ĒT

qk(h)�1F̄T
q (h)− ĒT

qk(h)�2

�22
q (h) = −F̄T

q (h)�1F̄q(h)− Sym[F̄T
q (h)�2] −�3.

Authorized licensed use limited to: National University of Singapore. Downloaded on July 05,2021 at 08:09:54 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

By Schur complement, it follows from (27):

∑
s,k

ρsτk

{
�1

qsk(h)+�2
qk(h)F̌sR

−1
s F̌s

[
�2

qk(h)
]T

+ �3
q (h)Rs

[
�3

q (h)
]T

}
< 0. (28)

From �T
s (t)�s(t) ≤ F̌T

s F̌s ≤ I, it follows:

∑
s,k

ρsτk

{
�1

qsk(h)+�2
qk(h)�s(t)R

−1
s �s(t)

[
�2

qk(h)
]T

+ �3
q (h)Rs

[
�3

q (h)
]T

}
< 0. (29)

Then, we obtain
∑
s,k

ρsτk

{
�1

qsk(h)+ Sym

[
�2

qk(h)�s(t)
[
�3

q (h)
]T

}
< 0.

(30)

Recalling (27), we have

∑
s,k

ρsτk

[
�̄11

qsk(h) �̄12
qsk(h)

0 �22
q (h)

]
< 0 (31)

where

�̄11
qsk(h) = Pq

(
Āqsk(h)+ B̄1k(h)�s(t)C̄q(h)

)

+
Q∑

c=1

λqcPc − ĒT
qk(h)�1ĒT

qk(h)

�̄12
qsk(h) = Pq

(
B̄2qsk(h)+ B̄1k(h)�s(t)C̄q(h)

)
− ĒT

qk(h)�1F̄T
q (h)− ĒT

qk(h)�2.

2) Stochastic Stability Analysis: Construct the following
mode-dependent Lyapunov functional for system (9):

V(t) = x̄T(t)Pqx̄(t). (32)

Let L be the weak infinitesimal generator of the stochastic
process {x(t), q(t)}. Setting η(t) = [x̄T(t),wT(t)]T, we have

LV(t) = ηT(t)
∑
s,k

ρsτk

[
�̃11

qsk(h) �̃12
qsk(h)

0 0

]
η(t) (33)

where

�̃11
qsk(h) = Pq

(
Āqsk(h)+ B̄1k(h)�s(t)C̄q(h)

) +
Q∑

c=1

λqcPc

�̃12
qsk(h) = Pq

(
B̄2qsk(h)+ B̄1k(h)�s(t)C̄q(h)

)
.

From (31) with w(t) = 0, we have E{LV(t)} < 0, which
implies the stochastic stability of system (9).

3) Extended Dissipativity Analysis: The following equality
is true:

E{
z̄T(t)�z̄(t)

} = ηT(t)Zqk(h)η(t) (34)

where

Zqk(h) =
K∑

k=1

τqk

[
ĒT

qk(h)�Ēqk(h) ĒT
qk(h)�F̄q(h)

∗ F̄T
q (h)�F̄q(h)

]
.

By Schur complement, it follows from � = �̄T�̄ and (22):

Zqk(h) < ϑq

[
Gq 0
0 Uq

]
. (35)

Combining with (34), it follows:

E{
z̄T(t)�z̄(t)

}
< E{

ϑqx̄T(t)Gqx̄(t)
} + ϑqwT(t)Uqw(t).

From ϑq ≤ ϑ , we have

E{
ϑ x̄T(t)Gqx̄(t)

} + ϑqwT(t)Uqw(t)− E{
z̄T(t)�z̄(t)

}
> 0.

By S-procedure lemma, there exists scalar ρq > 0 such that

E{
ϑ x̄T(t)Gqx̄(t)

} + ϑqwT(t)Uqw(t)

− E{z̄T(t)�z̄(t)} − E{ρqx̄T(t)x̄(t)} > 0. (36)

In view of (31) and (33), we have

LV(t) < J(t). (37)

By Dynkin’s formula, we have

E
{∫ t

0
J(s)ds

}
≥ E{

x̄T(t)Pqx̄(t)
} − V(0). (38)

Combining (19), (36), and (38), it yields

E
{∫ t

0
J(s)ds

}
− E{

z̄T(t)�z̄(t)
}

≥ −wT(t)ϑqUqw(t)− V(0). (39)

Setting

 = − sup
t,q

{∣∣ϑq
∣∣ · ||Uq|| · |w(t)|2 − ||Pq|| · |x̄(t)|2

}
− V(0)

the following inequality holds:

E
{∫ t

0
J(s)ds

}
− E{

z̄T(t)�z̄(t)
} ≥ . (40)

In order to prove the extended dissipativity of system (9), we
need to verify the following inequality for any tf ≥ t ≥ 0:

E
{∫ tf

0
J(s)ds

}
− sup

0≤t≤tf
E{

z̄T(t)�z̄(t)
} ≥ . (41)

For this purpose, we will prove the two cases, namely, ||�|| =
0 and ||�|| �= 0, respectively.

1) ||�|| = 0, from (40), for any tf ≥ t ≥ 0, it follows:

E
{∫ tf

0
J(s)ds

}
≥  (42)

which implies (41).
2) ||�|| �= 0, we know �1 = 0 and �2 = 0 by

Assumption 1–3). From �22
q (h) < 0 in (21), we have

�3 > 0 which implies J(s) = wT(s)�3w(s) ≥ 0. Thus,
the following inequalities hold for tf ≥ t ≥ 0:

E
{∫ tf

0
J(s)ds

}
≥ E

{∫ t

0
J(s)ds

}
(43)

sup
0≤t≤tf

E{
z̄T(t)�z̄(t)

} ≥ E{
z̄T(t)�z̄(t)

}
. (44)

It is clearly seen that (41) holds from (40). Then, the
extended dissipativity is proven. Summarized the above
three steps, the proof is completed. �
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Remark 5: Note that in the existing works [29]–[32], F̄qk(h),
�1, �2, �3, and � are presumed to satisfy Assumption 1 of
present article and the following constraint:

||F̄qk(h)|| · ||�|| = 0. (45)

That is, the structure of the filtering error system (9) is con-
strained (similar cases see [29]–[32] for details). In this article,
it is removed by introducing symmetric positive definite matri-
ces Uq and positive scalars ϑq (see step 3) in this article for
details). Of course, if constraint (45) is utilized in this article,
that is, F̄qk(h) = 0, then we can get

ϒqk(h) =
[−ϑqI ϒ12

q (h)�̄
T

∗ −Pq

]
< 0. (46)

Moreover, if ϑq = 1, Q = K, and τqq = 1, then (46) reduces
to the results in [29]–[32]. Thus, the proposed method of
present article is more applicable and general than the existing
works [29]–[32].

Remark 6: Note that the free-weighting method is used
to separate the system (filter) matrices and the Lyapunov
variables in this article, which can avoid the constraints on
Lyapunov variables. Otherwise, if free-weighting method is
not used in this article, matrix transformation can be used, such
as in [31]. In this case, constraints on some Lyapunov variables
are inevitable, such as Zi = diag{Z̃1i, Z̃2i} in [31], which results
in underutilization of full relationships on system information.
Moreover, free-weighting method has been widely utilized to
construct LKF, such as in [37], which can be used to relax
the positive definite requirements for some matrices. Thus,
by using free-weighting method, additional degree of freedom
can be obtained in the final conditions. It is an efficient way
to reduce conservatism.

Remark 7: In [23], the asynchronous reliable L2 − L∞ fil-
tering problem of system (1) has been investigated, but the
Lyapunov variables are constrained (see Pd in [23] for details).
In [24]–[26], by using Finsler’s lemma, the constraints on
Lyapunov variables can be overcome by introducing some
slack matrices, but the introduced slack variables are also con-
strained (see Gs and Rs in [25] for details). Similarity, by using
SVDPs [19], such constraints are also inevitable. In this arti-
cle, the constraints on Lyapunov variables and slack variables
are removed in Theorem 1 of present article by using a two-
step decoupling technique (by using DVDP twice times), the
two steps are simplified as follows.

1) First Step: By using the DVDP for the first time, the
constraints on Lyapunov variables in [23] are avoided
[see condition (25) for details].

2) Second Step: By using the DVDP for the second time,
the constraints on slack variables in [24]–[26] are over-
come [see condition (26) for details].

Based on Theorem 1 and Lemma 2, less conservative solutions
to the filter matrices will be given as follows.

Theorem 2: Given scalars ϑ > 0, αq �= 0, βq �= 0,
ιmq(m = 1, 2, 3, 4), matrices F̂s, F̌s, and �̄1, �2, �3, �̄ sat-
isfying Assumption 1, system (9) is stochastically stable and
extended dissipative if there exist scalars ϑq ≤ ϑ , ρq > 0,
symmetric positive definite matrices P1q, P3q, G1q, G3q, Uq,
matrices W1qij, W2qij, W3qij, �q, P2q, G2q, Mq1, Mq2, Yq1, Yq2,

N, Âki, B̂ki, Eki, and diagonal positive definite matrix Rs such
that the following inequalities hold for i, j ∈ V, q ∈ Q, s ∈ S,
and k ∈ K:

�q > 0 (47)

Vq ≥ 0 (48)

�qskii < 0 (49)

�qskij +�qskji < 0 (50)

�qskii < 0 (51)

�qskij +�qskji < 0 (52)

ϒqkii < 0 (53)

ϒqkij +ϒqkji < 0 (54)

where

�q =
[

P1q − ϑG1q + ρqI P2q − ϑG2q

∗ P3q − ϑG3q + ρqI

]

Vq =
[

Vq1 βq
(IqN −�q

)
∗ Vq2

]

�qskij =
K∑

s=1

S∑
s=1

ρqsτqkSym
[
IqÂ

2
ij

]
− Wqij

�qskij =
⎡
⎢⎣�

11
qskij βq

(
�q −�q

) +
(
Â2

ij

)T
�13

qkij

∗ −βqN − βqN + V2q 0
∗ ∗ −I

⎤
⎥⎦

ϒqkij =

⎡
⎢⎢⎣

−ϑqI ϒ12
qi �̄

T ϒ13
qi �̄

T ϒ14
qi �̄

T

∗ −G1q −G2q 0
∗ ∗ −G3q 0
∗ ∗ ∗ −Uq

⎤
⎥⎥⎦

�11
qskij = �qskij + Wqij + Vq1

�13
qkij = vec

[
−ET

qi�̄
T
1 ,ET

kj�̄
T
1 ,FT

qi�̄
T
1 , 03

]

�qskij =
[
�11

qskij αq
(Pq − Mq

) +
(
Ā1

qi

)T
YT

q1

∗ −αqYq − αqYT
q

]

�11
qskij = �qskij + Sym

[
Mq1Ā

1
qi

]

�qskij =

⎡
⎢⎢⎣

∑Q
c=1 λqcPc �12

qkij 0 �14
qs

∗ �22
qi 0 DT

qiRs

∗ ∗ −Rs 0
∗ ∗ ∗ −Rs

⎤
⎥⎥⎦

�12
qkij =

[
−ET

qi�2

ET
kj�2

]
,�14

qs =
[

CT
qiRs

0

]

�22
qi = −Sym

[
FT

qi�2

]
−�3, Â

2
ij =

[
Â2

1ij, 03

]

Â2
1ij =

[
B̂kjF̂sCqi, Âkj, B̂kjF̂sDqi, B̂kiF̌s

]
A1

qi = [
Aqi, 0,Bqi, 0, 0

]
,Pq = vec

[
Pq, 0, 0

]
Iq = vec

[
ι1qI, ι2qI, ι3q�1qI, ι4q�2qI, 03

]
ϒ12

qi =
[√
τq1ET

qi, . . . ,
√
τqKET

qi

]T

ϒ13
qi =

[√
τq1ET

1j, . . . ,
√
τqKET

Kj

]T

ϒ14
qi =

[√
τq1FT

qi, . . . ,
√
τqKFT

qi

]T
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Mq1 = vec
[
Mq11,Mq12,Mq13,Mq14

]
Mq11 = vec

[
Mq111,Mq112

]
the other notations are the same those in Theorem 1.
Meanwhile, the desired filter matrices can be computed by

Aki = N−1Âki,Bki = N−1B̂ki,Eki = Eki. (55)

Proof: By Schur complement lemma, it follows from �qskij:

�̄qskij =
[
�̄11

qskij βq
(
�q −�q

) +
[
Â2

ij

]T

∗ −βqN − βqN + V2q

]
(56)

where

�̄11
qskij = �qskij + Wqij + Vq1 +�15

qkij

(
�15

qkij

)T
.

By Lemma 2, it follows from (48) and (56):

�̃qskij =
[
�̃11

qskij βq
(
N −�q

) +
[
Â2

ij

]T

∗ −βqN − βqN

]
(57)

where

�̃11
qskij = �qskij + Wqij +�15

qkij

(
�15

qkij

)T
.

Recalling (55), we have

Âki = NAki, B̂ki = NBki. (58)

Submitting (58) into �̃qskij and �qskij, we can, respectively,
obtain

�́qskij =
[
�́11

qskij βq
(IqN −�q

) +
[
A2

1ij

]T
NT

∗ −βqN − βqN

]

�qskij =
∑
s,k

Sym

(
ρsτkIqN

[
A2

ij

]T
)

− Wqij

where

�́11
qskij = �qskij + Wqij +�15

qkij

(
�15

qkij

)T

A2
ij = vec

[
BkjF̂sCqi,Akj,BkjF̂sDqi,BkiF̌s

]
.

Setting

Wq(h) =
r−1∑
i=1

r∑
j=i+1

hihjWqij (59)

based on the fuzzy inference, (9) and (55), it yields

�qsk(h) =
r∑

i=1

h2
i�qskii +

r−1∑
i=1

r∑
j=i+1

hihj
(
�qskij +�qskji

)

�qsk(h) =
r∑

i=1

h2
i�qskii +

r−1∑
i=1

r∑
j=i+1

hihj
(
�qskij +�qskji

)

ϒqk(h) =
r∑

i=1

h2
iϒqi +

r−1∑
i=1

r∑
j=i+1

hihj
(
ϒqkij +ϒqkji

)
.

Hence, we can conclude that: (20) is guaranteed by (48)
and (50). Equation (21) is guaranteed by (51) and (52).
Equation (22) is guaranteed by (53) and (54). Thus, the

stochastic stability and extended dissipativity of system (9)
are ensured. The proof is completed. �

Remark 8: Note that in some existing works, such as in [31],
each filter matrix should be considered independently, such as
Akj and Bkj. In this article, with the construction of the block
matrix (10), we just need to focus on sub-block matrices A1(h)
and A2(h) in (10) instead of each filter matrix, which is easier
to obtain the final conditions.

Remark 9: Note that Theorem 1 cannot be directly solved
by LMI approach due to the cross terms �qÃ

2(h) and NÃ2(h).
From the structure of the product terms, if we set

�q = [
N,N, �1qN, �2qN, 0, 0, 0

]
(60)

then Theorem 1 can be solved. However, the structure of �q

in (60) established by a series of fixed matrices N may also
lead to conservativeness. With the help of VSP, the constrained
structure in (60) is relaxed in Theorem 2. Concretely, �q is
replaced by a series of slack variables with free structure,
which leads to more flexible solutions. Moreover, slack matri-
ces �1q, �2q instead of the fixed ones in [34] and [36], and
slack scalars αq, βq, and ιmq(m = 1, 2, . . . , 5) introduced in
LMIs make Theorem 2 more flexible.

Remark 10: Note that the parameter βq is chosen first in
Theorems 1 and 2, in which the optimal value can be found
by the approach stated in [15] (Remark 9). The numerical
solution to this problem can be obtained by using a numerical
optimization algorithm, such as the program fminsearch in the
Optimization Toolbox of MATLAB.

Remark 11: Theorem 2 of present article can be reduced
to [23, Th. 2] as its special case, the detailed procedure is
given as follows. Without the use of the DVDP and the VSP,
then (48) can be canceled. Set ρq ≥ (γ 2 − 1)maxq λmax(Pq)

in (47), �̄1 = 0, �2 = 0, �3 = γ 2I in (51) and (52), and
�̄ = 1, ϑq = γ 2, Gq = Pq in (53) and (54), then Theorem 2
of present article reduces to [23, Th. 2].

Remark 12: It should be pointed out that the proposed meth-
ods in this article mainly focus on the separation of the system
matrices and the Lyapunov variables for filter design of T–S
fuzzy MJSs. Thus, it can be also applied to separate the system
matrices and the Lyapunov variables for some more compli-
cated and general situations, such as finite-time filter design
for nonhomogeneous T–S fuzzy MJSs [38] and event-triggered
reliable H∞ filtering for nonlinear parabolic PDE systems with
Markovian jumping sensor faults [9].

IV. EXAMPLES

In the section, an example will be given to show the
effectiveness of proposed design method.

Consider a tunnel diode circuit [23], which is shown in
Fig. 1. The system parameters are given as

A1(1) =
[−0.1 50

−1 −10

]
,A1(2) =

[−4.6 50
−1 −10

]

A2(1) =
[−0.11 50.1

−1 −10.1

]
,A2(2) =

[−4.5 50
−1.1 −10

]

B1(1) =
[

0
1

]
,B1(2) =

[
0
1

]
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Fig. 1. Tunnel diode circuit.

TABLE II
OPTIMIZED VARIABLE FOR EACH CASE

B2(1) =
[

0
1.1

]
,B2(2) =

[
0

0.9

]

E1(1) = E1(2) = E2(2) = [
1 0

]
,E2(1) = [

1.5 0
]

C1(1) = C1(2) = [
1 0

]
,C2(1) = [

1.1 0
]

C2(2) = [
0.9 0

]
,Dq(h) = 1,Fq(h) = 0.1, q, h = 1, 2

h1 =

⎧⎪⎪⎨
⎪⎪⎩

0, x1(t) < 3
(3 + x1(t))/3, x1(t) ∈ [−3, 0]
(3 − x1(t))/3, x1(t) ∈ [0, 3]
0, x1(t) > 3

h2 = 1 − h1.

The TRM of the original system is given as

� =
[−6 6

4 −4

]
.

Two sensor failure modes are assumed by

F̂1 = 0.8, F̌1 = 0.05,�1(t) = 0.05sint(t)

F̂2 = 0.9, F̌2 = 0.05,�2(t) = 0.05cos(t)

and the CPM of sensor and the filter are assumed by

S =
[

0.2 0.8
0.5 0.5

]
,K =

[
0.4 0.6
0.6 0.4

]
.

Choose αq = βq = α, α = ιmq = 1(m = 1, 2, 3, 4), ϑ = 5,
and �1q = �2q = [1, 0]. Based on the above parameters, by
solving Theorem 2 of present article, the optimized variables
of the four performance shown in Table I are given in Table II.
By using [23, Th. 2], the optimized L2 − L∞ index is γ̄ =
0.6355 under the same parameters while the optimized L2−L∞
index is γ̄ = 0.3162 by Theorem 2 of present article. It can
be concluded that the proposed method in this article is less
conservative than that in [23]. Recalling Remark 10, we can
find the optimal parameter α = 2.1. And the corresponding
optimal index is γ̄ = 0.3109 by using Theorem 2, which
shows the effectiveness of the slack scalars.

To validate the effectiveness of the proposed filter design
condition, as special cases, by using Theorem 2 of present
article, the H∞ filter matrices and L2 −L∞ filter matrices will
be given as follows, respectively.

1) H∞ Filter Matrices:

Af 1(1) =
[−8.2890 28.8471

−0.0106 −0.9632

]

Fig. 2. Estimation signal x(t) and the H∞ filter output signal xf (t).

Bf 1(1) =
[−4.1735

−0.0540

]
,Ef 1(1) = [−0.6631 −3.6937

]

Af 2(1) =
[−5.8028 25.3703

0.0041 −2.2209

]

Bf 2(1) =
[−1.6576

0.0999

]
,Ef 2(1) = [−0.3709 4.0869

]

Af 1(2) =
[−11.3113 9.7596

0.0019 −0.5457

]

Bf 1(2) =
[−5.9816

0.0278

]
,Ef 1(2) = [−0.6406 −1.6642

]

Af 2(2) =
[−3.8796 63.8811

−0.0210 −2.9155

]

Bf 2(2) =
[

4.0028
−0.0449

]
,Ef 2(2) = [−0.4359 0.5256

]
.

2) L2 − L∞ Filter Matrices:

Af 1(1) =
[−0.6167 22.3050

−0.2582 −3.2601

]

Bf 1(1) =
[−0.8053

−0.2168

]
,Ef 1(1) = [−0.0571 0.0140

]

Af 2(1) =
[−0.2998 39.0939

−0.2290 −5.2405

]

Bf 2(1) =
[

1.4295
−0.0259

]
,Ef 2(1) = [−0.0527 0.0129

]

Af 1(2) =
[−1.6084 45.2664

−0.3427 −2.9667

]

Bf 1(2) =
[

1.4290
−0.2946

]
,Ef 1(2) = [−0.0439 0.0108

]

Af 2(2) =
[−1.5120 28.7261

−0.1265 −5.9214

]

Bf 2(2) =
[

0.4735
−0.0456

]
,Ef 2(2) = [−0.0439 0.0108

]
.

Choosing disturbance input as w(t) = sin(3t)e−0.9t, initial
states as x̄(0) = col[0, 0, 0, 0], and initial mode as r0 = 1.
From Figs. 2–5, one can observe that the state error and filter-
ing error eventually tend to zero, which imply that the filtering
error system is stable. Moreover, the evolution of system mode
and filter mode is plotted in Figs. 3 and 5. Pertaining to this
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Fig. 3. One possible switching signals and estimation error z̄(t) of H∞ filter.

Fig. 4. Estimation signal x(t) and the L2 − L∞ filter output signal xf (t).

Fig. 5. One possible switching signals and estimation error z̄(t) of L2 − L∞
filter.

example, it is seen that the designed filtering method in this
article is effective.

V. CONCLUSION

In this article, the asynchronous reliable extended dissipa-
tive filtering problem, which includes H∞, L2 − L∞, passive,
and dissipative filters in a unified frameworks has been inves-
tigated for a class of T–S fuzzy MJSs. Based on HMM theory,
the encountered sensor failures and filter are describer by two
stochastic variables, which are dependent on the plant mode.
A novel condition, associated with the modes of plant, sen-
sor failures, and the filter have been proposed to ensure the

stochastic stability and extended dissipativity of filtering error
system by proposing the DVDP and the VSP. Compared with
the existing works, the free structure of Lyapunov variables
and slack variables have been fully utilized. Moreover, some
unnecessary constraints on filtering error system have been
removed in this article. These directly lead to less conserva-
tive and more general results. An example has been provided
to show the effectiveness of the design approach. In the future,
we will extend the obtained results to more general situations,
such as finite-time filtering [12] and sliding mode control [39]
for T–S fuzzy MJSs.
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Fuzzy observer-based consensus tracking control for
fractional-order multi-agent systems under

cyber-attacks and its application to electronic
circuits

G. Narayanan, M. Syed Ali, Quanxin Zhu∗, Bandana Priya, Ganesh Kumar Thakur

Abstract—Consensus control of multi-agent systems (MASs)
has applications in various domains. As MASs work in networked
environments, their security control becomes critically desirable
in response to cyber-attacks. In this paper, the observer-based
consensus tracking control problem is investigated for a class
of Takagi-Sugeno fuzzy fractional-order multi-agent systems
(FOMASs) under cyber-attacks. The malicious cyber attacks can
impact the security of topologies of the communication networks
of both controllers and observers. To estimate unmeasurable
system states, a fuzzy observer is built. It is found that the
topology of contact for observer states may be different from
that of the feedback signals. A novel mathematical model for
T-S fuzzy FOMASs with cyber-attacks is proposed. By using
algebraic graph theory, Lyapunov functional, and fractional
calculus theory, a distributed feed-back controller is developed
for each agent, which guarantee the secure performance of
tracking consensus error and observer error. Finally, two nu-
merical examples demonstrate the effectiveness of the suggested
control scheme, and the controller design for electronic network
circuits shows the applicability of the proposed theoretical results.
Simulations results for different differential-orders and coupling
strength scenarios are given.

Index Terms—Fractional-order, Takagi-Sugeno model, Multi-
agent systems, Cyber-attacks, Distributed control.

I. INTRODUCTION

The distributed coordinated control of MASs have gained
wider and wider attention due to its potential applications
in several disciplines such as robotics [1], aircraft control
[2], unmanned air vehicles [3], smart grids [4], and sensor
networks [5]. We should note that much of the existing
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research on MASs consensus focuses on integer-order dy-
namics ([6]-[9]). The importance of dealing with fractional-
order derivatives is the involvement of memory and hereditary
properties that gives a more realistic way to fractional-order
models ([10], [11]). Due to the memory effect, the non-
integer models integrate all previous information from the
past that makes it to predict and translate the fractional-order
models more accurately. It has been discovered, in particular,
that fractional-order systems, which are acknowledged as a
major advance over integer-order systems, could be applied
in a growing number of engineering application fields ([12]-
[14]). Despite the fact that there are many studies on the
consensus of MASs in integer-order case, there are few results
on FOMASs ([15]-[19]). Compared with the results of MASs
in integer-order case, the consensus problem of FOMASs is
relatively few, which has the potential research value due to the
memory of FOMASs. Because of practical constraints, some
agents partial information may be unmeasurable. Thus, for the
consensus tracking problems, agent output measurements are
observed, and different techniques of observer-based control
are studied ([20]-[27]). Compared with the published works
in the literature, the obtained criteria improve the previous
works. Therefore, it is of the great significance to study the
observer-based control for the engineering application scopes
of MASs.

A cyber-physical system (CPS) is an intelligence system
consist of processing, communication, and control with both
physical and cyber components. As established in ([28]-[31]),
security concerns for CPSs differ from those in typical control
systems because cyber-attacks in the cyber layer can be
extended to the physical layer. With the advent of network in-
formation and broad spatial distributed systems, MASs which
can be considered a subset of CPSs, are becoming vulnerable
to cyber-attacks. In actuality, the network is very vulnerable
to malicious signal attacks as a result of its openness and
shareability ([32]-[37]). Thus, our results significance improve
from former works.

The T-S fuzzy model is well known as a powerful tool
for dealing with the leader-follower consensus in achieve
MASs ([38]-[43]). Due to their significant usage of com-
munication technologies, MASs are frequently exposed to
various cyber-attacks. T-S fuzzy networked systems, which
can be considered a class of CPSs, have been vulnerable to
cyber-attacks as network information technology and large-
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scale spatial distributed systems have advanced. These attacks
could have a significant impact on tracking performance ([44]-
[46]). Implementing performance distributed secure control
techniques for FOMASs under attack remains a challenging
and significant concern. To the best of our knowledge, no one
has explored the observer-based consensus tracking problem
of T-S fuzzy FOMASs with cyber-attacks, and it is, therefore,
beneficial to further develop new techniques dealing. This
motivates our study.

As narrated above, we focused on the T-S fuzzy observer-
based consensus tracking control of FOMASs under cyber-
attack. The main contributions are:
(i) The secure consensus criteria is derived for FOMASs via
T-S fuzzy approach under a cyber-attack scenario.
(ii) Compared with the existing results for MAS under cyber-
attacks ([32]-[34]), under malicious attacks, the security con-
trol analysis of both controllers and observers communication
networks is unrelated, and over the duration of the attack in
this study, these two topologies can change.
(iii) We developed a useful technique for determining the cou-
pling strengths and feedback gain matrices for the controllers
and observers.
(iv) We developed two optimization problems that solved
sufficient criteria to achieve consensus tracking.
(v) Finally, numerical simulations show that the suggested
observer-based control scheme is used to the consensus track-
ing of a tunnel diode network circuit.
Notations: Let N is the natural number; Real numbers, and
n×1 real (complex) column vectors are referred to in R, and
Rn(C n) respectively. ’ T ’ denotes the matrix transposition.
In represent identity matrix. λ(·) the eigenvalue of a matrix.
⊗ stands for the Kronecker product.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

A. Algebraic Graph Theory

When each agents is regarded a node, the FOMASs have M
followers, and a single node can be represented as a directed
graph, where G = (V ,E ,A ), where V = {1, 2, ...,M + 1}
is the node set, E ⊆ {(p, q), p, q ∈ V } is the edge set, and
A = [apq] ∈ R(M+1)×(M+1), which is called adjacent matrix
of G with non-negative elements, where if p is adjacent to q,
apq > 0; otherwise apq = 0. If there is a node p such that there
exists a directed from it to any other node, G is said to contain
a directed spanning-tree. The Laplacian matrix L defined as
L = [lpq] ∈ R(M+1)×(M+1) with lpq = −apq, p ̸= q; and
lpq =

∑M+1
q=1 apq, ∀p = 1, ...,M+ 1.

B. Model Formulation and Basic Lemmas

We give some definitions of fractional calculus and lemmas
that will be required later. Then, consensus issue of FOMASs
is formulated via T-S fuzzy.
Definition 1 [11]: For 0 < α ≤ 1, the Caputo fractional
derivative is known as

C
t0D

α
t h(t) =

1

Γ(1− α)

∫ t

t0

h′(ξ)

(t− ξ)α
dξ, (1)

Fig. 1. Framework for networked agent systems with physical and cyber
layers.

where Γ(1− α) =
∫∞
0
t−αe−ξdξ.

Definition 2 [14]: The Mittag-Leffler function are

Eα(z) =
∞∑

m=0

zm

Γ(mα+ 1)
, (2)

where α > 0, and z ∈ C.
Lemma 1 [14]: Let V(t) be a continuous function on [t0,+∞)
and satisfies C

t0D
α
t V(t) ≤ ΘV(t), then

V(t) ≤ V(t0)Eα(Θ(t− t0))
α,

where α ∈ (0, 1) and Θ constant.
Lemma 2 [12]: For 0 < α < 1, t ∈ R, t > 0, we have

lim
t→+∞

Eα(t) ≤ lim
t→+∞

1

α
et

1
α .

Lemma 3 [13]: Let x(t) be a continuous and derivable
vector valued function. Then for any t ≥ t0,
1
2 (

C
t0D

α
t x

T (t)x(t)) ≤ xT (t)Ct0D
α
t x(t), where 0 < α < 1.

The security control for T-S fuzzy FOMASs, which
consists of cyber-attacks, is displayed in Fig. 1 with cyber
layer p = 1, 2, ...,M,M + 1. A network channel, controller
and sensor are included in this framework. In fact, when an
attack happens, the network can not operate properly, and
then after a period of time, the networks attempts to restore
or recovery process must reconstruct the network so that the
network will work effectively. Several well-studied results
on recovery mechanisms have been published. In recent
years, there has been a significant increase in research on the
security control of complex cyber-physical networks (see in
[28]-[30], [44], [45]). It is noteworthy that several authors
have recently investigated the security control problem for
MASs in integer-order case (see in [26], [27], [31]-[34]), but
there is no results for fractional case. Moreover, fractional-
order case has better characteristics than corresponding
integer-order case.

The fractional-order physical-plant model of M+1 agents
and p(1 ≤ p ≤ M) followers as:{ C

t0D
α
t ℑp(t) = Aℑp(t) + Bũp(t),

φp(t) = Cℑp(t),
(3)
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where 0 < α < 1, ℑp(t) ∈ Rn, φp ∈ Rm, and ũp(t) ∈ Rr

denotes, respectively, the state, output, and control inputs. A,
B, and C is the constant matrices. The control aims to establish
distributed consensus tracking protocols ũp(t), p = 1, ...,M
to make it asymptotic for the states of the followers to obey
M+ 1, which will satisfy the leaders [7],

C
t0D

α
t ℑM+1(t) = AℑM+1(t). (4)

C. T-S fuzzy and T-S fuzzy control models

Fuzzy logic systems directly address the imprecisions of
the variables of input and output by describing them in
linguistic terms with the fuzzy numbers (and fuzzy sets). The
fractional physical plant system (3) is described in the T-S
fuzzy approach are given:
Rule θ :
IF ϕ1 is Mθ1 and ϕ2 is Mθ2 and ... and ϕk is Mθk.
THEN { C

t0D
α
t ℑp(t) = Aθℑp(t) + Bθũp(t),

φp(t) = Cθℑp(t),
(5)

where ϕp(t) is the premise variable; Mθk for θ = 1, ..., β
represents the fuzzy sets, β are IF-THEN laws; The constant
matrices are Aθ, Bθ and Cθ.
By the T-S fuzzy with final output processes, we have

C
t0D

α
t ℑp(t) =

∑β
θ=1 Ψθ(ϕp(t))

(
Aθℑp(t)+Bθũp(t)∑β

θ=1 Ψθ(ϕp(t))

)
,

φp(t) =
∑β

θ=1 Ψθ(ϕp(t))
(

Cθℑp(t)∑β
θ=1 Ψθ(ϕp(t))

)
,

(6)

where Ψθ(ϕp(t)) =
∏m

θ=1 Mθk(ϕp(t)) with Mθk(ϕp(t))
representing the grade of memberships of ϕp in Mθk, satisfy
the following conditions:{ ∑β

θ=1 Ψθ(ϕp(t)) > 0,
Ψθ(ϕp(t)) ≥ 0, (θ = 1, ..., β).

(7)

Let µθ(ϕp(t)) =
Ψθ(ϕp(t))∑β

θ=1 Ψθ(ϕp(t))
, then the expression (7) is

written as
C
t0D

α
t ℑp(t) =

∑β
θ=1 µθ(ϕp(t))

(
Aθℑp(t) + Bθũp(t)

)
,

φp(t) =
∑β

θ µθ(ϕp(t))Cθℑp(t),
C
t0D

α
t ℑM+1 =

∑β
θ=1 µθ(ϕ(t))AθℑM+1,

(8)

where { ∑β
θ=1 µθ(ϕp(t)) = 1,

µθ(ϕp(t)) ≥ 0, (θ = 1, ..., β),

where µθ(ϕp(t)) are IF-THEN rules weights.
The fuzzy control design of distributed consensus tracking
protocals ũp(t) is given as
Rule θ :
IF ϕ1 is Mθ1 and ϕ2 is Mθ2 and ... and ϕk is Mθk.
THEN

ũp(t) = ξ
M+1∑
q=1

Kθa
(σ̂(k))
pq (ℑq(t)−ℑp(t)), (9)

where Kθ are the control gain matrices, ξ are coupling
strengths, a(σ̂(k))pq is the adjacent matrix representing the com-
munication network via attacks.

Fig. 2. Attack to communication network of controllers and observers.

The final output can be described as the fuzzy prediction
controller by,

ũp(t) = ξ

β∑
θ=1

µθ(ϕp(t))

M+1∑
q=1

Kθa
(σ̂(k))
pq (ℑq(t)−ℑp(t)).

(10)

Substitute (10) in (8), we obtain the complete controlled T-S
fuzzy system as:

C
t0D

α
t ℑp(t) =

∑β
θ=1 µθ(ϕp(t))

(
Aθℑp(t)

+ξBθ

∑M+1
q=1 Kθa

(σ̂(k))
pq (ℑq(t)−ℑp(t))

)
φp(t) =

∑β
θ=1 µθ(ϕp(t))Cθℑp(t).

(11)

The following distributed state T-S fuzzy observer is de-
veloped for the followers p (1 ≤ p ≤ M) to estimate the
unknown system states ℑp(t) in system (3):

C
t0D

α
t ℑ̂p(t) =

∑β
θ=1 µθ(ϕp(t))

(
Aθℑ̂p(t)

+ξBθ

∑M+1
q=1 Kθa

(σ̂(k))
pq (ℑ̂q(t)− ℑ̂p(t))

)
+ξ̃Ωθ

∑M+1
q=1 Kθa

(σ̌(k))
pq (ρq(t)− ρp(t))

φ̂p(t) =
∑β

θ=1 µθ(ϕp(t))Cθℑ̂p(t),
(12)

where ℑ̂p(t) is the observers state for agent p, and ρp(t) =

φ̂p(t)−φp(t) = C(ℑ̂p(t)−ℑp(t)), Ωθ are the observer control
gain matrices, ξ̃ is coupling strength, a(σ̌(k))pq is the adjacent
matrix representing the observer-based communication net-
work via attacks.
Remark 1: The states of system dynamics are not always com-
pletely accessible in a realistic application. As an outcome, the
observer-based control technique has gradually evolved into
a valuable tool for networked control systems. A high-order
system can be viewed as FOMAS (3) and high dimensional
system states can be seen in (12). It is well known that in
practice the systems state ℑp(t) can be difficult to obtain,
therefore the state observer ℑ̂p(t) is intended in this paper
to estimate the state ℑp(t) (kindly refer [7]). In addition, the
observer (12) also discusses gains Kθ and Ωθ, that are able
to effectively improve the control characteristics for FOMAS
and decrease the conservativeness of the output feedback
control design. In this study, we focused on the general
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dynamics of the leader-follower MAS, which varies from the
established observer-based model in previous studies ([24],
[25]). Compared with the previous studies in ([24], [25]), our
obtained criteria improve the previous results. In this paper
the malicious cyber-attacks are also considered for realizing
output feedback controller.

However, the attacks method of targeting the controller
is safer since manipulating the control signal u(t) expressly
reveals the system to vulnerabilities. Fig. 2 depicts the com-
munication networks of controllers and observers during pth

attacks in the time interval [t̃p, t̄p]. The enhanced network
containing of 4 followers and one leader in the presence
of attacks on nodes. Node 2 (shade star) is attacked to the
communication channel of controllers and node 3 (shade star)
is attacked to the communication channel of observers. Here,
t0 and tp are respectively initial, and pth malicious attack
occurs. t̃p and t̄p, p = 1, 2, ..., are respectively instants of
time during which the pth attack and the node functions are
recovered. It is believed that malicious assaults will have an
independent impact on controller and observation channels.
Attacks can be seen to occur at time instant t1, but the cyber
command centre notices them at t̄1. Then, beginning with
t̄1, the repair system will be turned on. From t̄1 to t̃1, the
communication graphs are discontinuous. Specifically, node 3
is destroyed in the observation communication network and
node 2 becomes inactive in the communication network of
control inputs. The effect of the attacks will be eliminated at
t̃1, and during the time interval [t̃1, t2], the topology of the
whole network will be recovered back to its initial setting,
until the next attacks happen at t2.
By using Kronecker product, from (11) and (12) are given:

C
t0D

α
t ℑ(t) =

β∑
θ=1

µθ(ϕp(t))
(
(IM ⊗Aθ)ℑ(t)

− ξ(Lσ̂(k) ⊗ BθKθ)ℑ̃(t)
)
, (13)

and

C
t0D

α
t ℑ̂(t) =

β∑
θ=1

µθ(ϕp(t))
(
(IM ⊗Aθ)ℑ̂(t)

− ξ(Lσ̂(k) ⊗ BθKθ)x̃(t)− ξ̃(Lσ̌(k) ⊗ Ωθ)ρ(t)
)
,

(14)

where ℑ(t) = (ℑT
1 (t), ...,ℑT

M(t))T , ℑ̂(t) =

(ℑ̂T
1 (t), ..., ℑ̂T

M(t))T , ρ(t) = (ρT1 (t), ..., ρ
T
M(t))T and

ℑ̃(t) = (ℑ̂T
M(t),ℑT

M+1(t))
T , L̂σ̂(k) =

[
L̄σ̂(k) χ
0TM 0

]
,

L̂σ̌(k) =

[
L̄σ̌(k) χ
0TM 0

]
, χ = (χ1, ..., χM)T , in which

χp = 1 if a relation from the leader to the follower p exists;
otherwise, χp = 0.
Define ωp(t) = ℑp(t) − ℑM+1(t), ϖp(t) =

ℑp(t) − ℑ̂p(t), ω
T (t) = (ωT

1 (t), ..., ω
T
M(t))T , ϖT (t) =

(ϖT
1 (t), ..., ϖ

T
M(t))T .

From (13) and (14) can be written as:

C
t0D

α
t ϖ(t) =

β∑
θ=1

µθ(ϕ(t))
(
(IM ⊗Aθ)ϖ(t)

− ξ̃(Lσ̌(k) ⊗ ΩθCθ)ϖ(t)
)
, (15)

C
t0D

α
t ω(t) =

β∑
θ=1

µθ(ϕ(t))
(
(IM ⊗Aθ)ω(t)

− ξ(Lσ̂(k) ⊗ BθKθ)x̃(t)
)
, (16)

with

(Lσ̂(k) ⊗ BθKθ)x̃(t)

=(Lσ̂(k) ⊗ BθKθ)(x̃(t)− 1M+1 ⊗ xM+1(t))

=(Lσ̂(k) ⊗ BθKθ)(x̂(t)− 1M ⊗ xM+1)

=(Lσ̂(k) ⊗ BθKθ)(ω(t)−ϖ(t)). (17)

From (15)-(17) we have,

C
t0D

α
t ω̂(t) =

β∑
θ=1

µθ(ϕ(t))A ω̂(t),

where A =

[
ℑ1 0nM×nM

ξ(Lσ̂(k) ⊗ BθKθ) ℑ2

]
, ω̂(t) =

[ϖT (t), ωT (t)]T ,ℑ1(IM ⊗ Aθ) − ξ̃(Lσ̌(k) ⊗ ΩθCθ), (IM ⊗
Aθ)− ξ(Lσ̂(k) ⊗ BθKθ).

III. MAIN RESULT

Theorem 1: For positive scalars ϑ, ϑ̂, η, η̄, η̃, η̂, γ, α, the
positive-definite matrices W,U with Kθ = BT

θ U
−1 and Ωθ =

W−1CT
θ , FOMAS (3) and (4) can be achieved the consensus

using tracking control (9), if the following inequalities hold,

WAθ +AT
θW − ϑCT

θ Cθ + ηW < 0, (18)

AθU + UAT
θ − ϑ̂BθBT

θ + η̄U < 0, (19)

Ξ =

[
−η̃(Υ⊗W ) ∗

Λ −τ η̂(Υ⊗ U−1)

]
< 0, (20)

where Λ = τ(ξΥL ⊗ U−1BθBT
θ U

−1) and for each k ∈ N ,

(ηmin(tk − t̄k−1))
1
α − (Θmin(t̄k − tk))

1
α − ϵ < 0, (21)

and Θmin = min{Θ1,Θ2}.
The following optimization problem is obtained by solving:
Minimize Θ1, subject to

WAθ +AT
θW − ξψ̂CT

θ Cθ −Θ1W < 0. (22)

Minimize Θ2, subject to

AT
θ U

−1 + U−1Aθ − ξ̂ψ̌U−1BθBT
θ U

−1 −Θ2U
−1 < 0,

(23)

where ψ̂min = λ̂min

γmin
, λ̂min = minσ̂(k){L T

σ̂(k)Υ + ΥLσ̂(k)},
ψ̌min = λ̌min

γmin
, λ̌min = minσ̌(k){L T

σ̌(k)Υ + ΥLσ̌(k)}, γmin =
min1≤p≤M{γp}.
Proof: Consider a Lyapunov function:

V (t) = ϖT (t)(Υ⊗W )ϖ(t) + τωT (t)(Υ⊗ U−1)ω(t),
(24)

where U and W are positive definite. Here denote Vπ =
ϖT (t)(Υ ⊗ W )ϖ(t), and Vδ = ωT (t)(Υ ⊗ U−1)ω(t). For
t ∈ [t̄k−1, tk), k ∈ N without attacks occur Lσ̂(k) = Lσ̌(k) =
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L .
By applying Lemma 3, one has

C
t0D

α
t Vπ(t) =

C
t0D

α
t (ϖ

T (t)(Υ⊗W )ϖ(t))

≤2(ϖT (t)(Υ⊗W )Ct0D
α
t ϖ(t))

≤2

β∑
θ=1

µθ(ϕ(t))
(
ϖT (t)(Υ⊗W )

(
(IM ⊗Aθ)

− ξ̂(L ⊗ ΩθCθ)
)
ϖ(t)

)
≤

β∑
θ=1

µθ(ϕ(t))ϖ
T (t)

(
Υ⊗ (WAθ +AT

θW )

− 2ξ̂(ΥL ⊗WΩθCθ)
)
ϖ(t)

≤
β∑

θ=1

µθ(ϕ(t))ϖ
T (t)

(
Υ⊗ (WAθ +AT

θW )

− 2(ΥL ⊗ CT
θ Cθ)

)
ϖ(t)

≤
β∑

θ=1

µθ(ϕ(t))ϖ
T (t)

(
Υ⊗ (WAθ +AT

θW

− ξ̂

γmax
λmin(ΥL + L TΥ)ΥCT

θ Cθ)
)
ϖ(t).

(25)

For ξ̂ > ϑ/ζ, ζ = λmin(ΥL+L TΥ)
γmax

, where γmax =

max1≤p≤M{γp}, Υ = diag{γ1, γ2, ..., γM},LT γ = 1M.
It follows that

C
t0D

α
t Vπ(t) ≤

β∑
θ=1

µθ(ϕ(t))ϖ
T (t)

(
Υ⊗ (WAθ +AT

θW

− ϑCT
θ Cθ)

)
ϖ(t). (26)

Then,

C
t0D

α
t Vπ(t) ≤ −

β∑
θ=1

µθ(ϕ(t))(η + η̃)ϖT (t)(Υ⊗W )ϖ(t),

(27)

where η̃ is a constant, 0 < η̃ ≪ η.
Next, taking the fractional derivative of Vδ with system (16),
one has

C
t0D

α
t Vδ(t) =

C
t0D

α
t

(
ωT (t)(Υ⊗ U−1)ω(t)

)
≤

β∑
θ=1

µθ(ϕ(t))2ξ
(
ωT (t)

(
ΥL ⊗ U−1BθKθ

)
ϖ(t)

+ ωT (t)
(
ΥL ⊗ U−1BθKθ

)
ω(t)

)
≤

β∑
θ=1

µθ(ϕ(t))
(
2ξωT (t)

(
ΥL ⊗ U−1BθBT

θ U
−1

)
×ϖ(t) + ωT (t)(AθU

−1 + U−1Aθ)

− ξ

γmax
λmin(ΥL + L TΥ)

×ΥU−1BθBT
θ U

−1)ω(t)
)
. (28)

For ξ > ϑ̂/ζ̂, ζ̂ = λmin(ΥL+LΥ)
γmax

, it follows that

C
t0D

α
t Vδ(t) ≤

β∑
θ=1

µθ(ϕ(t))
(
2ηωT (t)

(
ΥL ⊗ U−1BθBT

θ U
−1

)
×ϖ(t)− (η̄ + η̂)(Υ⊗ U−1)ω(t)

)
, (29)

where η̂ is a constant, 0 < η̂ ≪ η̄.
From (27) and (29), we obtain

C
t0D

α
t V (t) ≤

β∑
θ=1

µθ(ϕ(t))
(
− (η + η̃)ϖT (t)(Υ⊗W )ϖ(t)

+ 2ηωT (t)
(
ΥL ⊗ U−1BθBT

θ U
−1

)
ϖ(t)

− (η̄ + η̂)(Υ⊗ U−1)ω(t)
)

≤
β∑

θ=1

µθ(ϕ(t))
(
− ηϖT (t)(Υ⊗W )ϖ(t) + ω̃TΞω̃(t)

− η̄ϖT (t)(Υ⊗ U−1)
)

<−
β∑

θ=1

µθ(ϕ(t))
(
ηϖT (t)(Υ⊗W )ϖ(t)

+ η̄ϖT (t)(Υ⊗ U−1)
)

<−
β∑

θ=1

µθ(ϕ(t))ηminV (t)

CDα
t V (t) <− ηminV (t), t ∈ [t̄k−1, tk), (30)

where ηmin = min{η, η̄}. By applying Lemma 1, we get

V (tk) ≤ V (t̄k−1)Eα(−ηmin(tk − t̄k−1))
α. (31)

According to Lemma 2, we get

V (tk) ≤ V (t̃k−1)
1

α
e−(ηmin(tk−t̄k−1))

1
α . (32)

When t ∈ [tk, t̄k), both controllers and observers communi-
cation network is destroyed by malicious attacks, i.e. Lσ̂(k)

and Lσ̌(k) should both be considered. Calculating the Caputo
fractional derivative of Vφ and Vδ along the trajectory of
system (15) and (16) by selecting Θ1 and Θ2 in (22) and
(23) respectively, we get

C
t0D

α
t Vπ(t) =

C
t0D

α
t (ϖ

T (t)(Υ⊗W )ϖ(t))

≤2(ϖT (t)(Υ⊗W )Ct0D
α
t ϖ(t))

≤2

β∑
θ=1

µθ(ϕ(t))
(
ϖT (t)(Υ⊗W )

(
(IM ⊗Aθ)

− ξ̂(Lσ̌(k) ⊗ ΩθCθ)
)
ϖ(t)

)
≤

β∑
θ=1

µθ(ϕ(t))(Θ1 − η̃)ϖT (t)(Υ⊗W )ϖ(t),

(33)

and
C
t0D

α
t Vδ(t) =

C
t0D

α
t

(
ωT (t)(Υ⊗ U−1)ω(t)

)
≤

β∑
θ=1

µθ(ϕ(t))2ξ
(
ωT (t)

(
ΥLσ̂(k) ⊗ U−1BθKθ

)
ϖ(t)
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+ ωT (t)
(
ΥLσ̂(k) ⊗ U−1BθKθ

)
ω(t)

)
≤

β∑
θ=1

µθ(ϕ(t))
(
2ξωT (t)

(
ΥLσ̂(k) ⊗ U−1BθBT

θ U
−1

)
×ϖ(t) + (Θ2 − η̂)ωT (t)(Υ⊗ U−1)ω(t)

)
.

(34)

From (33) and (34), one has

C
t0D

α
t V (t) ≤

β∑
θ=1

µθ(ϕ(t))
(
Θ1ϖ

T (t)(Υ⊗W )ϖ(t)

+ ω̃TΞσ(k)ω̃(t) + τΘ2ω
T (t)(Υ⊗ U−1)ω(t)

)
<

β∑
θ=1

µθ(ϕ(t))
(
Θ1ϖ

T (t)(Υ⊗W )ϖ(t)

+ τΘ2ϖ
T (t)(Υ⊗ U−1)ω(t)

)
<

β∑
θ=1

µθ(ϕ(t))ΘminV (t)

<ΘminV (t). (35)

Applying Lemma 1 in (35) we get

V (t̄k) ≤ V (tk)Eα(Θmin(t̄k − tk))
α. (36)

By applying Lemma 2, one has

V (t̄k) ≤V (tk)
1

α
e(Θmin(t̄k−tk))

1
α

≤V (t̄k−1)
1

α
e−(ηmin(tk−t̄k−1))

1
α 1

α
e(Θmin(t̄k−tk))

1
α

≤V (t̄k−1)
1

α2
e−

(
(nmin(tk−t̄k−1))

1
α −(Θmin(t̄k−tk))

1
α

)
<

1

α2
e−ϵV (t̄k−1) <

1

α2
e−kϵV (t0).

Therefore, the FOMAS (3) and (4) can be reached the con-
sensus, i.e., ω(t) and ϖ(t) are converge to zero.
Corollary 1: For positive scalars ϑ, ϑ̂, η, η̄, η̃, η̂, τ with
Kθ = BT

θ U
−1, Ωθ = W−1CT

θ , and attacks occur only in
the communication channel for the controllers, FOMAS (3)
and (4) can achieve the consensus using tracking control
(9), if (18)-(20) holds in Theorem 1 and for each k ∈ N ,
(ηmin(tk − t̄k−1))

1
α − (Θ1(t̄k − tk))

1
α − ϵ < 0. The following

optimization problem is obtained by solving:
Minimize Θ1, subject to

WAθ +AT
θW − ξψ̂CT

θ Cθ −Θ1W < 0. (37)

where ψ̂min = λ̂min

γmin
, λ̂min = minσ̂(k){L T

σ̂(k)Υ +
ΥLσ̂(k)}, γmin = min1≤p≤M{γp}.
Corollary 2: For positive scalars ϑ, ϑ̂, η, η̄, η̃, η̂, τ with
Kθ = BT

θ U
−1, Ωθ = W−1CT

θ , and attacks occur only in
the communication network for the observers, FOMAS (3)
and (4) can achieve the consensus using tracking control
(9), if (18)-(20) in Theorem 1 hold and for each k ∈ N ,
(ηmin(tk − t̄k−1))

1
α − (Θ2(t̄k − tk))

1
α − ϵ < 0. The following

optimization problem is obtained by solving:
Minimize Θ2, subject to

AT
θ U

−1 + U−1Aθ − ξ̂ψ̌U−1BθBT
θ U

−1 −Θ2U
−1 < 0,

(38)

where ψ̌min = λ̌min

γmin
, λ̌min = minσ̌(k){L T

σ̌(k)Υ + ΥLσ̌(k)},
γmin = min1≤p≤M{γp}.
Remark 2: In special case, when cyber attacks can not impact
the security of topologies of the communication networks of
both controllers and observers ([24], [25]) formation control
of observer-based FOMAS without T-S fuzzy system. Next
our investigated to Mittag-Leffler sense of T-S fuzzy observer-
based FOMAS and also our proposed method valid with
α ∈ (0, 1] in ([24], [25]), so the following Corollary.
Corollary 3: For positive scalars ϑ, ϑ̂, η, η̄, η̃, η̂, τ with Kθ =
BT
θ U

−1, and Ωθ = W−1CT
θ , FOMAS (3) and (4) can be

achieved the Mittag-Leffler sense of consensus using tracking
control (9), if (18)-(20) holds and ηmin > 0.
Proof: Consider the Lyapunov functional (24) and taking the
fractional derivative on system (15) and (16), we obtain that

C
t0D

α
t V (t) < −ηminV (t),

where ηmin = min{η, η̄}. By using Lemma 1, we get

V (t) ≤ V (t0)Eα(−ηmin(t− t0))
α, (39)

where ηmin = min{η, η̄} > 0. It follows from [14], the
inequality (39) are satisfied. Therefore, the FOMAS (3) and
(4) can be reached the consensus of Mittag-Leffler sense.

IV. NUMERICAL EXAMPLES

Two numerical examples are used in this section to demon-
strate the effectiveness of the theoretical results achieved.
Example 1: We consider FOMAS system (3) and (4) with
ℑp = [ℑp1,ℑp2,ℑp3]

T , p = 1, ..., 5. Having 4 followers and
one leader, allow these agents to get information from their
neighbor in accordance with their communication topology.
We analyze two scenarios, 1) When the cyber system is
not under attack, the communication networks is represented
in Fig. 3(a). 2) When a cyber system is under attack, the
communication topology is depicted in Figs. 3(b) and 3(c).
Suppose that attacks occur in the time interval [tp, t̄p], we
take p ∈ N , tp = 0.7(p− 1) and t̄p = 0.7(p− 1) + 0.5.
The T-S fuzzy model is:
Rule R1

IF ℑp1 is M1, THEN
{ CDα

t ℑ(t) = A1ℑ(t) + B1ũ(t),
φ(t) = C1ℑ(t).

Rule R2

IF ℑp1 is M2, THEN
{ CDα

t ℑ(t) = A2ℑ(t) + B2ũ(t),
φ(t) = C2ℑ(t),

where ℑ(t) = (ℑp1,ℑp2,ℑp3),

A1 = A2 =

 −2.97 0.92 −0.04
−0.93 0 −0.012
0.37 −4.73 −1.79

 ,
B1 = B2 =

 −0.05 0.90 1.59
0 0 0

−1.80 1.70 −2

 ,
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Fig. 3. The communication topology.

0 0.01 0.02 0.03 0.04 0.05 0.06

t(sec)

-15

-10

-5

0

5

10

15

 
p1

(t
)

0 0.02 0.04 0.06 0.08 0.1 0.12

t(sec)

-4

-2

0

2

4

6

 
p2

(t
)

0 0.02 0.04 0.06 0.08 0.1 0.12

t(sec)

-4

-2

0

2

4

6

 
p3

(t
)

Fig. 4. State trajectories for FOMASs when attacks occur with no security
control, where ℑp(t) = (ℑp1(t),ℑp2(t),ℑp3(t))T , p = 1, 2, ..., 5.

C1 = C2 =

[
2.50 0.98 1.70
0.73 1.70 0.97

]
,

M1 = 1
2 (1 +

ℑp1

d ),M2 = 1
2 (1 − ℑp1

d ), ℑp1 ∈ [−d, d] with
d > 0.
The distributed control is taken as:

Rule R1 :
IF ℑp1 is M1, THEN ũ(t) = ξK1ℑ(t),
Rule R2 :
IF ℑp1 is M2, THEN ũ(t) = ξK2ℑ(t). We choose α = 0.91,
ξ = 28, ξ̂ = 32, η = 7.2, η̄ = 5.7. By solving (18)-(20),
we obtain feedback gain matrices K1 and K2, observer gain
matrices Ω1 and Ω2 as

K1 = K2 =

 0.0937 0.0385 −0.0115
−0.2005 −0.0065 −0.0304
−0.1119 0.1005 −0.0924

 ,
Ω1 = Ω2 =

 0.0921 0.0823
0.0349 −0.1197
0.1566 0.1117

 ,
with ϑ = 9.6406 ϑ̂ = 29.8760, Θmin = 187.

Thus FOMAS (3) and (4) expressed by T-S fuzzy model
obtained the cyber-security consensus for each k ∈ N .
Fig. 4 depicts trajectories of FOMASs when DoS at-
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-0.2
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0.4

Fig. 5. Evolution of total consensus errors ωc.
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Fig. 6. Evolution of total observer errors ϖc.
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Fig. 7. Comparison of consensus errors ωc, versus parameters ξ and ξ̂
numerical simulations.
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Fig. 8. Comparison of observer errors ϖc, versus parameters ξ and ξ̂
numerical simulations.
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Fig. 9. Comparison of consensus errors ωc, for differential orders. Notice
that, for α = 0.91 consensus errors performance effective manner when
compared to order α = 1.
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Fig. 10. Comparison of consensus errors ϖc, for differential orders. Notice
that, for α = 0.91 consensus errors performance effective manner when
compared to order α = 1.

tacks happen in the communication network connecting
the three layers without security control, where ℑp(t) =
(ℑp1(t),ℑp2(t),ℑp3(t))

T , p = 1, 2, ..., 5. When ωc =
1
4

∑4
p=1 |ωp|, Fig. 5 denotes the consensus tracking error.

When ϖc = 1
4

∑4
p=1 |ϖp|, the observer error of closed-loop

systems is depicted in Fig. 6. Figs. 5 and 6 show that cyber
attack occurs and the secure control mechanism still steers the
system states to achieve consensus. Figs. 7 and 8 depict the
comparison of the consensus tracking error ωc, and observer
error ϖc of systems of the different parameters ξ and ξ̂. Figs.
9 and 10 show the comparison of the consensus tracking error
ωc, and observer error ϖc.
Remark 3: Moreover, numerical simulations demonstrate that
increasing the coupling strengths ξ and ξ̂ improves both the
convergence rates for consensus tracking and states observing
(see Figs. 7 and 8 for details). This implies that, while the
consensus tracking problem can be solved by adjusting the
coupling strengths ξ > ϑ̂/ζ̂, ζ̂ = λmin(ΥL+LΥ)

γmax
and ξ̂ > ϑ/ζ,

ζ = λmin(ΥL+L TΥ)
γmax

, the convergence rates may be quite
small when the coupling strengths ξ and ξ̂ are, respectively.
Addition, another advantage for comparison tracking error
ωc, and observer error ϖc (see Figs. 9 and 10 for details).
Notice that, for α = 0.91, consensus errors and observer error
performance effective manner when compared to order α = 1.
Briefly, according to the presented results, the T-S fuzzy
FOMASs outperforms the secure control scheme exploiting
integer-order operators.
Example 2. In this example, the suggested observer-based
design approach is used to track the consensus of a network
circuit for a tunnel diode model. We proposed the tunnel diode
network circuit model as depicted in Fig. 11, where C1, C2

denote the capacitor, RD represents the impedance of tunnel
diode, E is inductor, and RL, RE are the linear resistance.
The fractional-order calculus model is used to rewrite the
dynamic description of the three-state tunnel diode network
circuit model provided in the literature [46]:{ CDα

t ℑ(t) = Aℑ(t) + Bũ(t),
φ(t) = Cℑ(t) (40)

Fig. 11. The application network circuit of tunnel diode.

with

A =

 − 1
RLC1

1
RLC1

1
C1

1
RLC2

− s1+s2ℑ2
1(t)

C2
− 1

RLC2
0

− 1
E 0 −RE

E

 ,
B =

 0
0
1
E

 , C = I,ℑ(t) = (ℑ1,ℑ2,ℑ3)
T ,

ℑ1(t) ∈ [m1,m2], m1 = max{m2
1,m

2
2},

and s1, s2 is a known scalars.

The following equations can be expressed in T-S fuzzy form:{ C
t0D

α
t ℑp(t) =

∑2
θ=1 Ψθ(ϕp(t))

[
Aθℑp(t) + Bθũp(t)

]
,

φp(t) =
∑2

θ=1 Ψθ(ϕp(t))
[
Cθℑp(t)

]
,

(41)

where

ℑp(t) = [ℑp1,ℑp2,ℑp3]
T ,

A1 =

 − 1
RLC1

1
RLC1

1
C1

1
RLC2

− s1+s2m1

C2
− 1

RLC2
0

− 1
E 0 −RE

E

 ,
A2 =

 − 1
RLC1

1
RLC1

1
C1

1
RLC2

− s1
C2

− 1
RLC2

0

− 1
E 0 −RE

E

 ,
B1 = B2 =

 0
0
1
E

 , C = I,

M1 =
ℑ2

p1(t)

m1
,M2 = 1−

ℑ2
p1(t)

m1
,ℑp1 ∈ [−4, 4].

Here, the order α is chosen as 0.93, and similar to [46], the
values of s1, s2, C1, C2, E, RE , RL are selected as 0.002, 0.01,
1F, 0.1F, 20H, 0Ω and 1Ω respectively. Select one tunnel diode
network circuit model to act as the leader agent, generating
the required state trajectory. With the network topology shown
in Fig. 3, four tunnel diode circuit models operate as follower
agents, and these agents can receive output information from
their neighbours. Moreover, let h = 0.02s and tp = 90ph,
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Fig. 12. State trajectories for tunnel diode circuit model when attacks occur
with no security control, where ℑp(t) = (ℑp1(t),ℑp2(t),ℑp3(t))T , p =
1, 2, ..., 5.
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Fig. 13. Consensus error ωc and ϖc, when attacks occur with no security
control.

t̄p = 91ph, for p ∈ N . Assume that attacks occur over the
time interval [tp, t̄p]. We choose ξ = 13, ξ̂ = 19, η = 3.7, η̄ =
7.9. By solving (18)-(20), we obtain feedback gain matrices
K1 and K2, observer gain matrices Ω1 and Ω2 as

K1 =

 −0.0794 −0.0008 0
0.0008 −0.0734 0

0 0 −0.0974

 ,
K2 =

 2.3741 0.1895 0
0 1.3604 −0.9087

0.1895 −0.9087 0.3761

 ,
Ω1 =

 −2.9031 −0.7980
3.2080 0.3950
−1.7935 −0.9705

 ,

Ω2 =

 −1.9464 0.4488
0.8713 −0.8736
−1.3688 −0.9125


with ϑ = 39.0318, ϑ̂ = 38.4191, Θmin = 374. When no
security controls are used and attacks occur at t1 = 1.4s,
the state trajectories of the 5 agents are represented in Fig.
12. The final tracking to the leader was not possible due
to difficulties in the connectivity of the two communication
networks. Fig. 13 shows that without secure control scheme
of system model is still not achieve consensus error. As
a result, to evaluate the distributed observer-based security
control mechanism, the followers are implemented, and the
consensus errors are presented in Fig. 14, indicating that good
observation performance has been obtained.
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Fig. 14. Consensus errors ωc and ϖc with different differential orders.

V. CONCLUSION

The security control for T-S fuzzy FOMASs with cyber-
attacks has been examined. A cyber-attack model with ma-
licious attacks are considered with both controllers and ob-
servers. For modeling recoverable cyber attacks a switched de-
vice has been employed. By utilizing the theory of fractional-
calculus, Lyapunov functional and algebraic graph theory, an
distributed control is designed to achieve the secure consensus
of T-S fuzzy FOMASs. Finally, a simulation examples and an
electronic circuit based on a tunnel diode are presented to
demonstrate the effectiveness of the suggested strategy. In the
future, we will investigate the networking of T-S fuzzy cascade
multi-area power systems in a smart grid with electric vehicles
(EVs) under DoS attacks.
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Abstract: This study deals with (Q, S, ℛ)-γ-dissipative output feedback control design for a class of switched systems with time-
varying delay and unmeasurable states. The purpose is to design an observer-based controller and a switching rule to ensure
both exponential stability and strict dissipativity of the resulting closed-loop switched systems. Using an augmented switched
Lyapunov–Krasovskii functional with triple sum and the improved reciprocally convex combination approach, new sufficient
conditions are developed in terms of linear matrix inequalities. Simulation examples are included to demonstrate the validity and
effectiveness of the proposed design technique.

1 Introduction
As a class of hybrid systems, switched systems can describe
several physical processes. A switched system is defined by a
collection of dynamical subsystems and a logical rule that
supervises or monitors the inter-working status among the
subsystems. Recently, switched systems have been used to describe
many engineering processes including communication networks,
flight and air traffic systems, chemical processes, power systems,
etc. Significant research efforts have been devoted to the basic
problems of stability and control design of switched systems. The
reader can refer to papers [1–4] and the references cited therein.
However, all the cited works are mainly interested to arbitrary
switching signal to study the problem of stability and control
design of switched systems. Thus, many switched systems fail to
preserve stability under arbitrary switching signals, but may be
stable under some prescribed switching signals. Then, the study of
switched system under the average dwell time (ADT) approach is
significant theoretically as well as practically. The ADT switching
means that the number of switches in a finite interval is bounded
and the average time interval between consecutive switching mode
is no less than a specified τa*. For slow switching systems, ADT
technique has been suggested in several papers to cope with the
stability problem (see [5–7] and the references therein).

As is well known, there always exists many real plants
involving intrinsically a time delay which can be the main cause of
instability and poor performance of dynamic systems. Many results
towards time-delay systems have been developed (see [8, 9] and
their bibliographies). The research on switched systems with delays
has also received growing attention in recent years and several
methods have been developed to deal with such systems.

By taking the advantage of a Lyapunov functional with triple
sum terms, the problem of exponential l2 − l∞ output controller has
been studied in [10] for a class of discrete-time switched systems
with time-varying delay. Based on the free-weighting matrix and
the Jensen's integral inequality approaches, the problems of
passivity and passification for a class of uncertain switched
systems subject to stochastic disturbance and time-varying delay
have been treated in [11].

In [12], a new summation inequality based on the Wirtinger-
based integral inequality has been introduced to improve the usual
Jensen inequality method and to cope with the problem of

dissapitive and l2 − l∞ filtering for discrete switched neural
networks with constant time delay. Recently, the combination of
Wirtinger-based inequality with the reciprocally convex method
has been investigated in [13] to derive a less conservative criterion.
Generally speaking, the use of reciprocally convex approach
combined with Wirtinger-based inequality and the triple sum
Lyapunov–Krasovskii functional usually yields less conservative
results. This motivates us to combine the three techniques to revisit
the stability analysis problem of discrete-time switched delayed
systems.

On another research front, the notion of dissipativity, which is
closely related to the notion of energy, is considered as a most
important concept in system theory for theoretical considerations
as well as from a practical point of view. Dissipative theory, which
encompass H∞ performance and passitivity, provides a framework
for robust analysis and control design for different types of
systems. Considerable attention has been devoted to the study of
dissipassivity for linear and non-linear systems and a variety of
results has been reported. For example, the authors in [14] have
considered the problem of a small-gain for stochastic network
systems by the aid of conditional dissipativity. Based on
parameterising the solutions of the constraint set, the problems of
dissipative control and filtering of discrete-time singular systems
have been investigated in [15]. The issue of reliable load frequency
control design of an uncertain multi-area power system with
constant time delays and disturbances via non-fragile sampled-data
control approach has been studied in [16]. In [17], the problem of
dissipative-based non-fragile controller for network-based singular
systems with event-triggered sampling scheme has been treated.
The problems arising from switched systems are significant. For a
class of continuous switched systems and using ADT approach,
sufficient conditions have been reported in [18–20] to design state
feedback controller, sliding mode control and filter, respectively.
For the class of discrete systems, the problem of stability has been
developed in [21, 22]. In [23], the problem of dissipative control
for a class of continuous Markov jump systems has been addressed.

It should be noted that the aforementioned results for switched
systems are developed upon the premise that the system states are
totally measured. However, the non-existence of appropriate
sensors to measure some states, or the increased number of sensors
make the whole system more complex, the state variables are
generally partially available. The static output-feedback control
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strategy has been studied and excellently implemented in various
cases [13, 24]. The dynamic output feedback control design
scheme has been also considered for switched systems in [25, 26].
It is noted that even the static output control strategy can be easily
implemented, the controller synthesis becomes complex especially
when the noise affects the measurement. For a such case, the
design of observers to estimate the system states is more
reasonable and promising. Accordingly, a great work of literature
has appeared on the observer-based control problem for switched
systems. In [27], the problem of observer-based control for a class
of switched networked systems has been studied. The authors in
[28] have considered the problem of observer fault detection for
uncertain discrete-time switched systems with constant delay. For a
class of switched systems, the problem of observer-based
dissipative control design have been addressed in [29]. Recently,
the issue of observer-based finite-time stabilisation for discrete-
time switched singular systems with quadratically inner-bounded
non-linear terms has been developed in [30]. Unfortunately, up to
date, the problem of exponential dissipative control for discrete-
time switched systems with state delay in the presence of
unmeasurable states and external disturbances has not been fully
investigated. This constitutes a further motivation to carry out this
study.

This paper presents a new observer-based control scheme which
may be a worthy addition of the output feedback approach for
switched systems subject of unmeasured states, external
disturbances and time delay. The key novelty covers the following:

• Based on the ADT approach, the exponential stability as well as
the strict dissipativity of the system under consideration are
analysed.
• Using the discrete Wirtinger-based inequality approach and an
appropriate Lyapunov–Krasovskii functional with a triple sum
term, a new delay-dependent sufficient criterion is derived which is
expected to be less conservative.
• The cone complement linearisation (CCL) method is adopted to
design a switched observer-based controller so that the
corresponding closed loop system is exponential stable with a strict
(Q, S, ℛ)-dissipativity. In fact, neither the SVD decomposition [31,
32] nor the pseudo inverse of the output matrix [33] are applied.

The rest of the paper is organised as follows. Preliminaries and
system description are introduced in Section 2. Stability and
dissativity analyses are studied in Section 3. Section 4 is dedicated
to dissipative observer-based control design for delayed switched
systems. Section 5 shows the potential and the validity of the
proposed strategy by three numerical examples. Conclusion and
remarks are given in Section 6.

Notations Throughout the paper a real-symmetric matrix Y > 0
(Y ≥ 0) denotes Y being a positive definite (or positive semi-
definite) matrix. sym(Y) stands for Y + YT. I and 0 symbolise the
identity matrix and a zero matrix with appropriate dimension,
respectively. Superscript ‘T’ stands for matrix transposition.
Y ∈ ℝs denotes the s-dimensional Euclidean space, while Y ∈ ℝs × n

refers to the set of all s × n real matrices. λmin(P) and λmax(P) denote
the minimum and maximum eigenvalues of P, respectively.
l2[0, ∞) is the space of square summable vectors. In symmetric
block matrices or long matrix expressions, we use a star * to
represent a term that is induced by symmetry. Matrices, if their
dimensions are not explicitly stated, are assumed to be compatible
for algebraic operations. ∥ . ∥ denotes the Euclidean norm of a
vector and its induced.

2 System description and preliminaries
A discrete-time switched linear system with time-varying delay in
the presence of external disturbances can be described as follows:

x(k + 1) = Aσ(k)x(k) + Adσ(k)x(k − d(k)) + B1σ(k)u(k)
+D1σ(k)w(k)

y(k) = Cσ(k)x(k) + D2σ(k)w(k)
z(k) = Czσ(k)x(k) + Bzσ(k)u(k)
x(k) = ϕ(k), k ∈ [ − dM, 0]

(1)

where x(k) ∈ ℝn is the state vector, u(k) ∈ ℝm is the control input
vector, w(k) ∈ ℝr is the disturbance input, z(k) ∈ ℝq is the
controller output vector, y(k) ∈ ℝp is the measured output vector,
switching signal σ(k):ℤ+ ⟶ {1, 2, …, N} defines which
subsystem will be activated and N represents the number of
subsystems. Delay d(k) is time-varying and satisfies

0 < dm ≤ d(k) ≤ dM (2)

with dm and dM are positive integers and represent, respectively, the
lower and upper bounds of the time-varying delay. Aσ(k), Adσ(k),
B1σ(k), D1σ(k), Cσ(k), D2σ(k), Czσ(k) and Bzσ(k) are known constant
matrices.

We state some definitions for later development.
Consider the following nominal unforced switched delay

system with u(k) = 0:

x(k + 1) = Aσ(k)x(k) + Adσ(k)x(k − d(k)) + Dσ(k)w(k)
z(k) = Czσ(k)x(k) (3)

To characterize the exponential stability and the switching
signal, the following two definitions are recalled [34].
 

Definition 1: System (3) with w(k) = 0 is exponentially stable,
if the solution x(k) satisfies ∥ x(k) ∥⩽ δϖk − k0 ∥ x(k) ∥L, ∀k > k0,
for constant δ > 0 and 0 < ϖ < 1, where
∥ x(k) ∥L = supL = 0, …, dM { ∥ x(k) ∥ , …, ∥ x(k − L) ∥ , ∥ x(k)
− x(k − 1) ∥ , ∥ x(k + 1 − L) − x(k − L) ∥ }

.

 
Definition 2: For switching signal σ(k) and any ks > ka > k0, let

Nσ(k)(ka, ks) be the switching numbers of σ(k) over interval [ka, ks].
If for given N0 ≥ 0 and τa ≥ 0, we have
Nσ(k)(ka, ks) ≤ N0 + (ks − ka)/τa, then τa and N0 are called ADT and
the chatter bound. For simplicity, we choose N0 = 0.

Similar to [35] the problem of dissipativity can be formulated as
follows:

 
Definition 3: Given matrices Q, S, and ℛ where Q and ℛ are

symmetric. Switched system (3) is called strictly (Q, S, ℛ)-γ-
dissipative, if for some scalar γ > 0 the following condition is
satisfied under zero initial state:

⟨z, Qz⟩T + 2⟨z, Sw⟩T + ⟨w, ℛw⟩T ≥ γ⟨w, w⟩T, ∀T ≥ 0 (4)

where γ is the dissipativity rate and ⟨r, s⟩T denotes ∑k = 0
T rT(k)s(k).

 
Remark 1: From Definition 3, the notion of (Q, S, ℛ)-

dissipativity includes H∞ performance and strict passivity as
special cases by choosing different values for Q, ℛ and S.

• If Q = − I, ℛ = γ2I and S = 0, inequality (4) reduces to an H∞
performance requirement.
• If Q = 0, ℛ = 0 and S = I, inequality (4) corresponds to a strict
passivity or strictly positive realness.
• If Q = − θI, ℛ = θγ2I and S = (1 − θ)I, θ ∈ [0, 1] be a given
scalar weight representing a trade off between H∞ and positive real
performance, then (Q, S, ℛ)-dissipativity reduces to the mixed H∞
and positive real performance.

Without loss of generality, it is assumed that Q < 0.
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For the purposes of development the following lemmas are
reminded from [36] and [10].

 
Lemma 1: For a given positive definite matrix Z and three non-

negative integers h1, h2 and k satisfying h1 ≤ h2 ≤ k, denote

φ(k, h1, h2)

=
1

h2 − h1
2 ∑

s = k − h2

k − h1 − 1
x(s) + x(k − h1) + x(k − h2) h1 < h2

2x(k − h1) h1 = h2

Then we have

−(h2 − h1) ∑
s = k − h2

k − h1 − 1
ηT(s)Zη(s) ≤ −

χ1

χ2

T Z 0
0 3Z

×
χ1

χ2
,

where η(k) = x(k + 1) − x(k)

χ1 = x(k − h1) − x(k − h2),
χ2 = x(k − h1) + x(k − h2) − φ(k, h1, h2) .

 
Lemma 2: Let Z1 and Z2 two positive matrices with appropriate

dimensions. The improved reciprocally convex combination
guarantees that, if there exists a matrix Y such that

Z1 Y

YT Z2
≥ 0,

then the following inequality holds for any scalar κ in the interval
[0,1]:

1
κ Z1 0

0 1
1 − κ Z2

≥
Z1 Y

YT Z2
. (5)

 
Lemma 3: For any matrix V > 0, R1, R2 and a scalar d > 0, the

following inequality holds:

− ∑
n = − d

1
∑

s = k + n

k − 1
η(s)TVη(s)

≤ ζ1
T(k) dR1

T + dR1 −R1
T + dR2

* −R2
T − R2

ζ1(k)

+ d(d + 1)
2 ζ1

T(k) R1
T

R2
T

V−1 R1 R2 ζ1(k),

(6)

where η(k) = x(k + 1) − x(k) and ζ1 = xT(k) (∑s = k − d
k − 1 x(s))T T.

3 (Q, S, ℛ)-dissipativity analysis
3.1 Stability analysis

In this section, the problem of exponential stability analysis based
on the ADT approach is addressed. According to the lemmas
presented above, sufficient conditions are developed to guarantee
the exponential stability analysis of switched system (3) with
w(k) = 0.
 

Theorem 1: Given two tunable scalars 0 < α < 1 and μ > 1 and
two positive integers dm and dM satisfying (2). Switched system
(3), with w(k) = 0, is exponentially stable, if there exist matrices
Pi > 0, Q1i > 0, Q2i > 0, Q3i > 0, Z1i > 0, Z2i > 0, Z3i > 0, Z4i > 0

and Y, R1, R2 such that the following inequalities hold for all
(i, j) ∈ I × I

Ωi > 0, (7)

Υi *

d
~

MℝHR −αdMZ4i
< 0, (8)

where

Υi = Φi + H1
TPiH1 − αH2

TPiH2 + H3
T(dm

2 Z1i + dr
2Z2i

+dM
2 Z3i + d

~
MZ4i)H3 − ΠTΩiΠ + HR

TΠRHR,
Φi = diag Q1i + Q2i + (dr + 1)Q3i; − αdmQ1i; − αdMQ3i;

−αdMQ2i; 0; 0; 0; 0; 0 ,

H1 =
Ai 0 Adi 0 0 0 0 0 0
In 0 0 −In 0 0 0 0 In

,

H2 =
In 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 In

,

HR =
In 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 In

,

ΠR =
dMR1

T + dMR1 −R1
T + dMR2

* −R2
T − R2

,

(9)

Ωi =

ℤ1i 0 0 0
0 ℤ2i Y 0
0 YT ℤ2i 0
0 0 0 ℤ3i

,

ℤ1i =
αdm − 1Z1i 0

0 3αdm − 1Z1i
,

ℤ3i =
αdM − 1Z3i 0

0 3αdM − 1Z3i
,

H3 = Ai − In 0 Adi 0 0 0 0 0 0 ,

ℤ2i =
αdM − 1Z2i 0

0 3αdM − 1Z2i
,

Π =

In −In 0 0 0 0 0 0 0
In In 0 0 −In 0 0 0 0
0 In −In 0 0 0 0 0 0
0 In In 0 0 −In 0 0 0
0 0 In −In 0 0 0 0 0
0 0 In In 0 0 −In 0 0
In 0 0 −In 0 0 0 0 0
In 0 0 In 0 0 0 −In 0

,

ℝ = R1 R2 , dr = dM − dm, d
~

M = dM(dM + 1)
2 ,

(10)

then system (3) is exponentially stable under any switching
sequence with ADT τ~a > τa* = − (ln μ/ln α), where μ satisfies

Pi − μPj < 0, Q1i − μQ1 j < 0, Q2i − μQ2 j < 0,
Q3i − μQ3 j < 0, Z1i − μZ1 j < 0, Z2i − μZ2 j < 0,
Z3i − μZ3 j < 0, Z4i − μZ4 j < 0.

(11)

 
Proof: To establish the exponential stability of system (3), with

w(k) = 0, we choose the following switched Lyapunov–Krasovskii
functional candidate for the ith subsystem:
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Vi(k) = ∑
s = 1

6
Vis(k), i ∈ I

Vi1(k) = υT(k)Piυ(k),

Vi2(k) = ∑
s = k − dm

k − 1
xT(s)αk − 1 − sQ1ix(s),

Vi3(k) = ∑
s = k − dM

k − 1
xT(s)αk − 1 − sQ2ix(s),

Vi4(k) = ∑
n = − dM

−dm

∑
s = k + n

k − 1
xT(s)αk − 1 − sQ3ix(s),

Vi5(k) = dm ∑
n = − dm + 1

0
∑

s = k + n

k − 1
ηT(s)αk − 1 − sZ1iη(s)

+dr ∑
n = − dM

−dm

∑
s = k + n

k − 1
ηT(s)αk − 1 − sZ2iη(s)

+dM ∑
n = − dM + 1

0
∑

s = k + n

k − 1
ηT(s)αk − 1 − sZ3iη(s),

Vi6(k) = ∑
s = − dM

−1
∑
n = s

−1
∑

m = k + n

k − 1
αk − 1 − mηT(m)Z4iη(m),

(12)

where η(k) = x(k + 1) − x(k) and

υ(k) =
x(k)

∑
s = k − dM

k − 1
x(s) . (13)

Let ψ1(k) = φ(k, 0, dm), ψ2(k) = φ(k, dm, d(k)),
ψ3(k) = φ(k, d(k), dM), ψ4(k) = φ(k, 0, dM) and augmented vector
(see (14)) .

Defining ΔαVi(k) = Vi(k + 1) − αVi(k), for k ∈ [kr, kr + 1), the
following equations yield:

ΔαVi1(k) = υT(k + 1)Piυ(k + 1) − αυT(k)Piυ(k), (15)

where

υ(k + 1) =
x(k + 1)

∑
s = k + 1 − dM

k
x(s)

=
Aix(k) + Adix(k − d(k))

x(k) − x(k − dM) + ∑
s = k − dM

k − 1
x(s)

= H1ζ(k),

(16)

υ(k) = H2ζ(k), (17)

Using (16) and (17), (15) can be written as

ΔαVi1(k) = ζT(k)H1
TPiH1ζ(k) − ζT(k)H2

TαPiH2ζ(k),
ΔαVi2(k) = xT(k)Q1ix(k) − xT(k − dm)αdmQ1ix(k − dm),
ΔαVi3(k) = xT(k)Q2ix(k) − xT(k − dM)αdMQ2ix(k − dM),
ΔαVi4(k) = (dr + 1)xT(k)Q3ix(k)

− ∑
s = k − dM

k − dm

xT(s)αk − sQ3ix(s)

≤ (dr + 1)xT(k)Q3ix(k)
−xT(k − d(k))αdMQ3ix(k − d(k)),

(18)

ΔαVi5(k) ≤ ηT(k)(dm
2 Z1i + dr

2Z2i + dM
2 Z3i)η(k)

−dm ∑
s = k − dm + 1

k
ηT(s)αdm − 1Z1iη(s)

−dr ∑
s = k − d(k) + 1

k − dm

ηT(s)αdM − 1Z2iη(s)

−dr ∑
s = k − dM + 1

k − d(k)
ηT(s)αdM − 1Z2iη(s)

−dM ∑
s = k − dM + 1

k
ηT(s)αdM − 1Z3iη(s) .

According to Lemma 1, we can deduce that

−dm ∑
s = k − dm + 1

k
ηT(s)αdm − 1Z1iη(s)

≤ −
x(k) − x(k − dm)

x(k) + x(k − dm) − ψ1(k)

T

× ℤ1i
x(k) − x(k − dm)

x(k) + x(k − dm) − ψ1(k) ,

(19)

−dr ∑
s = k − d(k) + 1

k − dm

ηT(s)αdM − 1Z2iη(s)

≤ − dr
d(k) − dm

x(k − dm) − x(k − d(k))
x(k − dm) + x(k − d(k)) − ψ2(k)

T

× ℤ2i
x(k − dm) − x(k − d(k))

x(k − dm) + x(k − d(k)) − ψ2(k) ,

(20)

−dr ∑
s = k − dM + 1

k − d(k)
ηT(s)αdM − 1Z2iη(s)

≤ − dr
dM − d(k)

x(k − d(k)) − x(k − dM)
x(k − d(k)) + x(k − dM) − ψ3(k)

T

× ℤ2i
x(k − d(k)) − x(k − dM)

x(k − d(k)) + x(k − dM) − ψ3(k) ,

(21)

−dM ∑
s = k − dM + 1

k
ηT(s)αdM − 1Z3iη(s)

≤ −
x(k) − x(k − dM)

x(k) + x(k − dM) − ψ4(k)

T

× ℤ3i
x(k) − x(k − dM)

x(k) + x(k − dM) − ψ4(k) .

(22)

ζ(k) = xT(k) xT(k − dm) xT(k − d(k)) xT(k − dM)ψ1
T(k) ψ2

T(k) ψ3
T(k) ψ4

T(k) ( ∑
s = k − dM

k − 1
x(s)))T

T

. (14)
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From (19)–(22), ΔαVi5(k) can be expressed as follows:

ΔαVi5(k) ≤ ηT(k)(dm
2 Z1i + dr

2Z2i + dM
2 Z3i)η(k)

−ζT(k)ΠT

ℤ1i 0 0 0

0 1
κ(k)ℤ2i 0 0

0 0 1
1 − κ(k)ℤ2i 0

0 0 0 ℤ3i

Πζ(k),
(23)

where κ(k) = (d(k) − dm)/dr. Then, according to Lemma 2, the
following inequality holds for a suitable matrix Y ∈ ℝ2n × 2n.

ΔαVi5(k) ≤ ζT(k) H3
T(dm

2 Z1i + dr
2Z2i + dM

2 Z3i)H3

−ΠTΩiΠ ζ(k) .
(24)

Next, we calculate

ΔαVi6(k) = ∑
s = − dM

−1
∑
n = s

−1
ηT(k)Z4iη(k)

−α−nηT(k + n)Z4iη(k + n)

= ∑
s = − dM

−1
− s ηT(k)Z4iη(k)

− ∑
s = − dM

−1
∑

n = k + s

k − 1
α−nηT(n)Z4iη(n)

≤ dM(dM + 1)
2 ηT(k)Z4iη(k)

− ∑
s = − dM

−1
∑

n = k + s

k − 1
ηT(n)αdMZ4iη(n) .

(25)

Based on Lemma 3, the following inequality holds:

ΔαVi6(k) ≤ dM(dM + 1)
2 ηT(k)Z4iη(k)

+ζ1
T(k)

dMR1
T + dMR1 −R1

T + dMR2

* −R2
T − R2

ζ1(k)

+ dM(dM + 1)
2 ζ1

T(k) R1
T

R2
T

(αdMZ4i)−1 R1 R2 ζ1(k),

(26)

where ζ1(k) = xT(k) (∑s = k − dM
k − 1 x(s))T T.

From (18)–(26), we have

ΔαVi(k) ≤ ζT(k)(Υi + (d~MℝHR)T(αdMZ4i)−1

× (d~MℝHR))ζ(k) .
(27)

Performing to Schur complement, we can verify (8).
Now we are in a position to demonstrate the exponential

stability.
For k ∈ [kr, kr + 1), the irth subsystem is activated and the

following inequality can be verified:

Vσ(k)(k) ≤ αk − krVσ(kr)(kr) . (28)

From (11), we get

Vσ(k)(k) ≤ αk − krμVσ(kr − 1)(kr)

≤ ⋯ ≤ αk − k0μ(k − k0)/τ~aVσ(k0)(k0)

= (αμ1/τ~a)k − k0Vσ(k0)(k0) .

(29)

Moreover, from the definition of the Lyapunov–Krasovskii
function in (12), we have

δ ∥ x(k) ∥2 ≤ Vσ(k)(k); Vσ(k0)(k0) ≤ ρ ∥ x(k) ∥L
2 , (30)

where

δ = min
i ∈ I

λmin(Pi),

ρ = max
i ∈ I

λmax(Pi) + α
α − 1λmax(Q1i) + α

α − 1λmax(Q2i)

+ α(dM − dm + 1)
α − 1 λmax(Q3i) + dm

2 α
α − 1λmax(Z1i)

+dr(dr + 1) α
α − 1λmax(Z2i) + dM

2 α
α − 1λmax(Z3i)

+ αdM(dM + 1)
2(α − 1) λmax(Z4i) .

Let ϖ = αμ1/τ~a. Combining (29) and (30), the system state
satisfies

∥ x(k) ∥2 ≤ 1
δ Vσ(kr)(k) ≤ ρ

δ ϖ2(k − k0) ∥ x(k) ∥L
2 , (31)

which further implies that

∥ x(k) ∥≤ ρ
δ ϖ(k − k0) ∥ x(k) ∥L . (32)

Then, according to Definition 1, we can conclude that the system is
exponentially stable with decay rate ϖ = αμ1/τ~a. This completes
the proof. □
 

Remark 2:

• The main feature of Theorem 1 is neither the model
transformation nor the bounding techniques are used to estimate
the upper bound of the cross product terms (see [34, 37, 38].
• To bound the terms in ΔαVi5(k), different methods can be used
from the literature to reduce the conservatism of the obtained
criteria. In [11, 39], Jensen's inequality has been used, the
Wirtinger inequality has been introduced in [12] and the input–
output transformation with scaled small-gain approach has been
suggested in [2]. However, the key merit of the proposed criterion
lies in the combination of the Wirtinger-based integral and the
improved reciprocally convex approaches. Different to [13], this
study exhibits an appropriate Lyapunov–Krasovskii functional with
triple sum terms to get less conservative results.

3.2 Dissipativity analysis

Based on the new stability condition developed in the above
theorem, this subsection is deducted to investigate the (Q, S, ℛ)-γ-
dissipativity problem for switched system with time-varying delay
(3).
 

Theorem 2: Given positive integers dm and dM satisfying (2),
scalars 0 < α < 1 and μ > 1 and matrices Q < 0, ℛ and S. If there
exist matrices Pi > 0, Q1i > 0, Q2i > 0, Q3i > 0, Z1i > 0, Z2i > 0,
Z3i > 0, Z4i > 0, Y, R1, R2 and a scalar γ0 > 0 such that the following
inequalities hold for all (i, j) ∈ I × I:

Ωi > 0, (33)

Ῡi *

d
~

MℝH̄R −αdMZ4i
< 0, (34)

where
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Ῡi = Φ̄i + H̄1
T(dl)PiH̄1 − αH̄2

TPiH̄2 + H̄3
T(dm

2 Z1i + dr
2Z2i

+dM
2 Z3i + d

~
MZ4i)H̄3 + H̄R

TΠRH̄R − Π̄TΩiΠ̄
−sym(HzSHw) − Hz

TQHz,
Φ̄i = diag Q1i + Q2i + (dr + 1)Q3i; − αdmQ1i;

−αdMQ3i; − αdMQ2i; 0; 0; 0; 0; 0; ( − ℛ + γ0I) ,
H̄1 = H1 D1i , H̄2 = H2 0 , H̄3 = H3 D1i ,

Π̄ = Π 0 , H̄R = HR 0 , D1i =
D1i

0
,

Hw = 0 0 0 0 0 0 0 0 0 I ,
Hz = Czi 0 0 0 0 0 0 0 0 0 .

(35)

Then, system (3) is exponentially stable under a strict
(Q, S, ℛ)-γ-dissipative rate γ, given by γ = γ0μ(αλ + 1 − αλ), with
λ > 1 and for any switching sequence with ADT τa ≥ λτa* where μ
satisfies

Pi − μPj < 0, Q1i − μQ1 j < 0, Q2i − μQ2 j < 0,
Q3i − μQ3 j < 0, Z1i − μZ1 j < 0, Z2i − μZ2 j < 0,
Z3i − μZ3 j < 0, Z4i − μZ4 j < 0.

(36)

 
Proof: To deal with the dissipativity performance for system

(3), we consider the Lyapunov–Krasovskii functional as in (12).
Define

J(k) = J1(k) + γ0wT(k)w(k), (37)

J1(k) = − zT(k)Qz(k) − 2zT(k)Sw(k) − wT(k)ℛw(k) . (38)

By following the same procedure used in Theorem 1 with
w(k) ≠ 0, it is easy to verify from (34) that

Vi(k + 1) − αVi(k) + J(k) ≤ 0, i ∈ I (39)

Then, for k ∈ [kr, kr + 1), we have

Vσ(k)(k) ≤ αk − krVσ(kr)(kr) − ∑
s = kr

k − 1
αk − 1 − sJ(s) . (40)

By iteration operation, yields

Vσ(k)(k) ≤ αk − krμ αkr − kr − 1Vσ(kr − 1)(kr − 1)

− ∑
s = kr − 1

kr − 1
αkr − 1 − sJ(s) − ∑

s = kr

k − 1
αk − 1 − sJ(s)

≤ αk − kr − 1μ2 αkr − 1 − kr − 2Vσ(kr − 2)(kr − 2)

− ∑
s = kr − 2

kr − 1 − 1
αkr − 1 − 1 − sJ(s)

−αk − krμ ∑
s = kr − 1

kr − 1
αkr − 1 − sJ(s)

− ∑
s = kr

k − 1
αk − 1 − sJ(s)

≤ ⋯ ≤ αk − k0μNσ(k)(k0, k)Vσ(k0)(k0)

− ∑
s = k0

k − 1
μNσ(k)(s, k)αk − 1 − sJ(s) .

(41)

Due to the fact that Vσ(k)(k) ≥ 0, under zero initial condition
ϕ(k) = 0, we have

∑
s = k0

k − 1
μNσ(k)(s, k)αk − 1 − sJ(s) ≤ 0. (42)

That is

γ0 ∑
s = k0

k − 1
μNσ(k)(s, k)αk − 1 − swT(s)w(s)

≤ ∑
s = k0

k − 1
μNσ(k)(s, k)αk − 1 − s(−J1(s)) .

(43)

Which implies

γ0 ∑
s = k0

k − 1
μαk − 1 − swT(s)w(s)

≤ ∑
s = k0

k − 1
μNσ(k)(s, k)αk − 1 − s(−J1(s)) .

(44)

Moreover, it follows from Definition 2 that
0 ≤ Ni(s, k) ≤ (k − s)/τa which is equivalent to
μNi(s, k) = α−(1/λ)(k − s). Then, we get

γ0 ∑
s = k0

k − 1
μαk − 1 − swT(s)w(s) ≤ ∑

s = k0

k − 1
α(1 − 1

λ )(k − s) − 1(−J1(s)) . (45)

Thus see the following equation: (see (46)) 

γ0μ ∑
k = k0 + 1

T + 1
∑

s = k0

k − 1
αk − s − 1wT(s)w(s) ≤ ∑

k = k0 + 1

T + 1
∑

s = k0

k − 1
α(1 − 1

λ )(k − s) − 1( − J1(s)),

γ0μ ∑
s = k0

T

∑
k = s + 1

T + 1
αk − s − 1wT(s)w(s) ≤ ∑

s = k0

T

∑
k = s + 1

T + 1
α(1 − 1

λ )(k − s) − 1( − J1(s)),

γ0μ ∑
s = k0

T
α−s − 1 ∑

k = s + 1

T + 1
αkwT(s)w(s) ≤ ∑

s = k0

T
α(1 − 1

λ )( − s) − 1 ∑
k = s + 1

T + 1
α(1 − 1

λ )k( − J1(s)),

γ0μ ∑
s = k0

T 1 − αT − s + 1

1 − α wT(s)w(s) ≤ α( − 1
λ ) ∑

s = k0

T 1 − α(1 − 1
λ )(T − s − 1)

1 − α(1 − 1
λ )

( − J1(s)),

γ0μ ∑
s = k0

T
wT(s)w(s) ≤ α( − 1

λ )

1 − α(1 − 1
λ )

∑
s = k0

T
( − J1(s)) .

(46)
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According to Definition 3, we can conclude that system (3) is
strictly (Q, S, ℛ)-γ-dissipative with γ = γ0μ(αλ + 1 − αλ). This
completes the proof. □
 

Remark 3: As we remark, the ADT τ~a and the dissipativity rate
γ are, respectively, increasing functions on parameter λ. As in [35],
this positive scalar λ > 1 is introduced to make the dissipativity
analysis in Theorem 2 easier.

4 Dissipative observer-based control synthesis
It is known that state feedback systems require the measurement of
all system states. However, in practical applications, it is not
always possible to have access to all state variables and only partial
information is available via measured outputs. Hence, the observer-
based control is probably well suited in such situation for feedback
control. To deal with such problem for system (1), we introduce the
following observer:

x^(k + 1) = Aσ(k)x^(k) + Adσ(k)x^(k − d(k)) + B1σ(k)u(k)
+Lσ(k)(y(k) − y^(k))

y^(k) = Cσ(k)x^(k)
(47)

where x^(k) is the state estimation of x(k), y^(k) is the observer
output and Lσ(k) ∈ ℝn × p are the observer gain matrices to be
determined.

Including this observer, we are interested in the following form
of the observer-based control:

u(k) = Kσ(k)x^(k), (48)

where Kσ(k) is the controller gain matrices.
Denoting the estimation error as e(k) = x(k) − x^(k) and

combining (1) and (47) with (48), the augmenting closed-loop
systems is written as

x~(k + 1) = A
~

σ(k)x~(k) + A
~

dσ(k)x~(k − d(k)) + D
~

1σ(k)w(k)
Z(k) = C

~
zσ(k)x~(k)

(49)

where

x~(k) = x(k)
e(k) , A

~
dσ(k) =

Adσ(k) 0
0 Adσ(k)

,

A
~

σ(k) =
Aσ(k) + B1σ(k)Kσ(k) −B1σ(k)Kσ(k)

0 Aσ(k) − Lσ(k)Cσ(k)
,

C
~

zσ(k) = Czσ(k) + Bzσ(k)Kσ(k) −Bzσ(k)Kσ(k) ,

D
~

1σ(k) =
D1σ(k)

D1σ(k) − Lσ(k)D2σ(k)
.

(50)

 
Theorem 3: Given two scalars 0 < α < 1 and μ > 1, two

positive integers dm and dM satisfying (2), symmetric matrices
Q < 0 and ℛ and matrix S. Closed-loop system (49) is
exponentially stable and strictly (Q, S, ℛ)-γ-dissipative, if there
exist symmetric positive-definite matrices P

~
i, P̄i ∈ ℝ4n × 4n,

Q
~

1i, Q
~

2i, Q
~

3i, Z
~

1i, Z
~

2i, Z
~

3i, Z
~

4i, Z̄1i, Z̄2i, Z̄3i, Z̄4i ∈ ℝ2n × 2n

and matrices Y
~
, R

~
1, R

~
2, Ki, Li with appropriate dimension and a

scalar γ0 > 0 satisfying

Γ̄i < 0; Ω~ i > 0 (51)

P
~

iP̄i = I, Z
~

1iZ̄1i = I, Z
~

2iZ̄2i = I, Z
~

3iZ̄3i = I, Z
~

4iZ̄4i = I, (52)

where
(see equation below)
(see equation below)

Φ̄i = diag Q
~

1i + Q
~

2i + (dr + 1)Q~3i; − αdmQ
~

1i; − αdMQ
~

3i;
−αdMQ

~
2i; 0; 0; 0; 0; 0; ( − ℛ + γ0I) ,

where system (49) is exponentially stable under switching
sequence with ADT τa satisfies

P
~

i − μP
~

j < 0, Q
~

1i − μQ
~

1 j < 0, Q
~

2i − μQ
~

2 j < 0,
Q
~

3i − μQ
~

3 j < 0, Z
~

1i − μZ
~

1 j < 0, Z
~

2i − μZ
~

2 j < 0,
Z
~

3i − μZ
~

3 j < 0, Z
~

4i − μZ
~

4 j < 0.
 
Proof: Performing Theorem 2 to system (49), inequalities in

(51) hold with P̄i = P
~

i
−1, Z̄1i = Z

~
1i
−1, Z̄2i = Z

~
2i
−1, Z̄3i = Z

~
3i
−1 and

Z̄4i = Z
~

4i
−1. This completes the proof. □

 
Remark 4: Due to equality constraints (52), conditions in (51)

are not in a strict linear matrix inequality (LMI) form which cannot
be solved directly using the standard LMI procedures. For applying
the LMI technique, we can formulate this non-convex feasibility
problem into a sequential optimisation problem subject to LMIs
constraints.

Based on the CCL technique [40], we propose the following
minimisation problem involving LMI conditions instead of the
original non-convex condition (52).

min Tr∑
i = 1

N
(P~iP̄i + Z

~
1iZ̄1i + Z

~
2iZ̄2i + Z

~
3iZ̄3i + Z

~
4iZ̄4i) . (53)

s.t.:

(51)
P
~

i I4n

I4n P̄i
≥ 0

Z
~

1i I2n

I2n Z̄1i
≥ 0

Z
~

2i I2n

I2n Z̄2i
≥ 0

Z
~

3i I2n

I2n Z̄3i
≥ 0

Z
~

4i I2n

I2n Z̄4i
≥ 0

(54)

If the solution of the above minimisation problem is 12n × N, i.e.

min Tr∑
i = 1

N
(P~iP̄i + Z

~
1iZ̄1i + Z

~
2iZ̄2i

+Z
~

3iZ̄3i + Z
~

4iZ̄4i) = 12n × N,
(55)

then, the conditions in Theorem 3 are solvable. In order to find a
feasible solution of the above minimisation problem, we suggest
the following algorithm:

 
Algorithm 1:

Step 1: Find a feasible set P0
i; P0

i; Z0
1i; Z0

1i; Z0
2i;

Z0
2i; Z0

3i; Z0
3i; Z0

4i; Z0
4i. Satisfying (51). Set r = 0.

Step 2: Solve the following optimisation problem:

min Tr∑
i = 1

N
(P~i

rP̄i + P̄i
rP

~
i + Z

~
1i

rZ̄1i + Z̄1i
r Z

~
1i + Z

~
2i

rZ̄2i

+Z̄2i
r Z

~
2i + Z

~
3i

rZ̄3i + Z̄3i
r Z

~
3i + Z

~
4i

rZ̄4i + Z̄4i
r Z

~
4i)

(56)

s.t. (54).
Step 3: if |Tr∑N

i=1(Pi Pi + Z1i Z1i + Z2i Z2i + Z3i Z3i + Z4i Z4i)−12n 
× N|≤θ,

for a sufficiently small scalar θ>0, the solution Ki and Li, i=1,2,
…,N, are the controller and the observer gains, respectively. STOP.

else
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Set r = r + 1, set (Pr
i; Pr

i; Zr
1i; Zr

1i; Zr
2i) = (Pi; Pi; Z1i; Z1i; Z2i), and

go to Step 2.
Step 4: If r > Nm, where Nm is the maximum number of iterations
allowed, EXIT. Our method fails to find feasible gains.

 
Remark 5:

• In the design of the observer-based controller, we have two terms
Pi and Pi

−1 occur together, which results a non-linear condition. To
overcome this problem, numerous methods have been introduced
in the literature. In [28, 33, 41], the non-linear term Pi

−1 is replaced
by 2I − Pi using the fact that (Pi − I)TPi

−1(Pi − I) ≥ 0. This method
is very common to solve such problem. Nevertheless, as in [42],
the cone complementarity approach is adopted in this work as a
second alternative.

Ω~ i =

ℤ~ 1i 0 0 0
0 ℤ~ 2i Y

~ 0

0 Y
~T ℤ~ 2i 0

0 0 0 ℤ~ 3i

, ℤ~ 1i =
αdm − 1Z

~
1i 0

0 3αdm − 1Z
~

1i
,

ℤ~ 2i =
αdM − 1Z

~
2i 0

0 3αdM − 1Z
~

2i
,

ℤ~ 3i =
αdM − 1Z

~
3i 0

0 3αdM − 1Z
~

3i
,

Γ̄11
i = Φ̄i − αH

~
2
TP

~
iH

~
2 − Π~ TΩ~ iΠ

~ + H
~

R
TΠ~ RH

~
R − sym(H~ zSH

~
w),

H
~

1 = A
~

i 0 A
~

di 0 0 0 0 0 0 D
~

1i

I2n 0 0 −I2n 0 0 0 0 I2n 0
,

H
~

2 =
I2n 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 I2n 0 ,

H
~

3 = A
~

i − I2n 0 A
~

di 0 0 0 0 0 0 D
~

1i ,
H
~

w = 0 0 0 0 0 0 0 0 0 I ,
H
~

z = C
~

zi 0 0 0 0 0 0 0 0 0 ,

H
~

R =
I2n 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 I2n 0 ,

Π~ R =
dMR

~
1
T + dMR

~
1 −R

~
1
T + dMR

~
2

* −R
~

2
T − R

~
2

, ℝ~ = R
~

1 R
~

2 ,

Γ̄i =

Γ̄11
i * * * * * * *

d
~

Mℝ~ H
~

R −αdMZ
~

4i * * * * * *

H
~

3 0 − 1
dm

2 Z̄1i * * * * *

H
~

3 0 0 − 1
dr

2 Z̄2i * * * *

H
~

3 0 0 0 − 1
dM

2 Z̄3i * * *

H
~

3 0 0 0 0 − 1
d
~

M
Z̄4i * *

H
~

1 0 0 0 0 0 −P̄i *
H
~

zQ 0 0 0 0 0 0 Q

,

Π~ =

I2n −I2n 0 0 0 0 0 0 0 0
I2n I2n 0 0 −I2n 0 0 0 0 0
0 I2n −I2n 0 0 0 0 0 0 0
0 I2n I2n 0 0 −I2n 0 0 0 0
0 0 I2n −I2n 0 0 0 0 0 0
0 0 I2n I2n 0 0 −I2n 0 0 0
I2n 0 0 −I2n 0 0 0 0 0 0
I2n 0 0 I2n 0 0 0 −I2n 0 0

,
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• To synthesise the observer and controller gains, the SVD [31, 32,
43], the pseudo inverse of the output matrix [33], and the Finsler's
lemma with a particular structure of some decision matrices [44]
have been used. However, these techniques are difficult to apply
when the disturbance affects the measurements. The CCL
algorithm is used here to consider this case.

5 Numerical examples
In the sequel, we demonstrate the applicability of the suggested
strategy by means of three simulation examples.
 

Example 1: Consider a switched system composed of two
modes and the following system matrices:

A1 = 0.2 −0.1
0.1 0.4 , A2 = 0.4 0.2

−0.1 0.3 ,

Ad1 = 0.1 0
0.1 0.1 , Ad2 = 0.1 0

−0.01 0.1 .

Our purpose is to determine the allowable time delay upper bounds
dM for various dm such that system (3) will be stable. By choosing
α = 0.95 and μ = 1.1, detailed comparison of the maximum
allowed bounds dM is given in Table 1. 

In terms of conservatism, results in Table 1 clearly show that
the strategy in Theorem 1 outperforms those in [45–47].

To further prove the merit of the proposed approach, the
maximum allowed bounds dM for different delay lower bounds dm
in Table 2 have been computed from Theorem 1 in our work for the
case of arbitrary switching with α = 1 and we eliminate conditions
in (11), Theorem 1 in [2, 37] and the proposed strategy in [13]. 
From Tables 1 and 2, it is obvious that the combination Wirtinger-
based inequality, improved reciprocally convex approach and
Lyapunov–Krasovskii functional with triple sum term provides not
only less conservative results, but also significantly improved
bounds than [2] using input–output approach with scaled small
gain condition, Qiu et al. [13] using only Wirtinger-based
inequality and improved reciprocally convex approach, Mahmoud
and Xia [37] using free matrices and null equations and Hou et al.
[10] using Lyapunov functional with triple sum terms.
 

Example 2: For comparison purpose, the proposed control
technique will be applied to the following switched system
borrowed from [48]:

A1 = −0.45 −0.2
0.2 0.3 , A2 = −1.1 0.2

−0.2 0.3 , B1 = 0.5
0.2 ,

Ad1 = 0.1 0 − 0.1
0 0.1 , Ad2 = 0.1 −0.1

0.1 0 , B2 = 0.4
0.3 ,

Cz1 = 0.5 0
0 0.5 , Cz2 = 0.3 0

0 −0.2 , Bz1 = 0.2
0.3 ,

Bz2 = 0.1
−0.2 , D11 = 0.5 0

0 0.5 , D12 = 0.5 0
0 0.6 ,

D21 = D22 = 0.

In order to highlight the effectiveness of the proposed control
strategy, we will perform a comparison with the method in [42]
extended to the problem of dissipativity performance with

Q = −0.4 0
0 −1 , S = 1 0.5

1 1 , ℛ = 1 0
0 1 .

Case 1: The method in this paper: Let α = 0.7 and
μ = 1.4, which implies τa* = 0.9434, λ = 2.7.

Set θ = 10−3, Theorem 3 produces a feasible solution
to the corresponding LMIs, using solver SDP3 of Yalmip
toolbox, with minimum values γ0 = 0.5 and γ = 0.0901
and

K1 = −0.7823 −1.1801 , K2 = 1.3559 −1.4959 ,

L1 = −0.3575 −0.6879
0.2126 −0.2466 , L2 = −1.8884 0.5106

−0.5908 0.3330 . (57)

Case 2: The method in [42]: The observer and control
gains can be computed as

K1 = −0.2196 −0.5968 , K2 = 1.2811 −0.2810 ,

L1 = −0.4898 0.2238
−0.2891 0.6276 , L2 = −1.6501 0.2760

−0.6638 0.3302 . (58)

The sampling period and initial states in this example are
chosen as follows: Te = 0.32 s and
ϕ0(k) = [12e−0.1k 10.8]T, k = − 4, …, 0. The delay is given by a
repeating of sequence [4, 2, 3, 2, 1, 3].

The state and estimate trajectories are carried out by taking
w(k) = [sin(4k)e−0.5k sin(4k)e−0.5k]T and repeated sequence [2, 1, 2]
as a switching signal with τa = 3.2.

Fig. 1 depicts the evolutions of state and estimate trajectories
when the previous cases are adopted, while Fig. 1d shows
evolution of the ratio under zero-initial condition. It is observed
from the plotted figures that both control laws guarantee the
convergence of the system state to zero. However, the proposed
controller provides a better ratio than the controller designed in

Table 1 Upper bound dM variation for different dm

dm 2 4 6 8 10 12 14 16 18
[45] — — — — — — — — —
[10] 6 7 9 10 11 12 14 16 —
[46] 9 10 11 13 14 15 16 18 19
[47] 12 13 14 16 17 19 21 22 23
Theorem 1 15 16 17 18 20 21 23 24 26

 

Table 2 Upper bound dM variation for different dm with α = 1
dm 2 4 6 8 10 12 14 16 18
[13] 15 17 19 21 23 25 27 29 31
[2] 27 29 31 33 35 37 39 41 43
[37] 39 41 43 45 47 49 51 53 55
Theorem 1 47 49 51 53 55 57 59 61 63
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case 2. Thus, the simulation results are satisfactory, which validate
the theoretical findings (see Fig. 2). 
 

Example 3: To evaluate the effectiveness of the proposed
controller design approach, we consider the example of single-
ended primary inductor converter (SEPIC) presented in [49]. This
type of converter, shown in Fig. 3, can supply an output voltage
less than, greater than or equals to the input voltage and it can be
used in several application such GPS systems, CD/DVD players,
digital cameras and cellular phones. The switching element V can
give a switching behaviour at most once in each period T to the
converter. The parameters of the proposed converter are
summarised in Table 3. Fig. 1  Simulation results for Example 2 with cases 1 and 2

(a) Response and estimate trajectories of x1, (b) Response and estimate trajectories of
x2, (c) Control input, (d) Ratio evolution

 

Fig. 2  Switching signal and errors evolutions
(a) Switching signal, (b) Estimation error of x1, (c) Estimation error of x2
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The inductive currents i1 and i2, capacitor voltage uc1, and output
voltage u0, four states variables are chosen to characterise the
system model described with the following differential equations:

When V switch on

i̇ 1 = − R1

L1
i1 + 1

L1
E

u̇c1 = − 1
C1

i2

u̇0 = − 1
RC2

u0

i̇ 2 = − R2

L2
i2 + 1

L2
uc1

(59)

When V switch off

i̇ 1 = − R1

L1
i1 − 1

L1
uc1 − 1

L1
u0 + 1

L1
E

u̇c1 = 1
C1

i1

u̇0 = 1
C2

i1 + 1
C2

i2 − 1
RC2

u0

i̇ 2 = − R2

L2
i2 − 1

L2
u0

(60)

Set the sampling time Te = 2 × 10−5 s and choosing the state
vector as x(k) = [i1(k) uc1(k) u0(k) i2(k)]T and the control input
u(k) = E.

The aim is to apply the proposed design technique to model (1)
described by the following data:

A1 =

0.96 0 0 0
0 1 0 −0.2
0 0 0.99 0
0 0.04 0 0.992

, B1 = B2 =

0.02
0
0
0

,

A2 =

0.96 −0.02 −0.02 0
0.2 1 0 0
0.2 0 0.99 0.2
0 0 −0.04 0.992

, D11 =

−0.1
0.1

−0.5
0.1

,

C1 = C2 =
1 0 0 0
0 1 0 0
0 0 1 0

, D12 =

0.5
−0.1
−0.1
−0.5

, Ad1 = Ad2 = 0,

Cz1 = 0.02 0 0 0 , D21 = D22 =
0
0
0

,

Cz2 = 0.01 0 0 0 , Bz1 = 0.01, Bz2 = 0.02.

(61)

Let Q = − 1, ℛ = 1, S = 0 and the ADT parameters α = 0.94 and
μ = 1.5, which gives τa* = 6.5529. Set θ = 10−1, Theorem 3
produces a feasible solution to the corresponding LMIs, using

solver SDP3 with Yalmip toolbox, with the associated controller
and observer gains:

K1 = −19.0129 −3.7921 −3.3107 −7.1217 ,
K2 = −14.5563 −0.9161 −0.3893 −6.6751 ,

L1 =

0.4081 0.1669 0.0882
0.4601 1.0845 −0.0181
0.2778 −0.0630 0.7716

−0.3815 −0.7171 −0.0399

,

L2 =

0.4448 −0.0478 0.0512
0.1588 0.9432 0.1189

−0.1689 −0.0161 0.4380
−0.3458 −0.3748 0.1141

.

(62)

External disturbance w(k) is chosen by

w(k) = rand(1)
k + 5 . (63)

Given the initial conditions x(0) = [1 5 1 2]T and
x^(0) = [0 0 0 0]T, simulation results are depicted in Fig. 4–6. Fig. 4
denotes the open-loop response of the system states. The
evolutions of the system states and the observer are given in Figs. 5
and 6. The result implies that the converter system is effectively
stabilised even the presence of the external disturbance, and the
output-feedback control problem can be achieved when the system
states are incompletely available via the developed control strategy,
which is in accordance with the analysis in the paper.

Assume that D21 = D22 = 1 0 0 T. Theorem 3 produces a
feasible solution to the corresponding LMIs with the following
gains:

K1 = −23.0016 −4.8059 −3.9610 −9.4311 ,
K2 = −24.7755 −2.7291 −2.0683 −11.4085 ,

L1 =

0.0651 −0.0150 0.4402
0.1213 0.9617 −0.1551

−0.4330 −0.0331 0.9838
0.0502 −0.4725 0.0515

,

L2 =

0.3444 −0.0606 0.1810
−0.0667 0.9108 0.0537
−0.1786 −0.0769 0.9505
−0.3661 −0.1285 0.4675

.

(64)

To further prove the merit of the proposed strategy, two quality
criteria are considered to evaluate the deviation of the estimated
error e(k) = x(k) − x^(k) with different stochastic noises: integral
squared error (ISE) and integral absolute error (IAE). The
comparison is listed in Table 4. 

From the calculated results in Table 4, we can deduce that the
total deviation of e(k) is smaller when controller (64) is applied for
both cases of noises.

Fig. 3  Single-ended primary inductor converter
 

Table 3 Converter parameters
Acronyms Definitions Values, units
L1 input inductor 1 × 10−3 H
L2 output inductor 0.5 × 10−3 H
C1 input capacitor 0.1 × 10−3 F
C2 output capacitor 0.1 × 10−3 F
R1 resistor of input inductor 2 Ω
R2 resistor of output inductor 0.2 Ω
R load resistor 2 Ω
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Regarding these results, we conclude that the disturbance
attenuation property is evident and the proposed control scheme
yields a good performance which validates the theoretical findings.

6 Conclusions
A novel (Q, S, ℛ)-γ-dissipative observer-based controller has been
proposed in this paper for stabilising a discrete-time switched
systems with time-varying delay. Based on the improved
reciprocally convex technique and the ADT approach, a delay-
dependent sufficient condition has been derived to guarantee the
exponential stability of nominal switched systems. Moreover, using
the cone complementarity algorithm, an observer-based control law
has been designed to ensure the stability and dissipativity of the
resulting closed-loop systems. The validity of the theoretical
developments has been tested by three examples. It should be
emphasised that the design procedure can be a promising procedure
to be applied to a wide range of practical systems and the
computational simplicity of the method can be another feature of
this work.

For some practical systems, the lag time between the switching
of the controller and the system modes is quite long and it can
never be neglected. So it is interesting to deal with the
asynchronous phenomenon as a future research topic. Furthermore,
it is also interesting to experimentally validate the developed
method on buck–boost converter for a photovoltaic system.

Fig. 4  Open-loop systems trajectories
(a) State trajectories with mode 1, (b) State trajectories with mode 2

 

Fig. 5  Control input and estimation error
(a) Switching signal, (b) State estimation error, (c) Response of control input u
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a b s t r a c t

This paper studies the problem of fractional-order impulsive security control for uncertain
fractional-order delayed multi-agent systems (FDMASs) under Denial-of-Service (DoS)
attack. New sufficient conditions to achieve impulsive secure consensus are analyzed. To
determine the stability of the resulting error system, we utilized fractional-calculus theory,
algebraic graph theory, Lyapunov functional. The influence of the impulsive control scheme
depends on the order of the Caputo fractional-order systems addressed. It is shown that the
agents can achieve an exponential consensus under the proposed impulsive control
scheme. Finally, the effectiveness of the theoretical results is demonstrated by numerical
examples and simulation results.

Published by Elsevier Inc.

1. Introduction

Multi-agent systems (MASs) consist of multiple interacting autonomous subsystems that can be used by means of shared
information for the tough or complex task. Consensus is one of the key issues of the MASs collective actions, which ensures
that by designing an effective distributed control based on local knowledge alone, each agent state converges into the desired
common state. Several important results on consensus problems with limited communication, dynamically changing topolo-
gies, uniform or non-uniform time-delays, and external disturbances have been proposed in the existing literature [1–5],
including some very recent publications [6–8]. It should be noticed that much of the existing MASs consensus analysis
are focused on integer-order dynamics. However, some phenomena can not be adequately represented in most practical sys-
tems by integer-order dynamics such as electrical engineering [9,10], control systems [11,12], robotics systems [13,14], brain
stimulation systems [15], while fractional-order dynamics are best illustrated when the operator order is an arbitrary real
number. For more results on fractional-order non-linear dynamical systems where the problems of control and synchroniza-
tion have been thoroughly explored we refer to [16–18].
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In fact, many working environments have viscoelastic properties for agents, for instance, work spaces include taped,
sandy, muddy or grass areas and so on, for agents with many micro organisms, viscous substances, or for agent work spaces
can therefore be described as fractional-order systems. An important issue for fractional-order multi-agent systems
(FOMASs) is the consensus control of MASs, which was studied by Cao and Ren [19] and then rapidly developed. Relevant
findings can be used to solve the distributed FOMASs containment control problem [20]. In addition, because of the hard-
ware efficiency, each agent requires a certain input time delay to communicate and process information. Considering time
delays in the analysis and control of the system is therefore of a great importance. The special case of FDMASs containment
control was tackled at [21,22]. In [23] also the problems of uncertain FOMASs were examined for distributed containment
control.

Impulsive control is a typical discontinuous check among these control systems, which may be used in systems not con-
trolled by a continuous control input. The conventional controller is slowly replaced by the digital controller with the
advancement of information science and computer technology; thus the impulsive control mechanism has been improved
greatly. The impulsive control has many excellent features compared with continuous controls, such as robustness, versatil-
ity and low cost [24–27]. This type of control is also very beneficial for MASs. Indeed, in order to achieve synchronization the
exchange of information between interconnected agents should be ongoing, so that every agent gathers information from
itself and its neighbors at all times. In the case of limited communication bandwidths, that will be a heavy burden. With
impulsive control systems that have discontinuous inputs, it is natural to use sample data from each agent and its neighbors
to develop the distributed impulsive controller only at a discrete time. Han et al., agreed with the impulsive consensus of
discrete-time MASs [28], that the communication costs of MASs were significantly reduced thus maintaining system stabil-
ity. Although a lot of work has been done to achieve consensus on integer-order MASs via impulsive control (see [29,30] and
the references therein), the existing FOMASs works are fairly limited. It is noted, however, that some results on FOMASs via
impulsive control strategy exist [31,32]. Wang and Yang (see [33]) investigated the distributed impulsive control problem of
FOMASs with input delay based on leader-following case.

It is worth noting that agents are typically linked to each other via communication networks which are subject to differ-
ent cyber attacks. The cyber attacks can be split into two categories in multi-agent networks. When a malicious agent
attacks, the first ends up removing one object by the communication network graph and the result of the second is a damage
of the communication. The second case involves DoS attacks and deceptions. MASs are especially vulnerable to DoS attacks,
as it is virtually impossible to protect DoS attacks on all communication channels, whereas MASs agents are still individually
interacting. As a result, the defense against attacks by distributed DoS is one of the key safety issues when designing the net-
work control system. Some controllers have been designed to overcome the effect of DoS attack [34–37], including the
impulsive control case [38,39]. Nonetheless, fewer network security studies have been published for FOMASs in the available
literature, this means that network safety research at FOMASs is an ongoing topic. For example, the effects of uncertain
parameters on their dynamical properties is not previously studied. Since uncertain terms may lead to poor performance
and chaotic behavior [40–42], the study of the impulsive security control problems of uncertain FDMASs in presence of
DoS attack is of a great importance.

In this paper, our attention is focused on the impulsive security control problem of uncertain FDMASs in presence of DoS
attack. The main contributions of this paper are embodied in the three aspects as follows:

(i) An impulsive secure consensus is proposed for leader-following FDMASs with uncertain parameters subject to DoS
attacks. To reduce the contact consumption controllers and DoS attacks on the edges of controllers we utilized distributed
impulsive controller. To ensure the acceptance of network disconnections, a switching method is suggested;
(ii) The designed distributed impulsive controller still achieve the secure consensus of uncertain FDMASs. By utilizing the
tools from fractional-calculus theory, algebraic graph theory, efficient algorithm is designed. Impulsive controller that
depends on the Caputo fractional derivative is given to ensure exponential consensus tracking of the uncertain FDMASs
under DoS attack scenarios;
(iii) At last presented, numerical simulations verify that the obtained scheme is efficient on the designed impulsive con-
troller for nonlinear FOMASs with networks of Chua’s circuits in presence of DoS attack. A solution is given in this paper
on how to change the impulse intervals against DoS attacks if the exact details of DoS attacks is identified.

Notations: C
t D

b
t0
denotes the b-order Caputo fractional derivative; Real numbers, and n� 1 real (complex) column vectors

are referred toR andRn Cnð Þ, respectively; In represents an identity matrix;� stands for the Kronecker product; rmax �ð Þ is the
maximum singular value; kmin �ð Þ and kmax �ð Þ represent the smallest and largest values of a real symmetric matrix,
respectively.

2. Model introduction and preliminaries

In this section, some preliminaries of the graph theory, fractional calculus, model description, and some lemmas are
given.
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2.1. Communication topologies

Consider a weighted digraph Gr tð Þ ¼ V; Er tð Þ;Ar tð Þ
� �

;V ¼ vp; p 2 N
n o

, where N ¼ 1;2; . . . ;N is a nonempty node,

Er tð Þ � V � V is an edge set, and Ar tð Þ ¼ ar tð Þ
pq

h i
2 RN�N is an adjacency matrix, where ar tð Þ

pq > 0 if and only if vq;vp
� � 2 E and

ar tð Þ
pq ¼ 0 otherwise. The Laplacian matrix is defined as Lr tð Þ ¼ ‘r tð Þ

pq

h i
2 RN�N with ‘r tð Þ

pq ¼PN
q¼1a

r tð Þ
pq and ‘pq ¼ �apq; p – q. Fur-

ther more details on the communication topologies, kindly refer [36].

2.2. Some fractional calculus definitions

The fractional derivatives are classified in several ways. The definitions of Riemann–Liouville and Caputo type are com-
monly used. Let C bð Þ ¼ Rþ1

0 tb�1e�tdt; b > 0. Since the fractional derivative of Caputo type needs only initial conditions via an
integral-order derivative, it reflects a well understood physical situation andmakes it more applicable to problems in the real
world. In this paper we deal with uncertain FDMASs involving the Caputo fractional derivative.

Definition 2.1. [18] The fractional integral t0D
�b
t with fractional-order b > 0 of F tð Þ is defined as

t0
D�b

t F tð Þ ¼ 1
C bð Þ

Z t

t0

t � nð Þb�1F nð Þdn; t P t0 P 0: ð2:1Þ

The Caputo fractional derivative with order b of a function F tð Þ 2 Cm t0;þ1½ Þ;Rð Þ is

C
t0
Db

tF tð Þ ¼
1

C m�bð Þ
R t
t0

F mð Þ nð Þ
t�nð Þbþ1�m dn; m� 1 < b < m;

dm

dtm
F tð Þ; b ¼ m:

8><>: ð2:2Þ

Specifically, when b 2 0;1ð Þ; Ct0D
b
tF tð Þ ¼ 1=C 1� bð Þð Þ R t

t0
F0 nð Þ= t � nð Þb
� �

. For simplicity, we denote C
t0
Db

t as the Caputo frac-

tional derivative Db.

Definition 2.2. [17] The two parameters Mittag–Leffler function with a > 0; b > 0 is defined as

Ea;b zð Þ ¼
X1
k¼0

zk

C kaþ bð Þ ;

where z 2 C.
Denoting b=1, with one parameter type, its Mittag–Leffler function is

Ea zð Þ ¼
X1
k¼0

zk

C kaþ 1ð Þ ¼ Ea;1 zð Þ:

Particularly, E1;1 zð Þ ¼ ez, when a ¼ b ¼ 1.

2.3. Model introduction

We will investigate a FDMAS with one leader and N followers and uncertain parameters, whose dynamics can be mod-
eled by

DbIp tð Þ ¼ Eþ DEð ÞIp tð Þ þ F þ DFð Þx Ip tð Þ� �
þ Gþ DGð Þx Ip t � sð Þ� �þ up tð Þ; ð2:3Þ

where p ¼ 1;2; . . . ;N ;Ip tð Þ 2 Rn is the state variable of the pth follower agent; E; F, and G are constant matrices; DE;DF, and

DG are uncertain parameter matrices; x Ip tð Þ� � ¼ x1 Ip tð Þ� �
;x2 Ip tð Þ� �

; . . . ;xn Ip tð Þ� �� �>, p ¼ 1;2; . . . ;N is a non-linear func-
tion; s is the constant input time delay; up tð Þ is the control input, which will be designed later; we denote t � s ¼ vs.

The dynamics of the leader is described as

DbI0 tð Þ ¼ Eþ DEð ÞI0 tð Þ þ F þ DFð Þx I0 tð Þð Þ
þ Gþ DGð Þx I0 vs

� �� �
;

ð2:4Þ

where I0 tð Þ 2 Rn.
Assumptions:
AH1ð Þ For the continuous nonlinear function x �ð Þ there exist nonnegative constants wpq > 0; p; q 2 1;2; . . . ;nf g such that,

for any I1;I2 2 Rn,
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jxp I1ð Þ �xp I2ð Þj 6
Xn
q¼1

wpqjI1q � I2qj: ð2:5Þ

AH2ð Þ The continuous nonlinear function x �ð Þ satisfies the following Lipschitz condition, for I1 ¼ I11;I12; . . . ;I1nð Þ>,
I2 ¼ I21;I22; . . . ;I2nð Þ> 2 R2n,

jxp I1ð Þ �xp I2ð Þj 6 wpjI1p � I2pj; ð2:6Þ
where wp > 0; p ¼ 1;2; . . . ;nð Þ.

AH3ð Þ The uncertain parameter matrices DE;DF;DG satisfy the following constraints:

DETDE 6 ai � Inð Þ;

DFTDF 6 a� � Inð Þ;

DGTDG 6 ad � Inð Þ;
where ai;a�, and ad are known constants.

AH4ð Þ The leader is the root node of the directed spanning tree embedded in the augmented graph G1, when no attack
occurs.

AH5ð Þ The framework model (2.3) has a recovery mechanism, that is, the communication topology can be recovered after
an attack.

Remark 2.3. Many authors have studied the secure consensus problem for MASs in the integer-order case [34–40], but still
not focused on MASs in the fractional-order case. In practice, the problem of consensus tracking control for FOMAS was
developed by the well-established works [19–21]. Moreover, since FOMASs have better characteristics than the
corresponding integer-order onces, some sufficient consensus conditions for the FOMASs associated with the network
structure and the fractional-order were given and the idea about choosing some appropriate varying orders with time to
quicken the convergence speed were introduced in [19–21]. However, the control method in [19–21] cannot handle FOMASs
under DoS attacks. So, in this paper, the impulsive secure consensus problem for FDMASs with uncertain parameters subject
to DoS attacks described by a fractional-order model is first studied.

The states of agents in (2.3) may be changed at certain discrete moments under an impulsive control scheme due to
which the states of agents jump to a certain value. We will propose an impulsive control scheme up that only depends on
the agent p information, as indicated in the Fig. 1. Initially, we assume that at time tr , each agent measures (samples) its
own state Ip trð Þ, and send it to its neighbors through a communication link.

Remark 2.4. The controllers in [34–37] require a communication with neighbor agents constantly, which causes systems to
be a subject to continuous DoS attacks. In order to avoid such attacks, we design an impulsive control method that only
needs a communication with neighbor agents at sampling instants. Compared with the existing results on the continuous
controllers for MASs with DoS attacks [34–37], the proposed impulsive controllers will further reduce the communication
consumption of controllers.

2.4. An impulsive controller design based on switching mechanism

The communication topology between N agents will be defined by directed switches over the given graph bG, wherebG ¼ G 1ð Þ;G 2ð Þ; . . . ;G sð Þ� 	
. Let Gr tð Þ be the communication topology of the considered MASs at time t, where t P 0. The piecewise

Fig. 1. The framework of MASs with impulsive control.
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constant function r tð Þ : 0;1½ Þ ! 1;2; . . . ; sf g is the switching signal. G 1ð Þ is the topology graph without an attack, while

G 2ð Þ; . . . ;G sð Þ are the topological graphs under attacks. Noticeably, Gr tð Þ 2 bG;8t P 0.
To solve secure consensus problems, the distributed impulsive controller is designed as

up tð Þ ¼
X1
r¼1

� br

XN
q¼1

ar tð Þ
pq Iq tð Þ � Ip tð Þ� �þ dr tð Þ

p Ip tð Þ � I0 tð Þ� �" #
d� t � trð Þ; ð2:7Þ

where d� �ð Þ is the Dirac delta function; br ; r 2 Nþ is the impulsive control gain; ar tð Þ
pq is an element of the weighted adjacency

matrix of the digraph Gr tð Þ; dr tð Þ
p describes the pinning link and dr tð Þ

p > 0 iff there is a directed link with positive weight dr tð Þ
p

from the leader to the pth follower.

Definition 2.5. [12] An impulsive sequence 1 ¼ trf g, r 2 Nþ is said to has an average impulsive interval �hb if there exist two
positive numbers N 0 and �hb such that

t � t0
�hb

�N 0 6 N 1 t; t0ð Þ 6 t � t0
�hb

þN 0; ð2:8Þ

where N 1 t; t0ð Þ is the number of impulsive instances during the interval t0; tð Þ.
The following assumption will be also essential.
AH6ð Þ The average impulsive interval of the impulsive sequence tr; r 2 Nþf g is equal to hb and there exist two constants

0 < / < bu < þ1 such that / 6 tr � tr�1 6 bu;8r 2 Nþ.

Lemma 2.6. [18] Let I tð Þ be a continuous and differentiable for t P t0. Then

1
2

DbI> tð ÞI tð Þ
� �

6 I> tð ÞDbI tð Þ; t P t0: ð2:9Þ

Lemma 2.7. [17] Let V tð Þ on t0;þ1½ Þ be a continuous function and satisfies DbV tð Þ 6 bcV tð Þ. Then

V tð Þ 6 V t0ð ÞEb bc t � t0ð Þb
� �

;

where 0 < b < 1 and bc are constant.

Lemma 2.8. [43] For real matrices E and F with appropriate dimensions, any positive constant h and any symmetric matrix U > 0,
the following inequality holds:

ETF þ FTE 6 h�1ETUEþ hFTU�1F:
The controlled uncertain FDMASs (2.3) is considered as [12]:

DbIp tð Þ ¼ Eþ DEð ÞIp tð Þ þ F þ DFð Þx Ip tð Þ� �
þ Gþ DGð Þx Ip vs

� �� �
; t 2 tr�1; trð �;

DIp trð Þ ¼ �br
C bþ1ð Þ

XN
q¼1

ar trð Þ
pq Iq trð Þ � Ip trð Þ� �"

þdr trð Þ
p Ip trð Þ � I0 trð Þ� �i

; r 2 Nþ;

8>>>>>>>><>>>>>>>>:
ð2:10Þ

where 0 < b < 1;DIp tð Þ is the leap of the state at an instant time tr; tr < trþ1, and limr!þ1tr ¼ þ1; Ip t0ð Þ ¼ Ip tþ0
� �

, and
Ip trð Þ ¼ Ip t�r

� �
for r 2 Nþ.

Define bIp tð Þ ¼ Ip tð Þ � I0 tð Þ. Then, the error system has the form:

DbbIp tð Þ ¼ Eþ DEð ÞbIp tð Þ þ F þ DFð Þx̂i bIp tð Þ
� �

þ Gþ DGð ÞH bIp vs
� �� �

; t 2 tr�1; trð �;

DbIp trð Þ ¼ �br
C bþ1ð Þ

XN
q¼1

ar trð Þ
pq

bIq tþr
� �� bIp tþr

� �� �"
þdr trð Þ

p
bIp tþr
� �i

; r 2 Nþ;

8>>>>>>>>>><>>>>>>>>>>:
ð2:11Þ

where x̂i bIp tð Þ
� �

¼ x bIp tð Þ þ I0 tð Þ
� �

�x I0 tð Þð Þ.
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Compact forms can be written from (2.11) as shown

DbbI tð Þ ¼ IN � Eþ DEð Þð ÞbI tð Þ þ IN � F þ DFð Þð ÞH bI tð Þ
� �

þ IN � Gþ DGð Þð ÞH bI vs
� �� �

;

DbI tþr
� � ¼ IN � br

C bþ1ð Þ Lr trð Þ þ bUr trð Þ
� �

� In

� �bI tþr
� �

;

8>>>><>>>>: ð2:12Þ

where bU ¼ diag d1; d2; . . . ; dNf g.

3. Main results

Theorem 3.1. Given non-zero scalars hi; h�; hd;ai;a�;ad;/;Hd;Hu and ĥ, suppose that Assumptions AH2ð Þ � AH6ð Þ are satisfied

for positive symmetric matricesWj;Wr, andHd �Hu 6 0, r 2 Nþ; c trð ÞEb Hd �Hu
� �

/b� �Þ < 1. Then, the uncertain FDMAS (2.3)
is exponentially stable under the suggested impulsive control strategy (2.7) if the following conditions are satisfied:

ið Þ @Wr@ þ hd@ ad � Inð Þ@ 6 HdQ ; ð3:1Þ

iið Þ

Cp Q QF QG
Q � hi þ h� þ hdð Þ � In 0 0

FTQ 0 �Wj 0
GTQ 0 0 �Wr

26664
37775 < 0; ð3:2Þ

iiið Þ bg} <
ln c1Eb Hd �Hu

� �
/b� �þ ĥ�hb

ln c1Eb Hd �Hu
� �

/b� �� ln c2Eb Hd �Hu
� �

/b� �� � ; ð3:3Þ

where Cp ¼ QEþ ETQ þ hi ai � Inð Þ þ @Wj@ þ h� a� � Inð Þ þHuQ ;@ ¼ diag w1; . . . ;wnf g,

c1 ¼ r2
max IN � br

C bþ 1ð Þ L1 þ bU1
� �

� In


 �
;

c2 ¼ max
r trð Þ2 2;...;sf g

r2
max IN � br

C bþ 1ð Þ Lr trð Þ þ bUr trð Þ
� �

� In


 �
:

Proof. We construct the Lyapunov functional candidate as follows:

V tð Þ ¼ V bI tð Þ
� �

¼
XN
p¼1

bIT
p tð Þ Q� Inð ÞbIp tð Þ: ð3:4Þ

For tr�1 < t 6 tr , taking the Caputo fractional derivative of V tð Þ with system (2.11) and according to Lemma 2.6, for anybI tð Þ 2 Rn, we have

Db
V tð Þ 6

XN
p¼1

2bIT
p tð Þ Q� Inð ÞDbbIp tð Þ

6
XN
p¼1

2bIT
p tð Þ Q� Inð Þ Eþ DEð ÞbIp tð Þ

�
þ Fþ DFð ÞH bIp tð Þ

� �
þ Gþ DGð ÞH bIp vs

� �� ��
6
XN
p¼1

bIT
p tð Þ QEþ ETQ

� �bIp tð Þ
�

þ2bIT
p tð Þ QDEð ÞbIp tð Þ þ 2bIT

P tð ÞQFH bIp tð Þ
� �

þ2bIT
p tð ÞQDFH bIp tð Þ

� �
þ 2bIT

p tð ÞQGH bIp vs
� �� �

þ2bIT
p tð ÞQDGH bIp vs

� �� ��
:

ð3:5Þ

Based on Assumptions AH2ð Þ; AH3ð Þ and Lemma 2.8, we have
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2bIT
p tð ÞQDEbIp tð Þ 6 h�1

i
bIT

p tð ÞQQ bIp tð Þ þ hi bIT
p tð Þ ai � Inð ÞbIp tð Þ;

2bIT
p tð ÞQFH bIp tð Þ

� �
6 bIT

p tð ÞQFW�1
j FTQ bIp tð Þ þ bIT

p@Wj@bIp tð Þ;
2bIT

p tð ÞQDF bIp tð Þ 6 h�1
�
bIT

p tð ÞQQ bIp tð Þ þ h� bIT
p tð Þ@ a� � Inð Þ@bIp tð Þ;

2bIT
p tð ÞQGH bIp vs

� �� �
6 bIT

p tð ÞQGW�1
r GTQ bIp tð Þ þ H bIp vs

� �� �
@Wr@H bIp vs

� �� �
;

2bIT
p tð ÞQDGH bIp vs

� �� �
6 h�1

d
bIT

p tð ÞQQ bIp tð Þ þ hd bIT
p vs
� �@ ad � Inð Þ@bIp vs

� �
:

Combing the above inequalities with (3.5), we have

Db
V tð Þ 6

XN
p¼1

bIT
p tð Þ QEþ ETQ

�
þ h�1

i QQþ hi ai � Inð ÞIn þQEW�1

j ETQþ @Wj@
þh�1

j QQþ h� a� � Inð Þ þQGW�1

r GTQþ h�1
d QQ

�bIp tð Þ

þ
XN
p¼1

bIT
p vs
� � @Wr@ þ hd@ ad � Inð Þ@ð ÞbIp vs

� �
: ð3:6Þ

Then, it follows from (3.2) that

Db
V tð Þ 6 �Hu

XN
p¼1

bIT
p tð Þ Q� Inð ÞbIp tð Þ þHd

XN
p¼1

bIT
p vs
� �

Q� Inð ÞbIp vs
� �

6 �HuV tð Þ þHd sup
vs6f6t

V fð Þ: ð3:7Þ

From (3.7), we get

Db
V tð Þ 6 Hd �Hu

� �
V tð Þ ð3:8Þ

when the Razumikhin condition [17]

sup
vs6f6t

V fð Þ 6 V tð Þ ð3:9Þ

is satisfied. When r 2 Nþ,

V tþr
� � ¼ bIT tþr

� � IN �Qð ÞbI tþr
� �

¼ IN � br

C bþ 1ð Þ Lr trð Þ þ bUr trð Þ
� �

� In

� bI tð Þ
� T

IN �Qð Þ IN � br

C bþ 1ð Þ
�

� Lr trð Þ þ bUr trð Þ
� �

� InÞbI tð ÞÞ
�

6 c trð ÞV trð Þ; ð3:10Þ

where c trð Þ ¼ r2
max IN � br

C bþ1ð Þ Lr trð Þ þ bUr trð Þ
� �

� In

n o
.

From (3.8) and (3.10) we have

Db
V tð Þ 6 Hd �Hu

� �
V tð Þ; tr�1 < t 6 tr;

V tþr
� �

6 c trð ÞV trð Þ; r 2 Nþ:

(
ð3:11Þ

According to Lemma 2.7 from (3.11), we get

V tð Þ 6 V t0ð ÞEb Hd �Hu
� �

t� t0ð Þb
� �

;

for t 2 t0; t1½ �, which shows that if Hd �Hu
� �

6 0 and c t1ð ÞEb Hd �Hu
� �

/b� �
< 1,

V tð Þ 6 V t0ð Þ 6 V t0ð Þlie

ln c t1ð ÞEb Hd�Huð Þ/bð Þð Þ
�hb

t�t0ð Þ
: ð3:12Þ

On the other hand, for any r 2 Nþ, by using Lemma 2.7 in (3.11), we have

V tþr
� �

6 c trð ÞEb Hd �Hu
� �

tr � tr�1ð Þb
� �

: ð3:13Þ
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Hence, by the use of recursion

V tþr
� �

6 V t0ð Þ c trð Þð Þr
Yr
n¼1

Eb Hd �Hu
� �

tn � tn�1ð Þb
� �

: ð3:14Þ

For t > t1, there exists a non-negative integer k such that, tk < t 6 tkþ1,

V tð Þ 6 V tþk
� �

Eb Hd �Hu
� �

t� tkð Þb
� �

6 V t0ð Þ c tnð Þð Þk
Yk
n¼1

Eb Hd �Hu
� �

tn � tn�1ð Þb
� �

� Eb Hd �Hu
� �

t� tkð Þb
� �

: ð3:15Þ

From Definition 2.5 and Assumption AH6ð Þ; k ¼ -i 6 t�t0
�hb

þN 0. When there are no attacks (i.e., r trð Þ ¼ 1), we have

V tð Þ 6 V t0ð Þ c1Eb Hd �Hu
� �

/b� �� �-i

6 V t0ð Þl1e

ln c1Eb Hd�Huð Þ/bð Þð Þ
�hb

t�t0ð Þ
; ð3:16Þ

where l1 ¼ c1Eb Hd �Hu
� �

/b� �� ��N0
> 1, li ¼ c1Eb Hd �Hu

� �
/b� �� ��bu�hb > 1.

Define l ¼ max l1;l2

� 	
. Then

V tð Þ 6 V t0ð Þle
ln c1Eb Hd�Huð Þ/bð Þð Þ

�hb 6 V t0ð Þle� Nþĥð Þ t�t0ð Þ; ð3:17Þ
where

N ¼ � ln c1Eb Hd �Hu
� �

/b� �� �
�hb

þ ĥ

 !
> 0: ð3:18Þ

The FDMASs (2.3) is thus exponentially stable.
In the general case, when there is at least one attack,

V tð Þ 6 V t0ð Þ c1Eb Hd �Hu
� �

/b� �� �-i c2Eb Hd �Hu
� �

/b� �� �-1
:

By Definition 2.5, it follows that

-i

-x

t � t0
�hb

�N 0

� 
6 -i 6

-i

-x

t � t0
�hb

þN 0

� 
; ð3:19Þ

-1

-x

t � t0
�hb

�N 0

� 
6 -1 6

-1

-x

t � t0
�hb

þN 0

� 
; ð3:20Þ

where-x ¼ -i þ-1; -1 denotes the number of impulsive moments when the system suffers from attacks over the interval
t0; tð Þ.

Case (i): c2 P 1, and c2Eb Hd �Hu
� �

/b� �
< 1, thus

V tð Þ < V t0ð Þ c1Eb Hd �Hu
� �

/b� �� �-i-x

t�t0
�hb

�N 0

� �
c2Eb Hd �Hu

� �
/b� �� �-1-x

t�t0
�hb

�N 0

� �
< V t0ð Þ c1Eb Hd �Hu

� �
/b� �� ��-i

-x
N 0 c2Eb Hd �Hu

� �
/b� �� ��-1

-x
N 0

� e

ln c1Eb Hd�Huð Þ/bð Þð Þ
�hb

:
-i
-x

þ
ln c2Eb Hd�Huð Þ/bð Þð Þ

�hb
:
-1
-x

� �
t�t0ð Þ

: ð3:21Þ

Case (ii) 0 < c2 < 1, and c2Eb Hd �Hu
� �

/b� �� �
< 1.

From case (i) and (ii), if Hd �Hu 6 0, similar to the result in (3.21), we have

V tð Þ < V t0ð Þl̂pe

ln c1Eb Hd�Huð Þ/bð Þð Þ
�hb

:
-i
-x

þ
ln c2Eb Hd�Huð Þ/bð Þð Þ

�hb
:
-1
-x

� �
t�t0ð Þ

;
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where l̂p ¼ c1Eb Hd �Hu
� �

/b� �� ��-i
-x

N 0 c2Eb Hd �Hu
� �

/b� �� ��-1
-x

N 0
> 1.

Then

V tð Þ < V t0ð Þl̂pe

ln c1Eb Hd�Huð Þ/bð Þð Þ
�hb

1�-1
-xð Þþln c2Eb Hd�Huð Þ/bð Þð Þ

�hb
:
-1
-x

� �
t�t0ð Þ

< V t0ð Þl̂pe
�bvh t�t0ð Þ;

where bvh ¼ bv þ ĥ; bv ¼ � ln c1Eb Hd�Huð Þ/bð Þð Þ
�hb

1� bg}

� �þ ln c2Eb Hd�Huð Þ/bð Þð Þ
�hb

:bg} þ ĥ

� 
> 0, bg} ¼ -1

-x
.

We conclude that

kbI tð Þk <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V t0ð Þl̂p

kmin Qð Þ

s
e�
bvh t�t0ð Þ

2 :

The proof is completed. h

Remark 3.2. Based on an average impulsive interval, the average dwell time approach and Lyapunov stability theory, a novel
impulsive secure consensus problem for systems (2.3) and (2.4) with uncertain parameters subject to DoS attacks is solved
by the proposed impulsive protocol (2.7). Different from the existing controller design methods [34–36], the influence of the
DoS attacks is considered. The DoS attacks on the edges might lead to unsatisfactory consensus performance. A switching
mechanism is proposed to switch the underlying topologies to ensure the tolerance for network disconnections.

Remark 3.3. When the system (2.3) is not a subject to an attack, then by condition (3.18) in Theorem 3.1, the average impul-

sive interval satisfies �hb < � ln c1Eb Hd�Huð Þ/bð Þð Þ
ĥ

and also when the system is subject to attacks, then by the impulsive attack
ratio condition (3.3) in Theorem 3.1, the average impulsive interval

�̂hb ¼ �hb <
ln c1Eb Hd �Hu

� �
/b� �� � bg} � 1

� �� ln c2Eb Hd �Hu
� �

/b� �� �bg}

ĥ
;

i.e., the system can detect the attacks information (c2 and bg} are known), which guarantees the secure performance of track-

ing consensus error system by adjusting the average impulsive interval �̂hb.

Corollary 3.4. Given non-zero scalars hi; h�; hd;ai;a�;ad;/;Hd;Hu and �h, suppose that Assumptions AH2ð Þ � AH6ð Þ are satisfied for
positive symmetric matrices Wj;Wr and Hd �Hu > 0, for r 2 Nþ; c trð ÞEb Hd �Hu

� � bub
� �

< 1. Then, under the suggested impul-
sive control strategy (2.7), the FDMAS (2.3) is exponentially stable under the following conditions:

ið Þ @Wr@ þ hd@ ad � Inð Þ@ 6 HdQ ; ð3:22Þ

iið Þ

Cp Q QF QG

Q � hi þ h� þ hdð Þ � In 0 0
FTQ 0 �Wj 0
GTQ 0 0 �Wr

26664
37775 < 0; ð3:23Þ

iiið Þ bg} <
ln c1Eb Hd �Hu

� � bub
� �þ �h�hb

ln c1Eb Hd �Hu
� � bub

� �� ln c2Eb Hd �Hu
� � bub

� �� � : ð3:24Þ

Proof. Corollary 3.4 can be proved using standard arguments close to these in the proof of Theorem 3.1. The set of inequal-
ities (3.11) shows that if Hd �Hu > 0, for any t0 6 t 6 t1,

V tð Þ 6 V t0ð Þc trð ÞEb Hd �Hu
� � bub
� �

6 V t0ð Þlhe
ln c trð ÞEb Hd�H-ð Þbub

� �� �
�hb

t�t0ð Þ
;

where lh ¼ Eb Hd �Hu
� � bub
� �

c trð ÞEb Hd �Hu
� � bub
� �� ��bu�hb > 1.

On the other hand, it follows from Lemma 2.7, for any r 2 Nþ, that if Hd �Hu > 0,

V t0ð Þ 6 V t0ð Þlae
ln c1Eb Hd�Huð Þbub
� �

�hb
t�t0ð Þ

;

where la ¼ c1Eb Hd �Hu
� � bub
� �� ��N 0 Eb Hd �Hu

� � bub
� �

> 1.
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Define l. ¼ max lh;la
� 	

, if Hd �Hu > 0, and c1Eb Hd �Hu
� � bub
� �

< 1,

V tð Þ 6 V t0ð Þl.e
ln c1Eb Hd�Huð Þbub

� �� �
�hb

t�t0ð Þ
:

For the general case, when there exist attacks,

V tð Þ 6 V t0ð Þ c1Eb Hd �Hu
� � bub
� �� �-i c2Eb Hd �Hu

� � bub
� �� �-1

:

By Definition 2.5, c2 2 Rþ, c2Eb Hd �Hu
� � bub
� �

< 1, and

V tð Þ < V t0ð Þ�lne

ln c1Eb Hd�Huð Þbub
� �� �

�hb
:
-i
-x

þ
ln c2Eb Hd�Huð Þbub

� �� �
�hb

:
-1
-x

� 
t�t0ð Þ

< V t0ð Þ�lne
�!d t�t0ð Þ;

where �ln ¼ c1Eb Hd �Hu
� � bub
� �� ��-i

-x
N 0 c2Eb Hd �Hu

� � bub
� �� ��-1

-x
N 0 > 1, !d ¼ !þ �h,

! ¼ � ln c1Eb Hd�Huð Þbub
� �� �

�hb
1� bg}

� �þ ln c2Eb Hd�Huð Þbub
� �� �

�hb
:bg} þ �h

� 
> 0; bg} ¼ -1

-x
.

We conclude that

kbI tð Þk <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V t0ð Þl̂p

kmin Qð Þ

s
e�

!d
2 t�t0ð Þ:

The proof is completed. h

Theorem 3.5. Assume that Assumptions AH1ð Þ and AH3ð Þ � AH6ð Þ are satisfied for non-zero scalars hi; h�; hd;ai;a�;ad;/;Hd;Hu

and ĥ, positive symmetric matrices bWj; bWr exist and Hd �Hu 	 0, for r 2 Nþ; c trð ÞEb Hd �Hu
� �

/b� �
< 1. Then, the uncertain

FDMAS (2.3) is exponentially stable in the context of the proposed impulsive control strategy (2.7), if the following conditions
are satisfied,

ið Þ

Np Q QF QG

Q � hi þ h� þ hdð Þ � In 0 0

FTQ 0 � bWj 0

GTQ 0 0 � bWr

266664
377775 < 0; ð3:25Þ

iið Þ kmax @T
h@h

� � bWr þ kmax @T
h@h

� �
hd ad � Inð Þ 6 HdQ ; ð3:26Þ

iiið Þ bg} <
ln c1Eb Hd �Hu

� �
/b� �þ ĥ�hb

ln c1Eb Hd �Hu
� �

/b� �� ln c2Eb Hd �Hu
� �

/b� �� � ; ð3:27Þ

where Np ¼ QEþ ETQ þ hi ai � Inð Þ þ kmax @T
h@h

� � bWj þ h� a� � Inð Þ þHuQ ;@h ¼ wpq

� �
n�n

.

Theorem 3.5 can be proved using standard arguments similar to these used in the proof of Theorem 3.1.

Corollary 3.6. Let Assumptions AH1ð Þ and AH3ð Þ � AH6ð Þ be satisfied for non-zero scalars hi; h�; hd;ai;a�;ad;/;Hd;Hu and �h,

positive symmetric matrices bWj; bWr, exist and Hd �Hu > 0, for c tkð ÞEb Hd �Hu
� � bub
� �

< 1. Then, the uncertain FDMAS (2.3) is
exponentially stable in the context of the proposed impulsive control strategy (2.7), if the following conditions are satisfied,

ið Þ

Np Q QF QG

Q � hi þ h� þ hdð Þ � In 0 0

FTQ 0 � bWj 0

GTQ 0 0 � bWr

266664
377775 < 0; ð3:28Þ

iið Þ kmax @T
h@h

� � bWr þ kmax @T
h@h

� �
hd ad � Inð Þ 6 HdQ ; ð3:29Þ

iiið Þ bg} <
ln c1Eb Hd �Hu

� � bub
� �þ �h�hb

ln c1Eb Hd �Hu
� � bub

� �� ln c2Eb Hd �Hu
� � bub

� �� � : ð3:30Þ

Remark 3.7. In a special case, we can also extend our results to common nonlinear FOMASs (2.3) under the impulsive con-
trol (2.7) without input time delay and uncertain parameters.

Consider a FOMAS consisting of N followers with a nonlinear function:

DbIp tð Þ ¼ EIp tð Þ þ Fx Ip tð Þ� �þ up tð Þ: ð3:31Þ
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The dynamics leader is known as,

DbI0 tð Þ ¼ EI0 tð Þ þ Fx I0 tð Þð Þ: ð3:32Þ
The nonlinear FOMAS (3.31) under the impulsive controller (2.7) is represented as

DbIp tð Þ ¼ EIp tð Þ þ Fx Ip tð Þ� �
; t 2 tr�1; trð �;

DIp trð Þ ¼ �br
C bþ1ð Þ

XN
q¼1

ar trð Þ
pq Iq trð Þ � Ip trð Þ� �"

þdr trð Þ
p Ip trð Þ � I0 trð Þ� �i

; r 2 Nþ:

8>>>>><>>>>>:
ð3:33Þ

From (3.32) and (3.33), the tracking error system is obtained as

DbbIp tð Þ ¼ EbIp tð Þ þ FH bIp tð Þ
� �

; t 2 tr�1; trð �;

DbIp trð Þ ¼ �br
C bþ1ð Þ

XN
q¼1

ar trð Þ
pq

bIq tþr
� �� bIp tþr

� �� �"
þdr trð Þ

p
bIp tþr
� �i

; r 2 Nþ:

8>>>>>><>>>>>>:
ð3:34Þ

Theorem 3.8. Suppose that Assumption AH2ð Þ � AH6ð Þ are satisfied for a non-zero scalar ~h and positive symmetric matrices

Xj; bhd 	 0 exists, and for r 2 Nþ, c trð ÞEb bhd/b
� �

< 1. Then, the nonlinear FOMAS (3.31) achieves an exponential consensus using

the impulsive control (2.7), if the following inequalities are satisfied,

ið Þ QEþ ETQ þ @TXj@ � bhdQ QF
FTQ �Xj

" #
< 0; ð3:35Þ

iið Þ bg‘ <
ln c1Eb

bhd/
b

� �� �
þ ~h�hb

ln c1Eb
bhd/

b
� �� �

� ln c2Eb
bhd/

b
� �� � : ð3:36Þ

The proof of Theorem 3.8 is similar to that of Theorem 3.1 and, here it is omitted.

Corollary 3.9. Suppose that Assumptions AH2ð Þ � AH6ð Þ are satisfied for a non-zero scalar �h and positive symmetric matrices

Xj; bhd > 0 exist, and for r 2 Nþ, c trð ÞEb bhd bub
� �

< 1. Then, the nonlinear FOMAS (3.31) achieves an exponential consensus using

the impulsive control (2.7), if the following inequalities are satisfied,

ið Þ QEþ ETQ þ @TXj@ � bhdQ QF

FTQ �Xj

" #
< 0;

iið Þ bg‘ <
ln c1Eb

bhb
d
bub

� �� �
þ �h�hb

ln
c1Eb

bhd bub
� �� �

� ln c2Eb
bhd bub
� �� �

:

Remark 3.10. The special case, when DoS attacks can not impact the security of topologies of the communication networks
of nonlinear FOMASs via impulsive control has been studied in [31,32]. In [31,32], the authors considered nonlinear FOMASs
of the type

DbbIp tð Þ ¼ EbIp tð Þ þ FH bIp tð Þ
� �

; t – tr;

DbIp trð Þ ¼ �br�p trð Þ; r 2 Nþ;

8<: ð3:37Þ

where �p tð Þ ¼PN
q¼1apq Iq trð Þ � Ip trð Þ� �þ dp Ip trð Þ � I0 trð Þ� �

.
In this paper compared with ([31,32]), we study a nonlinear FOMAS with an impulsive control law,

DbbIp xtð Þ ¼ EbIp tð Þ þ FH bIp tð Þ
� �

; t 2 tr�1; trð �;
DbIp trð Þ ¼ �br

C bþ1ð Þ �p trð Þ; r 2 Nþ:

8<: ð3:38Þ
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It follows from (3.38) that br
C bþ1ð Þ is the impulsive change of the state at time tr , which demonstrates that the impact of

impulsive control on the controlled systems not only depends on the impulsive functions designed, but also on the fractional
order b.

Remark 3.11. Ma et al. [31] investigated the coordinate impulsive control problem of nonlinear FOMASs. In [32], a class of
nonlinear FOMASs with switching topology and time-delays was studied by an impulsive control method. An impulsive con-
trol scheme is proposed in [33] for a leader-following nonlinear FOMAS with hybrid time-varying delay. Differently from
previous studies (see [31–33]), the memory effects of impulsive control are considered in this paper via the fractional
derivative.

Corollary 3.12. Assume that the Assumptions AH2ð Þ and AH6ð Þ hold for a non-zero scalar �h and positive symmetric matrices

Xj; bhd 	 0 exists, and chEb
bhd/

b
� �

< 1, where ch ¼ IN � br
C bþ1ð Þ L þ bD� �� �

. Then, the nonlinear FOMAS (3.38) achieves an exponen-

tial consensus using the impulsive controller, if the following inequality is satisfied,

QEþ ETQ þ @TXj@ � bhdQ QF
FTQ �Xj

" #
< 0:

Corollary 3.13. Assume that Assumptions AH2ð Þ and AH6ð Þ hold for a non-zero scalar �h and positive symmetric matrices

Xj; bhd > 0, chEb
bhd/

b
� �

< 1. Then, the nonlinear FOMAS (3.38) achieves an exponential consensus using the impulsive controller,

if the following inequality is satisfied,

QEþ ETQ þ @TXj@ � bhdQ QF
FTQ �Xj

" #
< 0:

Remark 3.14. Up to now, there are only few research results about impulsive consensus of MASs under DoS attacks [39,47].
In [39], the impulsive quasi synchronization problem of heterogeneous MASs under DoS attacks was investigated, and it was
assumed that there was no control input when DoS attacks occurred. In [47], the impulsive consensus of fuzzy MASs under
DoS attacks was studied, and the MASs was considered with switching topologies caused by DoS attacks. Compare the
method proposed in this paper with the proposed in [39,47], there are the following disparities:

(i) It follows from (2.10) that the impulsive change of the state at time tr is br
C bþ1ð Þ, which shows that the effect of the impul-

sive control on the controlled systems not only depends on the impulsive gain designed, but also on the fractional order b;
(ii) The LMIs techniques employed in this paper utilizes more information for the secure consensus problem of FDMASs;
(iii) The memory effects of impulsive controllers, fractional-order nonlinear dynamics and uncertainties are also consid-
ered in this paper.

4. Numerical simulations

In this section, two examples are provided to support the validity of the proposed control approach. Example 4.1 consid-
ers uncertain FDMASs subject to DoS attacks. Example 4.3 considers the networks of Chua’s circuits in presence of DoS
attacks.

Example 4.1. We consider uncertain FDMASs of the type (2.3) and (2.4) with five followers and a leader. Let these agents
receive information from their neighbor according to communication topology given in Fig. 2(a). When DoS attacks occur,
the network topologies switches are shown in Fig. 2((b)-(d)) with system input matrices

E ¼
�12:3 0 �21

0 �11:7 0
0 0 �12:7

264
375; F ¼

0 �15:37 0
�13:47 0 0

0 0 �27

264
375;

G ¼
10:98 �11:37 0

0 0 0
0 0 �11:07

264
375:
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In simulations, the nonlinear functionx Ip tð Þ� � ¼ tanh Ip1 tð Þ� �
; tanh Ip2 tð Þ� �� �T , and the dynamic parameters are b ¼ 0:97,

ai ¼ 0:4;a� ¼ 1:2, ad ¼ 0:4, hi ¼ �6:73; h� ¼ �5:02, hd ¼ 2:08; ĥ ¼ 2:7; s ¼ 0:1;Hd ¼ 3:27;Hu ¼ 5:09, @ ¼ diag 5;3;7f g;/ ¼
0:07, and control parameters b1 ¼ 0:23; b2 ¼ 1:37; b3 ¼ 0:94; b4 ¼ 0:73; b5 ¼ 1:07, and bg} ¼ 0:27. Then, by solving the LMIs
(3.1)–(3.3), we can get

Q ¼
�0:0010 0:0010 0:0010
0:0010 0:0016 �0:0006
0:0010 �0:0060 0:0001

264
375; Wj ¼

0:0681 �0:0006 0:0007
�0:0006 0:1950 �0:0005
0:0007 �0:0005 0:0336

264
375;

Wr ¼
1:0686 0:0000 0:0000
0:0000 1:0686 0:0000
0:0000 0:0000 1:0686

264
375:

If the cyber system is not a subject to an attack, we get �hb < 0:0970. Fig. 3 shows the state trajectories and the consensus
tracking error for MASs considered without DoS attacks in the communication networks connecting the two layers for

�hb ¼ 0:09. When DoS attacks meet conditions in Theorem 3.1, the impulsive interval should be adjusted as �̂hb < 0:0815.

For �̂hb ¼ 0:08, state trajectories and consensus monitoring error after adjusting the average impulsive interval after an attack
on the FDMAS is shown in Fig. 4. Based on these simulation results, it is clear that the suggested impulsive controllers are
effective in coping with DoS attacks in the considered FDMAS.

Remark 4.2. By virtue of their inherent properties of memory and heritage, fractional-order tools have been demonstrated
to constitute useful techniques for modeling and control of advanced complex phenomena, such as industrial automation
and robotic applications (see [9–15]). The studies and experiments indicated that the continuous controller in fractional-
order systems could be controlled. However, the investigations on the application of fractional-order systems via impulsive
control are still very few [12]. The impulsive control seems to be more efficient than the continuous control strategies since
the former is implemented only at impulsive instants while the latter do so at every moment [12]. Moreover, in some cases, a
continuous control (see [9–15]) is impossible, and only an impulsive control method can be used. Note that the impulsive
control approach applied in our study has some similarities with the distributed optimization and data-driven control
approaches proposed in [6–8] for multiagent systems where agents exchange information at discrete instants, but is quite
different. Both approaches are applied for multiagent systems with integer-order dynamics. Also, the impulsive control
framework is considered as more general and more appropriate in the cases of DoS attacks [38,39] which are not addressed
in [6–8]. In addition, the authors in [6–8] didn’t investigated fractional-order controllers.

The Chua’s circuit is among the simpliests non-linear circuits that show the most complex dynamical behavior [44,45]. On
Fig. 5 each node represents a single Chua’s circuit. Recently, since the security issues have emerged as one of the major topics
in the research and development of Chua’s networks circuits, some approaches have been proposed for the defense against
cyber-attacks (see [46]). Moreover, the problem of impulsive control of fractional-order Chua’s networks circuit under cyber-

Fig. 2. (a) Networked communication structure, (b)-(d) Different switching topologies by DoS attacks.
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attacks has not been studied previously. In such motivation in Example 4.3, we consider a fractional-order Chua’s network
circuit in the presence of DoS attacks, and also fractional-order impulsive controller approaches are investigated. Different
from the existing continuous controllers proposed in the literature [44–46], the effects of DoS attacks are also considered in
the input of the impulsive controller (2.7), which is more accordantly with practical circumstances. Therefore, we develop
the fractional-order impulsive control approach based on the interactions with complex networks in sampling time so as
prevent continued DoS attacks. The impulsive controller would further reduce the contact consumption of the fractional-
order Chua’s network circuit compared to the continuous controllers elaborated in [44–46].

Example 4.3. In this example, we verified the control design method proposed using a well-known nonlinear Chua’s
networks circuit ([44–46]),

C1
CDb

t #1 ¼ 1
R �#1 þ #2ð Þ � g #1ð Þ;

C2
CDb

t #2 ¼ 1
R #1 � #2ð Þ þ i3;

L CDb
t i3 ¼ � #2 þ R0i3ð Þ;

8>><>>: ð4:1Þ

where #1; #2 and i3 are the voltage across the capacitor C1, the voltage across the capacitor C2, and current through the induc-
tor L, respectively, g #1ð Þ is the voltage versus current characteristic of Chua’s diode NR defined by [44],

g #1ð Þ ¼ 1
C1

!2#1 þ 1
2

!1 �!2ð Þ j#1 þ Bpj � j#1 � Bpj
� �� �

;

Fig. 3. The FDMASs without attacks on the communication networks of state trajectories and consensus tracking error, where
Ip tð Þ ¼ Ip1 tð Þ;Ip2 tð Þ� �T

; p ¼ 1; :::;5.

G. Narayanan, M. Syed Ali, H. Alsulami et al. Information Sciences 618 (2022) 169–190

182



Fig. 4. The FDMASs with attacks on the communication networks of state trajectories and consensus tracking error, where
Ip tð Þ ¼ Ip1 tð Þ;Ip2 tð Þ� �T

; p ¼ 1; :::;5.

Fig. 5. Chua’s circuit.
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the slopes in the inner and outer regions are !1 and !2, respectively, while 
Bp denotes the breakpoints of Chua’s diode.
In this case, we consider a multi-agent network with one leader node and three followers communication topologies. The

network topologies of three different DoS attacks are seen in Fig. 6((b)-(d)). The dynamics of each follower agent is described
by Chua’s networks circuit. Let Ip1 tð Þ ¼ #1;Ip2 tð Þ ¼ #2, and Ip3 tð Þ ¼ i3. The corresponding dynamics of agent p with control
up is

DbIp tð Þ ¼ EIp tð Þ þ Fx Ip tð Þ� �þ up tð Þ; ð4:2Þ

where b ¼ 0:93, Ip ¼ Ip1;Ip2;Ip3
� �T , E ¼

�K1 K1 0
Kh �Kh pj
0 �pn �@i

24 35, F ¼
� !1�!2

C1 0 0
0 0 0
0 0 0

24 35, x Ip
� � ¼ 1

2 jIp1 þ 1j � jIp1 � 1j; 0;0� �T
with K1 ¼ 1

RC1
;Kh ¼ 1

RC2
; }j ¼ 1

C2
; }n ¼ 1

L, @i ¼ R0
L ; p ¼ 1;2;3.Subsequently, we choose, K1 ¼ 9:1;Kh ¼ 1; }j ¼ 1,

!1 ¼ �0:7559;!2 ¼ �1:3938; 1
C1

¼ 9:1; }n ¼ 16:5811;@i ¼ 0:1380, x Ip1
� � ¼ !2Ip1 þ 0:5 !1 �!2ð Þ jIp1 þ 1j � jIp1 � 1j� �

.

According to Theorem3.8, we designed impulsive control parameters as b1 ¼ b2 ¼ b3 ¼ 0:57, and ĥd ¼ �0:37; ~h ¼ 1:73,
/ ¼ 0:03; bg} ¼ 0:53. Then, by feasibility of the conditions in Theorem 3.8, we obtain that

Q ¼
0:6254 0:7179 �0:0452
0:7179 3:9136 1:0273
�0:0452 1:0273 64:7185

264
375;

Xj ¼
�7:2613 �4:1672 0:2627
�4:1617 0:0002 0:0000
0:2627 0:0000 0:0005

264
375:

When the Chua’s networks circuit is not a subject to an attack, then �hb < 0:03917. Fig. 7 displays the state trajectories, and
consensus monitoring error for the considered Chua’s networks circuit without attacks in the communication networks for

�hb ¼ 0:03. When DoS attacks satisfying conditions in Theorem 3.8, we should adjust the impulse interval as �̂hb < 0:0271. For

�̂hb ¼ 0:02, the state trajectories and consensus tracking error after adjusting the average impulse interval when the system is
under attacks are shown in Fig. 8. The control responses are shown in Fig. 9 by employing different differential orders, from
which we can see that the developed fractional-order impulsive controller design method is more effective to reduce the
communication consumption of controllers than traditional impulsive control method in [39,47]. In addition, Fig. 10 illus-
trates with impulsive effects and no control inputs in [39] can no longer synchronize the error system when DoS attacks
are involved.

Based on the description above, under the proposed controllers, the consensus of the considered MAS is still achieved in
the presence of DoS attacks. Besides, Fig. 9 shows that the fractional-order impulsive controller provides faster convergence
rate than the impulsive controllers considered in [39,47]. The impulsive consensus method in [39] cannot handle control

Fig. 6. (a) Networked communication structure, (b)-(d) Different switching topologies by DoS attacks.
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input when DoS attacks occurred. Different from the method used in the previous works [39,47], we provide an estimation of
impulsive control parameters br r ¼ 1;2; . . . ; nð Þ which can be used to achieve a better performance if they are chosen as con-
ditions in the following manner: if Hd �H/ 6 0, for any r ¼ 1;2; . . . ;n, one has

C bþ 1ð Þ 1� 1
Eb Hd �Hu
� �

/b� � !
< br < C bþ 1ð Þ 1þ 1

Eb Hd �Hu
� �

/b� � !
; ð4:3Þ

and if Hd �H/ > 0, one has

Fig. 7. The Chua’s network circuit without attacks on the communication networks of state trajectories and consensus tracking error, where
Ip tð Þ ¼ Ip1 tð Þ;Ip2 tð Þ;Ip3 tð Þ� �T

; p ¼ 1;2;3.
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Fig. 8. The Chua’s network circuit under attacks on the communication networks of state trajectories and consensus tracking error, where
Ip tð Þ ¼ Ip1 tð Þ;Ip2 tð Þ;Ip3 tð Þ� �T

; p ¼ 1;2;3.
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Fig. 9. Estimation of control responses and the release interval based on the impulsive control parameters br r ¼ 1;2;3ð Þ with different differential orders:
(a) b ¼ 1; (b) b ¼ 0:97; b ¼ 0:95;b ¼ 0:93.
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Fig. 10. The Chua’s network circuit under attacks with impulsive effects and no control inputs.
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C bþ 1ð Þ 1� 1
Eb Hd �Hu
� �

ûb
� � !

< br < C bþ 1ð Þ 1þ 1
Eb Hd �Hu
� �

ûb
� � !

: ð4:4Þ

From these simulation results, it can be observed that the proposed impulsive controllers are successful in dealing with
DoS attacks in Chua’s network circuit. It is clear that the secure consensus can be achieved under the DoS attacks, fractional-
order nonlinear dynamics, impulsive controller, and uncertainties.

5. Conclusion

This paper investigates the secure tracking consensus issues for FDMASs with uncertain parameters in the presence of
DoS attacks on communication networks. To guarantee the tolerance of network disconnections, a switching mechanism
is proposed to switch the underlying communication network topologies. Subsequently, by utilizing the tools from
fractional-calculus theory, Lyapunov-functional, an impulsive controller is developed for each agent, which guaranteed
the secure performance of tracking exponential consensus. The impulsive attack ratio which reflects the systems tolerance
for attacks is obtained and an appropriate average impulsive interval is designed. It is shown through case studies that the
proposed method is an effective tool for secure consensus control of FDMASs subject to DoS attacks. Finally, simulation
results are provided to verify the effectiveness of this method. In the future, we will focus on the consensus of FDMASs under
distributed DoS attacks with an intermittently random character.
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a b s t r a c t

In this paper, the robust mixed H∞ and passivity-based control problem is investigated
for a class of discrete-time Markov jump nonlinear systems with uncertainties, quanti-
zation and time-varying transition probabilities. In addition, the time-varying transition
probability matrices in the considered system are described by a polytope set. Further,
the measurement size reduction technique is implemented which consists of two factors,
namely, the logarithmic quantization and the measurement element selection scheme. In
order to reflect the imprecision in controller implementation, the additive controller gain
problem is considered. Based on the Lyapunov stability theory, a new set of conditions is
derived such that the resulting closed-loop Markov jump system is stochastically stable
with a prescribed mixed H∞ and passivity performance index. Finally, the effectiveness
of the proposed control scheme is illustrated by two numerical examples including an
application example based on a DC motor device.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few decades, Markovian jump systems have received significant research interest of researchers because
of their its wide range of applications in many areas of engineering, such as mobile robots, modeling production systems,
networked control systems, manufacturing systems and communication systems [1–4]. Markov jump systems are more
appropriate to describe dynamical systems subject to random changes in their structures, which may be caused by
component failures or repairs of subsystems, sudden environmental changes and system noise. Recently, many important
and interesting results have been reported on Markovian jump systems, such as stochastic stability and stabilization [5,6],
fault detection [7,8], filtering [9–11] and state estimation [12–15]. In most of the existing works, Markov jump systems are
all under the hypothesis that the system must satisfy time invariant Markov process in which transition probabilities are
constant matrix. However, in some real process, the transition probability may not be a constant matrix but a time-varying
one. In such situations, polytope set can be used to describe the characteristics of time-varying transition probability-based
uncertainties.

Even though the transition probability of the Markov process is not exactly known, polytope set can be used to evaluate
some values in some points and it is assumed that the time-varying transition probabilities evolve in this polytope, which is
in a convex set [16,17]. Also, it is more reasonable to model the system as Markovian jump system with nonhomogeneous
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jump process, that is, the transition probabilities are time-varying. On another research frontier, the handling of quantization
errors due to limited communication capacity has become an active research area in control systems since the quantization
errors in actuators and sensors may provide poor performance and also be potential source of instability [18]. There are
two types of quantizers in which the first one is static quantizers, such as uniform and logarithmic quantizers [19,20] and
the second one is the dynamic quantizer which scales the quantization levels dynamically in order to improve the steady-
state performance [21,22]. Therefore, the stabilization controller design problem for nonlinear systems containing ellipsoidal
Lipschitz nonlinearities by incorporating the bounded quantization error and input saturation has been investigated in [23].
The authors in [24] studied the sampled-data model predictive control for linear parameter varying systems with input
quantization by using new Lyapunov–Krasovskii functional.

Several important works based on the disturbance attenuation problems have been reported via various control design
methods, such as H∞ control [25,26], H2/H∞ control [27] and passivity-based control [28,29]. Among them, two control
strategies, namely,H∞ and passivity-based control methods have receivedmuch attention from the researchers due to their
broad applications. In particular, theH∞ controller is designed for several control systems because it dealswith uncertainties
so as to minimize the disturbance attenuation level. Moreover, passivity theory serves as an important concept of system
theory and can characterize the stability of dynamical systems. The passive property of a system is that it can keep the
system internally stable by using input–output characteristics and it has found powerful applications in diverse areas such
as stability, signal processing, fuzzy control, chaos control and synchronization. For instance, in [30], the authors studied the
problem of mixed H∞ and passivity filter design for discrete time-delay neural networks with Markovian jump parameters
represented by Takagi–Sugeno fuzzy model.

In some circumstances, inaccuracies and uncertainties may occur in the controller implementation. Thus, the controller
should be designed in such a way that it is insensitive to some amount of uncertainties with respect to its gain, which is
called as resilient or non-fragile controller [31]. Very recently, the problem of passivity-based resilient sampled-data control
for Markovian jump systems subject to actuator faults via adaptive fault-tolerant mechanism has been reported in [32]. On
the other hand, energy constraint causes a major problem in the stability analysis of dynamical systems since it limits the
system performance. Further, it is one of the measurement size reduction techniques. The purpose of measurement size
reduction scheme is that it significantly reduces the communication times. Compared with the literature results on linear
networked systems with energy constraints, the filtering or control of nonlinear systems with energy constraints has not
received adequate attention. Up to now, only a few works have been done related to this topic, for instance see [33,34]
and [35]. Moreover, to the best of authors’ knowledge, the mixed H∞ and passivity-based resilient control design problem
for Markov jump systems with energy constraints has not yet been solved, which is the motivation for this present study.

Based on the aforementioned discussions, the purpose of this paper is to solve the robust mixed H∞ and passivity-based
resilient control problem for Markov jump systems in the presence of nonhomogeneous jump processes, quantization and
energy constraints. To be precise, we establish a new set of sufficient conditions such that the considered Markovian jump
system is robustly stochastically stable with a prescribed mixedH∞ and passive performance index. Themain contributions
of this work are summarized as follows:

(1) A robust mixed H∞ and passivity-based resilient control problem for nonhomogeneous Markov jump systems with
quantization and energy constraints is considered.

(2) The proposed system considers two common issues, namely, quantization and energy constraints, which may reflect
the reality more closely.

(3) Sufficient conditions subject to quantization and energy constraints are developed for obtaining the required results
by using the Lyapunov stability theory and the corresponding control gains are obtained by solving a cone comple-
mentarity linearization algorithm.

At last, two numerical examples with simulation results are provided to illustrate the effectiveness of the proposed design
method.

Notations. Throughout this paper, the following standard notations will be used. The superscripts ‘‘T ’’ and ‘‘(−1)’’ stand for
matrix transposition and matrix inverse, respectively. Rn represents the n-dimensional Euclidean space. Rn×n denotes the
set of all n × n real matrices. E{·} denotes the mathematical expectation. Ln2[0, ∞) stands for the space of n-dimensional
square integrable functions over [0, ∞). P > 0 means that P is a positive definite matrix. I represents the identity matrix
with compatible dimension. In symmetric block matrices or long matrix expressions, we use an asterisk (∗) to represent a
term that is induced by symmetry. Moreover, let (Ω,F,P) be a complete probability space in which Ω is the sample space,
F is the σ -algebra of subsets of Ω and P is the probability measure on F . ∥ · ∥ refers to the Euclidean vector norm.

2. Problem formulation and preliminaries

In this paper, we consider a class of discrete-time Markovian jump systems in the following form:

x(k + 1) = A(r(k))x(k) + B(r(k))u(k) + C(r(k))v(k) + g(x(k), r(k)),
z(k) = D(r(k))x(k) + E(r(k))v(k), (1)
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where A(r(k)), B(r(k)), C(r(k)), D(r(k)) and E(r(k)) are mode-dependent constant matrices with appropriate dimensions at
the working instant k; x(k) ∈ Rn is the state vector of the system; u(k) ∈ Rp is the control input; z(k) is the controlled output
vector of the system; v(k) ∈ Lq2[0, ∞) is the external disturbance vector acting on the system; g(·) is the time-dependent
norm-bounded uncertainties; r(k), k ≥ 0 is the concerned discrete-time Markov stochastic process which takes the values
in finite state set Λ = {1, 2, 3, . . . ,N}, where r(0) represents the initial mode. Further, the following condition is imposed
on the uncertainty g(x(k), r(k)).

(H1) The norm bounded uncertainty g(x(k), r(k)) in system (1) is assumed to satisfy g(x(k), r(k)) = ∆A(r(k))x(k) and
∆A(r(k)) = M(r(k))Υ (r(k))N(r(k)), where M(r(k)) and N(r(k)) are constant matrices with appropriate dimensions, Υ (r(k))
is an unknown matrix with Lebesgue measurable elements satisfying Υ T (r(k))Υ (r(k)) ≤ I . Further, we denote r(k) = i,
i ∈ Λ, then the system (1) can be rewritten in the following form:

x(k + 1) = Ai(k)x(k) + Biu(k) + Civ(k),
z(k) = Dix(k) + Eiv(k),

(2)

where Ai(k) = (Ai + ∆Ai(k)). Also, the transition probability matrix is defined as Π (k) = {πij(k)}, i, j ∈ Λ, where
πij(k) = P(r(k + 1) = j|r(k) = i) is the transition probability from mode i at time k to mode j at time k + 1, such that
πij(k) ≥ 0 and

∑N
j=1 πij(k) = 1.

For given vertices Π s, s = 1, 2, . . . , w, the time-varying transition matrix can be described as Π (k) =
∑w

s=1 αs(k)Π s,
where 0 ≤ αs(k) ≤ 1 and

∑w

s=1 αs(k) = 1. In particular, such transition uncertainties are assumed to evolve in a polytope,
which is described by several vertices. For more details about the polytope, one can refer the paper [17]. In practice, due
to widespread usage of digital signals in control systems, the control signals are often needed to be quantized before the
manipulation of feedback. Here, the quantized state feedback is considered in the following form:

u(k) = qi(ϕ(k)) and ϕ(k) = Kix(k), (3)

where qi(·) is a quantizer that is assumed to be symmetric, that is, qi(−ϕ) = −qi(ϕ). In this paper, logarithmic static and
time-invariant quantizers are employed for subsystems. Also, the set of quantized levels is described by

U =
{
±uj

i : uj
i = ρ

j
iu

0
i , j = ±1, ±2, . . .

}
∪
{
±u0

i

}
∪
{
0
}
, ρi ∈ (0, 1), u0

i > 0, (4)

where the parameter ρi represents the quantization density. Each of the quantization level uj
i corresponds to a segment such

that the quantizer maps the whole segment to this quantization level. The quantizer qi(·) is represented by

qi(ϕ(k)) =

⎧⎨⎩ uj
i, if 1

1+δi
uj
i < ϕ ≤

1
1−δi

uj
i,

0, if ϕ = 0,
−qi(−ϕ), if ϕ < 0,

where δi =
1−ρi
1+ρi

. Moreover, by following the procedure carried out in [18], we can get

qi(ϕ) = (I + ∆i)ϕ, (5)

where ∆i = diag{∆1
i , ∆2

i , . . . , ∆m
i }. Then it follows that ∆

j
i ∈ [−δ

j
i, δ

j
i], j = 1, 2, . . . ,m.

Now, we employ an another measurement size reduction technique called energy constraint. Here, we consider
n cases for the measurement scheduling scheme. According to works in [33–35], we define a structure matrix by
Φσ (k) ∈

{
diag{1, 0, . . . , 0}, . . . , diag{0, 0, . . . , 1}  

n

}
,whereσ (k) ∈ Θ = {1, 2, . . . , n}. Based on the above discussion, themodified

control signal is expressed by

u(k) = (I + ∆i)Kiσ (k)Φσ (k)x(k). (6)

It is assumed that the variation of the piecewise signal σ (k) follows a Markov process with the transition probability matrix
Π̄ = {λab}, that is, for σ (k) = a, σ (k + 1) = b, we have Prob(σ (k + 1) = b|σ (k) = a) = λab, where λab ≥ 0, and for each
a, b ∈ Θ , we have

∑n
b=1 λab = 1.

Substituting (6) in (2), the closed-loop system can be described by

x(k + 1) = Ai(k)x(k) + Bi(I + ∆i)Kiσ (k)Φσ (k)x(k) + Civ(k),

z(k) = Dix(k) + Eiv(k). (7)

Now, we present two definitions that are more essential to obtain the main results.

Definition 2.1 ([17]). System (7) with v(k) = 0 and u(k) = 0 is robustly stochastically stable, for any initial state (x(0), r(0)),
if the following condition holds:

E{

∞∑
k=0

∥x(k)∥2
|(x(0), r(0))} < ∞, (8)

where x(k) denotes the solution of (7).
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Definition 2.2 ([36]). System (7) is said to be stochastically stable with a prescribed mixed H∞ and passive performance
index γ , under zero initial condition, if there exists a scalar γ > 0 such that the following inequality holds:

E
[ ∞∑
k=0

γ −1θzT (k)z(k) − 2(1 − θ )zT (k)v(k)
]

≤ E
[ ∞∑
k=0

γ vT (k)v(k)
]
, (9)

for any non-zero v(k) ∈ Lq2[0, ∞) and θ ∈ [0, 1].

Remark 2.3. The composition of proposed controller (6) is due to the following reasons. In practice, the signal quantization
is an effective scheme to reduce the storage space or transmission bandwidth. However, if the plant is large, there may
still need some signals to transmit the complete information. In such situation, the measurement size reduction technique
can be employed, which reduces the measurement size by selecting one element signal for transmission. Therefore,
the simultaneous utilization of signal quantization and measurement selection scheme is more effective in saving the
transmission energy of the proposed controller (6).

Remark 2.4. In [37], Gaussian distribution is used to describe uncertain transition probabilities. In practice, it is very
hard to meet such distribution. To overcome this issue, in this paper, a new technique is considered to improve such
deficiency, which makes the theoretical results developed in this paper more practical. More precisely, the uncertain
transition probabilities are described by a nonhomogeneous process, modeled as a polytope set.

3. Main results

This section presents a robust resilient control design based on the mixed H∞ and passivity theory, which ensures the
stochastic stability of the system (7).

3.1. Stochastic stability

In this subsection, first, we obtain a set of sufficient conditions for the stochastic stability of the system (7) with u(k) = 0
and v(k) = 0.

Theorem 3.1. For a given initial condition x(0), the system (7) with u(k) = 0 and v(k) = 0 is robustly stochastically stable, if
there exist a set of positive definite symmetric matrices P s

ia and Pq
jb, such that[

−P̄ s
ia AT

i (k)
∗ −(P̄q

jb)
−1

]
< 0, (10)

holds for all i ∈ Λ and a ∈ Θ , where P̄ s
ia =

∑w

s=1 αs(k)P s
ia, P̄

q
jb =

∑N
j=1
∑n

b=1
∑w

s=1
∑w

q=1 αs(k)βq(k)π s
ijλabP

q
jb, 0 ≤ αs(k) ≤ 1,∑w

s=1 αs(k) = 1 and 0 ≤ βq(k) ≤ 1,
∑w

q=1 βq(k) = 1.

Proof. Consider the Lyapunov function for the system (7) in the following form:

V (x(k)) = xT (k)
w∑

s=1

αs(k)P s
iax(k) for i ∈ Λ, a ∈ Θ,

where 0 ≤ αs(k) ≤ 1,
∑w

s=1 αs(k) = 1 and P s
ia > 0. By computing the forward difference of ∆V (x(k)) along the trajectories

of the system (7) and taking the mathematical expectation, we get

E{∆V (x(k))} = E{V (x(k + 1)) − V (x(k))}

= E

{
xT (k)

[
AT

i (k)

(
N∑
j=1

n∑
b=1

w∑
s=1

w∑
q=1

αs(k)βq(k)π s
ijλabP

q
jb

)
Ai(k)

]
x(k)

− xT (k)
w∑

s=1

αs(k)P s
iax(k)

}
= E{xT (k)Ψ (k)x(k)},

where Ψ (k) = −
∑w

s=1 αs(k)P s
ia + AT

i (k)

(∑N
j=1
∑n

b=1
∑w

s=1
∑w

q=1 αs(k)βq(k)π s
ijλabP

q
jb

)
Ai(k).

By using Schur complement, Ψ (k) can be equivalently viewed as the matrix term in (10). Thus, it follows from (10) that
E{∆V (x(k))} < 0. Let µ = mink{λmin(Ψ (k))}, where λmin(Ψ (k)) is the minimal eigenvalue of −Ψ (k). Then, E{∆V (x(k))} ≤

−µE{xT (k)x(k)}. Further, by taking mathematical expectation, we have E{
∑T

k=0 ∆V (x(k))} = E{V (x(T + 1)) − V (x(0))}
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≤ −µE{
∑T

k=0 ∥x(k)∥2
} from which it follows that E{

∑T
k=0 ∥x(k)∥2

} ≤ −
1
µ
(E{V (x(T + 1)) − V (x(0))}) ≤

1
µ
(E{V (x(0)) −

V (x(T + 1))}). Also, we have limT→∞ E{
∑T

k=0 ∥x(k)∥2
} ≤

1
µ
E{V (x(0))}. It follows from Definition 2.1 that the system (7)

with u(k) = 0 and v(k) = 0 is stochastically stable, and this completes the proof.

3.2. Robust mixed H∞ and passivity-based control design

In the following theorem, we derive a set of criteria to obtain the controller gain that guarantees the stochastic stability
of system (7).

Theorem 3.2. For given scalars γ > 0, θ ∈ [0, 1], quantization density ρ > 0 and the controller gain matrix Kia, if there exist a
set of positive definite symmetric matrices P s

ia, Q
q
jb and some scalars ν1i and ν2i, such that the following condition hold for all i ∈ Λ

and a ∈ Θ:

Ω̂i =

⎡⎢⎢⎢⎣
Ω̄i Ω̃T

2 ν1iΩ̃3 N̄T
i ν2iM̄i

∗ −ν1i 0 0 0
∗ ∗ −ν1i 0 0
∗ ∗ ∗ −ν2i 0
∗ ∗ ∗ ∗ −ν2i

⎤⎥⎥⎥⎦ < 0, (11)

Q q
jb × Pq

jb = I, (12)

where

Ω̄i =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−P s
ia −(1 − θ )DT

i Ω̄13i . . . Ω̄14i
√

θDT
i

∗ −2(1 − θ )ET
i − γ I Ω̄17i . . . Ω̄18i

√
θET

i
∗ ∗ −Q q

11 0 0 0

∗ ∗ ∗
. . . 0 0

∗ ∗ ∗ ∗ −Q q
Nn 0

∗ ∗ ∗ ∗ ∗ −γ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Ω̄13i =

√
π s
i1λi1(AT

i (k) + ΦT
a K

T
iaB

T
i ), Ω̄14i =

√
π s
iNλin(AT

i (k) + ΦT
a K

T
iaB

T
i ), Ω̄17i =

√
π s
i1λi1CT

i ,

Ω̄18i =

√
π s
iNλinCT

i , Ω̃2 =
[
δiKiaΦa 0 0 . . . 0 0

]
, Ω̃3 =

[
0 0

√
π s
i1λi1BT

i . . .
√

π s
iNλinBT

i 0
]T

,

Q q
jb = (Pq

jb)
−1, M̄i =

[
0 0

√
π s
i1λi1MT

i . . .
√

π s
iNλinMT

i 0
]T

, N̄i =
[
Ni 0 0 . . . 0 0

]
.

Then, the closed-loop system (7) is robustly stochastically stable and also satisfies a prescribed mixed H∞ and passive performance
index.

Proof. Here, we discuss the mixed H∞ and passivity performance of the closed-loop system (7) with v(k) ̸= 0 and u(k) ̸= 0.
For this, we consider the following performance index:

J =

∞∑
k=0

[γ −1θzT (k)z(k) − 2(1 − θ )zT (k)v(k) − γ vT (k)v(k)].

Now, using the output vector z(k) defined in (7) and following the similar derivations in Theorem 3.1, we get

E
{
∆V (x(k)) + γ −1θzT (k)z(k) − 2(1 − θ )zT (k)v(k) − γ vT (k)v(k)

}
≤ E

{
ηT (k)Ωiη(k)

}
, (13)

where

Ωi =

[
−P s

ia −(1 − θ )DT
i

∗ −2(1 − θ )ET
i − γ I

]
+ π s

i1λi1

[
Ai(k) + BiKiaΦa

Ci

]T
Pq
11

[
Ai(k) + BiKiaΦa

Ci

]
+ · · · + π s

iNλin

[
Ai(k) + BiKiaΦa

Ci

]T
Pq
Nn

[
Ai(k) + BiKiaΦa

Ci

]
+ θ

[
Di
Ei

]T
γ −1

[
Di
Ei

]
.

By using Schur complement to (13), we have

Ωi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−P s
ia −(1 − θ )DT

i Ω13i . . . Ω14i
√

θDT
i

∗ −2(1 − θ )ET
i − γ I Ω17i . . . Ω18i

√
θET

i
∗ ∗ −(Pq

11)
−1 0 0 0

∗ ∗ ∗
. . . 0 0

∗ ∗ ∗ ∗ −(Pq
Nn)

−1 0
∗ ∗ ∗ ∗ ∗ −γ I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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Ω13i =
√

π s
i1λi1(AT

i (k) + ΦT
a K

T
iaB

T
i ), Ω14i =

√
π s
iNλin(AT

i (k) + ΦT
a K

T
iaB

T
i ), Ω17i =

√
π s
i1λi1CT

i , Ω18i =
√

π s
iNλinCT

i and
η(k) = [xT (k), wT (k)]T . Hence, the performance level can be guaranteed provided that Ωi < 0. Further, according to the
definition of norm-bounded uncertainty in (H1), we can get

Ωi + Ω̃2∆(k)Ω̃3 + Ω̃T
3 ∆T (k)Ω̃T

2 + M̄iΥ (i)N̄i + N̄T
i Υ (i)T M̄T

i < 0, (14)

where Ω̃2, Ω̃3, M̄i and N̄i are defined in the theorem statement. By using Lemmas A.1 and A.2 in (14) and taking Q q
jb = (Pq

jb)
−1,

we can easily get the linear matrix inequality (LMI) in (11). Therefore, if the conditions in (11) and (12) are satisfied, the
closed-loop system (7) is stochastically stable and also satisfies the mixed H∞ and passivity performance index, which
concludes the proof.

3.3. Robust mixed H∞ and passivity-based resilient control design

It should be mentioned that the controller may be very sensitive or fragile with respect to some variations on feedback
gains. Therefore, the resilient control concept is utilized to design a feedback control whichwill be insensitive to some extent
of perturbations in control gains.

In this subsection, we will obtain mixed H∞ and passivity-based resilient control design for the discrete-timeMarkovian
jump system (1). Now, we consider the gain matrix as K̄i instead of Ki, which has the structure K̄i = Ki +∆Ki(k) in which the
perturbation ∆Ki(k) is defined by

∆Ki(k) = MiΣi(k)Ni, (15)

where Mi and Ni are known constant matrices and Σi(k) is an unknown matrix satisfying Σi(k)TΣi(k) ≤ I . Then, the
corresponding closed-loop system can be written as

x(k + 1) = Ai(k)x(k) + Bi(I + ∆i)K̄iaΦσ (k)x(k) + Civ(k),

z(k) = Dix(k) + Eiv(k). (16)

Theorem 3.3. For given scalars γ > 0, θ ∈ [0, 1] and quantization density ρ > 0, the closed-loop system (16) is robustly
stochastically stable if there exist a set of positive definite symmetric matrices P s

ia, Q
q
jb and matrix Ki with appropriate dimensions,

and some scalars ν1i, ν2i and ϵi, such that the following matrix inequalities together with (12) hold for all i ∈ Λ and a ∈ Θ:

Ω̃i =

⎡⎣Ω̂i NT
i ϵiMi

∗ −ϵi 0
∗ ∗ −ϵi

⎤⎦ < 0, (17)

whereMi =
[
0 0

√
π s
i1λa1MT

i B
T
i . . .

√
π s
iNλanMT

i B
T
i 0 δiMT

i 0 0 0
]T
,

Ni =
[
NiΦa 0 0 . . . 0 0 0 0 0 0

]
and other parameters are defined as in Theorem 3.2.

Proof.With the use of (15), the LMI condition (11) in Theorem 3.2 can be written as

Ξ = Ω̂i + MiΣi(k)Ni + NT
i Σ

T
i (k)M

T
i . (18)

Applying Lemma A.1 to the expression in (18), it is easy to get that

Ξ = Ω̂i + ϵiMiMT
i + ϵ−1

i NT
i Ni. (19)

Then, by using Lemma A.2 in the above expression (19), it can be observed that (19) is equivalent to LMI (17). Thus, it can
be concluded that the closed-loop system (16) is stochastically stable and satisfies the mixed H∞ and passive performance
index. This concludes the proof.

With the use of the cone complementarity linearization algorithm, it is easy to solve the LMI problem with bilinear
matrix equation constraint. Therefore, the control gains formulated by (17) and (12) and can be converted into the following
optimization problem:

min trace

{
N∑
j=1

n∑
b=1

Q q
jb × Pq

jb

}

subject to (17) and
[
Q q
jb I
∗ Pq

jb

]
≥ 0. (20)

To solve this optimization problem, the detailed controller design algorithm is given below:
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Algorithm: Controller Design Algorithm
Step 1:Set k = 0 and solve (12) and (17) to obtain the feasible set (Pjb(0),Qjb(0), K (0)).
Step 2:Solve the following LMI minimization problem:

min trace

{∑N
j=1
∑n

b=1

(
Q q
jb(k) × Pq

jb + Pq
jb(k) × Q q

jb

)}
subject to (17) and (20).

Step 3:If the obtained matrix variable (Pjb,Qjb, K ) satisfies (19), then output of the feasible
solution is (Pjb,Qjb, K ). EXIT. Otherwise, set k = k + 1 and return to the Step 2.

Remark 3.4. It should be mentioned that the mixed H∞ and passivity-based control problem studied in this paper is a
special case of dissipative control problem, which combines the passivity and the H∞ performances in a unified framework.
It is well known that the dissipative analysis mostly studied for the systems with complex structure or sometimes chaotic
structures, where interacting particles exhibit long-range correlations. But the special case considered in this paper does
not have these restrictions on the considered system. On the other hand, inaccuracies or uncertainties may occur during the
controller implementation in practice. Therefore, the controller should be designed in such a way that it is insensitive to
some amount of uncertainties with respect to its gain. These are the facts to consider mixed H∞ and passivity performance
and resilient control together in this paper. Besides, a conventional controller may result in unsatisfactory performance, or
even instability, in the event of malfunctions in actuators, sensors or other system components. To overcome this issue,
many reliable control designs have been developed [38,39]. The difference between these two kinds of controllers is that the
resilient controller is employed to precisely deal with gain fluctuations whereas the reliable controller is used to deal with
components failures in the system, especially actuators and sensors.

Remark 3.5. Based on the cone complementarity linearization algorithm, sufficient conditions for the existence of robust
mixed H∞ and passivity-based control and robust mixedH∞ and passivity-based resilient control for the considered closed-
loop systems (7) and (16) are obtained, respectively, in Theorems 3.2 and 3.3 without using any zero equations and free-
weighting matrices. This significantly reduces the computational complexity.

Remark 3.6. It is known that Markov jump system evolves according to a Markov stochastic process (or chain), wherein
the transition probability plays a crucial role in Markov process (or chain). In the analysis and synthesis of Markov jump
systems, transition probabilities are usually assumed to be fully accessible or exactly known [2,9]. However, transition
probabilities are often expensive and sometimes, are not known precisely in many practical situations. Keeping these facts
into consideration, in this paper, we adopt the time-varying transition probabilities, which are described by a polytope
set. Therefore, the transition probabilities chosen in this paper are more general than those in [2,9]. In addition, the main
advantage of considered system (1) is the flexibility in the transition probabilities that are changing over time.

4. Simulation results

In this section, two numerical examples including a DCmotor device model are given to illustrate the effectiveness of the
obtained results.

Example 4.1. We consider the speed control problem for a DCmotor device driving an inertial load, which can be described
by the discrete-time Markovian jump system (2). A DC motor device model is shown in Fig. 1, where Vc(t) is the applied
voltage to the motor, which represents the control input and v(t) represents the angular rate of the load. We use Tk to
denote the torque at the shaft of the motor, which is proportional to the current i(t) induced by the applied voltage. Vm(t)
is the voltage proportional to the angular rate v(t) seen at the shaft. Moreover, the corresponding system parameter values
are borrowed from [17] which are given below:

A1 =

[
−0.479908 5.1546
−3.81625 14.4723

]
; A2 =

[
−1.60261 9.1632

−0.5918697 3.0317

]
; A3 =

[
0.634617 0.917836
−0.50569 2.48116

]
;

B1 =

[
5.87058212
15.50107

]
; B2 =

[
10.255129
2.2282663

]
; B3 =

[
0.7874647
1.5302844

]
; C1 = C2 = C3 =

[
0.1
0.2

]
;

D1 =
[
1 0

]
; D2 =

[
0 1

]
; D3 =

[
0 1

]
;

E1 = E2 = E3 = 0.1; M1 = M2 = M3 =

[
0.1
0.1

]
; N1 = N2 = N3 =

[
0.1 0.1

]
; M1 = M2 = M3 = 0.1;

N1 = N2 = N3 =
[
0.1 0.1

]
.

The vertices of the time-varying transition probability matrix are given as follows:

Π1
=

[0.671 0.153 0.176
0.324 0.489 0.187
0.136 0.524 0.340

]
; Π2

=

[0.145 0.427 0.428
0.321 0.546 0.133
0.249 0.476 0.275

]
;
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Fig. 1. DC motor device [17].

Fig. 2. State responses of (7) with and without quantization.

Π3
=

[0.368 0.435 0.197
0.243 0.457 0.300
0.162 0.622 0.216

]
; Π4

=

[0.419 0.536 0.045
0.782 0.136 0.082
0.167 0.346 0.487

]
.

To reduce the measurement size during each transmission, we take σ (k) ∈ {1, 2} and Φσ (k) ∈

{[
1 0
0 0

]
,

[
0 0
0 1

]}
.

Also, the measurement scheduling method is modeled by Markov process, with the transition probability matrix Π̄ =[ 0.2 0.7 0.1
0.35 0.2 0.45
0.1 0.4 0.5

]
.

For the simulation purposes, we choose θ = 0.5, ρ = 0.4 and γ = 0.2. According to Theorem 3.3, we can get the following
mode-dependent controller gain matrices with the use of above said parameter values:

K11 =
[
−0.2266 0

]
; K12 =

[
0 −0.7727

]
; K21 =

[
−0.1232 0

]
;

K22 =
[
0 −0.7447

]
; K31 =

[
−0.0034 0

]
; K32 =

[
0 −0.0560

]
.

Further, we take disturbance input as v(k) = 0.1exp(−0.1k) sin( πk
2 ) and choose the initial condition of the system state

x(0) =
[
1.5 −0.1

]T . Using the designed controller above, we can get the states of the closed-loop systemwith andwithout
quantization, which are presented in Fig. 2. It can be observed from Fig. 2 that the time taken for convergence of the state
trajectories with quantization is less than that of state trajectories without quantization. The control and output responses
of the system with and without quantization are depicted in Fig. 3 and Fig. 4, respectively. In Fig. 5, the controlled output
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Fig. 3. Control response with and without quantization.

Fig. 4. Output response with and without quantization.

Fig. 5. Disturbance input and controlled output.

and disturbance input signal are given. Randomly generating jumping modes and variations of transition probabilities are
displayed in Fig. 6 and Fig. 7, respectively. Furthermore, the calculatedminimum γ value for different cases namely, passivity,
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Fig. 6. Jumping modes.

Fig. 7. Variations of transition probabilities.

Table 1
Calculated minimum γ for different cases.
Cases γmin

Passivity (θ = 0) 0.0001
Mixed H∞ and passivity (θ = 0.5) 0.0367
H∞ (θ = 1) 0.1001

Table 2
Calculated minimum γ for different θ values.
θ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Theorem 3.3 0.0117 0.0189 0.0272 0.0367 0.0472 0.0589 0.0718 0.0854

mixed H∞ and passivity, and H∞ cases is displayed in Table 1 and also the calculated minimum γ value for different values
of θ is presented in Table 2. From the simulation results, it can be strongly concluded that the proposed control scheme is
more appropriate in practical purposes since it is more generalized and can tolerate with uncertainties, quantization and
time-varying transition probabilities.

Remark 4.2. If the quantization effect and energy constraints are not taken into account in the considered Markov jump
system, it will be deduced to the systems in [17] and [40], respectively. The aforementioned factors could not be ignorable
since they exemplify the real-world circumstances. Thus, the results presented in this paper are superior than those in [17]
and [40]. In particular, the simulation results show that the designed controller has the ability to enforce system trajectories
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Fig. 8. State responses of (7).

to achieve desired performances even in the presence of quantization effect and energy constraints. On the other hand,
delays frequently appear in control engineering systems, where time delays are the property of a physical system [41,42].
Though the effect of time delay is not considered in this study, it is possible to extend the results proposed in this paper to
Markov jump system with time delay. This issue will be our near future work.

Example 4.3. We consider the discrete-time Markovian jump system (1) with the following jump parameters:

A1 =

[
1.3 −0.45
0.5 1.1

]
; A2 =

[
0.1 −0.29
0.9 1.5

]
; B1 =

[
0.1
0.2

]
; B2 =

[
0.5
0.2

]
; C1 = C2 =

[
0.1
0.2

]
;

D1 =
[
0.1 0

]
; D2 =

[
0.1 0.1

]
; E1 = E2 = 0.1; M1 = M2 =

[
0.05
0.05

]
; N1 = N2 =

[
0.01 0.01

]
;

M1 = M2 = 0.05; N1 = N2 =
[
0.01 0.01

]
.

We set the external disturbance as v(k) = 1.5exp(−0.05k) sin(− 3πk
4 ) and the initial condition as x(0) = [−0.3 0.2]T . Further,

the vertices of the time-varying transition probability matrix are taken as follows:

Π1
=

[
0.2 0.8
0.35 0.65

]
; Π2

=

[
0.55 0.45
0.48 0.52

]
; Π3

=

[
0.6 0.4
0.3 0.7

]
; Π4

=

[
0.4 0.6
0.9 0.1

]
.

The measurement scheduling method is modeled by Markov chain, with the transition probability matrix defined by

Π̄ =

[
0.3 0.7
0.55 0.45

]
. In this example, we take θ = 0.5, ρ = 0.4, γ = 1.2 and the same measurement size reduction matrix

structure as defined in Example 4.1. Then, by solving the conditions (17) and (20) in Theorem 3.3, we can get the following
controller gain matrices: K11 =

[
−0.5730 0

]
, K12 =

[
0 −0.7109

]
, K21 =

[
−0.4707 0

]
and K22 =

[
0 −0.6088

]
.

Based on these gain values, the state responses of the considered Markovian jump system (1) are presented in Fig. 8 and
the associated control responses of the system are shown in Fig. 9. Fig. 10 depicts the controlled output and disturbance
input. We present a prescribed variation between four transition probability matrices and the system jumping modes are
plotted together in Fig. 11. The result reveals that the designed mixed H∞ and passivity-based resilient control is effective
for achieving the desired performance of the considered system.

5. Conclusion

In this paper, the mixed H∞ and passivity-based resilient control problem for discrete-time nonhomogeneous Markov
jump systems with uncertainties, quantization and energy constraints has been studied. In order to reduce the energy
consumption, measurement size reduction technique has been used. In addition, the resilient property and the logarithmic
quantization are also taken into account, which makes that the results of this work as a generalized one. Moreover, a
polytope has been used to express time-varying transition probability matrices in which vertices are given prior and the
parameter-dependent Lyapunov function has been utilized to ensure that the closed-loop system is stochastically stablewith
a prescribed mixedH∞ andpassivity performance index. Twonumerical examples have been given to show the effectiveness
of the proposed method. Further, the problems of non-fragile finite-time stability and non-fragile finite-time filtering are
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Fig. 9. Control response.

Fig. 10. Output and disturbance.

Fig. 11. Jumping mode.

untreated topics for the considered nonhomogeneous Markov jump systems with uncertainties, quantization and energy
constraints. These issues will be our future research topics.
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Appendix

Lemma A.1 ([3]). Assume that Ω , M and N are real matrices with appropriate dimensions and Υ is a matrix function satisfying
Υ TΥ ≤ I , then Ω +MΥ N +[MΥ N]

T < 0 holds, if and only if there exists a scalar ϵ > 0 satisfying Ω + ϵ−1MMT
+ ϵNTN < 0.

Lemma A.2 ([3]). Given constant matrices Ω11, Ω12 and Ω22 with appropriate dimensions, where ΩT
11 = Ω11 and ΩT

22 = Ω22,

then Ω11 + ΩT
12Ω

−1
22 Ω12 < 0 if and only if

[
Ω11 ΩT

12
∗ −Ω22

]
< 0.
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ABSTRACT This paper addresses the challenge of ensuring finite-time boundedness in switched time-
varying delay systems with actuator saturation. Utilizing Lyapunov–Krasovskii functionals, we establish
delay-dependent conditions through linear matrix inequalities, ensuring that switched systems with time-
varying delays remain finite-time bounded. The paper also introduces the concept of average dwell time for
switching signals, providing additional conditions for finite-time boundedness. Furthermore, the finite-time
L2-L∞ performance of switched systemswith time-varying delays is investigated as ameasure of disturbance
capability within a finite-time interval. The estimator gain matrix can be determined by solving the linear
matrix inequalities. The effectiveness of the proposed approach is illustrated through numerical examples.

INDEX TERMS Actuator saturation, Average dwell time, Finite-time boundedness, L2 − L∞ performance,
Lyapunov-Krasovskii method, Time-varying delay.

I. INTRODUCTION

SWITCHED systems have received much attention re-
cently, with studies exploring stability, controllability,

and performance. The notable topics include finite-time sta-
bilization, robust filtering, L2 gain, Finite-time boundedness,
stochastic, and H∞ control in switched systems [1]- [7].
These collective studies significantly contribute to under-
standing control and stability in switched time-delay systems.
Switched systems have wide applications in chemical pro-
cesses, mechanical systems, automotive industry, aircraft and
air traffic control, and so on. Such a class of systems is com-
posed of a finite number of subsystems and a logical rule or-
chestrating the switching between the subsystems. Basically,
the switching rule in most existing literatures can be classified
into three categories: arbitrary switching is investigated in
[8], dwell time switching is given in [7], and state dependent
switching is presented in [9]. It is well known that the first
two categories of switching rules require that each subsystem
of a switched system is stable or stabilized. In particular, it is

generally admited that dwell time switching regime is more
pliant than arbitrary switching rule to some extent.
Recently, researchers have employed twomethods for deal-

ing with slow switching: dwell time and average dwell time.
However, these results are somewhat conservative. In the
majority of the literature, the average dwell time scheme is
preferred because it yields more general results compared to
dwell time. In the average dwell time approach, the number of
switches within a finite interval is bounded, and the average
time between consecutive switchings is not less than a con-
stant. This method has been demonstrated to be a successful
and effective technique for analyzing the stability of switched
systems and designing controllers. For example, refer to [10]-
[12].
Actuator saturation are the key of control which is applica-

ble to all areas of engineering and science. However, majority
of actuators are not strictly accord with linearity, most of
them subject to saturation in real physical systems. On the
other hand, as a physical phenomenon, actuator saturation
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often occurs in practical systems due to physical constraints.
That can severely degrade the performance of closed-loop
system and sometimes even make a stable closed-loop system
unstable if the controller is designed without considering
this kind of nonlinearity. During the past several decades,
control systems with actuator saturation have received much
attention, (see for examples [13]- [17], and the references
therein). The analysis and synthesis of T-S fuzzy systemswith
actuator saturation nonlinearities is given in [18]. A problem
of robust observer-based passive control for uncertain sin-
gular time-delay systems subject to actuator saturation has
been investigated in [19]. In [20] passivity controller design
for singular time-delay system and actuator saturation with
nonlinear disturbance are employed. H∞ observer design for
stochastic time-delayed systems with Markovian switching
under partly known transition rates and actuator saturations
has been investigated in [21]. The problem of exponential
stabilization for a class of singularly perturbed switched
systems subject to actuator saturation is studied in [22]. Based
on finite-timeH∞ control problem for a class of discrete-time
switched singular time-delay with actuator saturation have
been investigated in [23].

Finite-time stability addresses the stability of a system over
a finite-time interval and holds significant importance. It’s es-
sential to note that finite-time stability and Lyapunov asymp-
totic stability are distinct concepts, and they are independent
of each other. Therefore, it is important to emphasize the
distinction between classical Lyapunov stability and finite-
time stability. However, in many practical systems, people
increasingly prefer to consider the behavior of system in a
finite interval [24]- [26]. And in recent years, finite-time
stability and finite-time boundedness problems have been
widely spread and used in various systems [27]. The finite-
time filtering and state observer design problems have been
solved respectively in [28]. In the field of control systems,
recent research has focused on achieving finite-time stability
and control for various dynamic systems. [29] introduced
a novel approach to fuzzy adaptive finite-time consensus
control for high-order nonlinear multiagent systems based
on event-triggered mechanisms, providing robustness against
uncertainties and disturbances. [30] addressed finite-time
event-triggered stabilization for discrete-time fuzzy Markov
jump singularly perturbed systems, offering insights into
stochastic systems with singularly perturbed dynamics. [31]
contributed to the design of event-based finite-time control
strategies for nonlinear multiagent systems with asymptotic
tracking objectives, emphasizing finite-time convergence and
asymptotic tracking behavior. Additionally, interval type-2
fuzzy systems with time delay and actuator faults were ex-
plored in an unidentified article, focusing on the finite-time
boundedness of such systems in [32]. This growing body of
research underscores the significance of finite-time control in
addressing complex system dynamics.

To the best of our knowledge, the concept of finite-time
boundedness represents a crucial aspect of control theory,

ensuring that a system’s state variables remain within prede-
termined bounds within a finite time frame. This property is
particularly significant in real-world applications where the
system’s behavior must be tightly controlled and constrained
to meet performance and safety requirements. Additionally,
the finite-time control of switched system with L2 − L∞
performance criteria plays amajor role in this paper. Themain
contribution of this work as given as follows:
1) We establish sufficient conditions for ensuring finite-

time boundedness through the Lyapunov-Krasovskii
functional, Jensen’s inequality, Wirtinger’s integral in-
equality, and a novel integral inequality, utilizing linear
matrix inequalities (LMIs).

2) Exploring the finite-time L2 − L∞ performance of
switched systems with time-varying delays as a mea-
sure of disturbance capability within a finite-time in-
terval.

3) We address the challenging problem of finite-time
boundedness in switched time-delay systems while in-
corporating an actuator saturation controller gain. The
design of the controller gain considers factors such as
attenuation levels and the average dwell time, ensuring
effective control under saturation constraints. Conse-
quently, we determine the estimator gains required for
the proposed control strategy’s implementation.

4) Furthermore, we demonstrate the practical relevance
of our approach by applying it to real-world scenar-
ios, specifically addressing the water pollution con-
trol problem. Our approach’s effectiveness and appli-
cability are demonstrated through numerical examples,
showcasing its potential for providing sustainable solu-
tions to control problems.

Notation: The notation used in this paper is standard. Rn

denotes n-dimensional Euclidean space, the superscript “T”
denotes the transpose and the notation P > 0 (≥ 0) means
P is real symmetric positive definite matrix, λmax(P) and
λmin(P) denote the maximum and minimum eigenvalues of
matrix P, respectively. I is an identity matrix with appropriate
dimension. The asterisk ∗ in a matrix is used to denote a term
that is induced by symmetry.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider the following switched system with time varying
delays as follows:

ẋ(t) = Ap(t)x(t) + Adp(t)x(t − h(t)) + Bp(t)sat(u(t))
+Bwp(t)w(t),

z(t) = Cp(t)x(t) + Cdp(t)x(t − h(t)) + Dwp(t)w(t),
x(t) = ϕ(t), t ∈ [−hM , 0],


(1)

where x(·) = [x1(·), x2(·), . . . , xn(·)]T ∈ Rn is the state
vector, u(t) ∈ Rp is the control input z(t) ∈ Rm is the
control output vector; p(t) : [0,∞) → N = {1, 2, . . . , n}
is the switching signal that is a piecewise constant function
depending on time t or state x(t), and n is the number of
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subsystems; w(t) ∈ Rq is the disturbance and satisfies∫ T
0
wT (t)w(t) ≤ d , d ≥ 0, h(t) is time-varying delay satisfies

0 ≤ h(t) ≤ h, ḣ(t) ≤ hM . sat(u(t)) : Rp → Rp is the control
input, sat(·) is the saturation nonlinearity function.

A. CONTROL FORMULATION
The saturation function sat(u(·)) : Rp → Rp is defined as
follows:

sat(u) := [sat(u1), sat(u2), . . . , sat(up)]T ,

where sat(ul) = sig(ul)min{ϑl , |ul |}, or we can write as
follows  ϑl ul > ϑl ,

ul , −ϑl ≤ ul ≤ ϑl , l = 1, 2, . . . , p,
−ϑl , ul < −ϑl .

The saturation function sat(u(t)) may be decomposed into
a linear and a nonlinear segment, which helps elucidate its
behavior and implications for the model at hand

sat(u(t)) = u(t)− ϕ(u(t)), (2)

where ϕ(u(t)) = [ϕ1(u(t)), ϕ2(u(t)), . . . , ϕp(u(t))]T ∈ Rp,
and ϕl(u(t)) = ul(t) − sat(ul(t)), (l = 1, 2, . . . , p). Sub-
sequently, a scalar value 0 < ϵ < 1 exists, satisfying the
condition that

ϵuT (t)u(t) ≥ ϕT (u(t))ϕ(u(t)).

Therefore we design the controller as the following form:

u(t) = Kix(t) (3)

where Ki ∈ Rp is the gain matrix to be designed. Assuming
that only a finite part of the non-linearity is considered during
the actual system operation, i.e. the operation of the saturation
is inside the sector [ϵ, 1], 0 < ϵ < 1. Corresponding to
the switching signal p(t), we have the following switching
sequence, {x0 : (i0, t0), . . . , (ik , tk), . . . , |ik ∈ N, k =
0, 1, . . . }. Moreover, p(t) = i which means that ik th sub-
system is activated when t ∈ [tk , tk+1).

From (1) the switched time-varying delayed system and
replaced with p(t) = i is written as follows,

ẋ(t) = Aix(t) + Adix(t − h(t)) + Bisat(u(t)) + Bwiw(t),

z(t) = Cix(t) + Cdix(t − h(t)) + Dwiw(t),
x(t) = ϕ(t), t ∈ [−hM , 0],


(4)

Definition 2.1: [25] (Finite-time boundedness). For a given
time constant c1 > 0, c2 > 0, T and symmetric matrix R > 0,
the system (1) is said to be finite-time bounded with respect
to (c1, c2,T ,R) if there exist constants c2 > c1 > 0, such
that

xT (t0)Rx(t0) ≤ c1 ⇒ xT (t)Rx(t) ≤ c2, ∀ t ∈ [0,T ].

Definition 2.2: [39] (L2−L∞ performance). The time-varying
delay switched system (1) is said to be finite-time bounded

with respect to (c1, c2,T ,R, d) in the sense of Definition 2.1
and disturbance attenuation γ > 0 such that

∥ z(t) ∥2∞≤ γ2 ∥ w(t) ∥22,

where ∥ z(t) ∥2∞= supt>0[z
T (t)z(t)],

∥ w(t) ∥22=
∫ T
0
wT (t)w(t)dt .

Definition 2.3: [34] For any switching signal p(t) and t2 ≥
t1 ≥ 0, let Np(t)(t2, t1) denote the switching number of p(t)
on an interval (t1, t2). We say that p(t) has an average dwell
time τa if

Np(t)(t1, t2) ≤ N0 +
t2 − t1
τa

holds for given N0 ≥ 0, τa > 0, N0 is the chatter bound.
Without loss of generality, we choose N0 = 0 throughout this
paper.
Lemma 2.4: [38] For any real vectors α, β and any matrix
Q > 0 with appropriate dimensions, it follows that

2αTβ ≤ αTQα+ βTQ−1β.

Lemma 2.5: For any positive matricesM1,M2 ∈ Rn×n L ∈
Rn×q, positive definite symmetric matrixQ2 ∈ Rn×n and any
time varying delays h(t), we have

−
∫ t

t−d(t)
ẋT (s)Q2ẋ(s)ds ≤ ξT (t)

[
Ψ+ hΠTQ−1

2 Π

]
ξ(t)

(5)

where

Π =
[
M1 M2 L

]
,

ξT =
[
xT (t) xT (t − h(t)) wT (t)

]
,

Ψ =

 MT
1 +M1 −MT

1 +M2 L
∗ −MT

2 −M2 −L
∗ ∗ 0


Proof From Lemma 2.4 we have

−
∫ t

t−h(t)
ẋT (s)Q2ẋ(s)ds ≤ 2

(∫ t

t−h(t)
ẋ(s)ds

)T

Πξ(t)

+

∫ t

t−h(t)
ξT (t)ΠTQ−1

2 Πξ(t)ds,

≤ 2ξT (t)

 I
−I
0

Πξ(t)

+ hξT (t)ΠTQ−1
2 Πξ(t),

= ξT (t)Ψξ(t) + hξT (t)ΠTQ−1
2 Πξ(t).

(6)

Hence we conclude (5). □

Lemma 2.6: [33] For any constant matrix M > 0, the
following inequality holds for all continuously differentiable
function φ on [a, b] → Rn×n:

(b− a)
∫ b

a
φT (s)Mφ(s)ds ≥

(∫ b

a
φ(s)ds

)T

M
(∫ b

a
φ(s)ds

)
+ 3ΩTMΩ,
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where

Ω =

∫ b

a
φ(s)ds− 2

b− a

∫ b

a

∫ s

a
φ(θ)dθds.

III. MAIN RESULTS
A. FINITE-TIME BOUNDEDNESS
In this section, we first derive the finite-time boundedness
condition for the switched system from (4) with u(t) =
Kix(t), where Ki is known constant and z(t) = 0:

ẋ(t) = Aix(t) + Adix(t − h(t)) + Bisat(Kix(t)) + Bwiw(t),

x(t) = ϕ(t), t ∈ [−hM , 0],

}
(7)

Theorem 3.1: For given positive scalars T , c1, c2, d , h, hM ,Ki,
ϵ, ϵa and α the system (7) is finite-time boundedness if there
exist symmetric positive definite matrices Pi > 0, Q1i > 0,
Q2i > 0, Zi > 0, Si > 0 and the appropriate dimensional
matricesM1i > 0,M2i > 0 and Li > 0 such that the following
LMIs holds:

∑̃
=

 ∑
ΘT hΠT

∗ − 1
hQ2i 0

∗ ∗ −Q2i

 < 0,

(8)

e(α+
lnµ
τa

)T
[(

λ2 + hλ3 +
h2

2
λ4 +

h2

2
λ5

)
c1 + dλ6

]
< λ1c2.

(9)

Then, under the following average dwell time scheme

τa > τ∗a =
T lnµ

ln(c2e−αT ) − ln

[
βc1 + dλ6

] , (10)

where β =

(
λ2 + hλ3 +

h2

2 λ4 +
h2

2 λ5

)
, the system is finite-

time bounded with respect to (c1, c2,T ,R, p(t)), where µ>1
satisfying

Ps < µPi,Q1s < µQ1i,Q2s < µQ2i,Zs < µZi, ∀i, s ∈ N.
(11)

where

Σ =



Φ11 Φ12 0 0 0 0 BwiLi −Bi
∗ Φ22 0 0 0 0 −Li 0
∗ ∗ Φ33 0 0 Φ36 0 0
∗ ∗ ∗ Φ44 Φ45 0 0 0
∗ ∗ ∗ ∗ Φ55 0 0 0
∗ ∗ ∗ ∗ ∗ Φ66 0 0
∗ ∗ ∗ ∗ ∗ ∗ −Si −ϵaBi


.

Φ11 = 2PiAi + 2BiKi + Q1i + dQ3i +M1i +MT
1i − αPi,

Φ12 = AdiPi −MT
1i +M2i, Φ22 = e−αh(t)Q1 −MT

2i

−M2i,Φ33 = e−αh

h Zi − 3e−αh

h Zi, Φ36 = 6e−αh

h2 Zi,
Φ44 = e−αh

h Zi − 3e−αh

h Zi, Φ45 = 6e−αh

h2 Zi,

Φ55 = − 12e−αh

h3 Zi, Φ66 = − 12e−αh

h3 Zi,
Θ =

[
AiQ2i AdiQ2i 0 0 0 0 BwiQ2i BiQ2i

]
,

Π =
[
M1i M2i 0 0 0 0 Li 0

]
.

λ1 = λmin(Pi), λ2 = λmax(Pi), λ3 = λmax(Q1i),
λ4 = λmax(Q2i), λ5 = λmax(Zi), λ6 = λmax(Si).
Proof Choose the following Lyapunov functional for the
system (7) as:

V (x(t), t) =
4∑
i=1

Vi(x(t)), (12)

where

V1(x(t), t) = xT (t)Pix(t),

V2(x(t), t) =
∫ t

t−h(t)
eα(t−s)xT (s)Q1ix(s)ds,

V3(x(t), t) =
∫ 0

−h

∫ t

t+θ

eα(t−s)ẋT (s)Q2iẋ(s)dsdθ,

V4(x(t), t) =
∫ 0

−h

∫ t

t+θ

eα(t−s)xT (t)Zix(s)dsdθ.

Calculating the time derivative of V (x(t), t) along the trajec-
tories of the system (7), we have

V̇1 = 2xT (t)Piẋ(t), (13)

V̇2 = xT (t)Q1ix(t)− (1− hM )e−αh(t)xT (t − h(t))Q1ix(t − h(t)),
(14)

V̇3 = hẋT (t)Q2ẋ(t)− e−αh
∫ t

t−h
ẋT (s)Q2iẋ(s)ds, (15)

V̇4 = hxT (t)Zix(t)− e−αh
∫ t

t−h
xT (s)Zix(s)ds. (16)

By applying Lemma 2.5 in the integral term in (15), we can
get,

−
∫ t

t−h
ẋT (s)Q2iẋ(s)ds ≤ ξT (t)

{
Ψ+ hΠTQ−1

2i Π
}
ξ(t).

(17)

The integral term in (16) can be written as

−
∫ t

t−h
xT (s)Zix(s)ds = −

∫ t−h(t)

t−h
xT (s)Zix(s)ds

−
∫ t

t−h(t)
xT (s)Zix(s)ds. (18)

By using Lemma 2.6, we have

−
∫ t−h(t)

t−h
xT (s)Zix(s)ds = −1

h

(∫ t−h(t)

t−h
x(s)ds

)T

× Zi

(∫ t−h(t)

t−h
x(s)ds

)
− 3

h
ΩT

1ZiΩ1,

(19)

−
∫ t

t−h(t)
xT (s)Zix(s)ds = −1

h

(∫ t

t−h(t)
x(s)ds

)T

× Zi

(∫ t

t−h(t)
x(s)ds

)
− 3

h
ΩT

2ZiΩ2.

(20)
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where Ω1 =
∫ t−h(t)
t−h x(s)ds − 2

h

∫ −h(t)
−h

∫ t
t+θ

x(s)dsdθ, Ω2 =∫ t
h(t) x(s)ds−

2
h

∫ 0

−h(t)

∫ t
t+θ

x(s)dsdθ.
The saturation effect of the actuator considered in (2), we can
get

sat(u(t)) = u(t)− ϕ(u(t)), (21)

Replacing u(t) in (21) for the right hand side of (3)

sat(u(t)) = Kix(t)− ϕ(u(t)), (22)

Moreover, there exists a scalar 0 < ϵ < 1 satisfying

ϵuT (t)u(t)− ϕT (u(t))ϕ(u(t)) ≥ 0, (23)

Substitute (3) in (23) we have,

ϵxT (t)K T
i Kix(t)− ϕT (u(t))ϕ(u(t)) ≥ 0, (24)

Therefore, for any constant ϵa > 0, we can derive

ϵϵaxT (t)K T
i Kix(t)− ϵaϕ

T (u(t))ϕ(u(t)) ≥ 0, , (25)

Combining from (13) to (25), we have that

V̇ (x(t))− αV (x(t))− wT (t)Siw(t)

= ΞT (t)
{
Σ+ΘTQ−1

2i Θ+ hΠTQ−1
2i Π

}
Ξ(t), (26)

where ΞT (t) =
[
xT (t) xT (t − h(t))

∫ t−h(t)
t−h xT (s)ds∫ t

t−h(t) x
T (s)ds

∫ 0

−h(t)

∫ t
t+θ

xT (s)dsdθ∫ −h(t)
−h

∫ t
t+θ

xT (s)dsdθ wT (t) ϕ(u(t)
]

By applying Schur complement Lemma, in (26) we get,

V̇ (x(t))− αV (x(t))− wT (t)Siw(t) < 0, (27)

It can be obtained from (27), for t ∈ [tk , tk+1),

V (t) < eα(t−tk)V (tk) +
∫ t

tk

eα(t−s)wT (s)Siw(s)ds,

< eα(t−tk)µV (tk−) +
∫ t

tk

eα(t−s)wT (s)Siw(s)ds,

< eα(t−tk)µ[eα(t−tk−1)V (tk−1)

+

∫ tk

tk−1

eα(tk−s)wT (s)Siw(s)ds]

+

∫ t

tk

eα(t−s)wT (s)Siw(s)ds,

= eα(t−tk−1)µV (tk−1) + µ

∫ tk

tk−1

eα(t−s)wT (s)Siw(s)ds

+

∫ t

tk

eα(t−s)wT (s)Siw(s)ds < ...

... < eα(t−0)µNp(0,t)V (0)

+ µNp(0,t)
∫ t1

0

eα(t−s)wT (s)Siw(s)ds

+ µNp(t1,t)
∫ t2

t1

eα(t−s)wT (s)Siw(s)ds+ ...

+ µ

∫ tk

tk−1

eα(t−s)wT (s)Siw(s)ds

+

∫ t

tk

eα(t−s)wT (s)Siw(s)ds,

= eα(t−0)µNp(0,t)V (0)

+

∫ t

0

eα(t−s)µNp(0,t)wT (s)Siw(s)ds,

< eαtµNp(0,t)V (0)

+ µNp(0,t)eαt
∫ t

0

wT (s)Siw(s)ds,

< eαTµNp(0,T )[V (0) +
∫ T

0

wT (s)Siw(s)ds]

< eαTµNp(0,T )[V (0) + λmax(Si)d ]. (28)

FromDefinition 2.4, we knowNp(0, t) < T
τa
. Noting that Si <

λ6I , we have

V (t) < e(α+
lnµ
τa

)T [V (0) + λ6d ]. (29)

Then

V (t) = Vi(t) ≥ xT (t)P̃−1
i x(t) = xT (t)R

1
2P−1

i R
1
2 x(t)

≥ 1

λmax(Pi)
xT (t)Rx(t).
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Noting that , λ1R−1 < P̃i < R−1 we have λmax(Pi) < 1, then

V (t) > V1i(t) > xT (t)Rx(t). (30)

On other hand

V (x(0)) = xT (0)Pix(0) +
∫ 0

−h(0)
eα(−s)xT (s)Q1ix(s)ds

+

∫ 0

−h

∫ 0

θ

eα(−s)ẋT (s)Q2iẋ(s)dsdθ

+

∫ 0

−h

∫ 0

θ

eα(−s)xT (0)Zix(s)dsdθ.

≤
(
λ2 + hλ3 +

h2

2
λ4 +

h2

2
λ5

)
sup

−τ̄≤θ≤0
{xT (θ)Rx(θ), ẋT (θ)Rẋ(θ)}.

V (x(t)) ≤ e(α+
lnµ
τa

)T
[(

λ2 + hλ3 +
h2

2
λ4 +

h2

2
λ5

)
c1 + dλ6

]
.

(31)

From (9) we have

xT (t)Rx(t) < c2. (32)

By Definition 2.1, the system (7) is finite-time boundedness.
This completes the proof. □

Remark 3.2: Based on the theorem presented above, we can
conclude that the system described in equation (7) shows
finite-time boundedness. If we set the term w(t) = 0 in
equation (7), we can conclude the theorem as representing
finite-time stable.

Next, we focus on the finite-time boundedness of the (4).

B. FINITE-TIME L2 − L∞ PERFORMANCE
Theorem 3.3: For given positive scalars T , c1, c2, d , h, hM ,
Ki, ϵ, ϵa and α the system (4) with Bi = 0 is finite-time
boundedness with a prescribed level of noise attenuation
γ > 0 if there exist symmetric positive definite matrices
Pi > 0, Q1i > 0, Q2i > 0, Zi > 0 and any appropriate
dimensional matricesM1i > 0,M2i > 0 and Li > 0 such that
the following LMIs holds:

∑̃
2
=


Σ2 ΘT hΠT Â
∗ − 1

hQ2i 0 0
∗ ∗ −Q2i 0
∗ ∗ ∗ −I

 < 0, (33)

e(α+
lnµ
τa

)T [(β)c1] < λ1c2. (34)

Then, under the following average dwell time scheme

τa > τ∗a =
T lnµ

ln(c2e−αT )− ln(β)c1
, (35)

the system is finite-time bounded with respect to
(c1, c2,T ,R, p(t)), where µ>1 satisfying

Ps < µPi,Q1s < µQ1i,Q2s < µQ2i,Zs < µZi, ∀i, s ∈ N.
(36)

and

Σ2 =



Φ11 Φ12 0 0 0 0 Li −Bi
∗ Φ22 0 0 0 0 −Li 0
∗ ∗ Φ33 0 0 Φ36 0 0
∗ ∗ ∗ Φ44 Φ45 0 0 0
∗ ∗ ∗ ∗ Φ55 0 0 0
∗ ∗ ∗ ∗ ∗ Φ66 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ 0 −ϵaBi


,

Â =
[
Ci Cdi 0 0 0 0 Dwi 0

]
.

Φ11, Φ12, Φ22, Φ33, Φ36, Φ44 Φ45,Φ55, Φ66 are defined
in theorem 3.1.
Proof By following similar lines in the proof of Theorem 3.1,
we have,

V̇ (t, e(t))− αV (t) + zT (t)z(t)− γ2wT (t)w(t) < 0. (37)

Define

J = γ2wT (t)w(t)− zT (t)z(t). (38)

Multiplying (37) by e−δt , we have,

d
dt
{e−δtV (t)} < e−δtJ(t). (39)

Integrating this inequality on [0,T ] yields

0 ≤ e−δTV (t) <
∫ T

0

e−δtJ(t)dt. (40)

We have

e−δT
∫ T

0

zT (t)z(t)dt <
∫ T

0

e−δtzT (t)z(t)dt

< γ2

∫ T

0

e−δtwT (t)w(t)dt

< γ2

∫ T

0

wT (t)w(t)dt. (41)

By Definition 2.2 the system (4) is finite-time bounded with
respect to (c1, c2,T ,R, d) and with a prescribed level of noise
attenuation γ > 0. This completes the proof. □

C. FINITE-TIME L2 − L∞ ACTUATOR CONTROL
In this subsection, we will present a detailed procedure for
actuator controller design, i.e., to find the controller gains Ki
for each subsystem. The following theorem gives sufficient
conditions for finite-time boundedness of the closed-loop
system (4)
Theorem 3.4: For given positive scalars T , c1, c2, d , h, hM ,
ϵ, ϵa and α the system (4) is finite-time boundedness with
a prescribed level of noise attenuation γ > 0 if there exist
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symmetric positive definite matrices Pi > 0, Q1i > 0,
Q2i > 0, Zi > 0 and the appropriate matrices M1i > 0,
M2i > 0 and Li > 0 such that the following LMIs holds:

∑̃
3
=


Σ3 ΘT hΠT

1 Â1 BTi K
T
i

∗ − 1
hQ

−1
2i 0 0 0

∗ ∗ −Q2i 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ 0 −I

 < 0,

(42)

e(α+
lnµ
τa

)T (β)c1 < λ1c2.
(43)

Then, under the following average dwell time scheme

τa > τ∗a =
T lnµ

ln(c2e−αT )− ln(β)c1
, (44)

the system is finite-time bounded with respect to
(c1, c2,T ,R, p(t)), where µ>1 satisfying

Ps < µPi,Q1s < µQ1i,Q2s < µQ2i,Zs < µZi, ∀i, s ∈ N.
(45)

and

Σ3 =



Φ̂11 Φ̂12 0 0 0 0 Li −Bi
∗ Φ̂22 0 0 0 0 −Li 0

∗ ∗ Φ̂33 0 0 Φ̂36 0 0

∗ ∗ ∗ Φ̂44 Φ̂45 0 0 0

∗ ∗ ∗ ∗ Φ̂55 0 0 0

∗ ∗ ∗ ∗ ∗ Φ̂66 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ 0 −ϵaBi


,

Φ̂11 = 2PiAi + Q1i + dQ3i +M1i +MT
1i − αPi,

Φ̂12 = −AdiPi −MT
1i +M2i, , Φ̂22 = e−αh(t)Q1 −MT

2i

−M2i, Φ̂33 = e−αh

h Zi − 3e−αh

h Zi, Φ̂36 = 6e−αh

h2 Zi,
Φ̂44 = e−αh

h Zi− 3e−αh

h Zi, Φ̂45 = 6e−αh

h2 Zi, Φ̂55 = − 12e−αh

h3 Zi,
Φ̂66 = − 12e−αh

h3 Zi,
Θ =

[
AiQ2i AdiQ2i 0 0 0 0 BwiQ2i BiQ2i

]
,

Π̂ =
[
M1i M2i 0 0 0 0 Li 0

]
,

Â =
[
Ci Cdi 0 0 0 0 Dwi 0

]
.

Proof Following the same line of proof as presented in the
Theorem 3.3 and applying the Schur complement lemma to
equation (33), we can draw a conclusion regarding the be-
havior of (42). Consequently, we establish that the switching
system described in (4) shows finite-time boundedness. As a
result, this completes the proof. □

Remark 3.5: To obtain an optimal finite-time L2−L∞ perfor-
mance against unknown inputs, the attenuation level γ2 can be
reduced to the minimum possible value such that LMIs (33)-
(36) are satisfied with a fixed α. The optimization problem
can be described as follows: min s:t: LMIs (33)-(36) with γ2

IV. NUMERICAL EXAMPLES
In this section we have given numerical examples to verify
the effectiveness of the presented method.
Example 4.1:Water Pollution Control ProblemWe present
the simulation results in this section, based on [40] and [41]
first simplifying this water pollution system into a switched
linear time-delay one, then providing a switching control
method, and finally presenting the simulation results for the
system (7) without disturbance. System Description: As an

FIGURE 1. Water Pollution Control Problem

example, let us consider an area along a river that has a waste
treatment facility at its beginning. At time t, y(t) denotes bio-
chemical oxygen demand (BOD) and q(t) denote dissolved
oxygen content in the reach. In this case, we assume constant
flow rates and well-mixed water in the reach, and that when
the flow enters the reach at instant t − τ , BOD and DO are
equal to their previous states [40]. The system dynamics are
first described by defining two parameters ℘1 = QE

v and
℘2 = Q

v , where QE and Q are the effluent flow and stream
flow, respectively, and v defines the flow in the reach. By
mass balance concentrations, we can obtain the following
switched delay-differential equations that govern BOD and
DO dynamics (where ℘1 and ℘2 are 0.1 : 0.9 and 0.2 : 0.8,
respectively):

ẋ(t) =Aix(t) + Adix(t − h(t)) + Bisat(u(t))

x(t) =ϕ(t), t ∈ [−hM , 0], (46)

where x = [y(t)−y∗, q(t)−q∗], therein z∗ and q∗ are desired
steady-state values of BOD and DO, respectively, and other
parameters are listed as follows:

A1 =

[
−κ10 − ℘1

1 − ℘1
2 0

−κ30 −κ20 − ℘1
1 − ℘1

2

]
,

A1 =

[
−κ10 − ℘2

1 − ℘2
2 0

−κ30 −κ20 − ℘2
1 − ℘2

2

]
,

Ad1 =

[
℘1
2 0
0 ℘1

2

]
,Ad2 =

[
℘2
2 0
0 ℘2

2

]
,

B1 =

[
℘1
1 0
0 1

]
,B2 =

[
℘2
1 0
0 1

]
.

Based on [40], the following values are chosen for the param-
eter values: ℘1

1 = 0.1, ℘2
1 = 0.2, ℘1

2 = 0.9, ℘2
2 = 0.8, κ10 =
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1.6, κ20 = 1.0, κ30 = 0.6, z∗ = 1.3750, qast = 6.0,
h = 5.2, hM = 0.5, d = 0.2,T = 5, c1 = 2.2, µ = 1.2, α =
0.005. By solving the LMIs in Theorem 3.1, that the optimal
value of c2 depends on parameter α. By solving the matrix
inequalities (8)-(11), we can get the optimal bound of c2 with
different value of α in each subsystems.The smallest bound
can be obtained as c2 = 4.5651 when α = 0.005 and we
obtain feasible solutions as follows:

P1 =

[
94.7613 −9.7732
−9.7732 79.0008

]
, Q11 =

[
5.5558 −0.5631
−0.5631 4.5208

]
,

Q21 =

[
1.4102 −0.1617
−0.1617 1.0922

]
, Z1 =

[
2.6297 −0.2707
−0.2707 2.1399

]
,

S1 =

[
29.8679 −2.9594
−2.9594 49.4804

]
, P2 =

[
78.8410 −3.6993
−3.6993 65.5524

]
,

Q12 =

[
49.4027 0.3073
0.3073 40.7624

]
, Q22 =

[
7.3744 −0.6521
−0.6521 9.9667

]
,

Z2 =

[
48.2782 2.3655
2.3655 21.1940

]
, S2 =

[
38.7956 −2.8749
−2.8749 75.4845

]
.

0 5 10 15 20 25 30 35 40 45 50

-3

-2

-1

0

1

2

3

FIGURE 2. State trajectories of the considered model (46) without
controller.
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FIGURE 3. State trajectories of the considered model (46) with controller.

As a result of the above control gain matrices and x(0) =
[1.4 2.7]T as the initial value, the simulation results of the state
response and control trajectory of the proposed model (46)
are plotted in Figs. 1-4. Fig. 1 illustrates the state responses
of the system (46) with uncontrolled. As shown in Fig. 2, the
proposed control strategy can ensure the finite-time stability
of the considered system (46). Fig. 3 shows the trajectory

0 5 10 15 20 25 30 35 40 45 50

-0.2

-0.1

0

0.1

0.2

0.3

0.4

FIGURE 4. Control input response.
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1
Water Pollution Control with Switched System

0 5 10 15 20 25 30 35 40 45 50
-0.5

0

0.5

1

1.5
Switching Signal

FIGURE 5. Evolution of switching signal.

of the saturated control input. Fig. 4 illustrates the estimate
of the switching signal and its water pollution control with
switched system. Compared to the existing results [42], Fig.
2 shows that our method provides better robust stability than
[42] even when the saturation inputs, and it is obvious that our
controller (3) consumes less control energy than the controller
in [40], [42]. The asymptotic stability of [42] has been consid-
ered in addition to the comparison of the arbitrary switching
signal strictness. When switching harshness varies arbitrary,
the switched system may become unstable, while the same
system can maintain stability when switching harshness is
based on dwell time. Despite its random nature and variations
in response to industrial discharges, the water pollutionmodel
does not have a high-frequency switching signal. For stream
water quality control problems, slow switching signals that
enforce remaining in subsystems are feasible, and saturation
control inputs are practical and progressive. This confirms the
superiority of the proposed method.
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Remark 4.1:Note that the conditions (9) are dependent on the
size of c2, then we can also get the optimal lower bound of
c2 to guarantee the finite-time stability by solving a simple
optimal problem. For example, we can obtain the optimal
lower bound of c2 is 4.5651.
Example 4.2: Consider the actuator saturation with switched
time-delay system (1) and the following parameters: A1 =[

2.5 0
0 3.5

]
, Ad1 =

[
0.2 1.2
−0.5 1.2

]
, B1 =

[
−0.1
−0.4

]
,

Bw1 =

[
2
0.3

]
,

C1 =

[
−0.3 0.2
0.3 −0.03

]
, Cd1 =

[
−0.6 0.5
2.1 0.1

]
,

Dw1 =

[
0.3
0.1

]
, A2 =

[
3 0
0 4

]
, Ad2 =

[
0.1 −1.1
0.3 −0.8

]
,

B2 =

[
0.3
−0.1

]
, Bw2 =

[
1
0.6

]
,

C2 =

[
−0.4 0.1
0.2 −0.3

]
, Cd2 =

[
−0.8 0.4
−2.2 0.2

]
,

Dw2 =

[
0.5
0.2

]
h = 0.7, hM = 1.6, d = 0.003, T = 5, c1 = 1.4, c2 =
7.9 µ = 1.3, α = 0.02. Solve the LMIs in Theorem 3.4, we
obtain the feasible solutions as follows:

P1 =

[
91.5023 59.5738
59.5738 59.3507

]
, Q11 =

[
0.3870 0.2811
0.2811 0.2160

]
,

Q21 =

[
0.9370 0.6525
0.6525 0.5037

]
, Z1 =

[
17.6717 12.4013
12.4013 10.5504

]
,

P2 =

[
7.9658 5.5558
5.5558 4.9213

]
, Q21 =

[
29.0450 19.9782
19.9782 16.1920

]
,

Q22 =

[
0.3624 0.2719
0.2719 0.2129

]
, Z2 =

[
43.0322 27.1583
27.1583 28.3567

]
.

We obtained the saturation gain matrices as,

K1 =
[
−0.1621 −0.5423

]
, K2 =

[
−1.7542− 0.2486

]
.

The system is finite time stabilizable with the prescribed
L2 − L∞ performance γ2 = 0.6. Figure 6, Figure 7, Figure
8, and Figure 9 shows the state responses of the system with
different initial values.

Remark 4.2: This work addresses the finite-time boundedness
of switched time-varying systems with actuator saturation. In
contrast to research results on finite-time boundedness in [
[2], [4], [23], [28]], which investigated switched, filtering,
and discrete-time systems respectively, we explore finite-
time switched systems with actuator saturation using LMIs
and introduce new integral inequalities in this paper. Con-
sequently, the approach presented in this work proves to be
more effective while managing the system’s complexity. In
Table 1, a comparison table with previously published results
is presented below.
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FIGURE 6. State responses of the closed-loop system (1) in Example 4.2.
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FIGURE 7. State responses of the closed-loop system (1) in Example 4.2.
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FIGURE 8. State responses of the closed-loop system (1) in Example 4.2.

V. CONCLUSION
In this study, we have investigated the intricate problem of
finite-time L2 − L∞ control for switched systems with time-
varying delays and actuator saturation. Our primary contri-
butions encompass the derivation of a sufficient condition for
ensuring the finite-time boundedness of the closed-loop sys-
tem, achieved through the application of the Lyapunov func-
tional approach.We have demonstrated that the resulting con-
troller can be efficiently obtained using cutting-edge Linear
Matrix Inequality techniques. Extensive numerical examples
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FIGURE 9. State responses of the closed-loop system (1) in Example 4.2.

[2] [4] [28], [23] [35] Our Paper
Finite-time

√ √ √
×

√

Switched
√ √ √

×
√

L2 − L∞ × × ×
√ √

Actuator saturation ×
√ √

×
√

TABLE 1. Comparison with other works.

and simulations have validated the practical effectiveness of
our proposed methodology by MATLAB. Looking forward,
our research opens avenues for future work, including the
extension of our approach to tackle fractional-order systems
with distributed delays and the exploration of solutions to
address uncertainty mining and control challenges, promising
advancements in the field of finite-time control.
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Abstract

This article investigates the H∞ control problem for discrete-time interval type-2 (IT2) fuzzy systems with infinite
distributed delay via an adaptive event-triggered scheme. The IT2 T-S fuzzy system, which is a development over the
(type-1) T-S fuzzy system, has greater effectiveness for the expression of system uncertainty, which will improve the
difficulty of analysis. Our main goal is to make more efficient use of network resources by developing an adaptive event-
triggered controller for interval type-2 fuzzy systems. In contrast to the traditional triggering method, an adaptive
event-triggered technique is proposed to improve bandwidth consumption and network control performance. The
triggering function’s parameters are based on an adaptive law. Moreover, employing the Lyapunov functional method,
the resultant criterion gives sufficient conditions to guarantee that discrete time IT2 fuzzy systems are mean-square
exponentially stable with a H∞ performance. Finally, a single-link robot arm model and a DC motor are employed to
show the usefulness and efficiency of the obtained theoretical results.

Keywords: Adaptive event-triggered scheme, infinite-distributed delay, discrete-time IT2 fuzzy system.

1 Introduction

The Takagi-Sugeno(T-S) fuzzy model has been demonstrated in engineering applications and theoretical research fields
to better deal with the nonlinearity of the system [2]. The T-S fuzzy model has received extensive attention from
researchers in sliding mode control design, output feedback control, event-triggered control, and so on [13, 24, 25]. Due
to its uniform approximation property, this model can be transformed into a linear system with a few local subsystems.
The type-1 T-S model has been proven to be an effective tool for analyzing nonlinear systems by converting them into
some sub-local linear systems with weighting summation. The parameter uncertainties in the membership functions,
which are present in every practical application, cannot be handled by type-1 fuzzy systems [7]. Also, with the IT2
fuzzy system, the parameter uncertainties can be effectively extracted by the following bounds, that is, by the bounds
of the upper member function and the lower member function. The T-S fuzzy system was proposed to describe such
systems in [34] where there are unclear parameters in discrete-time systems. In fact, IT2 fuzzy systems are usually
preferred due to their easy design and beneficial applicability to larger networks. It has been demonstrated that IT2 T-S
fuzzy systems are superior in various fields compared to type-1 T-S fuzzy models [22]. Recently, dwell-time-dependent
H∞ bumpless transfer control for discrete-time switched interval type-2 fuzzy systems described in [33]. The IT2 fuzzy
model has attracted a lot of interest from researchers in recent years [10, 35]. The sliding mode control problem of
discrete-time IT2 Markov jump systems subject to external disturbances and time-varying delays is described in [18].

Discrete-time systems have a strong tradition in engineering applications. The study of time-delay systems stability
analysis and controller design has become a popular research topic in recent years, with a number of famous results
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being reported [5, 20, 27, 37]. Recent developments in discrete-time delay state systems involve tighter sum over bounds
Wirtinger’s inequality, resulting in less conservative analysis requirements. Synchronization and state estimation for
discrete-time complex networks with distributed delays is studied in [14]. Quantized static output feedback control for
discrete-time systems. The l2 − l∞ control of discrete-time with randomly occurring delays via IT2 fuzzy model [36].
Time delay fuzzy system have been effectively employed in a wide range of domains, including system identification,
modeling chemical plants and other industrial processes [12, 21, 30, 31]. The delay-dependent reliable control problem
for discrete-time systems with H∞ are discussed by many researchers [15, 19].

Event-triggered control (ETC) techniques are thought to be a good way to save communication resources. When
compared to a traditional sampled-data control, an event-triggered control can help reduce the number of control tasks
[9, 23, 29]. A number of control strategies are based on an event-triggered scheme as discussed in [1, 6]. However, the
event-triggered scheme greatly aids in more efficient utilisation of network resources and decreases the transmission load
of the broadband network, and many successful results have been attained. It has a wide range of applications since it
is inspired by the event-triggered scheme [4]. Traditional ETC for nonlinear systems was developed into adaptive event-
triggered control. In recent years, the literature has described a variety of event-triggered methods as an alternative
methodology for reducing communication resources, one of which is event-triggered control (ETC) in [28]. Further, a
new ETS with an adaptive law was proposed to reduce the use of communication resources, and it is utilised to address
the challenging issue of fuzzy network systems in [26]. Some recent results about AETS is described in [11, 16, 17, 32].
H∞ control problem for networked contorl system via AETS discussed in [26]. Resilient adaptive event-triggered fuzzy
tracking control and filtering discussed in [3]. It is essential to develop a more effective AETS for discrete-time IT2 T-S
fuzzy systems in light of the aforementioned concerns.

The goal of this research work is to develop a H∞ control structure for discrete-time IT2 fuzzy systems via adaptive
event-triggered scheme in order to increase effective communication while maintaining desirable control performance.
The below are the major contributions:
(1) We focus on the H∞ control problem for the discrete-time IT2 fuzzy system with infinite distributed delay via
adaptive event-triggered scheme.
(2) In contrast to traditional triggering scheme, the adaptive event-triggered scheme is proposed to reduce energy con-
sumption. Furthermore, we verify that this adaptive event-triggered scheme has no Zeno behaviour associated with it.
(3) This study is distinct from previous work [7, 34], since it is the first to describe an IT2 fuzzy system with infinite
distributed delay.
(4) The fundamental aim is to create an adaptive event-triggered control and it ensure exponentially mean-square stable
with H∞ performance index.
(5) The numerical results include a single-link robot arm model and a DC motor are employed to show the usefulness
and efficiency of the obtained theoretical results.

Notations: In this study, Rn denotes n-dimensional real vector space. The transpose of vector A is AT . The
space of summable sequences over [0,∞) is denoted as l2[0,∞). Set of positive reals are denoted as R≥0. To establish
symmetric structure, the symbol ∗ will be employed in matrix expressions. n×n identity matrix is denoted by In. E(x)
represents the mathematical expectation of x. ‖ · ‖ denotes the Euclidean norm for vectors.

2 Preliminaries

2.1 System description:

The IT2 T-S fuzzy model can be used to estimate a class of nonlinear plants that are uncertain. Consider the discrete-
time IT2 T-S fuzzy system is described as follows.

Plant Rule i: IF g1($(℘)) is Gi1 and ... and gr($(℘)) is Gir, THEN $(℘+ 1) = Ai$(℘) +Aιi
∑∞
d=1 λd$(℘− d) +B1iw(℘) + C1iu(℘),

z(℘) = Di$(℘) +B2iw(℘) + C2iu(℘),
$(℘) = θ(℘), ℘ ∈ Z−.

(1)

where Gir̄(r̄ = 1, 2, ..., r) and g($(℘)) = [g1($(℘)), g2($(℘)), ..., gr($(℘))] denotes fuzzy sets and premise variables,
respectively. The scalar q is the number of IF-THEN rules of the system. u(℘) ∈ Rm is the controlled input vector, φ(℘)
is the initial state vector, w(℘) ∈ Rp is the disturbance input vector, z(℘) ∈ Rs is the output vector, which is unknown
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but that belongs to l2[0,∞) and $(℘) ∈ Rn is the state vector. Constant matrices are Ai, Aιi, B1i, B2i, C1i, C2i, D1i.
The constants λd ≥ 0, (d = 1, 2, ...) satisfies the converging condition given below [27]:

λ̄ =

∞∑
d=1

λd <∞,
∞∑
d=1

dλd <∞. (2)

Remark 2.1. In system (1), the term
∑∞
d=1 λd$(℘−d) represents the infinite distributed delay in discrete-time model

[23], which is equivalent to the infinite-distributed delay
∫ t
−∞ ℘(t − g)dg in continuous time system. The convergent

condition (2) guarantees the fuzzy Lyapunov functional (to be developed later) convergent and
∫∞
d=1

λd$(℘−d) is ensured,
which is necessary for the system’s stability.

The interval firing strength corresponding to ith plant rule is represented as follows:

Ωi($(℘)) = [αi($(℘)), αi($(℘))], (3)

where αi($(℘)) and αi($(℘)) the denote the upper and lower firing strengths,

αi($(℘)) = Πr
m=1ϕGim(gm($(℘))) ≥ 0, (4)

αi($(℘)) = Πr
m=1ϕGim

(gm($(℘))) ≥ 0. (5)

where ϕGim(gm($(℘))) ∈ [0, 1] and ϕ
Gim

(gm($(℘))) ∈ [0, 1] are represent the upper and lower grade memberships of

(gm($(℘))), respectively. ϕGim(gm($(℘))) ≥ ϕ
Gim

(gm($(℘))) ≥ 0 and αi($(℘)) ≥ αi($(℘)) ≥ 0.

The global model of system (1) is described as,{
$(℘+ 1) = Σqi=1αi($(℘))[Ai$(℘) +Aιi

∑∞
d=1 λd$(℘− d) +B1iw(℘) + C1iu(℘)],

z(℘) = Σqi=1αi($(℘))[Di$(℘) +B2iw(℘) + C2iu(℘)].
(6)

The variable αi($(℘)) is the membership of the plant and satisfy Σqi=1αi($(℘)) = 1, and αi($(℘)) = α̃i($(℘))
Σqε=1α̃ε($(℘))

≥
0 with α̃i($(℘)) = πi($(℘))αi($(℘)) + πi($(℘))αi($(℘)) ≥ 0. πi($(℘)) and πi($(℘)) denote non-linear weighting
functions and satisfy πi($(℘)) + πi($(℘)) = 1, 0 ≤ πi($(℘)) ≤ 1 and 0 ≤ πi($(℘)) ≤ 1.

Remark 2.2. In recent years, research on type-2 fuzzy systems has attracted a lot of attention [10, 35]. The non-
linearities but not the uncertainties can be efficiently captured by type-1 fuzzy sets. The Type-2 fuzzy model handles
uncertainty well, in contrast to the conventional T-S fuzzy model. The generalized type-2 fuzzy set can be computed
more quickly using the IT2 fuzzy set while still having the additional benefit of being able to handle uncertainty with
simplicity.

2.2 Adaptive event-triggered scheme:

An adaptive event-triggered scheme (AETS) introduced between the sensor and the controller to reduce effectively the
communication burden of the shared network. ℘ilh(l = 0, 1, 2, ...), where h is the sampling period, ℘il is non-negative
integer. The initial instant is ℘i0h = 0.

The mathematical model of the adaptive event-triggered law is written as follows

eTi (℘)Θei(℘) ≤ γi(t)$T
i ((℘il + j)h)Θ$i((℘

i
l + j)h), (7)

where ei(℘) = $i(℘
i
lh)−$i((℘

i
l + j)h), Θ > 0 is the parameter of adaptive event-triggered scheme to be determined,

and γi(℘) satisfies the following condition.

γi(℘) =
θi

γi(℘)

[ 1

γi(℘)
− ϑi(℘)

]
eTi (℘)Θei(℘), (8)

where 0 ≤ γi(℘) < 1, ϑi > 0, θi > 0.

Thus, based on the triggering law (8), the next released instant can be determined by the following expression.

℘il+1h = ℘ilh+min{jh|eTi (t)Θiei(t) > γi(℘)$T
i ((℘il + j)h)Θi$i((℘

i
l + j)h}. (9)
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It is unavoidable that the occurrence of communication delay when signals are transmitted in the network channels.
One can assume that the delay is expressed by ιil, where ιil ∈ [0, ιiM ], then the time ℘ of the transmitted data arriving
at controller satisfies ℘ ∈ [℘il + ιil, ℘

i
l+1h+ ιik+1).

Defining ιi(℘) = ℘− ℘il+1, ℘ ∈ [℘il + ιil, ℘
i
l+1h+ ιil+1), the actual sensor measurement error $̄i(℘) can be written as

$̄(℘) = $(℘ilh) = $(℘− ι(℘)) + e(℘). (10)

Remark 2.3. Different from traditional event-triggered scheme [6, 9], the adaptive event-triggered scheme is introduced.
According to equation (8) using the dynamically adjusted threshold γi(℘) and reducing the number of unnecessary data
packet transmissions is possible using the event generator with adaptive law. In (8), when the parameter ϑi(℘) = 1

γ(0) ,

one can get the adaptive event-triggered law γ̇(℘) = 0. That indicates that the proposed AETS will become a standard
time-triggered strategy. The adaptation law γ(℘) → 0 indicates that the thresold of AETS does not need adjustment if
the system gradually obtains stability.

2.3 Controller design:

The design interval type-2 fuzzy controller with mismatched premises can improve design flexibility against deception
attacks.
The fuzzy control law is considered as follows:
Controller Rule j: IF f1($(℘)) is F j1 and f2($(℘)) is F j2 and ,...,fs($(℘)) is F js , THEN

u(℘) = Kj$̄(℘), (j = 1, ..., q) (11)

where F js̄ (s̄ = 1, 2, ..., s) and f($(℘)) = [f1($(℘)), f2($(℘)), ..., fs($(℘))] denotes the related fuzzy set and premise
variables, respectively. The scalar q is the number of IF-THEN rules of the system. Kj are controller gains to be
designed, $̄(ν) is the signals transmitted through the network to the controller.
The interval firing strength corresponding to jth plant rule is represented as,

Γi($(℘)) = [β
i
($(℘)), βi($(℘))], (12)

where βj($(℘)) and β
j
($(℘)) are denotes the upper and lower firing strengths,

βj($(℘)) = Πs
n=1ϕFjn(fn($(℘))) ≥ 0, (13)

β
j
($(℘)) = Πs

n=1ϕFjn
(fn($(℘))) ≥ 0. (14)

where ϕFjn(fn($(℘))) ∈ [0, 1] and ϕ
Fjn

(fn($(℘))) ∈ [0, 1] are represent the upper and lower grade memberships of

(fn($(℘))), respectively. ϕFjn(fn($(℘))) ≥ ϕ
Fjn

(fn($(℘))) ≥ 0 and βj($(℘)) ≥ β
j
($(℘)) ≥ 0.

Based on fuzzy reasoning process, the over all controller is derived as:

u(℘) = Σqj=1βj($(℘))Kj$̄(℘), (15)

where βj($(℘)) represent the grade membership and satisfy Σqj=1βj($(℘)) = 1 and βj($(℘)) =
β̃j($(℘))

Σqε=1β̃ε($(℘))
with

β̃j($(℘)) = νj($(℘))β
j
($(℘))+νj($(℘))βj($(℘)) ≥ 0. νj($(℘)) and νj($(℘)) denote non-linear weighting functions

and satisfy νj($(℘)) + νj($(℘)) = 1, 0 ≤ νj($(℘)) ≤ 1 and 0 ≤ νj($(℘)) ≤ 1.

Substituting (15) into (10), the control input is described as follows:

u(℘) = Σqj=1βj($(℘))Kj [$(℘− ι(℘)) + e(℘)]. (16)

Based on the above discussions, by using (6) and (16), the closed-loop discrete-time IT2 fuzzy systems is formulated as
follows: 

$(℘+ 1) = Σqi=1Σqj=1αiβj{Ai$(℘) +Aιi
∑∞
d=1 λd$(℘− d) +B1iw(℘) + C1iKj [e(℘)

+$(℘− ι(℘))]},
z(℘) = Σqi=1Σqj=1αiβj{Di$(℘) +B2iw(℘) + C2iKj [$(℘− ι(℘)) + e(℘)]}.

(17)
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Let A = Σqi=1αiAi, Aι = Σqi=1αiAι, B1 = Σqi=1αiB1i, B2 = Σqi=1αiB2i, C1 = Σqi=1Σqj=1αiβjC1i, and

C2 = Σqi=1Σqj=1αiβjC2i.

The equation (17) can be written in compact form as{
$(℘+ 1) = A$(℘) +Aι

∑∞
d=1 λd$(℘− d) +B1w(℘) + C1Kj [e(℘) +$(℘− ι(℘))],

z(℘) = D$(℘) +B2w(℘) + C2Kj [$(℘− ι(℘)) + e(℘)].
(18)

Definition 2.4. [27] In the mean square sense, the system (10) is considered to be exponentially stable, with initial
condition ψ(℘) = 0, if there exist constants α and β with, α > 0 and 0 < β < 1, such that

|| $(℘) ||2< αβ℘ sup
s∈Z−

|| ψ(s) ||2 . (19)

Definition 2.5. [27] The system (10) with w(℘) = 0 is said to be exponentially mean-square stable. If for a given dis-
turbance attention level δ > 0, then the system (10) is said to be exponentially mean-square stable with H∞ performance
δ and under zero initial condition,

∞∑
℘=0

|| z(℘) ||2< δ2
∞∑
℘=0

|| w(℘) ||2, (20)

is satisfied and ω(℘) ∈ l2[0,+∞).

Lemma 2.6. [14] For any matrix M > 0, vectors $i ∈ Rn and scalar constants ai(i = 1, 2, ...) if the series concerned
are convergent, then the following inequality holds:( ∞∑

i=1

ai$i

)T
M
( ∞∑
i=1

ai$i

)
≤
( ∞∑
i=1

ai

) ∞∑
i=1

ai$
T
i M$i.

Lemma 2.7. [20] (Schur Complement) Given constant matrices S1, S2, S3, where S1 = ST1 and S3 < 0, then S1 −
S2S

−1
3 ST2 < 0 if and only if [

S1 S2

ST2 S3

]
< 0.

Lemma 2.8. [15] For any positive symmetric constant matrix R ∈ Rn×n. ιm, ιM are any scalar which satisfies the
condition ιm ≤ ιM . The vector valued function ξ(℘) = η(℘+ 1)− η(℘), we have

−
℘−ιm−1∑
i=℘−ιM

ξT (i)Rξ(i) ≤ − 1

ιM − ιm

℘−ιm−1∑
i=℘−ιM

ξT (i)R
℘−ιm−1∑
i=℘−ιM

ξ(i),

−
ιm−1∑
j=−ιM

℘−1∑
i=℘+j

ξT (i)Rξ(i) ≤ − 2

(ιM − ιm)(ιM + ιm + 1)

ιm−1∑
j=−ιM

℘−1∑
i=℘+j

ξT (i)Rξ(i)
ιm−1∑
j=−ιM

℘−1∑
i=℘+j

ξ(i).

3 Main Results

Theorem 3.1. For a given constant δ > 0, ϑ > 0, discrete-time IT2 T-S fuzzy system (18) is mean-square exponentially
stable with H∞ performance δ, if there exist a positive definite matrices R1 > 0, Q1 > 0, R2 > 0, Q2 > 0, R3 > 0,W >
0, R > 0, Pi > 0 and event triggered parameter matrix Θ, such that the following inequalities hold.[

Φ δI
∗ −Pi

]
< 0, (21)
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Φ =



Φ11 Φ12 Φ13 0 Φ15 0 Φ17 Φ18 0 0 0
∗ Φ22 0 0 0 0 Φ27 0 0 0 0
∗ ∗ Φ33 0 0 0 Φ37 0 0 0 0
∗ ∗ ∗ Φ44 Φ45 0 0 0 Φ49 0 0
∗ ∗ ∗ ∗ Φ55 Φ56 Φ57 0 Φ59 Φ5,10 0
∗ ∗ ∗ ∗ ∗ Φ66 0 0 0 0 Φ6,11

∗ ∗ ∗ ∗ ∗ ∗ Φ77 Φ78 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ88 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ99 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ10,10 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ11,11


, (22)

where,
Φ11 = −Pi +W + (ι∗)R+R11 +R21 +R31 + ι2R1 − Q2

ιM
+ 2N1[A(℘)− I], Φ12 = 2N1Aι(℘),

Φ13 = 2N1B1(℘), Φ15 = 2N1KC1(℘) + γΘ + Q2

ιM
, Φ17 = 2N1A[℘− I1]− 2N1 +R12 +R22 +R32,

Φ18 = −2N1KC1(℘), Φ22 = −λ−1R, Φ27 = 2N1Aι(℘), Φ33 = −δ2I, Φ37 = 2N1B1(℘),
Φ44 = −R21 − Q1

ι∗
, Φ45 = Q1

ι∗
, Φ49 = −2R22, Φ55 = −W −R11 − 2Q1

ι∗
+ Θ− 2Q2

ι∗
− Q2

ιM
,

Φ57 = 2N1C1(℘), Φ5,10 = −2R12, Φ66 = −Q1

ι∗
− Q2

ι∗
− R31, Φ6,11 = −R32, Φ77 = R13 + R23 + R33 + ι∗R1 +

ι∗Q1 + ιMQ2 − 2N1, Φ78 = −2N1KC1(℘) Φ88 = −ϑΘ, Φ99 = −R23,
Φ10,10 = −R13, Φ11,11 = −R33, Φ56 = Q1

ι∗
+ Q2

ι∗
, and ι∗ = ιM − ιm

Proof. The following Lyapunov functional candidate is considered:

V1(℘) =$T (℘)Pi(℘)$(℘) +

∞∑
d=1

λd

℘−1∑
ῑ=℘−d

$(ῑ)TR$(ῑ),

V2(℘) =

℘−1∑
i=℘−ι(℘)

$T (i)W$(i),

V3(℘) =

℘−ιm∑
i=℘−ιM

$T (i)W$(i),

V4(℘) =

℘−1∑
i=℘−ι(℘)

µT (i)R1µ(i) +

℘−1∑
i=℘−ιm

µT (i)R2µ(i) +

℘−1∑
i=℘−ιm

µT (i)R3µ(i),

V5(℘) =

−ιm∑
j=−ιM+1

℘−1∑
i=℘+j

µT (i)R1µ(i) +

−ιm−1∑
j=−ιM

℘−1∑
i=℘+j

xT (i)Q1x(i) +

−1∑
j=ιM

℘−1∑
i=℘+j

xT (i)Q2x(i),

V6(℘) =
1

2
γT (℘)γ(℘).

Here µ(℘) = [$T (℘) xT (℘)]T and xT (℘) = $(℘+ 1)−$(℘).

J =

N−1∑
℘=0

(
zT (℘)z(℘)− δ2wT (℘)w(℘)

)
. (23)

Then, we get

V̇1(℘) = {$(℘+ 1)TPi(℘+ 1)$(℘+ 1)−$(℘)TPi(℘)$(℘) + λ̄$(℘)TR$(℘)−
∞∑
d=1

λd$(℘− d)TR$(℘− d)}. (24)

By applying (2) and Lemma 2.6, we get

−
∞∑
d=1

λd$(℘− d)TR$(℘− d) ≤ −λ̄−1
[ ∞∑
d=1

λd$(℘− d)
]T
R
[ ∞∑
d=1

λd$(℘− d)
]
.
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V̇2(℘) ={
℘∑

i=℘+1−ι(℘+1)

$T (i)W$(i)−
℘−1∑

i=℘−ι(℘)

$T (i)W$(i)},

={$T (℘)W$(℘)−$T (℘− ι(℘))W$(℘− ι(℘)) +

℘∑
i=℘−ι(℘+1)+1

$T (i)W$(i)−
℘−1∑

i=℘−ι(℘)+1

$T (i)W$(i)},

={$T (℘)W$(℘)−$T (℘− ι(℘))W$(℘− ι(℘)) +

℘−ιm∑
i=℘−ιM+1

$T (i)W$(i)}. (25)

V̇3(℘) ={
℘−ιm+1∑

j=℘−ιM+2

℘∑
i=j

$T (i)W$(i)−
℘−ιm∑

j=℘−ιM+1

℘−1∑
i=j

$T (i)W$(i)},

={
℘−ιm∑

j=℘−ιM+1

℘∑
i=j+1

$T (i)W$(i)−
℘−ιm∑

j=℘−ιM+1

℘−1∑
i=j

$T (i)W$(i)},

={(ιM − ιm)$T (i)W$(i)−
℘−ιm∑

j=℘−ιM+1

$T (i)W$(i)}. (26)

V̇4(℘) ={µT (℘)R1µ(℘)− µT (℘− ι(℘))R1µ(℘− ι(℘)) +

℘−ιm∑
i=℘+1−ι(℘+1)

µT (i)R1µ(i)

+

℘−1∑
i=℘+1−ιm

µT (i)R1µ(i)−
℘−1∑

i=℘+1−ι(℘)

µT (i) R1 µ(i) + µT (℘)R2µ(℘)

− µT (℘− ιm) R2 µ(℘− ιm) + µT (℘)R3µ(℘)− µT (℘− ιM )R3µ(℘− ιM )},

≤{µT (℘)(R1 +R2 +R3)µ(℘)− µT (℘− ι(℘))R1µ(℘− ι(℘)) +

℘−ιm∑
i=℘+1−ιM

µT (i)R1µ(i)

− µT (℘− ιm)R2µ(℘− ιm)− µT (℘− ιM )R3µ(℘− ιM )},
≤{$T (℘)(R11 +R21 +R31)$(℘) + 2$T (℘)(R12 +R22 +R32)x(℘) + xT (℘)(R13 +R23

+R33)x(℘)−$T (℘− ι(℘))R11$(℘− ι(℘))− 2$T (℘− ι(℘))R12x(℘− ι(℘))

− xT (℘− ι(℘))R13x(℘− ι(℘))−$T (℘− ιm)R21$(℘− ιm)− 2$T (℘− ιm)R22x(℘− ιm)

− xT (℘− ιm)R23x(℘− ιm)−$T (℘− ιM )R31$(℘− ιM )− 2$T (℘− ιM )R32x(℘− ιM )

− xT (℘− ιM )R33x(℘− ιM ) +

℘−ιm∑
i=℘+1−ιM

µT (i)R1µ(i)}. (27)

V̇5(℘) =
( −ιm∑
j=−ιM+1

[ i∑
i=℘+1+j

µT (i)R1µ(i)−
℘−1∑
i=℘+j

µT (i)R1µ(i)
]

+

−ιm−1∑
j=−ιM

[ ℘∑
i=℘+1+j

xT (i)Q1x(i)

−
℘−1∑
i=℘+j

xT (i)Q1x(i)
]

+

−1∑
j=−ιM

[ ℘∑
i=℘+1+j

xT (i)Q2x(i)−
℘−1∑
i=℘+j

xT (i)Q2x(i)
])
,

=
[
ι2µ

T (℘)R1µ(℘)−
℘−ιm∑

i=℘+1−ιM

µT (i)R1µ(i) + ι2x
T (℘)R1x(℘)−

℘−ιm−1∑
i=℘−ιM

xT (i)Q1x(i)

+ ιMx
T (℘)Q2x(℘)−

℘−1∑
i=℘−ιM

xT (i)Q2x(i)
]
. (28)
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By applying Lemma ??, we get

−
℘−ιm−1∑
i=℘−ιM

xT (i)Q1x(i) =−
℘−ι(℘)−1∑
i=℘−ιM

xT (i)Q1x(i)−
℘−ιm−1∑
i=℘−ι(℘)

xT (i)Q1x(i),

≤− 1

ι2

℘−ι(℘)−1∑
i=℘−ιM

xT (i)Q1

℘−ι(℘)−1∑
i=℘−ιM

x(i)− 1

ι2

℘−ιm−1∑
i=℘−ι(℘)

xT (i)Q1

℘−ιm−1∑
i=℘−ι(℘)

x(i),

≤− 1

ι2

(
{$[℘− ι(℘)]−$[℘− ιM ]}TQ1{$[℘− ι(℘)]−$[℘− ιM ]}+

{$[℘− ιm]−$[℘− ι(℘)]}T ×Q1{$[℘− ιm]−$[℘− ι(℘)]}
)
,

−
℘−1∑

i=℘−ιM

xT (i)Q2x(i) =−
℘−ι(℘)−1∑
i=℘−ιM

xT (i)Q2x(i)−
℘−1∑

i=℘−ι(℘)

xT (i)Q2x(i),

≤− 1

ι2

℘−ι(℘)−1∑
i=℘−ιM

xT (i)Q2

℘−ι(℘)−1∑
i=℘−ιM

x(i)− 1

ιM

℘−1∑
i=℘−ι(℘)

xT (i)Q2

℘−1∑
i=℘−ι(℘)

x(i),

≤− 1

ι2

(
{$[℘− ι(℘)]−$[℘− ιM ]}TQ2{$[℘− ι(℘)]−$[℘− ιM ]}

− 1

ιM
{$[℘]−$[℘− ι(℘)]}T ×Q2{$[℘]−$[℘− ι(℘)]}

)
.

V̇6(℘) =γT (℘)γ̇(℘),

=θ1(
1

γ1(℘)
− ϑ1)eT1 (℘)Θ1e1(℘) + θ2(

1

γ2(℘)
− ϑ2)eT2 (℘)Θ2e2(℘) + ...+ θN (

1

γN (℘)
− ϑN )

× eTN (℘)ΘNeN (℘),

=
θ1

γ

T

1

(℘)Θ1γ1(℘) +
θ2

γ

T

2

(℘)Θ2γ2(℘) + ...+
θN
γ

T

N

(℘)ΘNγN (℘)− θ1ϑ1e
T
1 (℘)Θ1e1(℘)

− θ2ϑ2e
T
2 (℘)Θ2e2(℘)− ...− θNϑNeTN (℘)ΘNeN (℘). (29)

Combining (8) and (29), one can get the following inequality

V̇6(℘) ≤θ1$
T
1 (℘− ι1(℘))Θ1$1(℘− ι1(℘)) + θ2$

T
2 (℘− ι2(℘))Θ2$2(℘− ι2(℘)) + ...

+ θN$
T
N (℘− ιN (℘))ΘN$N (℘− ιN (℘))− θ1ϑ1e

T
1 (℘)Θ1e1(℘)− θ2ϑ2e

T
2 (℘)Θ2e2(℘)− ...

− θNϑNeTN (℘)ΘNeN (℘),

=$T (ι− ι(℘))Θ$(ι− ι(℘))− eT (℘)Θϑe(℘). (30)

In addition, we have

[x(℘)] =[$(℘+ 1)−$(℘)],

0 =
[
2
(

[x(℘)N1 +$(℘)N1][$(℘+ 1)−$(℘)− x(℘)]
)]
, (31)

0 =
[
2
(

[x(℘)N1 +$(℘)N1][A(℘)$(℘) +Aι(℘)

∞∑
d=1

λd$(℘− d) +B1(℘)w(℘)

+ C1(℘)K$(℘− ι(℘))− C1K(k)e(i℘h)−$(℘)− x(℘)]
)]
. (32)
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From the equation (23)-(32), we get

V̇ (℘) ={$(℘+ 1)TPi(℘+ 1)$(℘+ 1)−$(℘)TPi(℘)$(℘) + λ̄$(℘)TR$(℘)− λ̄−1
[ ∞∑
d=1

λd$(℘− d)
]T

R
[ ∞∑
d=1

λd$(℘− d)
]

+$T (℘)W$(℘)−$T (℘− ι(℘))W$(℘− ι(℘)) +

℘−ιm∑
i=℘−ιM+1

$T (i)W$(i)

+ (ιM − ιm)$T (i)W$(i)−
℘−ιm∑

j=℘−ιM+1

$T (i)W$(i) +

℘−ιm∑
i=℘+1−ιM

µT (i)R1µ(i)− eT (℘)Θϑe(℘)

−$T (℘− ι(℘))R11$(℘− ι(℘))− 2$T (℘− ι(℘))R12x(℘− ι(℘))− xT (℘− ι(℘))R13x(℘− ι(℘))

+$T (℘)(R11 +R21 +R31)$(℘) + 2$T (℘)(R12 +R22 +R32)x(℘) + xT (℘)(R13 +R23 +R33)

x(℘)−$T (℘− ιm)R21$(℘− ιm)− 2$T (℘− ιm)R22x(℘− ιm)− xT (℘− ιm)R23x(℘− ιm)

−$T (℘− ιM )R31$(℘− ιM )− 2$T (℘− ιM )R32x(℘− ιM )− xT (℘− ιM )R33x(℘− ιM )

+
[
ι2µ

T (℘)R1µ(℘)−
℘−ιm∑

i=℘+1−ιM

µT (i)R1µ(i) + ι2x
T (℘)R1x(℘) + ιMx

T (℘)R1x(℘)
]
− 1

ι2(
{$[℘− ι(℘)]−$[℘− ιM ]}TQ1{$[℘− ι(℘)]−$[℘− ιM ]}+ {$[℘− ιm]−$[℘− ι(℘)]}TQ1

{$[℘− ιm]−$[℘− ι(℘)]}
)
− 1

ι2

(
{$[℘− ι(℘)]−$[℘− ιM ]}TQ2{$[℘− ι(℘)]−$[℘− ιM ]}

− 1

ιM
{$[℘]−$[℘− ι(℘)]}TQ2{$[℘]−$[℘− ι(℘)]}

)
+
[
2N1

(
[x(℘) +$(℘)][A(℘)$(℘)Aι(℘)

+

∞∑
d=1

λd$(℘− d) +B1(℘)w(℘) + C1(℘)K$(℘− ι(℘))− C1K(℘)e(i℘h)−$(℘)− x(℘)]
)]
}

+$T (ι− ι(℘))Θ$(ι− ι(℘)). (33)

Therefore, under zero initial condition, it follows from (23) and (33), we get

J ≤
N−1∑
℘=0

(
zT (℘)z(℘)− δ2wT (℘)w(℘)

)
+ V (℘+ 1)− V (℘) + V (0)− V (∞),

J ≤ξT (℘)
[
Φ + ΥT

1 (Pi)Υ1 + ΥT
2 IΥ2

]
ξ(℘). (34)

where,

ξ(℘) =
[
$T (℘)

∑∞
d=1 λd$

T (℘− d) wT (℘) $T (℘− ιm(℘)) $T (℘− ι(℘)) $T (℘− ιM (℘))

xT (℘) eT (i℘h) xT (℘− ιm(℘)) xT (℘− ι(℘)) xT (℘− ιM (℘))
]T

, Υ1(℘) =
[
AT (℘) ATι (℘) BT1i(℘)

0 KCT1i(℘) 0 0 −KCT1i(℘) 0 0 0
]T

and Υ2(℘) =
[
DT
i (℘) 0 BT2i(℘) 0 KCT2i(℘) 0 0

−KCT2i(℘) 0 0 0
]T

.

By using the Schur Complement (Lemma 2.8), we get (21). Therefore, J < 0 for any nonzero w(℘) ∈ l2[0,∞).
Letting N → ∞, then the inequality (20) holds. Therefore the system (18) is exponentially mean square stable with
H∞ performance.

Corollary 3.2. The discrete-time IT2 T-S fuzzy system (18) with w(℘) = 0 is mean-square exponentially stable, if
there exist a positive definite matrices R1 > 0, Q1 > 0, R2 > 0, Q2 > 0, R3 > 0,W > 0, R > 0, Pi > 0, and event
triggered parameter matrix Θ, such that the following inequalities hold.[

Φ̄ δI
∗ −Pi

]
< 0, (35)
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Φ̄ =



Φ̄11 Φ̄12 0 Φ̄14 0 Φ̄16 Φ̄17 0 0 0
∗ Φ̄22 0 0 0 Φ̄26 0 0 0 0
∗ ∗ Φ̄33 Φ̄34 0 0 0 Φ̄38 0 0
∗ ∗ ∗ Φ̄44 Φ̄45 Φ̄46 0 Φ̄4,8 Φ̄4,9 0
∗ ∗ ∗ ∗ Φ̄55 0 0 0 0 Φ̄5,10

∗ ∗ ∗ ∗ ∗ Φ̄66 Φ̄67 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Φ̄77 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̄88 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̄99 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̄10,10


, (36)

where,
Φ̄11 = −Pi +W + (ι∗)R+R11 +R21 +R31 + ι2R1 − Q2

ιM
+ 2N1[A(℘)− I], Φ̄12 = 2N1Aι(℘),

Φ̄14 = 2N1KC1(℘) + γ1Θ + Q2

ιM
, Φ̄16 = 2N1A[℘− I1]− 2N1 +R12 +R22 +R32, Φ̄17 = −2N1KC1(℘),

Φ̄22 = −λ−1R, Φ27 = 2N1Aι(℘), Φ̄33 = −R21 − Q1

ι∗
, Φ̄34 = Q1

ι∗
, Φ̄38 = −2R22, Φ̄4,9 = −2R12,

Φ̄44 = −W −R11 − 2Q1

ι∗
+ Θ− 2Q2

ι∗
− Q2

ιM
, Φ̄45 = Q1

ι∗
+ Q2

ι∗
, Φ̄46 = 2N1C1(℘), Φ̄55 = −Q1

ι∗
− Q2

ι∗
−R31,

Φ̄5,10 = −R32, Φ̄66 = R13 +R23 +R33 + ι∗R1 + ι∗Q1 + ιMQ2 − 2N1, Φ̄67 = −2N1KC1(℘)
Φ̄77 = −ϑΘ, Φ̄88 = −R23, Φ̄9,9 = −R13, Φ̄10,10 = −R33, Φ̄8 = γ1Θ and ι∗ = ιM − ιm.

Proof. Following the same procedure in Theorem 3.1, we get

V̇ (℘)} = ξ̃T (℘)
[
Φ̄ + Υ̃T

1 (Pi)Υ̃1 + Υ̃T
2 IΥ̃2

]
ξ̃(℘) < −κ‖$(℘)‖2, (37)

where,

ξ̃(℘) =
[
$T (℘)

∑∞
d=1 λd$

T (℘− d) $T (℘− ιm(℘)) $T (℘− ι(℘)) $T (℘− ιM (℘)) xT (℘) eT (i℘h)

xT (℘− ιm(℘)) xT (℘− ι(℘)) xT (℘− ιM (℘))
]T
, Υ̃1(℘) =

[
AT (℘) ATιi(℘) 0 KCT1i(℘) 0 0

−KCT1i(℘) 0 0 0
]T

and Υ̃2(℘) =
[
DT

1i(℘) 0 0 KCT2i(℘) 0 0 −KCT2 (℘) 0 0 0
]T

.

By using a method of analysis similar to that used in [9] and from Definition 2.4, system (18) with w(℘) = 0 is
exponentially mean-square stable. This concludes the proof.

Theorem 3.3. The discrete-time IT2 T-S fuzzy system (18) is mean-square exponentially stable with H∞ performance

δ, if there exist matrices R̃1 > 0, Q̃1 > 0, R̃2 > 0, Q̃2 > 0, R̃3 > 0, R̃ > 0, Ṽ > 0, P̃i > 0, event triggered parameter
matrix Θ and positive diagonal matrix Ñ1 with proper dimensions such that,

Φ̃ =



Φ̃11 Φ̃12 Φ̃13 0 Φ̃15 0 Φ̃17 Φ̃18 0 0 0 PiAi Di

∗ Φ̃22 0 0 0 0 Φ̃27 0 0 0 0 PiAιi 0

∗ ∗ Φ̃33 0 0 0 Φ̃37 0 0 0 0 PiB1i B2i

∗ ∗ ∗ Φ̃44 Φ̃45 0 0 0 Φ̃49 0 0 0 0

∗ ∗ ∗ ∗ Φ̃55 Φ̃56 Φ̃57 0 Φ̃59 Φ̃5,10 0 PiC1iK C2iK

∗ ∗ ∗ ∗ ∗ Φ̃66 0 0 0 0 Φ̃6,11 0 0

∗ ∗ ∗ ∗ ∗ ∗ Φ̃77 Φ̃78 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̃88 0 0 0 −PiC1iK −C2iK

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̃99 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̃10,10 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̃11,11 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Pi 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I



< 0 (38)

where,

Φ̃11 = −P̃i + W̃ + (ι∗)R̃+ R̃11 + R̃21 + R̃31 + ι2R̃1 − Q̃2

ιM
+ 2εP̃ [A(℘)− I], Φ̃12 = 2εP̃Aι(℘),

Φ̃13 = 2εP̃B1(℘), Φ̃15 = 2εXC1(℘) + Q2

ιM
+ γ1Θ̃, Φ̃17 = 2εP̃A[℘− I1]− 2εP̃ + R̃12 + R̃22 + R̃32,

Φ̃18 = −2εXC1(℘), Φ̃1,12 = P̃Ai(k) Φ̃1,13 = P̃Di, Φ̃22 = −λ−1R̃, Φ̃27 = 2εP̃Aι(℘),

Φ̃2,12 = P̃Aιi(k), Φ̃33 = −δ̂2I, Φ̃37 = 2εP̃B1(℘), Φ̃3,12 = P̃B1i, Φ̃3,13 = B2iΦ̃44 = −R̃21 − Q̃1

ι∗
,
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Φ̃45 = Q̃1

ι∗
, Φ̃49 = −2R̃22, Φ̃55 = −W̃ − R̃11 + Θ̃− 2Q̃1

ι∗
− 2Q̃2

ι∗
− Q̃2

ιM
, Φ̃56 = Q̃1

ι∗
+ Q̃2

ι∗
,

Φ̃5,10 = −2R̃12, Φ̃5,12 = XC1, Φ̃5,13 = XC2, Φ̃66 = − Q̃1

ι∗
− Q̃2

ι∗
− R̃31, Φ̃6,11 = −R̃32,

Φ̃77 = R̃13 + R̃23 + R̃33 + ι∗R̃1 + ι∗Q̃1 + ιM Q̃2 − 2εP̃ , Φ̃78 = −2εXC1(℘), Φ̃88 = −ϑΘ̃,

Φ̃8,12 = −XC1, Φ̃8,13 = −XC2, Φ̃99 = −R̃23, Φ̃10,10 = −R̃13, Φ̃11,11 = −R̃33,

Φ̃12,12 = −P̃ , Φ̃13,13 = −I, Φ̃57 = 2εP̃C1(℘) and ι∗ = ιM − ιm. The control gain in (15) are given by

K = P̃−1X. (39)

Proof. We calculate Φ̃ij = ΛΦijΛ
T with

Λ = diag{P̃ , P̃ , I, P̃ , P̃ , P̃ , P̃ , P̃ , P̃ , P̃ , P̃ , P̃ , I},

where P̃ = P−1. Defining W̃ = P̃WP̃ , Q̃i = P̃QiP̃ , (i = 1, 2, 3), R̃ij = P̃RijP̃ , (i, j = 1, 2, 3) and letting N1 = εP̃ , we

obtain Φ̃ij in (38). If the conditions (38) hold, event-triggered control gain matrices are K are given by (39).

4 Numerical examples

To illustrate the theoretical results, numerical examples are provided.

Example 4.1. Consider the following single link robot arm system in [25, 33].

$̈(t) =
LgMk

Jk
sin($(t))− Qk

Jk
˙$(t) +

1

Jk
u(t) +Bw(t) (40)

In this example w(t) and u(t) represents the disturbance input and control input, respectively. $̇ and $ indicates the
angular velocity of the robot arm and the angel, respectively. The system parameters include, L is the arm’s length, g
is the acceleration of gravity, the mass of the payload is Mk, Jk is the moment of inertia, % is retarded coefficient and
the coefficient of viscous friction is Qk.
The values of the parameters g = 9.81, Q1 = Q2 = 2, L = 0.5,M1 = J1 = 1,M2 = J2 = 5,M3 = J3 = 10, % = 0.85 and
T = 0.1.
Then, the single-link robot arm system can be approximated by the following IT2 T-S fuzzy model.

Pant rule 1: IF $1(℘) is 1− $2
1(℘)
= , THEN

{
$(℘+ 1) = Σqi=1Σqj=1αiβj{A1$(℘) +Aι1

∑∞
d=1 λd$(℘− d) +B11w(℘) + C11u(℘)},

z(℘) = Σqi=1Σqj=1αiβj{D1$(℘) +B21w(℘) + C21u(℘)}. (41)

Pant rule 2: IF $1(℘) is
$2

1(℘)
= , THEN

{
$(℘+ 1) = Σqi=1Σqj=1αiβj{A2$(℘) +Aι2

∑∞
d=1 λd$(℘− d) +B12w(℘) + C12u(℘))},

z(℘) = Σqi=1Σqj=1αiβj{D2$(℘) +B22w(℘) + C22u(℘)}. (42)
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Figure 1: State response for discrete-time IT2 fuzzy system without control input.
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Figure 2: State response for discrete-time IT2 fuzzy system with control input.

where,

A1 =

[
1 T%

−TgLMb

Jb
1− T%Qa

Jb

]
, A2 =

[
1 T%

−ς TgLMb

Jb
1− T%Qa

Jb

]
, Aι1 = Aι2 =

[
0 T (1− %)

0 −T (1−%)Qa
Jb

]
,

B11 = B12 =

[
0
T

]
, C11 = C12

[
0
Q
Jb

]
, D1 = D2 =

[
1
0

]
, B21 = B22 = 0.1, C21 = C22 = 0.

Choose λd = 2−d−3, the we find that

λ̄d =

∞∑
d=1

λd =
1

8
<

∞∑
d=1

dλd = 2 < +∞,

which satisfies the convergence condition (2).
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Figure 3: State response for discrete-time type-1 fuzzy system.

In addition, = ∈ [9, 27] is the uncertain parameter. The IT2 fuzzy model can be used to effectively describe the
uncertain parameters in this scenario. Table I and Table II, respectively, list the lower and upper membership functions
of the original system and controller. Assume that the external disturbance w(℘) = e1.5℘.

Table 1: The upper and lower membership functions of the original system.
The upper membership functions The lower membership functions

α1($(℘)) = 1− e−$
2
1(℘)

3 α1($(℘)) = 1− e−$
2
1(℘)

6
α2($(℘)) = 1− α1($(℘)) α2($(℘)) = 1− α1($(℘))

Let π($(℘)) = 0.6sin2($(℘)), π($(℘)) = 1 − π($(℘)), ν($(℘)) = ν(ϕ(℘)) = 0.5. Assume the generalized ETC
performance be specified by ιm = 1.2, ιM = 3.30, λ = 0.1 and H∞ performance level is chosen δ = 2.75. By applying
Theorem 3.3, the controller gain and event-triggered parameter matrices are obtained as follows:

K1 =
[

0.5831 0.2233
]
,K2 =

[
−0.4992 −0.3959

]
,Θ =

[
0.1856 0.0498
0.0493 0.1332

]
. (43)
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Figure 4: Curve of adaptive triggering parameter γ(℘) and Triggering instants and intervals.
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Table 2: The upper and lower membership functions for controller.
The upper membership functions The lower membership functions

β1($(℘)) = β
1
($(℘)) β

1
($(℘)) = e−$

2
1(℘)

6

β2($(℘)) = 1− β
1
($(℘)) β

2
($(℘)) = 1− β

1
($(℘))
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Figure 5: Trajectory of control input.

By choosing the sampling interval as h = 0.05 and assume the initial condition $(0) = [3.5,−1.5]T . State responses
discrete-time IT2 fuzzy system without control input depicted in Fig. 1. When there is no control input, the system is
unstable. State response for discrete-time IT2 fuzzy system with control input shown in Fig. 2. According to Fig. 2,
it is clear that the state trajectories under the proposed control scheme are converging to zero within 10s. In Fig. 3,
propose the state responses for discrete-time type-1 fuzzy system and its converging to zero within 14s. From Figure 2
and Figure 3, it is clear that the proposed IT2 fuzzy model is effective. The adaptive triggering parameter γ(℘) and
the triggered instants with intervals are described in Fig. 4. In Fig. 5, present trajectories of control input. We can
conclude from the above simulation findings that the technique for discrete-time IT2 fuzzy system with designing AETS
controllers in this work is effective.

Example 4.2. Consider an inverted pendulum controlled by a DC motor via a gear train [7] with discrete-time IT2
fuzzy systems under AETS.

We add some disturbance terms and a controllable output for simulation as follows.

Pant rule 1: IF $1(℘) is 1− $2
1(℘)
= , THEN

{
$(℘+ 1) = Σqi=1Σqj=1αiβj{A1$(℘) +Aι1

∑∞
d=1 λd$(℘− d) +B11w(℘) + C11u(℘)},

z(℘) = Σqi=1Σqj=1αiβj{D1$(℘) +B21w(℘) + C21u(℘)}. (44)

Pant rule 2: IF $1(℘) is
$2

1(℘)
= , THEN

{
$(℘+ 1) = Σqi=1Σqj=1αiβj{A2$(℘) +Aι2

∑∞
d=1 λd$(℘− d) +B12w(℘) + C12u(℘))},

z(℘) = Σqi=1Σqj=1αiβj{D2$(℘) +B22w(℘) + C22u(℘)}. (45)
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Figure 6: State response for discrete-time IT2 fuzzy system without control input.
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Figure 7: State response for discrete-time IT2 fuzzy system with control input.

where,

A1 =

 1.002 0.02 0.02
0.196 1.001 0.0181
−0.0184 −0.1813 0.8170

 , A2 =

 1 0.02 0.0002
0 0.9981 0.0181
0 −0.1811 0.8170

 , B11 =

 0.054
0.094

0

 ,
B12 =

 −0.054
−0.094

0

 , C11 =

 0
0.0019
0.1811

 , C12 =

 0
0.0019
0.1811

 , D1 =

 0.054
0.005
0.1

 , D2 =

 0.054
0.005
0.1

 ,
B21 =0.1, B22 = 0.1, C21 = 0.1, C22 = 0.1.

Choose λd = 2−d−3, the we find that

λ̄d =

∞∑
d=1

λd =
1

8
<

∞∑
d=1

dλd = 2 < +∞,
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which satisfies the convergence condition (2).
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Figure 8: State response for discrete-time type-1 fuzzy system.
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Figure 9: Curve of adaptive triggering parameter γ(℘) and Triggering instants and intervals.

The IT2 fuzzy model can be used to effectively describe the uncertain parameters in this scenario. Table III and
Table IV, respectively, list the lower and upper membership functions of the original system and controller. The external
disturbance w(℘) is is assumed to be

w(℘) =

 0.2, 0 ≤ ℘ ≤ 1
−0.2, 1 ≤ ℘ ≤ 2
0, others

Table 3: The upper and lower membership functions of the original system.
The upper membership functions The lower membership functions

α1($(℘)) = 1− 1
1+e−(2−$1(℘)+3) α1($(℘)) = 1− 1

1+e−(2−$1(℘)+5)

α2($(℘)) = 1− 1
1+e−(2−$1(℘)−3) α2($(℘)) = 1− 1

1+e−(2−$1(℘)−5)
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Let π($(℘)) = 0.4sin2($(℘)), π($(℘)) = 1 − π($(℘)), ν($(℘)) = ν(ϕ(℘)) = 0.6. Assume the generalized ETC
performance be specified by ιm = 1.4, ιM = 3.10, λ = 0.2, and H∞ performance level is chosen as δ = 1.5. By applying
Theorem 3.3,for γ1 = 0.45, the feedback controller gain can be obtained as

K1 =
[

0.6844 0.0952 0.0479
]
,K2 =

[
0.6435 −0.1995 0.0775

]
.

Table 4: The upper and lower membership functions for controller.
The upper membership functions The lower membership functions

β1($(℘)) = β
1
($(℘)) β

1
($(℘)) = e−$

2
1(℘)

6

β2($(℘)) = 1− β
1
($(℘)) β

2
($(℘)) = 1− β

1
($(℘))
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Figure 10: Trajectory of control input.

By choosing the sampling interval as h = 0.07 and assume the initial condition $(0) = [0.3,−0.8]T . State responses
discrete-time IT2 fuzzy system without control input depicted in Fig. 6. State response for discrete-time IT2 fuzzy
system with control input shown in Fig. 7. According to Fig. 7, it is clear that the state trajectories under the proposed
control scheme are converging to zero within 5s. In Fig. 8. propose the state response for discrete-time type-1 fuzzy
system are converging to zero within 7s. From Fig. 7 and Fig. 8, it is clear that the proposed IT2 fuzzy model is
effective. The adaptive triggering parameter γ(℘) and the triggered instants with intervals are is described in Fig. 9. In
Fig. 10. present trajectories of control input. The simulation results clearly demonstrate the utility of the established
theoretical results in the study of H∞ control for discrete-time IT2 fuzzy systems via AETS.

Remark 4.3. It must be observed that the type-1 fuzzy-model-based results cannot handle uncertain parameters. The
lower and upper member functions in the IT2 fuzzy model of this paper are used to describe the uncertainties. The
proposed IT2 fuzzy model approach is more general and effective in contrast to existing results [7, 24, 25]. In compared
to existing work [18], our results are quickly converge, where the trajectories are converges to origin within 14s as shown
in Fig.3.

5 Conclusion

In this work, we have investigated the problem of H∞ control for discrete-time IT2 fuzzy systems with infinite distributed
delay via adaptive event-triggered scheme. Furthermore, the adaptive event-triggered technique was developed to re-
duce communication’s power consumption. The importance of the proposed technique in terms of state convergence,
stability, and avoiding unwanted triggering events are illustrated by numerical simulations achieved with the examined
discrete-time IT2 fuzzy system via an adaptive event-triggered scheme. In addition, IT2 is used to approximate the
external disturbances of the system due to its better estimation ability to describe the fuzzy system uncertainties.
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Also, by using the Lyapunov functional method, the resulting criterion guarantees that discrete-time IT2 fuzzy systems
with efficiency H∞ are mean-square exponentially stable. The effectiveness of the IT2 fuzzy system by using AETS
approach is demonstrated by two examples of numerical simulation and real-world application. The authors will try
to extend this in further studies by making resilient tracking control susceptible to a variety of attacks, including DoS,
reply, and deception attacks. The theory’s capacity to be applied to actual engineering practice is significantly improved.
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Abstract

This work is devoted the problem of a security-guaranteed filter design for a class of discrete-time Markov jump

systems that are vulnerable to stochastic deception attacks and have random sensor saturation. Deception attacks, in

particular, are taken into account in the filter when the attacker attempts to modify the broadcast signal in

communication networks by inserting some misleading information data into the assessment output. The Bernoulli

distribution is satisfied by two sets of introduced stochastic variables. It shows the likelihood that the broadcaster’s

data transmissions will be the focus of deception attacks and sensor saturation. The Lyapunov functional technique is

established, and criteria are derived to ensure that the system is mean-square stable. Furthermore, explicit expression

of the filter gains is obtained by solving a set of linear matrix inequalities. Lastly, two simulation examples including a

synthetic genetic regulatory network are provided to further demonstrate the validity and efficiency of the suggested

theoretical results.

Introduction

Discrete-time systems have a strong tradition in engineering applications. The study of time-delay systems with

controller design and stability analysis has become a popular research topic in recent years, with a number of famous

results being reported [1], [2], [3]. State bounding estimation of positive singular discrete-time systems with

unbounded time-varying delays in [4]. Finite-time output feedback control for nonlinear networked discrete-time

systems with an adaptive event-triggered scheme discussed in [5]. Recent developments in discrete-time delay state

systems involve tighter sum over bounds Wirtinger’s inequality, resulting in less conservative analysis requirements.

 filtering for discrete-time systems with time-varying delay is studied in [6]. Discrete-time switched systems with

randomly occurring delays via T-S fuzzy model [7].
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Abstract: In this paper, the global asymptotic stability and global Mittag–Leffler stability of a class
of fractional-order fuzzy bidirectional associative memory (BAM) neural networks with distributed
delays is investigated. Necessary conditions are obtained by means of the Lyapunov functional
method and inequality techniques. The hybrid feedback controllers are then developed to ensure
the global asymptotic synchronization of these neural networks, resulting in two additional synchro-
nization criteria. The derived conditions are applied to check the fractional-order fuzzy BAM neural
network’s Mittag–Leffler stability and synchronization. Three examples are given to demonstrate the
effectiveness of the achieved results.

Keywords: fractional-order system; bidirectional associative memory neural networks; distributed
delays; global asymptotic stability; global Mittag–Leffler stability; reaction–diffusion terms

MSC: 26A33; 34K36; 34K37; 34K20; 93D20

1. Introduction

On the parallel perspective, neural networks having fractional-order derivatives gen-
erally possess boundless memory, which finds an advantage in comparison with common
integer-order neural networks. In fact, the memory and heredity properties of certain
materials and processes are known to be better represented by fractional-order deriva-
tives [1,2]. Because of its wide range of applications in areas such as neural networks,
quantum physics, optical systems, and optical image processing, fractional-order systems
have been extensively investigated during the last several decades as a technique for
precisely describing real systems [3–11].

In addition, there is a class of fuzzy cellular neural networks with delays that has been
studied by numerous researchers using a variety of analytical and numerical methodologies.
In comparison to normal cellular neural networks, a fuzzy cellular neural network uses
fuzzy logic between its template input and/or output in addition to the sum of product
operations. Hence, there has been a lot of research activity in the area of delayed fuzzy
cellular neural networks [12–14], including recently studied fractional-order cases [15,16].
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Bidirectional associative memory (BAM) neural networks with two layers of neuronal
cells were first introduced by Kosko [17]. The neurons in the first layer are fully intercon-
nected with the neurons in the second layer, but there is no interconnect between neurons
in the same layer. Due to their application in numerous disciplines such as image and
signal processing, pattern recognition, optimization, and autonomous control, BAM neural
networks have received a lot of attention in the last decade [18,19]. As a result, the stability
of BAM neural networks has been extensively studied, and many stability requirements for
BAM neural networks have been published [20–22].

Global asymptotic stability is one of the most investigated stability behavior of real-
world neural systems and artificial neural network systems. This is due to the fact that a
globally asymptotically stable neural network system is promising for a fast convergence
rate to a state of interest. The global asymptotic stability of an error neural network is closely
related to the global asymptotic synchronization of the master and response systems. That
is why global asymptotic stability and global asymptotic synchronization have received
much attention among researchers [1,13,20,22]. Both notions are studied for integer-order
as well as for fractional-order problems.

Podlubny and his coauthors proposed in [23] the Mittag–Leffler stability notion and
the fractional Lyapunov direct approach to extend the use of fractional calculus in non-
linear systems, with the goal of improving both system theory and fractional calculus
knowledge. Since then, the stability of Mittag–Leffler, generalized Mittag–Leffler stability,
and synchronization have been examined for different classes of fractional-order neural
networks [24–27], including BAM neural network models [28,29].

It is evident from the literature that most research work on delayed neural networks
are devoted to simple cases of discrete delays. However, due to the presence of numerous
parallel ways, neural networks usually exhibit a unique nature, resulting in a distribution
of conduction velocities and propagation delays along these pathways. Due to the presence
of a large number of parallel routes with different axon diameters and lengths, neural
networks usually have a spatial extent. As a result, there will be a distribution of conduction
velocities and propagation delays along these pathways. In these cases, signal transmission
is not instantaneous and cannot be described using discrete delays; instead, continuously
distributed and infinite delays are more appropriate [1,16,22,30–33].

When electrons move in asymmetric electromagnetic fields, diffusion effects cannot be
avoided in the complex network models strictly speaking [2,12,34–39]. In signal transmis-
sion, the signal becomes weak due to diffusion, so it is very important to consider that the
activation varies in space as well as in time, and the reaction–diffusion effects cannot be
neglected in both biological and man-made networks [40]. The models covering time delay
and reaction–diffusion are good mimicry for real neural networks in terms of application,
but the existence of time delays and reaction–diffusion could bring about some undesirable
behavior.

Motivated by the above considerations, we have studied the global asymptotic sta-
bility of fractional-order fuzzy BAM reaction–diffusion neural networks with discrete
and distributed delays via hybrid feedback controllers. The main contributions of this
research are:

1. The global asymptotic stability and synchronization of fractional-order fuzzy BAM
neural networks with reaction–diffusion terms and mixed delays, including distributed
ones, are investigated via hybrid feedback controllers.

2. By applying of stability theory for fractional models together with some inequality
strategies, efficient criteria are obtained to guarantee the global Mittag–Leffler stability and
synchronization.

3. We establish a uniform approach to dealing with discrete and distributed time
delays under more general activation function assumptions.

4. The established conditions include the positive influence of reaction–diffusion
terms on the stability and synchronization behavior and reduce the conservatism of the
existing ones.



Mathematics 2023, 11, 4248 3 of 24

5. Finally, numerical examples are provided to demonstrate the correctness of the
proposed results.

The rest of the paper is organized as follows. Some preliminary definitions and results
related to fractional calculus are given in Section 2. The fractional-order fuzzy BAM neural
network model, together with the controlled one are also introduced. Section 3 is devoted
to our global asymptotic stability results. Global Mittag–Leffler synchronization criteria
are established in Section 4. In Section 5, we elaborate some examples to demonstrate
the validity and feasibility of the established results. Some conclusion notes and future
directions of our research are discussed in Section 6.

2. Preliminaries and Problem Definition

In the present section, we first introduce some basic definitions and the corresponding
results that are used later. Then, the fractional-order fuzzy BAM neural network model
is formulated.

Definition 1 ([41]). The Caputo fractional derivative of order β for a function f (t) is defined by

Dβ f (t) =
1

Γ(n− β)

∫ t

b
(t− τ)n−β−1 f (n)(τ)dτ,

in which t ≥ b, t ∈ R, n− 1 < β < n ∈ N, and Γ is the standard Gamma function.

In this paper, we consider the following fractional-order reaction–diffusion fuzzy BAM
neural network with mixed delays

∂λζϕ(t,℘)
∂tλ

=
q

∑
k=1

∂

∂ζk

(
mϕk

∂ζϕ(t,℘)
∂℘k

)
− dϕζϕ(t,℘) +

n

∑
v=1

cϕv fv(=v(t,℘))

+
n

∑
v=1

aϕv fv(=v(t− τ,℘))

+
n∧

v=1

uϕv

∫ ∞

0
kϕv(s) fv(=v(s− τ,℘))ds +

n∧
v=1

Pϕv=v(t,℘)

+
n∨

v=1

vϕv

∫ ∞

0
kϕv(s) fv(=v(s− τ,℘))ds +

n∨
v=1

Qϕv=v(t,℘) + Iϕ, ϕ = 1, 2, . . . , o,

∂λ=v(t,℘)
∂tλ

=
q

∑
k=1

∂

∂=k

(
m̃vk

∂=v(t,℘)
∂℘k

)
− d̃v=v(t,℘) +

o

∑
ϕ=1

c̃vϕgϕ(ζϕ(t,℘))

+
o

∑
ϕ=1

ãvϕgϕ(ζϕ(t− τ,℘))

+
o∧

ϕ=1

ũvϕ

∫ ∞

0
kvϕ(s)gϕ(ζv(s− τ,℘))ds +

o∧
ϕ=1

P̃vϕζϕ(t,℘)

+
o∨

ϕ=1

ṽvϕ

∫ ∞

0
kvϕ(s)gϕ(ζϕ(s− τ,℘))ds +

o∨
ϕ=1

Q̃vϕζϕ(t,℘) + Jv, v = 1, 2, . . . , n, (1)

where n and o denote the number of neurons in the =-layer and ζ-layer, respectively. For
ϕ = 1, 2, . . . .., o, v = 1, 2, . . . ., n, and ℘ = (℘1,℘2, . . . ,℘q)T ∈ Ω ⊂ Rq, Ω is a bounded
compact set with a smooth boundary ∂Ω, and mess(Ω) > 0 in the space Rq; ζϕ(t,℘)
and =v(t,℘) are the states of the ϕth neuron and the vth neurons at time t and space ℘,
respectively; dϕ and d̃v indicate the rates with which the ϕth neuron and vth neuron will
reset their potentials to the resting states in isolation when disconnecting the network and
external inputs; cϕv, aϕv, c̃vϕ, and ãvϕ are elements of the fuzzy feedback MIN template
and fuzzy feedback MAX template, fuzzy feed-forward MIN template and fuzzy feed-
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forward MAX template, respectively; τ is the discrete transmission delay;
∧

and
∨

denote
the fuzzy AND and fuzzy OR operations, respectively; Iϕ and Jv denote the external inputs
on the ϕth neurons in the =-layer and the vth neurons in the ζ-layer, respectively. The
smooth functions mϕk ≥ 0 and m̃vk ≥ 0 correspond to the transmission diffusion operators
along the ϕth neurons and the vth neurons, respectively, uϕv, vvϕ, Pvϕ, and Qvϕ are
elements of the fuzzy feedback MIN template and fuzzy feedback MAX template in the
=-layer, respectively. ũϕv, ṽvϕ, P̃ϕv, and Q̃ϕv are elements of the fuzzy feedback MIN
template and fuzzy feedback MAX template in the ζ-layer. kϕv(·) and kvϕ(·) are delay
kernels functions. fv(·) and gϕ(·) are signal transmission functions of vth neurons and
ϕth neurons, respectively, and

∂λ p(t,℘)
∂tλ

=
1

Γ(1− λ)

∫ t

0

∂p(s,℘)
∂s

ds
(t− s)λ

, t > 0, 0 < λ < 1

for a function p ∈ C1[[0, b]×Ω,R], b > 0 [7].
The corresponding response system with feedback controllers Uϕ(t,℘) and Uv(t,℘) is

described by

∂λ ζ̄ϕ(t,℘)
∂tλ

=
q

∑
k=1

∂

∂℘k

(
mϕk

∂ζ̄ϕ(t,℘)
∂℘k

)
− dϕ ζ̄ϕ(t,℘) +

n

∑
v=1

cϕv fv(=̄v(t,℘))

+
n

∑
v=1

aϕv fv(=̄v(t− τ,℘)) +
n∧

v=1

uϕv

∫ ∞

0
kϕv(s) fv(=̄v(s− τ,℘))ds

+
n∧

v=1

Pϕv=̄v(t,℘) +
n∨

v=1

vϕv

∫ ∞

0
kϕv(s) fv(=̄v(s− τ,℘))ds

+
n∨

v=1

Qϕv=̄v(t,℘) + Iϕ + Uϕ(t,℘), ϕ = 1, 2, . . . , o,

∂λ=̄v(t,℘)
∂tλ

=
q

∑
k=1

∂

∂℘k

(
m̃vk

∂=̄v(t,℘)
∂℘k

)
− d̃v=̄v(t,℘) +

o

∑
ϕ=1

c̃vϕgϕ(ζ̄ϕ(t,℘))

+
o

∑
ϕ=1

ãvϕgϕ(ζ̄ϕ(t− τ,℘)) +
o∧

ϕ=1

ũvϕ

∫ ∞

0
kvϕ(s)gϕ(ζ̄ϕ(s− τ,℘))ds

+
o∧

ϕ=1

P̃vϕ ζ̄ϕ(t,℘) +
o∨

ϕ=1

ṽvϕ

∫ ∞

0
kvϕ(s)gϕ(ζ̄ϕ(s− τ,℘))ds

+
o∨

ϕ=1

Q̃vϕ ζ̄ϕ(t,℘) + Jv + Uv(t,℘), v = 1, 2, . . . , n. (2)

For ξϕ(t,℘) = ζ̄ϕ(t,℘)− ζϕ(t,℘) and ξ̄v(t,℘) = =̄v(t,℘)−=v(t,℘), the error system
is defined by
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∂λξϕ(t,℘)
∂tλ

=
q

∑
k=1

∂

∂℘k

(
mϕk

∂ξϕ(t,℘)
∂℘k

)
− dϕξϕ(t,℘)

+
[ n

∑
v=1

cϕv fv(=̄v(t,℘))−
n

∑
v=1

cϕv fv(=v(t,℘))
]

+
[ n

∑
v=1

aϕv fv(=̄v(t− τ,℘))−
n

∑
v=1

aϕv fv(=v(t− τ,℘))
]

+
[ n∧

v=1
uϕv

∫ ∞

0
kϕv(s) fv(=̄v(s− τ,℘))ds−

n∧
v=1

uϕv

∫ ∞

0
kϕv(s) fv(=v(s− τ,℘))ds

]
+
[ n∨

v=1
vϕv

∫ ∞

0
kϕv(s) fv(=̄v(s− τ,℘))ds−

n∨
v=1

vϕv

∫ ∞

0
kϕv(s) fv(=v(s− τ,℘))ds]

+ Uϕ(t,℘), ϕ = 1, 2, . . . , o,

∂λ ξ̄v(t,℘)
∂tλ

=
q

∑
k=1

∂

∂℘k

(
m̃vk

∂ξ̄v(t,℘)
∂℘k

)
− d̃v ξ̄v(t,℘)

+
[ o

∑
ϕ=1

c̃vϕgϕ(ζ̄ϕ(t,℘))−
o

∑
ϕ=1

c̃vϕgϕ(ζϕ(t,℘))
]

+
[ o

∑
ϕ=1

ãvϕgϕ(ζ̄ϕ(t− τ,℘))−
o

∑
ϕ=1

ãvϕgϕ(ζϕ(t− τ,℘))
]

+
[ o∧

ϕ=1
ũvϕ

∫ ∞

0
kvϕ(s)gϕ(ζ̄ϕ(s− τ,℘))ds−

o∧
ϕ=1

ũvϕ

∫ ∞

0
kvϕ(s)gϕ(ζϕ(s− τ,℘))ds

]
+
[ o∨

ϕ=1
ṽvϕ

∫ ∞

0
kvϕ(s)gϕ(ζ̄ϕ(s− τ,℘))ds−

o∨
ϕ=1

ṽvϕ

∫ ∞

0
kvϕ(s)gϕ(ζϕ(s− τ,℘))ds

]
+ Uv(t,℘), v = 1, 2, . . . , n. (3)

We design a suitable controller for the error system (3). Let Uϕ(t,℘) = U1ϕ(t,℘) +
U2ϕ(t,℘), where U1ϕ(t,℘) = −tϕξϕ(t,℘) and U2ϕ(t,℘) = −Ψϕξϕ(t,℘) and Uv(t,℘)
= U1v(t,℘) + U2v(t,℘), where U1v(t,℘) = −vv ξ̄v(t,℘) and U2v(t,℘) = −$v ξ̄v(t,℘),
where tϕ, Ψϕ, vv, and $v are positive constants. Then, system (3) has the form

∂λξϕ(t,℘)
∂tλ

=
q

∑
k=1

∂

∂℘k

(
mϕk

∂ξϕ(t,℘)
∂℘k

)
− dϕξϕ(t,℘)

+
[ n

∑
v=1

cϕv fv(=̄v(t,℘))−
n

∑
v=1

cϕv fv(=v(t,℘))
]

+
[ n

∑
v=1

aϕv fv(=̄v(t− τ,℘))−
n

∑
v=1

aϕv fv(=v(t− τ,℘))
]

+
[ n∧

v=1

uϕv

∫ ∞

0
kϕv(s) fv(=̄v(s− τ,℘))ds−

n∧
v=1

uϕv

∫ ∞

0
kϕv(s) fv(=v(s− τ,℘))ds

]
+
[ n∨

v=1

vϕv

∫ ∞

0
kϕv(s) fv(=̄v(s− τ,℘))ds−

n∨
v=1

vϕv

∫ ∞

0
kϕv(s) fv(=v(s− τ,℘))ds

]
− tϕξϕ(t,℘)−Ψϕξϕ(t,℘), ϕ = 1, 2, . . . , o,
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∂λ ξ̄v(t,℘)
∂tλ

=
q

∑
k=1

∂

∂℘k

(
m̃vk

∂ξ̄v(t,℘)
∂℘k

)
− d̃v ξ̄v(t,℘)

+
[ o

∑
ϕ=1

c̃vϕgϕ(ζ̄ϕ(t,℘))−
o

∑
ϕ=1

c̃vϕgϕ(ζϕ(t,℘))
]

+
[ o

∑
ϕ=1

ãvϕgϕ(ζ̄ϕ(t− τ,℘))−
o

∑
ϕ=1

ãvϕgϕ(ζϕ(t− τ,℘))
]

+
[ o∧

ϕ=1

ũvϕ

∫ ∞

0
kvϕ(s)gϕ(ζ̄ϕ(s− τ,℘))ds−

o∧
ϕ=1

ũvϕ

∫ ∞

0
kvϕ(s)gϕ(ζϕ(s− τ,℘))ds

]
+
[ o∨

ϕ=1

ṽvϕ

∫ ∞

0
kvϕ(s)gϕ(ζ̄ϕ(s− τ,℘))ds−

o∨
ϕ=1

ṽvϕ

∫ ∞

0
kvϕ(s)gϕ(ζϕ(s− τ,℘))ds

]
−vv ξ̄v(t,℘)− $v ξ̄v(t,℘), v = 1, 2, . . . , n. (4)

We investigate the error system (4) under the following initial and boundary conditions:

ξϕ(s,℘) = φϕ(s,℘), s ∈ (−∞, 0], ℘ ∈ Ω,

ξ̄v(s,℘) = φ̃v(s,℘), s ∈ (−∞, 0], ℘ ∈ Ω,

ξϕ(t,℘) = 0, t ∈ R, ℘ ∈ ∂Ω,

ξ̄v(t,℘) = 0, t ∈ R, ℘ ∈ ∂Ω, ϕ = 1, 2, . . . , o, v = 1, 2, . . . , n, (5)

where φϕ and φ̃v are continuous initial functions.
In our stability analysis, we need the following assumptions.

Assumption 1. For ϑv, ϑ̄v ∈ R and ζϕ, ζ̄ϕ ∈ R, the activation functions fv and gϕ satisfy∣∣∣∣∣ n∧
v=1

uϕv fv(ϑv)−
n∧

v=1

uϕv fv(ϑ̄v)

∣∣∣∣∣ ≤ n

∑
v=1
|uϕv |

∣∣ fv(ϑv)− fv(ϑ̄v)
∣∣, v = 1, 2, . . . , n,∣∣∣∣∣ n∨

v=1

vϕv fv(ϑv)−
n∨

v=1

vϕv fv(ϑ̄v)

∣∣∣∣∣ ≤ n

∑
v=1
|vϕv |

∣∣ fv(ϑv)− fv(ϑ̄v)
∣∣, v = 1, 2, . . . , n,∣∣∣∣∣∣

o∧
ϕ=1

ũvϕgϕ(ζϕ)−
o∧

ϕ=1

ũvϕgϕ(ζ̄ϕ)

∣∣∣∣∣∣ ≤
o

∑
v=1
|ũvϕ|

∣∣gϕ(ζϕ)− gϕ(ζ̄ϕ)
∣∣, ϕ = 1, 2, . . . , o,

∣∣∣∣∣∣
o∨

ϕ=1

ṽvϕgϕ(ζϕ)−
o∨

ϕ=1

ṽvϕgϕ(ζ̄ϕ)

∣∣∣∣∣∣ ≤
o

∑
ϕ=1
|ṽvϕ|

∣∣gϕ(ζϕ)− gϕ(ζ̄ϕ)
∣∣, ϕ = 1, 2, . . . , o.

Assumption 2. For any ϑv, ϑ̄v ∈ R and ζϕ, ζ̄ϕ ∈ R, there exists positive constants Fϕ, Fv,
such that ∣∣ fv(ϑv)− fv(ϑ̄v)

∣∣ ≤ Fv |ϑv − ϑ̄v |, v = 1, 2, . . . , n,∣∣gϕ(ζϕ)− gϕ(ζ̄ϕ)
∣∣ ≤ Gϕ|ζϕ − ζ̄ϕ|, ϕ = 1, 2, . . . , o.

Assumption 3. The delay kernels kϕv(·) and kvϕ(·) satisfy∫ ∞

0
kϕv(s)ds ≤ 1,

∫ ∞

0
kvϕ(s)ds ≤ 1

for ϕ = 1, 2, . . . , o, v = 1, 2, . . . , n.
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The next lemmas are also used.

Lemma 1 ([34]). Let p : [0, b]×Ω→ R with b > 0 be a continuously differentiable function on
t, t > 0 for any ℘ ∈ Ω. Then, for any t ≥ 0, ℘ ∈ Ω

1
2

∂λ p2(t,℘)
∂tλ

≤ p(t,℘)
∂λ p(t,℘)

∂tλ

for 0 < λ < 1.

Lemma 2 ([34]). For 0 < β < 1, assume that the function V(t) is continuous on [0, ∞) satisfying

DβV(t) ≤ ΥV(t), Υ ∈ R

whenever
V(γ + ξ) ≤ V(γ), −∞ < ξ ≤ 0.

Then,
V(t) ≤ max

−∞<s≤0
V(s)Eβ(Υtβ), t > 0,

where Eβ is the corresponding Mittag–Leffler function.

Lemma 3 ([42]). Suppose that V(t) ∈ R is a continuous, differentiable, and non-negative func-
tion satisfying

DαV(t) ≤ −bV(t) + cV(t− τ), 0 < α < 1,

V(γ) = ϕ(γ) ≥ 0. γ ∈ [−τ, 0].

If b >
√

2c and c > 0, then for all ϕ(γ) ≥ 0, τ > 0, limt→+∞ V(t) = 0.

The assertion of Lemma 3 is true for τ = ∞, too.

Lemma 4 (Fractional Barbalat’s Lemma [43]). If
∫ t

t0
ς(ξ)dξ includes a finite limit as t→ +∞,

and Dλς(t) is bounded, then ς(t)→ 0 as t→ ∞, whenever 0 < λ < 1.

Lemma 5 ([44]). Given any scalar ε > 0, x, y ∈ Rn, and matrix A, then

xT Ay ≤ 1
2ε

xT AATx +
ε

2
yTy.

Lemma 6 ([45]). Let Ω be a cube |xk| < lq (k = 1, 2, . . . , q), and let v(x) be a real-valued function
belonging to C1(Ω) which vanishes on the boundary ∂Ω of Ω, i.e., v(x)|Ω = 0. Then,

∫
Ω

v2(x)dx ≤ l2
k

∫
Ω

∣∣∣∣∣∂v(x)
∂xk

∣∣∣∣∣
2

dx.

3. Global Asymptotic Stability via State Feedback Control

Definition 2. The error system (4) is said to be globally asymptotically stable under the given
controllers if

lim
t→∞

(
||ξ(t,℘)||1 + ||ξ̄(t,℘)||2

)
= 0,

where ||.||1 and ||.||2 are the corresponding norms of ξ(t,℘) = (ξ1(t,℘), ξ2(t,℘), . . . , ξ0(t,℘))T ∈
R0, and ξ̄(t,℘) = (ξ̄1(t,℘), ξ̄2(t,℘), . . . , ξ̄n(t,℘))T ∈ Rn, respectively.
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Remark 1. Since ξϕ(t,℘) = ζ̄ϕ(t,℘)− ζϕ(t,℘), ϕ = 1, 2, . . . , o and ξ̄v(t,℘) = =̄v(t,℘)−
=v(t,℘), v = 1, 2, . . . , n, the global asymptotic stability of the error system (4) is equivalent to
a global asymptotic synchronization of the nodes of system (2) onto those of system (1) under the
appropriate controllers.

Theorem 1. Suppose that Assumptions 1–3 and the conditions of Lemma 6 hold, and M̄ϕ, ˜̄Mv are
positive constants, such that M̄ϕ = ∑

q
k=1

mϕk

l2
k

, ˜̄Mv = ∑
q
k=1

m̃vk
l2
k

. The error system (4) is globally

asymptotically stable, if there exist constants ρ > 0 and

µ
(1)
min = min

1≤ϕ≤o

{
2M̃ϕ + 2dϕ −

n

∑
v=1
|cϕv |Fvρ−1 −

n

∑
v=1
|aϕv |Fvρ−1

−
n

∑
v=1
|uϕv |Fvρ−1 −

n

∑
v=1
|vϕv |Fvρ−1 + tϕ + ψϕ −

n

∑
v=1
|cϕv |Fvρ

}
> 0,

µ
(2)
min = min

1≤v≤n

{
2 ¯̃Mv + 2d̃v −

o

∑
ϕ=1
|c̃vϕ|Gϕρ−1 −

o

∑
ϕ=1
|ãvϕ|Gϕρ−1 −

o

∑
ϕ=1
|ũvϕ|Gϕρ−1

−
o

∑
ϕ=1
|ṽvϕ|Gϕρ−1 + vv + $v −

o

∑
ϕ=1
|c̃vϕ|Gϕρ

}
> 0,

Λµ
1 = max

1≤ϕ≤o

{
n

∑
v=1
|ũvϕ|Gϕρ +

n

∑
v=1
|ṽvϕ|Gϕρ +

n

∑
v=1
|ãvϕ|Gϕρ

}
> 0,

Λµ
2 = max

1≤v≤n

{
o

∑
ϕ=1
|uϕv |Fvρ +

o

∑
ϕ=1
|vϕv |Fvρ +

o

∑
ϕ=1
|aϕv |Fvρ

}
> 0.

such that
min

{
µ
(1)
min, µ

(2)
min

}
>
√

2 max
{

Λµ
1 , Λµ

2

}
.

Proof. We define a Lyapunov function as

V(t) =
∫

Ω

o

∑
ϕ=1

1
2

ξ2
ϕ(t,℘)d℘+

∫
Ω

n

∑
v=1

1
2

ξ̄2
v(t,℘)d℘. (6)

Then, for the fractional derivative of V of order λ, we have

dλV(t)
dtλ

=
1
2

dλ

dtλ

( ∫
Ω

1
2

o

∑
ϕ=1

ξ2
ϕ(t,℘)d℘+

∫
Ω

1
2

n

∑
v=1

ξ̄2
v(t,℘)d℘

)

=
1
2

o

∑
ϕ=1

[
dλ

dtλ

( ∫
Ω

ξ2
ϕ(t,℘)d℘

)]
+

1
2

n

∑
v=1

[
dλ

dtλ

( ∫
Ω

ξ̄2
v(t,℘)d℘

)]
. (7)

We have from Lemma 1 that

dλ

dtλ

( ∫
Ω

ξ2
ϕ(t,℘)d℘

)
≤ 2

∫
Ω

ξϕ(t,℘)
∂λξϕ(t,℘)

∂tλ
d℘,

dλ

dtλ

( ∫
Ω

ξ̄2
v(t,℘)d℘

)
≤ 2

∫
Ω

ξ̄v(t,℘)
∂λ ξ̄v(t,℘)

∂tλ
d℘.

Substituting the above inequalities in Equation (7), we obtain
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DλV(t)) ≤
o

∑
ϕ=1

∫
Ω

ξϕ(t,℘)CDλξϕ(t,℘)d℘+
n

∑
v=1

∫
Ω

ξ̃v(t,℘)CDλ ξ̃v(t,℘)d℘

=
o

∑
ϕ=1

∫
Ω

ξϕ(t,℘)
( q

∑
k=1

∂

∂ζk

(
mϕk

∂ξϕ(t,℘)
∂℘k

)
− dϕξϕ(t,℘)

+
[ n

∑
v=1

cϕv fv(=̄v(t,℘))−
n

∑
v=1

cϕv fv(=v(t,℘))
]

+
[ n

∑
v=1

aϕv fv(=̄v(t− τ,℘))−
n

∑
v=1

aϕv fv(=v(t− τ,℘))
]

+
[ n∧

v=1

uϕv

∫ ∞

0
kϕv(s) fv(=̄v(s− τ,℘))ds

−
n∧

v=1

uϕv

∫ ∞

0
kϕv(s) fv(=v(s− τ,℘))ds

]
+
[ n∨

v=1

vϕv

∫ ∞

0
kϕv(s) fv(=̄v(s− τ,℘))ds

−
n∨

v=1

vϕv

∫ ∞

0
kϕv(s) fv(=v(s− τ,℘))ds]

− tϕξϕ(t,℘)−Ψϕξϕ(t,℘)
)

d℘

+
n

∑
v=1

∫
Ω

ξ̄v(t,℘)
( q

∑
k=1

∂

∂=k

(
m̃vk

∂ξ̄v(t,℘)
∂℘k

)
− d̃v ξ̄v(t,℘)

+
[ o

∑
ϕ=1

c̃vϕgϕ(ζ̄ϕ(t,℘))−
o

∑
ϕ=1

c̃vϕgϕ(ζϕ(t,℘))
]

+

[ o

∑
ϕ=1

ãvϕgϕ(ζ̄ϕ(t− τ,℘))−
o

∑
ϕ=1

ãvϕgϕ(ζϕ(t− τ,℘))
]

+
[ o∧

ϕ=1

ũvϕ

∫ ∞

0
kvϕ(s)gϕ(ζ̄ϕ(s− τ,℘))ds

−
o∧

ϕ=1

ũvϕ

∫ ∞

0
kvϕ(s)gϕ(ζϕ(s− τ,℘))ds

]
+
[ o∨

ϕ=1

ṽvϕ

∫ ∞

0
kvϕ(s)gϕ(ζ̄ϕ(s− τ,℘))ds

−
o∨

ϕ=1

ṽvϕ

∫ ∞

0
kvϕ(s)gϕ(ζϕ(s− τ,℘))ds

]
−vv ξ̃v(t,℘)− $v ξ̃v(t,℘)

)
d℘.

By Green’s formula using the boundary conditions, we obtain

q

∑
k=1

∫
Ω

ξϕ(t,℘)
∂

∂℘k

(
mϕk

∂ξϕ(t,℘)
∂℘k

)
d℘ = −

q

∑
k=1

∫
Ω

mϕk

(
∂ξϕ(t,℘)

∂℘k

)2

d℘,
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q

∑
k=1

∫
Ω

ξ̄v(t,℘)
∂

∂℘k

(
m̃vk

∂ξ̄v(t,℘)
∂℘k

)
d℘ = −

q

∑
k=1

∫
Ω

m̃vk

(
∂ξ̄v(t,℘)

∂℘k

)2

d℘.

From the above identities and Lemma 6, we obtain

q

∑
k=1

∫
Ω

ξϕ(t,℘)
∂

∂℘k

(
mϕk

∂ξϕ(t,℘)
∂℘k

)
d℘ = −

q

∑
k=1

∫
Ω

mϕk

(
∂ξϕ(t,℘)

∂℘k

)2

d℘

≤ −
q

∑
k=1

∫
Ω

mϕk

l2
k

ξ2
ϕ(t,℘)d℘ = −M̄ϕ

∫
Ω

ξ2
ϕ(t,℘)d℘.

Similarly,

q

∑
k=1

∫
Ω

ξ̄v(t,℘)
∂

∂℘k

(
m̃vk

∂ξ̄v(t,℘)
∂℘k

)
d℘ = −

q

∑
k=1

∫
Ω

m̃vk

(
∂ξ̄v(t,℘)

∂℘k

)2

d℘

≤ −
q

∑
k=1

∫
Ω

m̃vk

l2
k

ξ2
v(t,℘)d℘ = − ˜̄Mv

∫
Ω

ξ̄2
v(t,℘)d℘.

Then, using Assumptions 1 and 2, we obtain

DλV(t) ≤
∫

Ω

{
−

o

∑
ϕ=1

M̄ϕξ2
ϕ(t,℘)−

o

∑
ϕ=1

dϕξ2
ϕ(t,℘) +

o

∑
ϕ=1

n

∑
v=1
|cϕv |Fv |ξϕ(t,℘)||ξ̄v(t,℘)|

+
o

∑
ϕ=1

n

∑
v=1
|aϕv |Fv |ξϕ(t,℘)||ξ̄v(t− τ,℘)|

+
o

∑
ϕ=1

n

∑
v=1
|uϕv |

∫ ∞

0
kϕv(s)Fv |ξϕ(s,℘)||ξ̃v(s− τ,℘)|ds

+
o

∑
ϕ=1

n

∑
v=1
|vϕv |

∫ ∞

0
kϕv(s)Fv |ξϕ(s,℘)||ξ̄v(s− τ,℘)|ds−

o

∑
ϕ=1

tϕξ2
ϕ(t,℘)

−
o

∑
ϕ=1

Ψϕξ2
ϕ(t,℘)−

n

∑
v=1

¯̃Mv ξ̄2
v(t,℘)−

n

∑
v=1

d̃v ξ̄2
v(t,℘)

+
n

∑
v=1

o

∑
ϕ=1
|c̃vϕ|Gϕ|ξ̄v(t,℘)||ξϕ(t,℘)|

+
n

∑
v=1

o

∑
ϕ=1
|ãvϕ|Gϕ|ξ̄v(t,℘)||ξϕ(t− τ,℘)|

+
n

∑
v=1

o

∑
ϕ=1
|ũvϕ|

∫ ∞

0
kvϕ(s)Gϕ ξ̄v(s,℘)||ξϕ(s− τ,℘)|ds

+
n

∑
v=1

o

∑
ϕ=1
|ṽvϕ|

∫ ∞

0
kvϕ(s)Gϕ ξ̄v(s,℘)|ξϕ(s− τ,℘)|ds

−
o

∑
ϕ=1

vv ξ̃2
ϕ(t,℘)−

o

∑
ϕ=1

$v ξ̄2
ϕ(t,℘)

}
d℘.

Lemma 5 implies the existence of a constant ρ > 0 such that
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DλV(t) ≤
∫

Ω

{
−

o

∑
ϕ=1

M̄ϕξ2
ϕ(t,℘)−

o

∑
ϕ=1

dϕξ2
ϕ(t,℘) +

o

∑
ϕ=1

n

∑
v=1
|cϕv |Fv [

ρ−1

2
ξ2

ϕ(t,℘) +
ρ

2
ξ̄2

v(t,℘)]

+
o

∑
ϕ=1

n

∑
v=1
|aϕv |Fv [

ρ−1

2
ξ2

ϕ(t,℘) +
ρ

2
ξ̄2

v(t− τ,℘)]

+
o

∑
ϕ=1

n

∑
v=1
|uϕv |

∫ ∞

0
kϕv(s)Fv [

ρ−1

2
ξ2

ϕ(s,℘) +
ρ

2
ξ̄2

v(s− τ,℘)]ds

+
o

∑
ϕ=1

n

∑
v=1
|vϕv |

∫ ∞

0
kϕv(s)Fv [

ρ−1

2
ξ2

ϕ(s,℘) +
ρ

2
ξ̄2

v(s− τ,℘)]ds

−
o

∑
ϕ=1

tϕξ2
ϕ(t,℘)−

o

∑
ϕ=1

Ψϕξ2
ϕ(t,℘)

−
n

∑
v=1

¯̃Mv ξ̄2
v(t,℘)−

n

∑
v=1

d̃v ξ̄2
v(t,℘) +

n

∑
v=1

o

∑
ϕ=1
|c̃vϕ|Gϕ[

ρ−1

2
ξ̄2

v(t,℘) +
ρ

2
ξ2

ϕ(t,℘)]

+
n

∑
v=1

o

∑
ϕ=1
|ãvϕ|Gϕ[

ρ−1

2
ξ̄2

v(t,℘) +
ρ

2
ξ2

ϕ(t− τ,℘)]

+
n

∑
v=1

o

∑
ϕ=1
|ũvϕ|

∫ ∞

0
kvϕ(s)Gϕ[

ρ−1

2
ξ̄2

v(s,℘) +
ρ

2
ξ2

ϕ(s− τ,℘)]ds

+
n

∑
v=1

o

∑
ϕ=1
|ṽvϕ|

∫ ∞

0
kvϕ(s)Gϕ[

ρ−1

2
ξ̄2

v(s,℘) +
ρ

2
ξ2

ϕ(s− τ,℘)]ds

−
n

∑
v=1

vv ξ̄2
ϕ(t,℘)−

n

∑
v=1

$v ξ̄2
ϕ(t,℘)

}
.

We apply Assumption 3 to obtain

DλV(t) ≤
∫

Ω
ξ2

ϕ(t,℘)

{
−

o

∑
ϕ=1

M̃ϕ −
o

∑
ϕ=1

dϕ +
o

∑
ϕ=1

n

∑
v=1
|cϕv |Fv

ρ−1

2
+

o

∑
ϕ=1

n

∑
v=1
|aϕv |Fv

ρ−1

2

+
o

∑
ϕ=1

n

∑
v=1
|uϕv |Fv

ρ−1

2
+

o

∑
ϕ=1

n

∑
v=1
|vϕv |Fv

ρ−1

2
−

o

∑
ϕ=1

tϕ −
o

∑
ϕ=1

Ψϕ +
n

∑
v=1

o

∑
ϕ=1
|c̃vϕ|Gϕ

ρ

2

}

+ max
−∞<s≤0

ξ2
ϕ(s,℘)

{
n

∑
v=1

o

∑
ϕ=1
|ãvϕ|Gϕ

ρ

2
+

n

∑
v=1

o

∑
ϕ=1
|ṽvϕ|Gϕ

ρ

2
+

n

∑
v=1

o

∑
ϕ=1
|ũvϕ|Gϕ

ρ

2

}

+ ξ̄2
v(t,℘)

{
−

n

∑
v=1

¯̃Mv −
n

∑
v=1

d̃v +
n

∑
v=1

o

∑
ϕ=1
|c̃vϕ|Gϕ

ρ−1

2
+

n

∑
v=1

o

∑
ϕ=1
|ãvϕ|Gϕ

ρ−1

2

+
n

∑
v=1

o

∑
ϕ=1
|ũvϕ|Gϕ

ρ−1

2
+

n

∑
v=1

o

∑
ϕ=1
|ṽvϕ|Gϕ

ρ−1

2
−

n

∑
v=1

vv −
n

∑
v=1

$v

+
o

∑
ϕ=1

n

∑
v=1
|c̃ϕv |Gϕ

ρ

2

}
+ max
−∞<s≤0

ξ̄2
v(s,℘)

{
o

∑
ϕ=1

n

∑
v=1
|uϕv |Fϕ

ρ

2

+
o

∑
ϕ=1

n

∑
v=1
|vϕv |Fϕ

ρ

2
+

o

∑
ϕ=1

n

∑
v=1
|aϕv |Fϕ

ρ

2

}
d℘,
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or

DλV(t) ≤
∫

Ω

{
− µ

(1)
min

o

∑
ϕ=1

ξ2
ϕ(t,℘)− µ

(2)
min

n

∑
v=1

ξ̄2
v(t,℘) + Ω(1)

max

n

∑
ϕ=1

max
−∞<s≤0

ξ2
ϕ(s,℘)

+ Ω(2)
max

n

∑
ϕ=1

max
−∞<s≤0

ξ̄2
v(s,℘)

}
d℘ ≤ −µV(t) + Λ max

−∞<s≤0
V(s),

where µ = min
{

µ
(1)
min, µ

(2)
min

}
, and Λ = max

{
Λµ

1 , Λµ
2

}
.

By Lemma 3, since µ >
√

2Λ, we have limt→∞ V(t) = 0.
For ||ξ(t,℘)||1 + ||ξ̄(t,℘)||2 = V(t), we can conclude that system (4) is globally asymp-

totically stable. This means that the drive system (1) and the response system (2) are
globally asymptotically synchronized via the state feedback controllers. This completes the
proof of the theorem.

Remark 2. Different from all existent synchronization results for neural network models, we
consider a class of more general structures which include Caputo type fractional derivatives, reaction–
diffusion terms, discrete and distributed delays which allow us to divide all nodes in the network into
different classes, a BAM two-layer connection, fuzzy logic, and hybrid feedback controllers. Thus,
the proposed results in Theorem 1 generalize and complement numerous asymptotic synchronization
results. For example, our results generalize the results in [16] to the BAM case considering Caputo’s
fractional differential operators. Moreover, the results established complement the results in [2]
considering Caputo’s fractional differential operators and hybrid feedback controllers.

Remark 3. The proposed global asymptotic synchronization criteria in Theorem 1 are in the forms
of inequalities between the system parameters. This form allows applied researchers to easily apply
the established results. The presence of the terms that include |uϕv |, |vϕv |, |ũvϕ|, and |ṽvϕ| in the

conditions for µ
(1)
min, µ

(2)
min, Λµ

1 , and Λµ
2 reflects the role of the distributed delays with delay kernels

which satisfy Assumption 3. Furthermore, the terms tϕ + ψϕ and vv + $v reflect the design of
the controllers.

Remark 4. Without feedback controllers, the error system (4) becomes

∂λξϕ(t,℘)
∂tλ

=
q

∑
k=1

∂

∂℘k

(
mϕk

∂ξϕ(t,℘)
∂℘k

)
− dϕξϕ(t,℘)

+
[ n

∑
v=1

cϕv fv(=̄v(t,℘))−
n

∑
v=1

cϕv fv(=v(t,℘))
]

+
[ n

∑
v=1

aϕv fv(=̄v(t− τ,℘))−
n

∑
v=1

aϕv fv(=v(t− τ,℘))
]

+
[ n∧

v=1

uϕv

∫ ∞

0
kϕv(s) fv(=̄v(s− τ,℘))ds

−
n∧

v=1

uϕv

∫ ∞

0
kϕv(s) fv(=v(s− τ,℘))ds

]
+
[ n∨

v=1

vϕv

∫ ∞

0
kϕv(s) fv(=̄v(s− τ,℘))ds

−
n∨

v=1

vϕv

∫ ∞

0
kϕv(s) fv(=v(s− τ,℘))ds

]
, ϕ = 1, 2, . . . , o,
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∂λ ξ̄v(t,℘)
∂tλ

=
q

∑
k=1

∂

∂℘k

(
m̃vk

∂ξ̄v(t,℘)
∂℘k

)
− d̃v ξ̄v(t,℘)

+
[ o

∑
ϕ=1

c̃vϕgϕ(ζ̄ϕ(t,℘))−
o

∑
ϕ=1

c̃vϕgϕ(ζϕ(t,℘))
]

+
[ o

∑
ϕ=1

ãvϕgϕ(ζ̄ϕ(t− τ,℘))−
o

∑
ϕ=1

ãvϕgϕ(ζϕ(t− τ,℘))
]

+
[ o∧

ϕ=1

ũvϕ

∫ ∞

0
kvϕ(s)gϕ(ζ̄ϕ(s− τ,℘))ds

−
o∧

ϕ=1

ũvϕ

∫ ∞

0
kvϕ(s)gϕ(ζ̄ϕ(s− τ,℘))ds

]
+
[ o∨

ϕ=1

ṽvϕ

∫ ∞

0
kvϕ(s)gϕ(ζ̄ϕ(s− τ,℘))ds

−
o∨

ϕ=1

ṽvϕ

∫ ∞

0
kvϕ(s)gϕ(ζϕ(s− τ,℘))ds

]
, v = 1, 2, . . . , n. (8)

Theorem 2. Suppose that Assumptions 1–3, τ < 1, and conditions of Lemma 6 hold. The error
system (8) is globally asymptotically stable, if there exist constants

Θ1 = min
1≤ϕ≤o

{
(M̃ϕ + dϕ)−

n

∑
v=1
|c̃vϕ|Gϕ

}
> 0,

Θ2 = min
1≤ϕ≤o

{
( ¯̃Mv + d̃v)−

o

∑
ϕ=1
|cϕv |Fv

}
> 0,

Λθ
1 =

{
n

∑
v=1

o

∑
ϕ=1
|ãvϕ|Gϕ +

n

∑
v=1

o

∑
ϕ=1
|ũvϕ|Gϕ +

n

∑
v=1

o

∑
ϕ=1
|ṽvϕ|Gϕ

}
> 0,

Λθ
2 =

{
o

∑
ϕ=1

n

∑
v=1
|aϕv |Fv +

o

∑
ϕ=1

n

∑
v=1
|uvϕ|Fv +

o

∑
ϕ=1

n

∑
v=1
|vvϕ|Fv

}
> 0,

such that
min{Θ1, Θ2} > max

{
Λθ

1, Λθ
2

}
.

Proof. We define a Lyapunov function as

V(t) =
∫

Ω
D−(1−λ)

[
o

∑
ϕ=1
|ξϕ(t,℘)|+

n

∑
v=1
|ξ̄v(t,℘)|

]
d℘+

∫
Ω

o

∑
ϕ=1

∫ t

t−τ
|ξϕ(s,℘)|dsd℘

+
∫

Ω

n

∑
v=1

∫ t

t−τ
|ξ̄v(s,℘)|dsd℘. (9)

Taking the time derivative of (9), we obtain

dV(t)

dt
=
∫

Ω
Dλ

[
o

∑
ϕ=1
|ξϕ(t,℘)|+

n

∑
v=1
|ξ̄v(t,℘)|

]
d℘+

∫
Ω

o

∑
ϕ=1
|ξϕ(t,℘)|d℘−

∫
Ω

o

∑
ϕ=1
|ξϕ(t− τ,℘)|d℘

+
∫

Ω

n

∑
v=1
|ξ̄v(t,℘)|d℘−

∫
Ω

n

∑
v=1
|ξ̄v(t− τ1(t),℘)|d℘.

The rest of the proof is similar to the proof of Theorem 1. Instead of Lemma 3, the
fractional Barbalat’s Lemma is used.
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4. Global Mittag–Leffler Synchronization

For fractional-order systems, the concept of Mittag–Leffler stability was introduced
in [23]. This notion generalizes the exponential stability notion for integer-order systems
and has been investigated intensively [23–29,34,44]. In this section, we establish criteria for
the global Mittag–Leffler stability of the error system (8).

Definition 3. The error system (8) is said to be globally Mittag–Leffler stable, if for any continuous
initial functions φ, (φ1, φ2, . . . , φo)T and φ̃, (φ̃1, φ̃2, . . . , φ̃n)T , there exist positive constants δ and
q such that

||ξ(t,℘)||1 + ||ξ̄(t,℘)||2 ≤
{

M(||φ||1∞ + ||φ̃||2∞)Eλ(−δtλ)
}q

for t ≥ 0, where Eλ is the corresponding Mittag–Leffler function, ||φ||1∞ = maxs∈(−∞,0] ||φ(s)||1,
||φ̃||2∞ = maxs∈(−∞,0] ||φ̃(s)||2, M(0) = 0, M ≥ 0, and M is Lipschitz with respect to its
argument.

The global Mittag–Lefler stability of the error system (8) is equivalent to the global
Mittag–Leffler synchronization of the master and response systems.

Theorem 3. Suppose that Assumptions 1–3 and the conditions of Lemma 6 hold. The error
system (8) is globally Mittag–Leffler stable if there exist constants ρ > 0 and

ν
(1)
min = min

1≤ϕ≤o

{
2M̃ϕ + 2dϕ −

n

∑
v=1
|cϕv |Fvρ−1 −

n

∑
v=1
|aϕv |Fvρ−1

−
n

∑
v=1
|uϕv |Fvρ−1 −

n

∑
v=1
|vϕv |Fvρ−1 −

n

∑
v=1
|cϕv |Fvρ

}
> 0,

ν
(2)
min = min

1≤v≤n

{
2 ¯̃Mv + 2d̃v −

o

∑
ϕ=1
|c̃vϕ|Gϕρ−1 −

o

∑
ϕ=1
|ãvϕ|Gϕρ−1 −

o

∑
ϕ=1
|ũvϕ|Gϕρ−1

−
o

∑
ϕ=1
|ṽvϕ|Gϕρ−1 −

o

∑
ϕ=1
|c̃vϕ|Gϕρ

}
> 0,

Λν
1 = max

1≤ϕ≤o

{
n

∑
v=1
|ũvϕ|Gϕρ +

n

∑
v=1
|ṽvϕ|Gϕρ +

n

∑
v=1
|ãvϕ|Gϕρ

}
> 0,

Λν
2 = max

1≤v≤n

{
o

∑
ϕ=1
|uϕv |Fvρ +

o

∑
ϕ=1
|vϕv |Fvρ +

o

∑
ϕ=1
|aϕv |Fvρ

}
> 0,

such that
min

{
ν
(1)
min, ν

(2)
min

}
≥ max{Λν

1, Λν
2}.

Proof. We define again a Lyapunov function as

V(t) =
∫

Ω

o

∑
ϕ=1

1
2

ξ2
ϕ(t,℘)d℘+

∫
Ω

n

∑
v=1

1
2

ξ̄2
v(t,℘)d℘. (10)

Applying the same technique and steps as in the proof of Theorem 1, we obtain

DλV(t) ≤ −νV(t) + Λ max
−∞<s≤0

V(s),

where ν = min
{

ν
(1)
min, ν

(2)
min

}
and Λ = max

{
Λµ

1 , Λµ
2

}
.
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We apply the Razumikhin condition

V(s) ≤ V(t), −∞ < s ≤ t (11)

to the above inequality to obtain

DλV(t) ≤ −(ν−Λ)V(t).

Since ν ≥ Λ, there exists a positive constant δ, such that

DλV(t) ≤ −δV(t).

Then, by Lemma 2, we have

V(t) ≤ max
−∞<s≤0

V(s)Eλ(−δtλ), t > 0.

Therefore,

||ξ(t,℘)||1 + ||ξ̄(t,℘)||2 ≤
(
||φ||1∞ + ||φ̃||2∞

)
Eλ(−δtλ),

i.e., according to Definition 3, the error system (8) is globally Mittag–Leffler stable, which
means that the master and response systems are globally Mittag–Leffler synchronized. The
proof is completed.

Remark 5. When the distributed delays and diffusion terms are not considered in model (1), the
fractional-order fuzzy BAM neural network is denoted as follows:

∂λζϕ(t)

∂tλ
= −dϕζϕ(t) +

n

∑
v=1

cϕv fv(=v(t))

+
n

∑
v=1

aϕv fv(=v(t− τ)) + Iϕ, ϕ = 1, 2, . . . , o,

∂λ=v(t)

∂tλ
= −d̃v=v(t) +

o

∑
ϕ=1

c̃vϕgϕ(ζϕ(t))

+
o

∑
ϕ=1

ãvϕgϕ(ζϕ(t− τ)) + Jv, v = 1, 2, . . . , n. (12)

Under the assumption that the activation functions fv and gϕ are bounded, the above neural
network system (12) has an equilibrium point (ζ∗,=∗)T . Let ζ̂(t) = ζ(t)− ζ∗, =̌(t) = =(t)−=∗.
Then, we can apply the established results for system (4) to the following system

∂λ ζ̂ϕ(t)

∂tλ
= −dϕ ζ̂ϕ(t) +

n

∑
v=1

cϕv fv(=̌v(t))

+
n

∑
v=1

aϕv fv(=̌v(t− τ)), ϕ = 1, 2, . . . , o,

∂λ=̌v(t)

∂tλ
= −d̃v=̌v(t) +

o

∑
ϕ=1

c̃vϕgϕ(ζ̂ϕ(t))

+
o

∑
ϕ=1

ãvϕgϕ(ζ̂ϕ(t− τ)), v = 1, 2, . . . , n. (13)

Theorem 4. Under Assumption 2, system (13) is globally Mittag–Leffler stable if the activa-
tion functions are bounded and δ = (vθ

1 − vθ
2) > 0, vθ

1 = min{v1, v2}, vθ
2 = max{v3, v4},



Mathematics 2023, 11, 4248 16 of 24

v1 = min1≤ϕ≤o
{[

dϕ − |c̃vϕ|Gϕ

]}
, v2 = min1≤ϕ≤o

{[
d̃v − |cϕv |Fv |

]}
, v3 = min1≤ϕ≤o

∑n
v=1 |aϕv |Fv, v4 = max1≤v≤n ∑o

ϕ=1 |ãvϕ|Gϕ.

Proof. We define a Lyapunov function as

V(t, ζ̂, =̌) =
o

∑
ϕ=1
|ζ̂ϕ(t)|+

n

∑
v=1
|=̌v(t)| (14)

For the Caputo derivative along the trajectories of (13) and using Assumption 2,
we have

DλV(t, ζ̂, =̌) = Dλ

[
o

∑
ϕ=1
|ζ̂ϕ(t)|+

n

∑
v=1
|=̌v(t)|

]

≤
{

o

∑
ϕ=1

(−dϕ|ζ̂ϕ(t)|+
n

∑
v=1
|cϕv |Fv |=̌v(t)|

+
n

∑
v=1
|aϕv |Fv |=̌v(t− τ)|+

n

∑
v=1

(−d̃v=̌v(t) +
o

∑
ϕ=1
|c̃vϕ|Gϕ|ζ̂ϕ(t)|

+
o

∑
ϕ=1
|ãvϕ|Gϕ|ζ̂ϕ(t− τ|)

}

= −
{

o

∑
ϕ=1

[dϕ − |c̃vϕ|Gϕ]|ζ̂ϕ(t)| −
n

∑
v=1

[d̃v − |cϕv |Fv |]|=̌v(t)|

+
o

∑
ϕ=1

n

∑
v=1
|aϕv |Fv |=̌v(t− τ)|+

o

∑
ϕ=1
|ãvϕ|Gϕ|ζ̂ϕ(t− τ)|)},

= −v1

o

∑
ϕ=1
|ζ̂ϕ(t)| −v2

n

∑
v=1
|=̌v(t)|+

o

∑
ϕ=1

n

∑
v=1

v3|ζ̂ϕ(t− τ)|

+
o

∑
ϕ=1

n

∑
v=1

v4|=̌v(t− τ)|
}

≤ −vθ
1V(t, ζ̂(t), =̌v(t)) + vθ

2 sup
t−τ≤s≤t

V(s, ζ̂(s), =̌(s)). (15)

We apply the Razumikhin condition,

sup
t−τ≤s≤t

V(s, ζ̂(s), =̌(s)) ≤ V(t, ζ̂(t), =̌(t)), (16)

to (15) and obtain

DλV(t, ζ̂(t), =̌(t)) ≤ −(vθ
1 −vθ

2)V(t, ζ̂(t), =̌(t)). (17)

We can choose a positive constant δ > 0, such that

(vθ
1 −vθ

2) ≥ δ (18)

From (17) and (18), we obtain

DλV(t, ζ̂(t), =̌(t)) ≤ −δV(t, ζ̂(t), =̌(t)). (19)

According to Lemma 2,

V(t, ζ̂(t), =̌(t)) ≤ sup
t−τ≤s≤t

V(0, ζ̂(s), =̌(s))Eλ(−δtλ). (20)
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For

V(t, ζ̂(t), =̌(t)) = ||ζ(t)− ζ∗||1 + ||=(t)−=∗||2,

=
o

∑
ϕ=1
|ζϕ(t)− ζ∗|+

n

∑
v=1
|=v(t)−=∗|,

we have from (20)

||ζ(t)− ζ∗||1 + ||=(t)−=∗||2 ≤
(
||φϕ − ζ∗||1τ + ||φv −=∗||2τ

)
Eλ(−δtλ), (21)

where φϕ and φ̃v are the initial functions that correspond to system (12), and
||φ||1τ = maxs∈−τ,0] ||φ(s)||1, ||φ̃||2τ = maxs∈[−τ,0] ||φ̃(s)||2.

Therefore, system (13) is globally Mittag–Leffler stable, i.e., the equilibrium of sys-
tem (12) is globally Mittag–Leffler stable. The proof is completed.

Remark 6. Notice that the results provided by Theorems 3 and 4 are particular cases of the results
established in Theorem 1. In addition, it is seen that the Mittag–Leffler stability concept is a
particular case of the asymptotic stability notion and generalizes the exponential stability in the
fractional-order case.

5. Numerical Examples

In this section, numerical examples are addressed to demonstrate the usefulness of the
proposed results.

Example 1. For ϕ = v = 2, we consider the master system (1) and response system (2) of fuzzy
BAM NNs with the following parameters: λ = 0.97, τ = 0.2,

D = D̃ =

[
1.5 0
0 1.5

]
, cϕv = c̃vϕ =

[
0.2 −0.1
0.1 0.2

]
, aϕv = ãvϕ =

[
−0.4 0.5
0.4 −2.5

]
,

uϕv = ũvϕ =

[
0.5 −0.5
0.6 0.8

]
, Pϕv = P̃vϕ =

[
−0.4 −0.8
0.5 0.1

]
, vϕv = ṽvϕ =

[
−0.5 −0.1
−0.2 −0.5

]
,

Qϕv = Q̃vϕ =

[
−0.4 0.5
0.4 −2.5

]
, M1 = M2 =

[
0 0
0 0

]
, Iϕ = Jv =

[
−0.2 cos(t)
−0.2 sin(t)

]
,

M̃1 = M̃2 =

[
0 0
0 0

]
.

Consider the activation functions defined by

gϕ(ζϕ(t,℘)) = |ζϕ(t,℘) + 2| − |ζϕ(t,℘)− 2|,

fv(=v(t,℘)) = |=v(t,℘) + 2| − |=v(t,℘)− 2|,

which satisfy Assumption 2 for Fv = 1
2 and Gϕ = 1

2 .
Although Assumptions 1–3 are satisfied, the numerical simulations demonstrated in Figure 1

show that the global asymptotic synchronization cannot be realized for systems (1) and (2), or the
corresponding error system is not globally asymptotically stable in the absence of a control input.

Now, let us consider feedback controllers with tϕ = 2.1, Ψϕ = 1.1, vv = 0, $v = 2, and let
ρ = 0.2.

Substituting the above values in Theorem 1, we obtain
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µ
(1)
min = min

1≤ϕ≤o

{
2M̃ϕ + 2dϕ −

n

∑
v=1
|cϕv |Fvρ−1 −

n

∑
v=1
|aϕv |Fvρ−1

−
n

∑
v=1
|uϕv |Fvρ−1 −

n

∑
v=1
|vϕv |Fvρ−1 + tϕ + ψϕ −

n

∑
v=1
|cϕv |Fvρ

}
= 1.22 > 0,

µ
(2)
min = min

1≤v≤n

{
2 ¯̃Mv + 2d̃v −

o

∑
ϕ=1
|c̃vϕ|Gϕρ−1 −

o

∑
ϕ=1
|ãvϕ|Gϕρ−1 −

o

∑
ϕ=1
|ũvϕ|Gϕρ−1

−
o

∑
ϕ=1
|ṽvϕ|Gϕρ−1 + vv + $v −

o

∑
ϕ=1
|c̃vϕ|Gϕρ

}
= 1.29 > 0,

Λµ
1 = max

1≤ϕ≤o

{
n

∑
v=1
|ũvϕ|Gϕρ +

n

∑
v=1
|ṽvϕ|Gϕρ +

n

∑
v=1
|ãvϕ|Gϕρ

}
= 0.86 > 0,

Λµ
2 = max

1≤v≤n

{
o

∑
ϕ=1
|uϕv |Fvρ +

o

∑
ϕ=1
|vϕv |Fvρ +

o

∑
ϕ=1
|aϕv |Fvρ

}
= 0.45 > 0.

Hence, µ >
√

2Λ, where µ = min
{

µ
(1)
min, µ

(2)
min

}
= 1.22 and Λ = max

{
Λµ

1 , Λµ
2

}
= 0.86,

and by Theorem 1, systems (1) and (2) are globally asymptotically synchronized. This means that
the corresponding error system is globally asymptotically stable via the controllers. The trajectories
of the error system for λ = 0.97 are given in Figure 2.
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Figure 1. State trajectories of the error system corresponding to the fractional-order fuzzy BAM
neural networks in Example 1 for λ = 0.97 without controllers.
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Figure 2. State trajectories of the error system corresponding to the fractional-order fuzzy BAM
neural networks in Example 1 with fractional order λ = 0.97 with controllers.

Example 2. In this example, consider the error system (8) for ϕ = v = 2 and the following
parameters: λ = 0.95, τ = 0.2

D = D̃ =

[
1.5 0
0 1.5

]
, cϕv = c̃vϕ =

[
0.2 −0.1
0.1 0.3

]
, aϕv = ãvϕ =

[
−0.2 0.6
0.5 −3.5

]
,

uϕv = uvϕ =

[
0.4 −0.4
0.7 0.6

]
, Pϕv = P̃vϕ =

[
−0.3 −0.7
0.4 −2

]
, vϕv = ṽvϕ =

[
−0.7 −0.2
−0.1 −0.5

]
,

Qϕv = Q̃vϕ =

[
−0.3 0.4
0.3 −2.6

]
, M1 = M2 = 0, M̃1 = M̃2 = 0, I =

[
−0.2 cos(t)
−0.2 sin(t)

]
.

Then, the following functions are defined

gϕ(ζϕ(t,℘)) = |ζϕ(t,℘) + 2| − |ζϕ(t,℘)− 2|.

fv(=v(t,℘)) = |=v(t,℘) + 2| − |=v(t,℘)− 2|,

Substituting the above values in Theorem 3, we obtain
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ν
(1)
min = min

1≤ϕ≤o

{
2M̃ϕ + 2dϕ −

n

∑
v=1
|cϕv |Fvρ−1 −

n

∑
v=1
|aϕv |Fvρ−1

−
n

∑
v=1
|uϕv |Fvρ−1 −

n

∑
v=1
|vϕv |Fvρ−1 −

n

∑
v=1
|cϕv |Fvρ

}
= 2.10 > 0,

ν
(2)
min = min

1≤v≤n

{
2 ¯̃Mv + 2d̃v −

o

∑
ϕ=1
|c̃vϕ|Gϕρ−1 −

o

∑
ϕ=1
|ãvϕ|Gϕρ−1 −

o

∑
ϕ=1
|ũvϕ|Gϕρ−1

−
o

∑
ϕ=1
|ṽvϕ|Gϕρ−1 −

o

∑
ϕ=1
|c̃vϕ|Gϕρ

}
= 2.10 > 0,

Λν
1 = max

1≤ϕ≤o

{
n

∑
v=1
|ũvϕ|Gϕρ +

n

∑
v=1
|ṽvϕ|Gϕρ +

n

∑
v=1
|ãvϕ|Gϕρ

}
= 1.98 > 0,

Λν
2 = max

1≤v≤n

{
o

∑
ϕ=1
|uϕv |Fvρ +

o

∑
ϕ=1
|vϕv |Fvρ +

o

∑
ϕ=1
|aϕv |Fvρ

}
= 0.87 > 0.

Hence, since 2.10 = min
{

ν
(1)
min, ν

(2)
min

}
> max

{
Λν

1, Λν
2
}
= 1.98, Theorem 3 implies that

the error system (8) is globally Mittag–Leffler stable. The state trajectories for the given system
parameters are shown in Figure 3.
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Figure 3. The state trajectories of the fractional-order fuzzy BAM neural network system (8) in
Example 2.

Example 3. In this Example, we consider a model of type (13) with ϕ = v = 2 and λ = 0.9, τ = 0.2,

cϕv = c̃vϕ =

[
0.6 −0.3
0.3 0.7

]
, aϕv = ãvϕ =

[
−0.2 0.4
0.4 −1.2

]
,

and activation functions defined by
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gϕ(ζ̂ϕ(t)) = |ζ̂ϕ(t) + 2| − |ζ̂ϕ(t)− 2|,

fv(=̌v(t)) = |=̌v(t) + 2| − |=̌v(t)− 2|.

Substituting the above values in Theorem 3, we obtain v1 = min1≤ϕ≤o{[dϕ − |c̃vϕ|Fϕ]} =
2.87, v2 = min1≤ϕ≤o{[d̃v − |cϕv |Fv |]} = 1.78, v3 = min1≤ϕ≤o[∑n

v=1 |aϕv |Fv ] = 0.87,
v4 = max1≤v≤n[∑o

ϕ=1 |ãvϕ|Fϕ] = 0.87.
By utilizing Theorem 4, we are able to ascertain that system (13) is globally Mittag–Leffler

stable. The stable behavior of the states is shown in Figure 4.
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Figure 4. The state trajectories of the fractional-order BAM neural network system in Example 3.

Remark 7. The parameters, initial values, software, and computer configurations used in establish-
ing numerical simulations were as follows:

Example 1: N = 2000; d = [0.5; 0.5]; D1 = diag(d); f1 = 2; f2 = 2; g1 = 1; g2 = 1;
dis = 1; ti = 3; a = 0.2; b = 0.1; τ = 0.3; tstep = 0.01; dstep = 0.1; τno = τ/tstep;
tno = ti/tstep; dno = dis/dstep; N1 = 10; T1 = zeros(1, N1); delta2 = zeros(1, N1);
T1(1) = τno; β = min(F1)/ max(F)N = 2000.

Example 2: f1 = 2; f2 = 2; g1 = 1; g2 = 1; Dis = 1; ti = 3; a = 0.2; b = 0.1;
τ = 0.3; tstep = 0.01; dstep = 0.1; τno = τ/tstep; tno = ti/tstep; dno = dis/dstep;
N1 = 10; T1 = zeros(1, N1); delta2 = zeros(1, N1); T1(1) = τno; for k = 2 : N1;
T1(k) = τno + 30 ∗ (k− 1) + (−1)k ∗ (rem((k− 1), 10)); for k = 1 : N1 − 1 delta(k) =
T1(k) + round(0.6 ∗ (T1(k + 1)− T1(k))); delta(N1) = T1(N1) + 20.

Example 3: et = 25; h = 0.02; t = −st : h : et; N0 = f loor(st/h); N1 = et/h;
n = N0 + N1; q1 = 0.95; q2 = 0.95; q3 = 0.95; q4 = 0.95

System configuration: Window 10 and Matlab 2017A software.
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6. Conclusions

In this paper, we considered a reaction–diffusion fractional-order fuzzy BAM neural
network with discrete and distributed delays. The global asymptotic stability and global
asymptotic synchronization behaviors were investigated using novel hybrid feedback
controllers. In addition, sufficient conditions ensuring the globally Mittag–Leffler stability
of such systems were derived based on the inequality technique and an analysis method
for the controller was also developed. The criteria were in the form of algebraic inequalities
and were convenient for applications. The established global asymptotic synchronization
results also reflected the presence of distributed delays and the design of the proposed
controllers. Numerical examples were given to verify the effectiveness of the main results.

The obtained results advance the related state of the art by considering a more general
structure which allows one to divide all nodes in the network into different classes and
includes a BAM two-layer connection, fuzzy logic, and hybrid feedback controllers. The
applied technique can be extended to systems under impulsive perturbations which can
also be used as a control mechanism. Considering real case studies, such as proportional–
integral–derivative controllers, variable-order fractional derivatives are also subjects for
future development of the topic.
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Abstract

This article investigates the observer-based security control of discrete-time Markov jump

systems (MJSs) subject to hybrid cyber-attacks and unmeasured states via event-triggered

scheme. The event-triggered scheme (ETS) is being developed to relieve more network

burdens. A Luenburger observer is used to estimate the unmeasured states. In this work, the

hybrid cyber attack is addressed, which contains deception attacks and DoS attacks. It is

anticipated that input control signals sent across a network are vulnerable to hybrid cyber-

attacks in which adversaries could inject fake data into the control signals. Since system

state information is usually not fully known, an observer-based controller is built to stabilize
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This article deals with the problem of event-triggered control of complex dynamical
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ABSTRACT
The boundary synchronisation problem of fractional-order fuzzy reaction–diffusion BAMneural net-
works with leakage delay is investigated. A novel adaptive boundary controller, Neumann boundary
condition, and fuzzy feedback MIN and MAX templates of nonlinear dynamic fuzzy modelling are
employed.Wedevelopedadaptive sufficient criteria to check theasymptotic stability of errordynam-
ical system by using suitable Lyapunov functional, Wirtinger’s inequality and LMI method, which
guarantee the drive-response dynamical systems achieve the synchronisation. Meanwhile, two dif-
ferent controllers, adaptive full-domain and boundary controllers are developed. At last, numerical
simulations are presented to demonstrate the feasibility of the theoretical results.
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1. Introduction

In recent years, neural networks have performed
exceptionally well in a variety of areas, including
secure communication (Song et al., 2020), multi-
channel audio encryption (Z. Dong et al., 2023), signal
processing (Z. Wang, Eisen, et al., 2022), pattern for-
mation (M. Li et al., 2022) and optimisation problems
(Guan & Wang, 2022). In artificial neural networks,
various architectures have been developed to model
and analyse complicated patterns in data. Neural net-
works with bidirectional associative memory (BAM)
are one of these architectures that can make bidirec-
tional associations between patterns. Recurrent neural
networks with specialised pattern recognition and pat-
tern retrieval capabilities are referred to as BAMneural
networks. BAM neural networks were initially pro-
posed and studied by Kosko (1987), Kosko (1988).
Synchronisation is a fundamental phenomenon in
neural networks that has been studied in detail in
the context of both integer-order and fractional-order
systems (Sun et al., 2020; J. Wang, Tian, et al., 2023;
Y. Wang et al., 2020). Understanding synchronisation
in BAM neural networks is critical because synchro-
nisation can facilitate information transfer, improve
network efficiency and enable cooperative behaviour

CONTACT Grienggrai Rajchakit ratchakit@gmail.com Department of Mathematics, Faculty of Science, Maejo University, Chiang Mai 50290, Thailand

among network elements. Studying synchronisation
properties in these networks can provide insights into
the emergence of collective behaviour, pattern forma-
tion and information integration. Recently, asymptotic
synchronisation (D. Chen & Zhang, 2022), exponen-
tial synchronisation (Cao & Wan, 2014), finite-time
synchronisation (Zhou et al., 2022), fixed-time syn-
chronisation (Duan & Li, 2021) and H∞ synchro-
nisation (Shen et al., 2022) have been studied in
BAM neural networks. Furthermore, diffusion effects
are unavoidable in BAM neural networks because
electrons move through nonuniform electromagnetic
fields (T. Dong et al., 2022; Hu et al., 2022; M. Li
& Zhao, 2022; Y. Li & Wei, 2022; Lin et al., 2020;
Thakur et al., 2022; L. Wang et al., 2018).

Compared to traditional integer models, fractional
models have been proven to be a valuable tool
for defining the memory and associated properties
of many materials (Nirvin et al., 2022; Udhayaku-
mar, Rakkiyappan, et al., 2022; Udhayakumar, Rihan,
et al., 2022; S. Yang et al., 2021). Based on the
connections between neurons, fractional differential
equations show how the concentration of neuron
changes in response towhat the brain does. Fractional-
order BAM neural networks are strongly nonlinear

© 2023 Informa UK Limited, trading as Taylor & Francis Group
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systems that exhibit a variety of dynamic behaviours,
including bifurcation (C. Xu et al., 2021), chaos (Y.
Wang et al., 2022), Mittag–Leffler stability (Stamov
et al., 2019), passivity analysis (C. Wang, Zhang, Ye,
et al., 2023), stabilisation (Wu et al., 2016) and syn-
chronisation (C. Wang, Zhang, Stamova, et al., 2023).
Time delays are important because many real-world
phenomena have time dependencies. In neural net-
works, time delays can affect the dynamics of infor-
mation transmission and processing. Investigating the
time delays in neural networks can provide valu-
able insights into the stability, convergence and per-
formance of these networks. In particular, leakage
delays were introduced and studied in BAM neu-
ral networks by Gopalsamy (2007). Consequently, the
dynamic behaviour of leakage delays in neural net-
works has paidmuch attention in the literature (Huang
& Cao, 2018; Huang et al., 2021, 2017; Lin et al., 2019).
However, the theory of fuzzy logic is required to solve
the challenging biological problems that exceed the
abilities of other existing techniques. Fractional fuzzy
BAMneural networks have become a popular study in
recent decades (Ratnavelu et al., 2017; SyedAli, Hyma-
vathi, et al., 2020; Syed Ali, Narayanan, et al., 2020; Z.
Zhang & Yang, 2023).

Adaptive control, which is a continuous control
strategy, has received much attention in real-world
applications such as secure communications (Shan-
mugam et al., 2020) and image encryption (Mani
et al., 2019) to save money in the temporal domain.
The existing adaptive control methods include adap-
tive update laws. Adaptive control for the synchroni-
sation of fractional-order BAM neural networks has
attracted much attention in recent decades (C. Chen
et al., 2018; Pratap et al., 2019; Rajivganthi et al., 2016;
Shafiya et al., 2022; J. Yang et al., 2022; Z. Yang
& Zhang, 2020). To achieve desired performance for
neural networks while reducing the spatial domain
cost and enabling easy implementation, a boundary
controller can be introduced as unique controlmethod
for diffusion systems. In X. Z. Liu et al. (2023), R.
J. Zhang et al. (2022), X. Z. Liu et al. (2020), the
authors studied the synchronisation problem of frac-
tional reaction–diffusion neural networks via bound-
ary control. In recent years, a new paradigm, adap-
tive boundary control synchronisation, has emerged
as a promising alternative. Adaptive boundary control
synchronisation combines the principles of adaptive
control with the concepts of boundary control and

Table 1. Comparison for fractional-order BAM neural networks
(FOBAMNNs) with other works.

FOBAMNNs
Shafiya

et al. (2022)
J. Yang

et al. (2022)
Pratap et al.

(2019) This paper

Fuzzy approach × √ × √
Reaction–diffusion × × × √
Leakage delay × × × √
LMI approach

√ × × √
Adaptive control

√ × √ √
Boundary control × × × √
Synchronisation

√ √ √ √

synchronisation theory. In addition, adaptive bound-
ary control provides better performance in terms of
convergence speed and tracking accuracy compared to
traditional adaptive control methods. Therefore, adap-
tive boundary control synchronisation is considered in
this paper.

The previous discussionmotivates us to do research
on the new topic: LMI-based adaptive boundary
synchronisation of fractional-order fuzzy reaction–
diffusion BAM neural networks with leakage delay.
The main contributions are listed as follows:

• The problem of boundary synchronisation of
fractional-order fuzzy reaction–diffusion BAM
neural networks with leakage time delay and adap-
tive boundary control is studied for the first time.

• By developing a set of adaptive boundary con-
trol strategies with adaptive updated laws in the
fractional domain, new sufficient criteria are cre-
ated to guarantee that the fractional-order fuzzy
reaction–diffusion BAM neural networks achieve
asymptotic synchronisation.

• Based on the Lyapunov stability theory and the LMI
approach, asymptotic stability criteria are derived.

• The derived LMI stability criteria are less com-
plicated to compute than the algebraic stability
criteria suggested in C. Wang, Zhang, Stamova,
et al. (2023), Syed Ali, Narayanan, et al. (2020), C.
Chen et al. (2018), Z. Yang and Zhang (2020), J.
Yang et al. (2022), Pratap et al. (2019), Rajivganthi
et al. (2016).

We present Table 1 compared with existing works
on fractional-order BAM neural networks with fuzzy
approach, reaction–diffusion, leakage delay, LMI
approach, adaptive control, boundary control and syn-
chronisation to highlight the contributions and inno-
vations of this work.
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The rest of this work is organised as follows. In
Section 2, system models and preliminaries are intro-
duced. In Section 3, we investigate our main results:
(i) designed both adaptive full-domain and boundary
controllers. (ii) We obtain the synchronisation of the
drive-response dynamical systems via adaptive full-
domain controller. (iii) The adaptive boundary syn-
chronisation of the drive-response dynamical systems
is achieved. In Section 4, numerical simulations show
that the designed adaptive controllers are effective.
At last, conclusion and future works are shown in
Section 5.

Notations: R – set of all real numbers; R
n –

Euclidean space; AT = A < 0 (respectively, AT =
A > 0)– negative definite matrix (positive definite
matrix); AT – transpose of the matrix A; �min(A)
– minimum eigen value of the matrix A; �max(A) –
maximum eigen value of the matrix A; ∗ – the entry
is symmetric; sym(A) = (A + AT); ‖ · ‖ – Euclidean
norm; W1,2([0,L];Rn) – absolutely continuous func-
tion in Soblev space; (

∫ 1
0 ξ

T(t, z)ξ(t, z) dz)
1
2 =

‖ξ(t, z)‖2.

2. System description and preliminaries

Definition 2.1: (Y. Xu et al., 2021) The Caputo frac-
tional derivative of state variable �(t, z) : R

n × R
+ →

R with order 0 < � < 1 is defined by

C
t0D

�

t �(t, z) = 1
�(1 − �)

∫ t

t0

∂�(s, z)
∂s

ds
(t − s)�

, t > t0.

Furthermore, the gamma function �(·) is defined by

�(x) =
∫ ∞

0
e−ttx−1 dt.

Remark 2.2: To account for the ambiguity, an adap-
tive controller is integrated into the fractional BAM
neural network with reaction–diffusion, and we found
a new model where it is necessary to consider the
adaptive controller in Neumann boundary conditions.
In recent decades, some synchronisation results on
fractional BAM neural networks with adaptive con-
trol have been reported. To best our knowledge, the
synchronisation result of adaptive boundary controller
based on fractional fuzzy reaction–diffusion BAM
neural networks has not been published yet. Inspired
by previous-mentionedworks, we study the theoretical
significance of adaptive boundary controller based on

fractional-order fuzzy reaction–diffusion BAM neu-
ral networks. Moreover, investigating the time delays
and synchronisation in fractional-order fuzzy reac-
tion–diffusion BAM neural networks is of significant
importance. Understanding these aspects is crucial for
gaining insights into the behaviour and dynamics of
such networks, and it can have implications for various
real-world applications. By studying the time delays
and synchronisation, researchers can uncover essential
characteristics and properties of these networks, lead-
ing to a deeper understanding of their capabilities and
potential limitations.

Consider the following fractional-order fuzzy reac-
tion–diffusion BAM neural networks with leakage
time delay:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

�

t x
ς
i (t, z) = Li

∂2xςi (t, z)
∂z2

− aix
ς
i (t − σ , z)

+
m∑
j=1

bijfj(y
ς
j (t − τ(t), z))

+
m∧
j=1
μijfj(y

ς
j (t − τ(t), z))

+
m∨
j=1
ϕijfj(y

ς
j (t − τ(t), z))

+ Ji, i = 1, 2, 3, ..., n,

C
0D

�

t y
ς
j (t, z) = Mj

∂2yςj (t, z)

∂z2
− cjy

ς
j (t − δ, z)

+
n∑

i=1
djigi(x

ς
i (t − η(t), z))

+
n∧
i=1
γjigi(x

ς
i (t − η(t), z))

+
n∨
i=1
ρjigi(x

ς
i (t − η(t), z))

+ Kj, j = 1, 2, 3, ...,m,

(1)

with initial and Neumann boundary conditions as fol-
lows:

{
xςi (t, z) = φ

ς
i (t, z), z ∈ (0, 1), t ∈ [−η, 0],

yςj (t, z) = ψ
ς
j (t, z), z ∈ (0, 1), t ∈ [−τ , 0],
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and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∂xςi (t, z)
∂z

|z=0 = 0,
∂xςi (t, z)
∂z

|z=1 = 0,

∂yςj (t, z)

∂z
|z=0 = 0,

∂yςj (t, z)

∂z
|z=1 = 0,

where xςi (t, z) ∈ R
n and yςj (t, z) ∈ R

m are the neu-
ron state variables; t>0 denote the time variable;
z ∈ (0, 1) denote the space variable; C0D

�
t denote the

fractional derivative with order � ∈ (0, 1). φςi (t, z) ∈
R
n and ψςj (t, z) ∈ R

m are the initial functions. L =
diag{L1, L2, . . . , Ln} and M = diag{M1,M2, . . . ,Mm}
are positive diffusion matrices. A = diag{a1, a2, . . . ,
an} and C = diag{c1, c2, . . . , cm} are positive diagonal
matrices. fj(y

ς
j (t − τ(t), z)) and gi(x

ς
i (t − η(t), z)) are

the activation nonlinear functions. B = (bij)n×m and
D = (dji)m×n are the connection weight matrices. The
fuzzy AND and fuzzy OR functions are denoted by
the symbols

∧
and

∨
, respectively. The components

of fuzzy feedback MIN and MAX templates are (μij,
γji) and (ϕij, ρji), respectively. The leakage delays are
represented by σ and δ. The time-varying delays are
represented by τ(t) and η(t).

The nonlinear dynamics of the response system
with adaptive full-domain control is described by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

�

t x
κ
i (t, z) = Li

∂2xκi (t, z)
∂z2

− aixκi (t − σ , z)

+
m∑
j=1

bijfj(yκj (t − τ(t), z))

+
m∧
j=1
μijfj(yκj (t − τ(t), z))

+
m∨
j=1
ϕijfj(yκj (t − τ(t), z))

+ ui(t, z)+ Ji, i = 1, 2, 3, . . . , n,

C
0D

�

t y
κ
j (t, z) = Mj

∂2yκj (t, z)

∂z2
− cjyκj (t − δ, z)

+
n∑

i=1
djigi(xκi (t − η(t), z))

+
n∧

i=1
γjigi(xκi (t − η(t), z))

+
n∨

i=1
ρjigi(xκi (t − η(t), z))

+ vj(t, z)+ Kj, j = 1, 2, 3, . . . ,m,

(2)

with initial and Neumann boundary conditions as fol-
lows:

{
xκi (t, z) = φκi (t, z), z ∈ (0, 1), t ∈ [−η, 0],
yκj (t, z) = ψκj (t, z), z ∈ (0, 1), t ∈ [−τ , 0],

and
⎧⎪⎪⎨
⎪⎪⎩
∂xκi (t, z)
∂z

|z=0 = 0,
∂xκi (t, z)
∂z

|z=1 = 0,

∂yκj (t, z)

∂z
|z=0 = 0,

∂yκj (t, z)

∂z
|z=1 = 0,

where ui(t, z) and vj(t, z) are adaptive full-domain
controllers.

The nonlinear dynamics of the response system
with adaptive boundary control is described by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

�

t x
κ
i (t, z) = Li

∂2xκi (t, z)
∂z2

− aixκi (t − σ , z)

+
m∑
j=1

bijfj(yκj (t − τ(t), z))

+
m∧
j=1
μijfj(yκj (t − τ(t), z))

+
m∨
j=1
ϕijfj(yκj (t − τ(t), z))

+ Ji, i = 1, 2, 3, . . . , n,

C
0D

�

t y
κ
j (t, z) = Mj

∂2yκj (t, z)

∂z2
− cjyκj (t − δ, z)

+
n∑
i=1

djigi(xκi (t − η(t), z))

+
n∧

i=1
γjigi(xκi (t − η(t), z))

+
n∨

i=1
ρjigi(xκi (t − η(t), z))

+ Kj, j = 1, 2, 3, . . . ,m,

(3)

with initial and Neumann boundary conditions as fol-
lows:

{
xκi (t, z) = φκi (t, z), z ∈ (0, 1), t ∈ [−η, 0],
yκj (t, z) = ψκj (t, z), z ∈ (0, 1), t ∈ [−τ , 0],
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and⎧⎪⎪⎨
⎪⎪⎩
∂xκi (t, z)
∂z

|z=0 = 0,
∂xκi (t, z)
∂z

|z=1 = ui(t),

∂yκj (t, z)

∂z
|z=0 = 0,

∂yκj (t, z)

∂z
|z=1 = vj(t),

where ui(t) and vj(t) are adaptive boundary con-
trollers.

Assumption2.3: The continuous nonlinear functions
fj(·) and gi(·) satisfy the following conditions:

α−
i ≤ gi(x1i)− gi(x2i)

x1i − x2i
≤ α+

i ,

∀ x1i, x2i ∈ R, x1i �= x2i, i = 1, 2, . . . , n,

β−
j ≤ fj(y1j)− fj(y2j)

y1j − y2j
≤ β+

j ,

∀ y1j, y2j ∈ R, y1j �= y2j, j = 1, 2, . . . ,m,

where α−
i ,α

+
i ,β

−
j , and β

+
j are real scalars. Further-

more, fj(0) = 0 and gi(0) = 0.

Lemma 2.4: (Mani et al., 2019) Let �(t) be the dif-
ferentiable state vector. Then the following inequality is
hold for any matrix Z > 0 and the time t ≥ 0 :

C
t D

�

0�T(t)Z�(t) ≤ 2�T(t)Z
C
t D

�

0�(t), ∀ � ∈ (0, 1).
Lemma 2.5: (Narayanan, Syed Ali, Karthikeyan, et al.,
2022) If x1i, x2i, y1j, y2j are the four state variables of
system (1), then we get∣∣∣∣∣

n∧
i=1
γjigi(x1i)−

n∧
i=1
γjigi(x2i)

∣∣∣∣∣
≤

n∑
i=1

|γji||gi(x1i)− gi(x2i)|,
∣∣∣∣∣
n∨

i=1
ρjigi(x1i)−

n∨
i=1
ρjigi(x2i)

∣∣∣∣∣
≤

n∑
i=1

|ρji||g(x1i)− g(x2i)|,
∣∣∣∣∣∣
m∧
j=1
μijfj(y1j)−

m∧
j=1
μijfj(y2j)

∣∣∣∣∣∣
≤

m∑
j=1

|μij||fj(y1j)− fj(y2j)|,

∣∣∣∣∣∣
m∨
j=1
ϕijfj(y1j)−

m∨
j=1
ϕijfj(y2j)

∣∣∣∣∣∣
≤

m∑
j=1

|ϕij||fj(y1j)− f (y2j)|.

Lemma 2.6: (Syed Ali, Hymavathi, et al., 2020) There
exist real matrices �1 and �2, and a matrix � > 0, so
that the following inequality is valid:

�T
1 �2 + �T

2 �1 ≤ �T
1�

−1�1 + �T
2��2.

Lemma 2.7: (X. Z. Liu et al., 2020) For a state variable
�(·) ∈ W1,2([0,L];Rn) with �(0) = 0 or �(L) = 0
and a matrixM > 0, we get∫ L

0
�T(s)M�(s) ds

≤ 4L2

π2

∫ L

0

(
d�(s)
ds

)T
M

(
d�(s)
ds

)
ds.

Lemma 2.8: (Thakur et al., 2022) Let �1,�2,�3 be
givenmatrices such that�T

1 = �1 > 0 and�
T
2 = �2 >

0. Then, we have

�1 + �
T
3 �

−1
2 �3 < 0 ⇔

[
�1 �

T
3

∗ −�2

]
< 0 or

[−�2 �3
∗ �1

]
< 0.

Definition 2.9: (S. Yang et al., 2021) The system (1)
achieve global asymptotic synchronisation if the syn-
chronisation errors ξ(t, z) and �(t, z) satisfy the fol-
lowing condition:

lim
t→∞

{
‖ξ(t, z)‖2 + ‖�(t, z)‖2

}
= 0.

3. Main results

In this section,we obtain a sufficient criterion for adap-
tive full-domain synchronisation of drive-response
systems (1) and (2). In addition, we obtain a new suffi-
cient criterion for adaptive boundary synchronisation
of drive-response systems (1) and (3).

3.1. Adaptive full-domain control synchronisation

To achieve these synchronisation criteria, the adap-
tive full-domain controllers ui(t, z) and vj(t, z) are
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designed as follows:{
ui(t, z) = −θ1i(t)ξi(t, z)− θ2i(t)sign(ξi(t, z)),

vj(t, z) = −ϑ1j(t)�j(t, z)− ϑ2j(t)sign(�j(t, z)),
(4)

where sign(·) is the symbolic function, and θ1i(t),
θ2i(t),ϑ1j(t) and ϑ2j(t) are control parameters.

Adaptive update laws:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C
0D

�

t θ1i(t) = ω1iξ
2
i (t, z),

C
0D

�

t θ2i(t) = −ω2i|ξi(t, z)|,
C
0D

�

t ϑ1j(t) = �1j�
2
j (t, z),

C
0D

�

t ϑ2j(t) = −�2j|�j(t, z)|,

(5)

where ω1i,ω2i, �1j and �2j are positive real constants.
Next, the error dynamical system of drive-response

systems (1) and (2) is described by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

�

t ξi(t, z) = Li
∂2ξi(t, z)
∂z2

− aiξi(t − σ , z)

+
m∑
j=1

bijFj(�j(t − τ(t), z))

+
m∧
j=1
μijFj(�j(t − τ(t), z))

+
m∨
j=1
ϕijFj(�j(t − τ(t), z))

+ ui(t, z), i = 1, 2, 3, . . . , n,

C
0D

�

t�j(t, z) = Mj
∂2�j(t, z)
∂z2

− cj�j(t − δ, z)

+
n∑

i=1
djiGi(ξi(t − η(t), z))

+
n∧

i=1
γjiGi(ξi(t − η(t), z))

+
n∨

i=1
ρjiGi(ξi(t − η(t), z))+ vj(t, z),

j = 1, 2, 3, . . . ,m,
(6)

with initial and Neumann boundary conditions as fol-
lows:{

ξi(t, z) = φi(t, z), z ∈ (0, 1), t ∈ [−η, 0],
�j(t, z) = ψj(t, z), z ∈ (0, 1), t ∈ [−τ , 0], (7)

and

⎧⎪⎪⎨
⎪⎪⎩
∂ξi(t, z)
∂z

|z=0 = 0,
∂ξi(t, z)
∂z

|z=1 = 0,

∂�j(t, z)
∂z

|z=0 = 0,
∂�j(t, z)
∂z

|z=1 = 0,
(8)

where ξi(t, z) = xκi (t, z)− xςi (t, z), �j(t, z) = yκj (t, z)
− yςj (t, z), Fj(�j(t − τ(t), z)) = fj(yκj (t − τ(t), z))−
fj(y

ς
j (t − τ(t), z)),Gi(ξi(t − η(t), z)) = gi(xκi (t − η(t),

z))− gi(x
ς
i (t − η(t), z)),φi(t, z) = φκi (t, z)− φ

ς
i (t, z),

ψj(t, z) = ψκj (t, z)− ψ
ς
j (t, z),

∂ξi(t,z)
∂z = ∂xκi (t,z)

∂z −
∂xςi (t,z)
∂z , ∂�j(t,z)

∂z = ∂yκj (t,z)
∂z − ∂yςj (t,z)

∂z .

Theorem 3.1: Under Assumption 2.3 and adaptive
full-domain controller (4) with adaptive update law
(5), the error dynamical system (6) is said to be global
asymptotically stable if there exist positive definite diag-
onal matrices P,Q,�1,�2,�1,�2, and symmetric pos-
itive definite matrices R, S such that the following LMI
holds:

(i) � =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 0 0 0 �15 0 0
∗ �22 0 0 0 �26 0
∗ ∗ �33 0 0 0 0
∗ ∗ ∗ �44 0 0 0
∗ ∗ ∗ ∗ �55 0 0
∗ ∗ ∗ ∗ ∗ �66 0
∗ ∗ ∗ ∗ ∗ ∗ �77
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 �110 �111 0
0 �29 0 0 �212
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 �79 0 0 0
�88 0 �810 0 0
∗ �99 0 0 0
∗ ∗ �1010 0 0
∗ ∗ ∗ �1111 0
∗ ∗ ∗ ∗ �1212

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(9)
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where

�11 = −sym
(
Pℵ1 + π2

8
PL

)
+ R, �15 = −PA,

�110 = PB, �111 = P(|μ| + |ϕ|),

�22 = −sym
(
Qℵ2 + π2

8
QM

)
+ S, �26 = −QC,

�29 = QD, �212 = Q(|γ | + |ρ|),

�33 = −sym
(
π2

8
PL

)
, �44 = −sym

(
π2

8
QM

)
,

�55 = −R, �66 = −S, �77 = −�1�1,

�79 = �2�1, �88 = −�1�2, �810 = �2�2,

�99 = �2 − �1, �1010 = �1 − �2,

�1111 = −�1, �1212 = −�2,

P = diag{p̂1, p̂2, . . . , p̂n}, Q = diag{q̂1, q̂2, . . . , q̂m},
ℵ1 = {ℵ11,ℵ12, . . . ,ℵ1n},
ℵ2 = diag{ℵ21,ℵ22, . . . ,ℵ2m},
�1 = diag{α−

1 α
+
1 ,α

−
2 α

+
2 , . . . ,α

−
n α

+
n },

�1 = diag{β−
1 β

+
1 ,β

−
2 β

+
2 , . . . ,β

−
mβ

+
m},

�2 = 1
2

diag{α−
1 + α+

1 ,α
−
2 + α+

2 , . . . ,α
−
n + α+

n },

�2 = 1
2
diag{β−

1 + β+
1 ,β

−
2 + β+

2 , . . . ,β
−
m + β+

m}.

Proof: Consider the following Lyapunov function
candidates:

V(t) = V1(t)+ V2(t)+ V3(t), (10)

where

V1(t) =
∫ 1

0
ξT(t, z)Pξ(t, z) dz

+
∫ 1

0
�T(t, z)Q�(t, z) dz,

V2(t) =
n∑

i=1

∫ 1

0

[
1
ω1i

p̂i(θ1i(t)− ℵ1i)
2 + 1

ω2i
p̂iθ22i(t)

]
dz

+
m∑
j=1

∫ 1

0

[
1
�1j

q̂j(ϑ1j(t)− ℵ2j)
2

+ 1
�2j

q̂jϑ2
2j(t)

]
dz,

V3(t) = C
0D

1−�

t

(∫ 1

0

∫ t

t−σ
ξT(s, z)Rξ(s, z) ds dz

)

+ C
0D

1−�

t

( ∫ 1

0

∫ t

t−δ
�T(s, z)S�(s, z) ds dz

)
,

with known constants ℵ1i ≥ 0 and ℵ2j ≥ 0. Calculat-
ing the fractional derivative of V(t) with the error
dynamical system (6) by Lemma 2.4, we find that

C
0D

�

t V(t) =C
0 D�

t V1(t)+C
0 D�

t V2(t)+C
0 D�

t V3(t).
(11)

Further, we have

C
0D

�

t V1(t) = C
0D

�

t

(∫ 1

0
ξT(t, z)Pξ(t, z) dz

)

+ C
0D

�

t

(∫ 1

0
�T(t, z)Q�(t, z) dz

)

≤ 2
n∑

i=1

∫ 1

0
ξTi (t, z)p̂i

C
0D

�

t ξi(t, z) dz

+ 2
m∑
j=1

∫ 1

0
�T

j (t, z)q̂j
C
0D

�

t�j(t, z) dz

≤ 2
n∑

i=1

∫ 1

0
ξTi (t, z)p̂i

[
Li
∂2ξi(t, z)
∂z2

− aiξi(t − σ , z)

+
m∑
j=1

bijFj(�j(t − τ(t), z))

+
m∧
j=1
μijFj(�j(t − τ(t), z))

+
m∨
j=1
ϕijFj(�j(t − τ(t), z))+ ui(t, z)

⎤
⎦ dz

+ 2
m∑
j=1

∫ 1

0
�T

j (t, z)q̂j

[
Mj
∂2�j(t, z)
∂z2

− cj�j(t − δ, z)

+
n∑

i=1
djiGi(ξi(t − η(t), z))

+
n∧

i=1
γjiGi(ξi(t − η(t), z))

+
n∨

i=1
ρjiGi(ξi(t − η(t), z))+ vj(t, z)

]
dz

≤ 2
∫ 1

0
ξT(t, z)P

[
L
∂2ξ(t, z)
∂z2
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− Aξ(t − σ , z)

+ BF(�(t − τ(t), z))] dz

+
∫ 1

0
ξT(t, z)P(|μ| + |ϕ|)

×�−1
1 (|μ| + |ϕ|)TPξ(t, z) dz

+
∫ 1

0
FT(�(t − τ(t), z))

×�1F(�(t − τ(t), z)) dz

× +2
n∑
i=1

∫ 1

0
ξTi (t, z)p̂i (−θ1i(t)ξi(t, z)

− θ2i(t)sign(ξi(t, z))
)
dz

+ 2
∫ 1

0
�T(t, z)Q

[
M
∂2�(t, z)
∂z2

− C�(t − δ, z)+ DG(ξ(t − η(t), z))] dz

+
∫ 1

0
�T(t, z)Q(|γ | + |ρ|)

×�−1
2 (|γ | + |ρ|)TQ�(t, z) dz

+
∫ 1

0
GT(ξ(t − η(t), z))

×�2G(ξ(t − η(t), z)) dz

+ 2
m∑
j=1

∫ 1

0
�T

j (t, z)q̂j
(−ϑ1j(t)�j(t, z)

− ϑ2jsign(�j(t, z))
)
dz, (12)

C
0D

�

t V2(t) =
n∑
i=1

∫ 1

0

[
1
ω1i

p̂iC0D
�

t (θ1i(t)− ℵ1i)
2

+ 1
ω2i

p̂iC0D
�

t (θ
2
2i(t))

]
dz

+
m∑
j=1

∫ 1

0

[
1
�1j

q̂jC0D
�

t (ϑ1j(t)− ℵ2j)
2

+ 1
�2j

q̂jC0D
�

t (ϑ
2
2j(t))

]
dz

=
n∑
i=1

∫ 1

0

[
2p̂i(θ1i(t)− ℵ1i)ξ

2
i (t, z)

+ 2p̂iθ2i(t)ξi(t, z)sign(ξi(t, z))
]
dz

+
m∑
j=1

∫ 1

0

[
2q̂j(ϑ1j(t)− ℵ2j)�

2
j (t, z)

+ 2q̂jϑ2j(t)�j(t, z)sign(�j(t, z))
]
dz,
(13)

C
0D

�

t V3(t) = C
0D

�

t

(
C
0D

1−�

t

∫ 1

0

∫ t

t−σ

× ξT(s, z)Rξ(s, z) ds dz
)

+ C
0D

�

t

(
C
0D

1−�

t

∫ 1

0

∫ t

t−δ

× �T(s, z)S�(s, z) ds dz
)

=
∫ 1

0
ξT(t, z)Rξ(t, z) dz

−
∫ 1

0
ξT(t − σ , z)Rξ(t − σ , z) dz

+
∫ 1

0
�T(t, z)S�(t, z) dz

−
∫ 1

0
�T(t − δ, z)S�(t − δ, z) dz.

(14)

Using the integration by parts approach and boundary
condition (8), we get

∫ 1

0
ξT(t, z)PL

∂2ξ(t, z)
∂z2

dz

=
[
ξT(t, z)PL

∂ξ(t, z)
∂z

]z=1

z=0

−
∫ 1

0

∂ξT(t, z)
∂z

PL
∂ξ(t, z)
∂z

dz

= −
∫ 1

0

∂ξT(t, z)
∂z

PL
∂ξ(t, z)
∂z

dz (15)

and ∫ 1

0
�T(t, z)QM

∂2�(t, z)
∂z2

dz

=
[
�T(t, z)QM

∂�(t, z)
∂z

]z=1

z=0

−
∫ 1

0

∂�T(t, z)
∂z

QM
∂�(t, z)
∂z

dz

= −
∫ 1

0

∂�T(t, z)
∂z

QM
∂�(t, z)
∂z

dz. (16)

To get ξ̂ (t, z) = 0 and �̂ (t, z) = 0, we introduce
the new state variables ξ̂ (t, z) = ξ(t, z)− ξ(t, 1) and
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�̂ (t, z) = �(t, z)−�(t, 1). Furthermore, the follow-
ing conditions hold:

∂ξT(t, z)
∂z

PL
∂ξ(t, z)
∂z

= ∂ξ̂T(t, z)
∂z

PL
∂ξ̂ (t, z)
∂z

, (17)

∂�T(t, z)
∂z

QM
∂�(t, z)
∂z

= ∂�̂T(t, z)
∂z

QM
∂�̂ (t, z)
∂z

.

(18)

Applying Wirtinger’s inequality, we get

∫ 1

0
ξT(t, z)PL

∂2ξ(t, z)
∂z2

dz

= −1
2

∫ 1

0

∂ξT(t, z)
∂z

PL
∂ξ(t, z)
∂z

dz

− 1
2

∫ 1

0

∂ξ̂T(t, z)
∂z

PL
∂ξ̂ (t, z)
∂z

dz

≤ −π
2

8

∫ 1

0
ξT(t, z)PLξ(t, z) dz

− π2

8

∫ 1

0
ξ̂T(t, z)PLξ̂ (t, z) dz (19)

and ∫ 1

0
�T(t, z)QM

∂2�(t, z)
∂z2

dz

= −1
2

∫ 1

0

∂�T(t, z)
∂z

QM
∂�(t, z)
∂z

dz

− 1
2

∫ 1

0

∂�̂T(t, z)
∂z

QM
∂�̂ (t, z)
∂z

dz

≤ −π
2

8

∫ 1

0
�T(t, z)QM�(t, z) dz

− π2

8

∫ 1

0
�̂T(t, z)QM�̂ (t, z) dz. (20)

By virtue of Assumption 2.3, we get

[Gi(ξi(t − η(t), z))− α+
i ξi(t − η(t), z)

]
[Gi(ξi(t − η(t), z))− α−

i ξi(t − η(t), z)
] ≤ 0,[Fj(�j(t − τ(t), z))− β+

j �j(t − τ(t), z)
]

[Fj(�j(t − τ(t), z))− β−
j �j(t − τ(t), z)

] ≤ 0.

Thus, for diagonal matrices �1 = diag{�11,�12, . . . ,
�1n} > 0 and �2 = diag{�21,�22, . . . ,�2m} > 0, it

follows that
n∑

i=1
�1i

[
ξi(t − η(t), z)

Gi(ξi(t − η(t), z))

]T
⎡
⎢⎣ α+

i α
−
i eie

T
i −α

+
i + α−

i
2

eieTi

−α
+
i + α−

i
2

eieTi eieTi

⎤
⎥⎦

[
ξi(t − η(t), z)

Gi(ξi(t − η(t), z))

]
≤ 0,

m∑
j=1

�2j

[
�j(t − τ(t), z)

Fj(�j(t − τ(t), z))

]T
⎡
⎢⎢⎣ β+

j β
−
j êjê

T
j −

β+
j + β−

j

2
êjêTj

−
β+
j + β−

j

2
êjêTj êjêTj

⎤
⎥⎥⎦

[
�j(t − τ(t), z)

Fj(ξj(t − τ(t), z))

]
≤ 0,

where ei and êj denote unit column vectors which has
a ‘1′ element in its ith and jth rows, respectively, and
zeros otherwise. Furthermore, we have

[
ξ(t − η(t), z)

G(ξ(t − η(t), z))

]T
[
�1�1 −�2�1

∗ �1

]
[
ξ(t − η(t), z)

G(ξ(t − η(t), z))

]
≤ 0, (21)

[
�(t − τ(t), z)

F(�(t − τ(t), z))

]T [
�1�2 −�2�2

∗ �2

]
[
�(t − τ(t), z)

F(�(t − τ(t), z))

]
≤ 0. (22)

From the inequalities (11)–(22), we have

C
0D

�

t V(t) ≤
∫ 1

0

[
ξT(t, z)

(
−sym(Pℵ1)− π2

4
PL + R

+ P(|μ| + |ϕ|)�−1
1 (|μ| + |ϕ|)TP

)
ξ(t, z)

− 2ξT(t, z)PAξ(t − σ , z)

+ 2ξT(t, z)PBF(�(t − τ(t), z))

+�T(t, z)
( − sym(Qℵ2)
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− π2

4
QM + S + Q(|γ | + |ρ|)

×�−1
2 (|γ | + |ρ|)TQ)

�(t, z)

− 2�T(t, z)QC�(t − δ, z)

+ 2�T(t, z)QDG(�(t − η(t), z))

− ξ̂T(t, z)
(
π2

4
PL

)
ξ̂ (t, z)

− �̂T(t, z)
(
π2

4
QM

)
�̂ (t, z)

− ξT(t − σ , z)Rξ(t − σ , z)

−�T(t − δ, z)S�(t − δ, z)

− ξT(t − η(t), z)�1�1ξ(t − η(t), z)

+ 2ξT(t − η(t), z)�2�1G(ξ(t − η(t), z))

−�T(t − τ(t), z)�1�2�(t − τ(t), z)

+ 2�T(t − τ(t), z)

×�2�2F(�(t − τ(t), z))

+ GT(ξ(t − η(t), z)
(
�2 − �1

)
× G(ξ(t − η(t), z))

+ FT(�(t − τ(t), z)
(
�1 − �2

)
× F(�(t − τ(t), z))

]
dz

≤
∫ 1

0
ϒT(t, z)�ϒ(t, z) dz, (23)

where

ϒT(t, z) =
[
ξT(t, z)�T(t, z)ξ̂T(t, z)�̂T(t, z)ξT

(t − σ , z)�T(t − δ, z)ξT(t − η(t), z)

�T(t − τ(t), z)GT(ξ(t − η(t), z))

FT(�(t − τ(t), z)) ].

If the LMI � < 0, we can conclude that the error
dynamical system (6) is globally asymptotically stable.
The proof is completed. �

3.2. Adaptive boundary control synchronisation

To achieve these synchronisation criteria, the adaptive
boundary controllers ui(t) and vj(t) are designed as

follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui(t) = −θ3i(t)
∫ 1

0

ξ 2i (t, z)
ξi(t, 1)

dz

− θ4i(t)
∫ 1

0

ξi(t, z)sign(ξi(t, z))
ξi(t, 1)

dz,

vj(t) = −ϑ3j(t)
∫ 1

0

� 2
j (t, z)

�j(t, 1)
dz

− ϑ4j(t)
∫ 1

0

�j(t, z)sign(�j(t, z))
�j(t, 1)

dz,

(24)
where θ3i(t), θ4i(t),ϑ3j(t) and ϑ4j(t) are control
parameters.

Adaptive update laws:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C
0D

�

t θ3i(t) = ω3iξ
2
i (t, z),

C
0D

�

t θ4i(t) = −ω4i|ξi(t, z)|,
C
0D

�

t ϑ3j(t) = �3j�
2
j (t, z),

C
0D

�

t ϑ4j(t) = −�4j|�j(t, z)|,

(25)

where ω3i,ω4i, �3j, and �4j are real constants.
Next, the error dynamical system of drive–response

systems (1) and (3) is described by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

�

t ξi(t, z) = Li
∂2ξi(t, z)
∂z2

− aiξi(t − σ , z)

+
m∑
j=1

bijFj(�j(t − τ(t), z))

+
m∧
j=1
μijFj(�j(t − τ(t), z))

+
m∨
j=1
ϕijFj(�j(t − τ(t), z)),

C
0D

�

t�j(t, z) = Mj
∂2�j(t, z)
∂z2

− cj�j(t − δ, z)

+
n∑

i=1
djiGi(ξi(t − η(t), z))

+
n∧

i=1
γjiGi(ξi(t − η(t), z))

+
n∨

i=1
ρjiGi(ξi(t − η(t), z)),

(26)
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with initial and Neumann boundary conditions as fol-
lows:{

ξi(t, z) = φi(t, z), z ∈ (0, 1), t ∈ [−η, 0],
�j(t, z) = ψj(t, z), z ∈ (0, 1), t ∈ [−τ , 0], (27)

and⎧⎪⎪⎨
⎪⎪⎩
∂ξi(t, z)
∂z

|z=0 = 0,
∂ξi(t, z)
∂z

|z=1 = ui(t),

∂�j(t, z)
∂z

|z=0 = 0,
∂�j(t, z)
∂z

|z=1 = vj(t).
(28)

Theorem 3.2: Under Assumption 2.3 and adaptive
boundary controller (24)with adaptive update law (25),
the error dynamical system (26) is said to be global
asymptotically stable if there exist positive definite diag-
onal matrices P,Q,�1,�2,�1,�2, and symmetric pos-
itive definite matrices R, S such that the following LMI
holds:

(i)� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 0 0 0 �15 0
∗ �22 0 0 0 �26
∗ ∗ �33 0 0 0
∗ ∗ ∗ �44 0 0
∗ ∗ ∗ ∗ �55 0
∗ ∗ ∗ ∗ ∗ �66
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

0 0 0 �110 �111 0
0 0 �29 0 0 �212
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
�77 0 �79 0 0 0
∗ �88 0 �810 0 0
∗ ∗ �99 0 0 0
∗ ∗ ∗ �1010 0 0
∗ ∗ ∗ ∗ �1111 0
∗ ∗ ∗ ∗ ∗ �1212

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(29)

where

�11 = −sym
(
Pℵ3 + π2

8
PL

)
+ R,

�22 = −sym
(
Qℵ4 + π2

8
QM

)
+ S,

ℵ3 = diag{ℵ31,ℵ32, . . . ,ℵ3n},
ℵ4 = diag{ℵ41,ℵ42, . . . ,ℵ4m},
the remaining values are defined in

Theorem 3.1.

Proof: Consider the following Lyapunov function
candidates:

V̄(t) = V1(t)+ V̄2(t)+ V3(t), (30)

where

V̄2(t) =
n∑

i=1

∫ 1

0

[
Li
ω3i

p̂i(θ3i(t)− ℵ3i)
2

+ Li
ω4i

p̂iθ24i(t)
]
dz

+
m∑
j=1

[
Mj

�3j
q̂j(ϑ3j(t)− ℵ4j)

2 + Mj

�4j
q̂jϑ2

4j(t)
]
,

V1(t) and V3(t) are defined in Theorem 3.1. Calcu-
lating the fractional derivative of V̄(t) along the error
dynamical system (26) using similar methods as in
Theorem 3.1, we find that

C
0D

�

t V̄(t) ≤
∫ 1

0

{
2ξT(t, z)P

[
L
∂2ξ(t, z)
∂z2

− Aξ(t − σ , z)+ BF(�(t − τ(t), z))]

+ ξT(t, z)P(|μ| + |ϕ|)
×�−1

1 (|μ| + |ϕ|)TPξ(t, z)
+ FT(�(t − τ(t), z))

×�1F(�(t − τ(t), z))

+ 2�T(t, z)Q
[
M
∂2�(t, z)
∂z2

− C�(t − δ, z)+ DG(ξ(t − η(t), z))]

+�T(t, z)Q(|γ | + |ρ|)
×�−1

2 (|γ | + |ρ|)TQ�(t, z)
+ GT(ξ(t − η(t), z))�2G(ξ(t − η(t), z))

+
n∑

i=1

[
2p̂iLi(θ3i(t)

− ℵ3i)ξ
2
i (t, z)
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+ 2p̂iLiθ4i(t)ξi(t, z)sign(ξi(t, z))
]

+
m∑
j=1

[
2q̂jMj(ϑ3j(t)− ℵ4j)�

2
j (t, z)

+ 2q̂jMjϑ4j(t)�j(t, z)sign(�j(t, z))
]

+ ξT(t, z)Rξ(t, z) dz

− ξT(t − σ , z)Rξ(t − σ , z)

+�T(t, z)S�(t, z)

− �T(t − δ, z)S�(t − δ, z)
}
dz. (31)

Using the integration by parts approach and boundary
condition (28), we get

n∑
i=1

∫ 1

0
ξTi (t, z)p̂iLi

∂2ξi(t, z)
∂z2

dz

=
n∑

i=1

[
ξTi (t, z)p̂iLi

∂ξi(t, z)
∂z

]z=1

z=0

−
n∑

i=1

∫ 1

0

∂ξTi (t, z)
∂z

p̂iLi
∂ξi(t, z)
∂z

dz

=
n∑

i=1
ξTi (t, 1)p̂iLiui(t)

−
n∑

i=1

∫ 1

0

∂ξTi (t, z)
∂z

p̂iLi
∂ξi(t, z)
∂z

dz

=
n∑

i=1
ξTi (t, 1)p̂iLi

[
−θ3i(t)

∫ 1

0

ξ 2i (t, z)
ξi(t, 1)

dz

− θ4i(t)
∫ 1

0

ξi(t, z)sign(ξi(t, z))
ξi(t, 1)

dz
]

−
n∑

i=1

∫ 1

0

∂ξTi (t, z)
∂z

p̂iLi
∂ξi(t, z)
∂z

dz

= −
n∑

i=1

∫ 1

0
p̂iLiθ3i(t)ξ 2i (t, z) dz

−
n∑

i=1

∫ 1

0
p̂iLiθ4i(t)ξi(t, z)

× sign(ξi(t, z)) dz

−
n∑

i=1

∫ 1

0

∂ξTi (t, z)
∂z

p̂iLi
∂ξi(t, z)
∂z

dz, (32)

similarly
m∑
j=1

∫ 1

0
�T

j (t, z)q̂jMj
∂2�j(t, z)
∂z2

dz

= −
m∑
j=1

∫ 1

0
q̂jMjϑ3j(t)� 2

j (t, z) dz

−
m∑
j=1

∫ 1

0
q̂jMjϑ4j(t)�j(t, z)sign(�j(t, z)) dz

−
m∑
j=1

∫ 1

0

∂�T
j (t, z)

∂z
q̂jMj

∂�j(t, z)
∂z

dz. (33)

To get ξ̂ (t, z) = 0 and �̂ (t, z) = 0, we introduce
the new state variables ξ̂ (t, z) = ξ(t, z)− ξ(t, 1) and
�̂ (t, z) = �(t, z)−�(t, 1). Furthermore, the condi-
tions (17) and (18) are holds. Applying Wirtinger’s
inequality, we get

n∑
i=1

∫ 1

0
ξTi (t, z)p̂iLi

∂2ξi(t, z)
∂z2

dz

= −
n∑

i=1

∫ 1

0
p̂iLiθ3i(t)ξ 2i (t, z) dz

−
n∑

i=1

∫ 1

0
p̂iLiθ4i(t)ξi(t, z)sign(ξi(t, z)) dz

− 1
2

n∑
i=1

∫ 1

0

∂ξTi (t, z)
∂z

p̂iLi
∂ξi(t, z)
∂z

dz

− 1
2

n∑
i=1

∫ 1

0

∂ξ̂Ti (t, z)
∂z

p̂iLi
∂ξ̂i(t, z)
∂z

dz

≤ −
n∑

i=1

∫ 1

0
p̂iLiθ3i(t)ξ 2i (t, z) dz

−
n∑

i=1

∫ 1

0
p̂iLiθ4i(t)ξi(t, z)sign(ξi(t, z)) dz

− π2

8

n∑
i=1

∫ 1

0
ξTi (t, z)p̂iLiξi(t, z) dz

− π2

8

n∑
i=1

∫ 1

0
ξ̂Ti (t, z)p̂iLiξ̂i(t, z) dz, (34)

similarly
m∑
j=1

∫ 1

0
�T

j (t, z)q̂jMj
∂2�j(t, z)
∂z2

dz
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≤ −
m∑
j=1

∫ 1

0
q̂jMjϑ3j(t)� 2

j (t, z) dz

−
m∑
j=1

∫ 1

0
q̂jMjϑ4j(t)�j(t, z)sign(�j(t, z)) dz

− π2

8

m∑
j=1

∫ 1

0
�T

j (t, z)q̂jMj�j(t, z) dz

− π2

8

m∑
j=1

∫ 1

0
�̂T

j (t, z)q̂jMj�̂j(t, z) dz. (35)

Combining the inequalities (31)–(35), (21) and (22),
we find that

C
0D

�

t V̄(t) ≤
∫ 1

0
ϒT(t, z)�ϒ(t, z) dz, (36)

where

ϒT(t, z) =
[
ξT(t, z)�T(t, z)ξ̂T(t, z)

�̂T(t, z)ξT(t − σ , z)

�T(t − δ, z)ξT(t − η(t), z)

�T(t − τ(t), z)GT(ξ(t − η(t), z))

FT(�(t − τ(t), z))
]
.

If the LMI � < 0, we conclude that the error dynam-
ical system (26) is globally asymptotically stable. The
proof is completed. �

Remark 3.3: Theorem 3.2 is new because no one
has investigated the results of adaptive boundary con-
troller on synchronisation of fractional-order fuzzy
reaction–diffusion BAM neural networks. Compared
with existing results in C. Wang, Zhang, Stamova,
et al. (2023), Syed Ali, Hymavathi, et al. (2020), C.
Chen et al. (2018), we deal with fractional-order fuzzy
reaction–diffusion BAM neural networks and asymp-
totic boundary control synchronisation, which is bet-
ter than that of asymptotic full-domain control syn-
chronisation because boundary control can save the
cost of spatial domain.

Remark 3.4: Compared with the existing results
(Pratap et al., 2019; Rajivganthi et al., 2016; Shafiya
et al., 2022; J. Yang et al., 2022), the following are the
main aspects and advantages of this paper:

• In Theorems 3.1 and 3.2, new sufficient criteria
for fractional-order fuzzy reaction–diffusion BAM
neural networks are investigated by constructing
suitable Lyapunov function and using Neumann
boundary condition,Wirtinger’s inequality, and the
LMI approach to guarantee asymptotic full-domain
control synchronisation and asymptotic boundary
control synchronisation, respectively. The derived
LMI stability criteria are less complicated to com-
pute than algebraic stability criteria suggested in
Shafiya et al. (2022), J. Yang et al. (2022), Pratap
et al. (2019), Rajivganthi et al. (2016).

• Weused novel adaptive boundary controllers in this
study may have incorporated certain optimisations
that resulted in reduced computational complexity.
These could be unique to the problem at hand and
may not have been extended in Shafiya et al. (2022),
J. Yang et al. (2022), Pratap et al. (2019), Rajivganthi
et al. (2016).

• The nonlinear dynamics of reaction–diffusion
BAM neural networks with changing structural
properties was effectively treated by using the well-
known fuzzymodel (fuzzy AND and fuzzyOR) and
fractional derivative.

Remark 3.5: Reaction–diffusion BAM neural net-
works have attracted the attention of numerous
researchers due to their potential and wide appli-
cations in various fields, such as pattern formation
(T. Dong et al., 2022) and image encryption (Lin
et al., 2020). In contrast, the boundary control method
offers significant advantages since it employs the con-
trollers only at the boundary positions and not in the
entire spatial domain (X. Z. Liu et al., 2020, 2023;
R. J. Zhang et al., 2022). Moreover, it even over-
comes the problem of uncontrollable internal spatial
points within networks (X. Z. Liu et al., 2020, 2023;
R. J. Zhang et al., 2022). Consequently, the design of
boundary controllers becomes necessary to account
for the dynamic behaviour of reaction–diffusion BAM
neural networks. Regrettably, the synchronisation
problem for fractional-order fuzzy reaction–diffusion
BAM neural networks with boundary control has
not been explored yet. As far as we know, our work
is the first to solve the synchronisation problem of
systems (1) and (3) with adaptive boundary control
under Neumann boundary conditions. In general, the
image encryption application of complex-valued BAM
neural network model is more difficult to study the
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synchronisation analysis (Guo et al., 2020; A. Liu
et al., 2022). Therefore, it will be interesting and chal-
lenging how to develop the adaptive boundary con-
troller for fractional-order complex-valued BAM neu-
ral networks model in the near future.

If the fuzzy feedback MIN templates μij = γji =
0 and MAX templates ϕij = ρji = 0 in the sys-
tems (1)–(3), then the systems (1)–(3) can be rewritten
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

�

t x
ς
i (t, z) = Li

∂2xςi (t, z)
∂z2

− aix
ς
i (t − σ , z)

+
m∑
j=1

bijfj(y
ς
j (t − τ(t), z))+ Ji,

C
0D

�

t y
ς
j (t, z) = Mj

∂2yςj (t, z)

∂z2
− cjy

ς
j (t − δ, z)

+
n∑

i=1
djigi(x

ς
i (t − η(t), z))+ Kj,

(37)
and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

�

t x
κ
i (t, z) = Li

∂2xκi (t, z)
∂z2

− aixκi (t − σ , z)

+
m∑
j=1

bijfj(yκj (t − τ(t), z))

+ ui(t, z)+ Ji,

C
0D

�

t y
κ
j (t, z) = Mj

∂2yκj (t, z)

∂z2
− cjyκj (t − δ, z)

+
n∑

i=1
djigi(xκi (t − η(t), z))

+ vj(t, z)+ Kj,

(38)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

�

t x
κ
i (t, z) = Li

∂2xκi (t, z)
∂z2

− aixκi (t − σ , z)

+
m∑
j=1

bijfj(yκj (t − τ(t), z))+ Ji,

C
0D

�

t y
κ
j (t, z) = Mj

∂2yκj (t, z)

∂z2
− cjyκj (t − δ, z)

+
n∑

i=1
djigi(xκi (t − η(t), z))+ Kj.

(39)

The error dynamical system of above drive-response
systems is defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

�

t ξi(t, z) = Li
∂2ξi(t, z)
∂z2

− aiξi(t − σ , z)

+
m∑
j=1

bijFj(�j(t − τ(t), z))

+ ui(t, z),

C
0D

�

t�j(t, z) = Mj
∂2�j(t, z)
∂z2

− cj�j(t − δ, z)

+
n∑

i=1
djiGi(ξi(t − η(t), z))+ vj(t, z),

(40)
and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

�

t ξi(t, z) = Li
∂2ξi(t, z)
∂z2

− aiξi(t − σ , z)

+
m∑
j=1

bijFj(�j(t − τ(t), z)),

C
0D

�

t�j(t, z) = Mj
∂2�j(t, z)
∂z2

− cj�j(t − δ, z)

+
n∑

i=1
djiGi(ξi(t − η(t), z)).

(41)

Corollary 3.6: Under Assumption 2.3 and adaptive
full-domain controller (4)with adaptive update law (5),
the error dynamical system (40) is said to be globally
asymptotically stable if there exist positive definite diag-
onal matrices P,Q,�1,�2,�1,�2, and symmetric pos-
itive definite matrices R, S such that the following LMI
holds:

(iii) � =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 0 0 0 �15
∗ �22 0 0 0
∗ ∗ �33 0 0
∗ ∗ ∗ �44 0
∗ ∗ ∗ ∗ �55
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
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0 0 0 0 �110
�26 0 0 �29 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
�66 0 0 0 0
∗ �77 0 �79 0
∗ ∗ �88 0 �810
∗ ∗ ∗ −�1 0
∗ ∗ ∗ ∗ −�2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(42)

where �11,�15,�110,�22,�26,�29,�33,�44,�55,
�66,�77,�79,�88 and �810 are defined in
Theorem 3.1.

Corollary 3.7: Under Assumption 2.3 and adaptive
boundary controller (24)with adaptive update law (25),
the error dynamical system (41) is said to be globally
asymptotically stable if there exist positive definite diag-
onal matrices P,Q,�1,�2,�1,�2, and symmetric pos-
itive definite matrices R, S such that the following LMI
holds:

(iii) � =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 0 0 0 �15
∗ �22 0 0 0
∗ ∗ �33 0 0
∗ ∗ ∗ �44 0
∗ ∗ ∗ ∗ �55
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

0 0 0 0 �110
�26 0 0 �29 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
�66 0 0 0 0
∗ �77 0 �79 0
∗ ∗ �88 0 �810
∗ ∗ ∗ −�1 0
∗ ∗ ∗ ∗ −�2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(43)

where �15,�110,�26,�29,�33,�44,�55,�66,�77,
�79,�88 and�810 are defined in Theorem 3.1, and�11,
�22 are defined in Theorem 3.2.

4. Numerical simulations

This section presents a numerical example with two
cases to illustrate the feasibility of the main results.

Example 4.1: Consider the following fractional-order
fuzzy reaction–diffusion BAM neural networks with
leakage time delay:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

�

t x
ς
i (t, z) = Li

∂2xςi (t, z)
∂z2

− aix
ς
i (t − σ , z)

+
3∑

j=1
bijfj(y

ς
j (t − τ(t), z))

+
3∧

j=1
μijfj(y

ς
j (t − τ(t), z))

+
3∨

j=1
ϕijfj(y

ς
j (t − τ(t), z))+ Ji,

C
0D

�

t y
ς
j (t, z) = Mj

∂2yςj (t, z)

∂z2
− cjy

ς
j (t − δ, z)

+
3∑

i=1
djigi(x

ς
i (t − η(t), z))

+
3∧

i=1
γjigi(x

ς
i (t − η(t), z))

+
3∨

i=1
ρijgi(x

ς
i (t − η(t), z))+ Kj,

(44)
with initial and Neumann boundary conditions are as
follows:{

xςi (t, z) = φ
ς
i (t, z), z ∈ (0, 1), t ∈ [−η, 0],

yςj (t, z) = ψ
ς
j (t, z), z ∈ (0, 1), t ∈ [−τ , 0],

and
⎧⎪⎪⎨
⎪⎪⎩
∂xςr (t, z)
∂z

|z=0 = 0,
∂xςr (t, z)
∂z

|z=1 = 0,

∂yςs (t, z)
∂z

|z=0 = 0,
∂yςs (t, z)
∂z

|z=1 = 0,

where � = 0.96, the nonlinear functions chosen as
f (y) = y2

1+y2 and g(x) = x2
1+x2 , which gives�1 = �1 =

diag{0, 0, 0} and �2 = �2 = diag{1, 1, 1}), σ = δ =
0.5, and η(t) = 0.5 |cos(t)|, τ(t) = 0.5 |cos(t)|.
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The real matrices for drive system (44) can be cho-
sen as follows:

L = M =
⎡
⎣0.5 0 0

0 0.5 0
0 0 0.5

⎤
⎦ , A =

⎡
⎣6 0 0
0 6 0
0 0 6

⎤
⎦ ,

B =
⎡
⎣−2.2 −3.5 1.5

2.5 −2.2 3.2
1.1 −2.1 3.3

⎤
⎦ ,

C =
⎡
⎣5 0 0
0 5 0
0 0 5

⎤
⎦ , D =

⎡
⎣−2.5 −1.2 2.6

2.3 1.2 1.6
−2.1 1.1 2.2

⎤
⎦ ,

μ =
⎡
⎣−0.02 0.05 0.05

0.05 −0.02 0.02
−0.01 0.01 −0.03

⎤
⎦ ,

ϕ =
⎡
⎣−0.03 0.02 0.06

−0.02 0.03 −0.06
0.05 0.01 −0.02

⎤
⎦ ,

γ =
⎡
⎣−0.01 0.02 −0.01

0.02 0.02 −0.05
0.01 0.08 0.03

⎤
⎦ ,

ρ =
⎡
⎣−0.01 0.01 −0.08

−0.01 0.01 0.05
−0.06 0.05 0.03

⎤
⎦ ,

ℵ1 = ℵ2 =
⎡
⎣7 0 0
0 7 0
0 0 7

⎤
⎦ ,

ℵ3 = ℵ4 =
⎡
⎣10 0 0
0 10 0
0 0 10

⎤
⎦ .

The initial values of (44) are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xς1 (t, z) = 0.5 sin(t)+ 0.5 sin(0.5πz),

t ∈ [−0.5, 0],

xς2 (t, z) = 0.3 sin(t)+ 0.5 sin(0.9πz),

t ∈ [−0.5, 0],

xς3 (t, z) = 0.8 sin(t)+ 0.6 sin(0.4πz),

t ∈ [−0.5, 0],

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yς1 (t, z) = 0.5 sin(t)+ 0.5 sin(0.5πz),

t ∈ [−0.5, 0],

yς2 (t, z) = 0.3 sin(t)+ 0.5 sin(0.9πz),

t ∈ [−0.5, 0],

yς3 (t, z) = 0.8 sin(t)+ 0.6 sin(0.4πz),

t ∈ [−0.5, 0].

Next, the nonlinear dynamics of full-domain con-
trolled response system is defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

�

t x
κ
i (t, z) = Li

∂2xκi (t, z)
∂z2

− aixκi (t − σ , z)

+
3∑

j=1
bijfj(yκj (t − τ(t), z))

+
3∧

j=1
μijfj(yκj (t − τ(t), z))

+
3∨

j=1
ϕijfj(yκj (t − τ(t), z))

+ ui(t, z)+ Ji,

C
0D

�

t y
κ
j (t, z) = Mj

∂2yκj (t, z)

∂z2
− cjyκj (t − δ, z)

+
3∑

i=1
djigi(xκi (t − η(t), z))

+
3∧

i=1
γjigi(xκi (t − η(t), z))

+
3∨

i=1
ρjigi(xκi (t − η(t), z))

+ vj(t, z)+ Kj,

(45)

with initial and Neumann boundary conditions are as
follows:{

xκi (t, z) = φκi (t, z), z ∈ (0, 1), t ∈ [−η, 0],
yκj (t, z) = ψκj (t, z), z ∈ (0, 1), t ∈ [−τ , 0],

and ⎧⎪⎪⎨
⎪⎪⎩
∂xκi (t, z)
∂z

|z=0 = 0,
∂xκi (t, z)
∂z

|z=1 = 0,

∂yκj (t, z)

∂z
|z=0 = 0,

∂yκj (t, z)

∂z
|z=1 = 0,
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the parameters are identical with those in (44).
The nonlinear dynamics of boundary controlled

response system is defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
0D

�

t x
κ
i (t, z) = Li

∂2xκi (t, z)
∂z2

− aixκi (t − σ , z)

+
3∑

j=1
bijfj(yκj (t − τ(t), z))

+
3∧

j=1
μijfj(yκj (t − τ(t), z))

+
3∨

j=1
ϕijfj(yκj (t − τ(t), z))+ Ji,

C
0D

�

t y
κ
j (t, z) = Mj

∂2yκj (t, z)

∂z2
− cjyκj (t − δ, z)

+
3∑

i=1
djigi(xκi (t − η(t), z))

+
3∧

i=1
γjigi(xκi (t − η(t), z))

+
3∨

i=1
ρjigi(xκi (t − η(t), z))+ Kj,

(46)
with initial and Neumann boundary conditions as fol-
lows:{

xκi (t, z) = φκi (t, z), z ∈ (0, 1), t ∈ [−η, 0],
yκj (t, z) = ψκj (t, z), z ∈ (0, 1), t ∈ [−τ , 0],

and⎧⎪⎪⎨
⎪⎪⎩
∂xκi (t, z)
∂z

|z=0 = 0,
∂xκi (t, z)
∂z

|z=1 = ui(t),

∂yκj (t, z)

∂z
|z=0 = 0,

∂yκj (t, z)

∂z
|z=1 = vj(t),

the parameters are identical with those in (44)
Case I: Adaptive full-domain control synchronisa-

tion.
Now, the controller parameters values are chosen

as follows: θ11 = 1.7304, θ12 = 0.8923, θ13 = 0.4103,
θ21 = 1.0229, θ22 = 1.5683, θ23 = 0.4743, ϑ11 =
0.6164, ϑ12 = 0.0813, ϑ13 = 2.8414, ϑ21 = 1.8458,
ϑ22 = 0.8782, ϑ23 = 0.4682, ω11 = 1.0722, ω12 =
1.6682, ω13 = 1.0219, ω21 = 0.6456, ω22 = 0.8652,
ω23 = 2.3523, �11 = 1.5684, �12 = 0.4103, �13 =
2.8215, �21 = 0.3812, �22 = 0.9414, and�23 = 1.8548.

By virtue of Theorem 3.1 to check the adaptive full-
domain synchronisation, we solve the LMI (9) with
the MATLAB LMI toolbox, the feasible solutions are
determined as follows:

P =
⎡
⎣0.7539 0 0

0 0.7539 0
0 0 0.7539

⎤
⎦ ,

Q =
⎡
⎣0.7149 0 0

0 0.7149 0
0 0 0.7149

⎤
⎦ ,

R =
⎡
⎣ 4.6387 0.1610 0.1936
0.1610 4.7155 0.3303
00.1936 0.3303 4.6404

⎤
⎦ ,

S =
⎡
⎣ 3.8373 −0.0941 0.3128

−0.0941 3.6081 −0.0238
0.3128 −0.0238 3.7032

⎤
⎦ ,

�1 =
⎡
⎣1.1482 0 0

0 1.1482 0
0 0 1.1482

⎤
⎦ ,

�2 =
⎡
⎣1.2357 0 0

0 1.2357 0
0 0 1.2357

⎤
⎦ ,

�1 =
⎡
⎣14.8054 0 0

0 14.8054 0
0 0 14.8054

⎤
⎦ ,

�2 =
⎡
⎣46.5009 0 0

0 46.5009 0
0 0 46.5009

⎤
⎦ .

Case II:. Adaptive boundary control synchronisation.
Now, the controller parameter values are cho-

sen as follows: θ31 = 2.7304, θ32 = 2.8923, θ33 =
2.3410, θ41 = 1.2523, θ42 = 2.9534, θ43 = 1.7523,
ϑ31 = 0.8535, ϑ32 = 0.9345, ϑ33 = 1.4212, ϑ41 =
3.4510, ϑ42 = 2.9230, ϑ43 = 3.1423, ω31 = 1.7525,
ω32 = 2.3525, ω33 = 1.7678, ω41 = 4.7987, ω42 =
2.9878, ω43 = 3.7890, �31 = 1.8535, �32 = 1.9898,
�33 = 1.2525, �41 = 1.8593, �42 = 1.9520, and �43 =
1.8513. By virtue of Theorem 3.2 to check the adaptive
boundary synchronisation, we solve the LMI (29) with
the MATLAB LMI toolbox, the feasible solutions are
determined as follows:

P =
⎡
⎣2.2202 0 0

0 2.2202 0
0 0 2.2202

⎤
⎦ ,



18 V. GOKULAKRISHNAN ET AL.

Figure 1. The errors ξ 2(t, z) and norm ‖ξ(t, ·)‖2 of drive–response systems (44) and (45) without control.

Q =
⎡
⎣1.8155 0 0

0 1.8155 0
0 0 1.8155

⎤
⎦ ,

R =
⎡
⎣ 9.6870 0.0166 −0.0237

0.0166 9.7216 −0.0636
−0.0237 −0.0636 9.7466

⎤
⎦ ,

S =
⎡
⎣ 12.6321 −0.2754 0.7928

−0.2754 12.0612 −0.0586
0.7928 −0.0586 12.2944

⎤
⎦ ,

�1 =
⎡
⎣4.5872 0 0

0 4.5872 0
0 0 4.5872

⎤
⎦ ,

�2 =
⎡
⎣3.9407 0 0

0 3.9407 0
0 0 3.9407

⎤
⎦ ,

�1 =
⎡
⎣31.7901 0 0

0 31.7901 0
0 0 31.7901

⎤
⎦ ,

�2 =
⎡
⎣24.6728 0 0

0 24.6728 0
0 0 24.6728

⎤
⎦ .

The synchronisation errors ξ 2(t, z) andnorm ‖ξ(t, ·)‖2
of drive–response systems (44) and (45) without con-
trol are depicted in Figure 1. The synchronisation
errors� 2(t, z) and norm ‖�(t, ·)‖2 of drive–response
systems (44) and (45) without control are depicted in
Figure 2. It is clearly shown that the drive–response
systems (44) and (45) do not realise synchronisation
without control. Under the adaptive boundary con-
trollers (24) with fractional update laws (25), Figures 3
and 4 show that the adaptive boundary controllers (24)
can achieve guaranteed asymptotic synchronisation of
the drive–response systems (44) and (46). Under the
adaptive full-domain controllers (4) with fractional
update laws (5), Figures 5 and 6 show that the adaptive
full-domain controllers (4) cannot achieve asymptotic
synchronisation of the drive–response systems (44)
and (45).

Remark 4.1: To demonstrate the superiority of our
synchronisation strategy, we choose the adaptive
boundary control gains (θ3i, θ4i,ϑ3j,ϑ4j), than several
comparison results are displayed in Figures 3 and 4.
According to Figures 3 and 4, we find convergence
rates of synchronisation errors in this work are quicker
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Figure 2. The errors� 2(t, z) and norm ‖�(t, ·)‖2 of drive–response systems (44) and (45) without control.

Figure 3. The errors ξ 2(t, z) and norm ‖ξ(t, ·)‖2 of drive–response systems (44) and (46) with adaptive boundary controller (24) and
fractional update law (25).
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Figure 4. The errors� 2(t, z) and norm ‖�(t, ·)‖2 of drive–response systems (44) and (46) with adaptive boundary controller (24) and
fractional update law (25).

Figure 5. The errors ξ 2(t, z) and norm ‖ξ(t, ·)‖2 of drive–response systems (44) and (45) with adaptive full-domain controller (4) and
fractional update law (5).
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Figure 6. The errors� 2(t, z) and norm ‖�(t, ·)‖2 of drive–response systems (44) and (45) with adaptive full-domain controller (4) and
fractional update law (5).

Figure 7. Control gain curve of the adaptive controllers.

than other control approaches in C. Wang, Zhang,
Stamova, et al. (2023), C. Chen et al. (2018).

5. Conclusion

A new class of nonlinear dynamic fuzzy modelling of
fractional-order reaction–diffusion BAM neural net-
works with adaptive boundary control and leakage
time delay is considered in this paper. By develop-
ing a set of adaptive boundary control strategies with
adaptive updated laws in the fractional domain, new
sufficient criteria are derived to guarantee that the
fractional-order fuzzy reaction–diffusion BAM neu-
ral networks achieve asymptotic synchronisation in
terms of LMI. In light of these criteria, the impacts of

both the adaptive full-domain controller and the adap-
tive boundary controller on asymptotic stability are
studied. Finally, numerical simulations are presented
to illustrate the efficiency of our main results. In the
future, we will investigate the adaptive boundary syn-
chronisation of fractional-order fuzzy complex-valued
BAM neural networks with reaction–diffusion and its
application of image encryption.
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Robust Adaptive Fractional Sliding-Mode Controller
Design for Mittag-Leffler Synchronization

of Fractional-Order PMSG-Based
Wind Turbine System

G. Narayanan, M. Syed Ali , Young Hoon Joo , R. Perumal, Bashir Ahmad, and Hamed Alsulami

Abstract—In this article, the Mittag-Leffler synchronization
(MLS) problem of a fractional-order permanent magnet syn-
chronous generator (FOPMSG)-based wind turbine system
against unknown disturbances, such as external load torque vari-
ations and system parameter uncertainties, an adaptive fractional
sliding-mode control (AFSMC) method is proposed based on
improved convergence rate performance of the FOPMSG to track
accuracy, response speed, and robustness. The AFSMC method
is based on a fractional-order term incorporated into the new
law for reaching the sliding mode, improves the chattering in the
control signal, and reduces the time required for the system to
reach the sliding-mode surface. Sufficient conditions are derived
to ensure the robust MLS for the sliding-mode dynamics by the
designed robust controller. In this article, for the first time, an
adaptive sliding-mode control (ASMC) with a terminal function
that accurately controls the FOPMSG model at a prespecified
time is proposed. Moreover, the designed ASMC can effectively
attenuate the existence of disturbances and uncertainties by elimi-
nating the reaching phase based on the Lyapunov stability theory.
Finally, the simulation results applied to the FOPMSG model
show that the proposed control method has better disturbance
rejection ability, fast dynamic response, and suppression of the
chattering effect.

Index Terms—Adaptive sliding-mode control (ASMC),
fractional-order, Mittag-Leffler synchronization (MLS),
permanent magnet synchronous generator (PMSG).
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I. INTRODUCTION

THE GENERATION of electricity from renewable energy
sources, including solar and wind power, has become

increasingly popular in recent years because of environmental
concerns. Wind energy plays an important role in current and
future electricity generation strategies because of its environ-
mentally friendly nature and lower impact on the environment.
Many studies focus on improving the wind turbine system
(WTS) by stabilizing the power, controlling the trajectories,
and observing the point of maximum power during stochas-
tic natural reflections. WTSs that generate electricity can use
a variety of generators, including the permanent magnet syn-
chronous generator (PMSG), the doubly salient electromag-
netic generator, the doubly fed induction generator, and others.
The main advantage of using a PMSG instead of a doubly
fed induction generator in WTS is the high power-to-weight
ratio, low maintenance, and elimination of dc excitation [1].
There are also two types of WTS models: 1) fixed-speed
WTS and 2) variable-speed WTS, where variable-speed WTS
is far more effective than WTS with fixed speed, which
has been recognized as an important area of research. For
example, Shanmugam and Joo [2] studied a generalized model
of power system dynamics that reflects the characteristics of
all forms of variable-speed WTS, as well as their simula-
tions. In addition, it has been widely used by researchers to
verify their wind power generation technologies, a specific
simulation and field testing has been planned and procedure
is carried out on the concerned variable-speed WTS in var-
ious platforms that include MATLAB control toolbox [3],
Garrad Hassan’s Bladed [4], and FAST code [5]. Given its
potential to operate in a gearless excitation system, direct-
drive variable-speed WTS-based on PMSG is a particularly
attractive topic (see [6], [7], [8]). Although fractional-order
calculus provides a powerful and effective tool for describing
the inheritance and unlimited memory properties of various
substances it is evident from previous studies that PMSG-
based WTS are integer-order PMSG model, which requires
further investigation. The objective of this study is to estab-
lish the PMSG-based WTS for fractional-order area instead
of the traditional control systems. The key principle behind
the fractional domain is to increase the stability domain, i.e.,
the stability of the WTS [9]. Therefore, the main aim of this
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research is to investigate the dynamic behavior of PMSG-based
WTS using a fractional domain control technique.

Real dynamic object and process models of fractional
order have applications in various scientific and engineer-
ing fields [10], [11], [12]. Nowadays, the dynamical systems
of synchronization of chaotic fractional differential systems
are challenging because of potential applications, such as
secure communication, information theory, etc. Fractional-
order calculus provides more reliable system models than
integral calculus and has been recently proposed for synchro-
nization control systems for chaotic fractional-order systems
(see [13]). In addition, various practical systems, such as
dc–dc converters [14], electrical circuits [15], and permanent
magnet synchronous motors (PMSMs) [16], can be elegantly
represented and accurately modeled using fractional calcu-
lus. Recently, many types of fractional-order synchronization
results have been obtained, which include integrated synchro-
nization [17], quasi-synchronization [18], and Mittag-Leffler
synchronization (MLS) [19]. Li et al. [20] proposed to use
MLS and the direct fractional Lyapunov technique to extend
the application of fractional calculus to nonlinear systems
in order to improve the study of both systems theory and
fractional calculus. MLS extends the concept of exponential
synchronization to nonlinear fractional-order systems [21]. To
the best of our knowledge, MLS results have not yet been stud-
ied for PMSG-based WTS with the Caputo fractional operator,
which provides the motivation for the current study.

Control theory provides a better foundation for understand-
ing WTS and for subsequent improvements to maximize
performance while minimizing leakage. With the rapid
advances in modern control theory, various studies have con-
tributed to the improvement of nonlinear control methods
for the integer-order case of PMSG model, for example,
predictive control [22], sliding-mode control (SMC) [23],
adaptive control [24], and among these approaches, the SMC
guarantees better control performance. Considering the supe-
rior performance in dealing with uncertainties/disturbances,
extensive research has been conducted on SMC for various
types of systems, including stochastic systems [25], uncer-
tain systems [26], and fuzzy systems [27]. SMC has several
practical properties, including fast reflexes, ease of implemen-
tation, robustness to system uncertainties, and low sensitivity
to external disturbances [28]. In [29], adaptive control strate-
gies were developed to solve robust fixed-time synchronization
problems in the presence of unknown parameters. Khanzadeh
and Pourgholi [30] and Pourgholi and Khanzadeh [31] studied
adaptive SMC (ASMC) for synchronization of fractional-order
chaotic systems, which is completely robust to uncertainties
and disturbances by eliminating the reaching phase. Fractional-
order control has recently emerged as a new control approach
in which the order of the controlled object is part of a
fractional domain. The fractional-order operator, unlike the
rational transfer function of integer order, has infinite memory
and takes into account the entire history of incoming signals,
which greatly reduces the chattering phenomena of traditional
SMC. The fusion of fractional control and SMC has been
studied for a variety of topics [14], which makes the con-
trolled system more accurate. Xiong et al. [32] discussed
a fractional-order SMC approach for grid-connected DFIGs,

which are a key component in WTS. The adaptive fractional
SMC (AFSMC) was recently used to study the stabiliza-
tion of PMSM-based WTS in two different situations: with
and without a smooth air gap [9]. However, the develop-
ment of the AFSMC for PMSG-based WTS against external
load torque variations and system parameter uncertainties still
require much attention from researchers, which is the main
objective of this study. So far, the AFSMC design of a nonlin-
ear fractional-order PMSG (FOPMSG)-based WTS based on
the fractional domain memory using the MLS technique has
not been studied in detail.

Motivated by the above observations, we investigate the
robust controller scheme for the MLS problem of FOPMSG
against unknown disturbances, such as external load torque
variations and system parameter uncertainties. In this study,
the application of fractional-calculus theory is a very impor-
tant activity in practice to improve the AFSMC of FOPMSG,
and also the AFSMC strategy is applied to an FOPMSG model
in this study to improve system robustness against external
load torque variations and system parameter uncertainties. The
main contributions of this study are as follows.

1) An AFSMC scheme is proposed to improve the robust-
ness of the dynamics of the FOPMSM-based WTS in
the presence of disturbances and uncertainties, and a
reaching law-based fractional sliding-mode surface is
designed to achieve faster response and higher precision
as well as lower chattering compared with the conven-
tional SMC.

2) Most researchers have focused on local stability analy-
sis of a PMSG-based WTS (see [6], [7], [8]). However,
unlike the existing results [6], [7], [8], this study uses
the MLS conditions for FOPMSG developed via the
AFSMC scheme with exponential reaching Law.

3) Furthermore, we have extended our results to the robust
prespecified time, which enables the synchronization of
the FOPMSG model in the presence of uncertainties and
disturbances, an ASMC scheme with terminal functions
is proposed.

4) The obtained algebraic stability criteria have a simpler
form than the LMI stability criteria presented in [6], [7],
[8], [9], [16], and [23], which reduces the computational
complexity.

Notations: We use the following notations in this article,
C
0 Dβt stands for the Caputo fractional derivative; R repre-
sents the real number; C represents the complex number; and
Rm and Cm represent the real and complex vector spaces of
dimension m.

II. MODEL DESCRIPTION AND PRELIMINARIES

In this section, we present a mathematical model of the
FOPMSG and some definitions and lemmas used in this article.

A. Fractional-Order Calculus

Definition 1 [9]: The fractional integral of a function f (t)
is given as

RL
0 Iβt f (t) = 1

�(β)

∫ t

0
(t − ζ )β−1f (ζ )dζ (1)

where t ≥ 0, β > 0, and �(β) = ∫ ∞
0 tβ−1e−βdt.
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Fig. 1. Schematic of a PMSG-based generator side SMC system.

Definition 2 [9]: The Caputo fractional derivative of a
function f (t) ∈ Cm([0,+∞),Rm) is given as

C
0 Dβt f (t) = 1

�(m − β)
∫ t

0

f m(ζ )

(t − ζ )β−m+1
dζ (2)

where t ≥ 0, β > 0, and 0 < m − 1 < β < m.
Furthermore, if 0 < β < 1 therefore

C
0 Dβt f (t) = 1

�(1 − β)
∫ t

0

f ′(ζ )
(t − ζ )β dζ. (3)

Definition 3 [31]: The extension of the Beta functions, the
incomplete Beta function, is described as follows:

Bx(p, q) =
∫ x

0
up−1(1 − u)q−1du, Re(p) > 0

Re(q) > 0, 0 ≤ x ≤ 1. (4)

B. PMSG-Based WTS

PMSG is usually used for small wind turbines that are
freestanding because they have high performance and low
maintenance. It consists of four components: 1) wind tur-
bine; 2) PMSG; 3) converter; and 4) controller between
them, as shown in Fig. 1. According to the energy con-
version theory, the wind turbine converts the wind energy
into mechanical energy, the PMSG converts the mechani-
cal energy into electrical energy, and the converter feeds the
electrical energy into the power grid [7]. The mathemati-
cal model of the three-phase symmetrical winding PMSG
is based on an n–m reference frame and is constructed
using Betz’s aerodynamic theory and a coordinate trans-
formation based on the mechanical torque equation. The
analog circuit of PMSG under rated operating conditions is
shown in Fig. 2. The mathematical model of fractional-order
PMSG-based WTS in terms of m − n reference frame is as
follows [8]:

⎧⎪⎨
⎪⎩

C
0 Dβt ω = P

J
(
φf im + (Ln − Lm)inim

) − f
J ω − TL

J
C
0 Dβt im = −Rs

Lm
im + Ln

Lm
Pωin − P φf

Lm
ω + um

Ln
C
0 Dβt in = −Rs

Ln
in + Lm

Ln
Pωim + un

Ln

(5)

where in, im and un, um denote the n − m axis currents and
voltages, respectively; and ω denotes the rotor angular velocity
of the generator and other parameters used in model as shown
in Table I (as similar in [7]).

Fig. 2. Equivalent circuit of the PMSG.

TABLE I
PARAMETERS OF PMSG MODEL [7]

The FOPMSG model (5) can be transformed into (6) using
an affine transformation and a time scaling transform

⎧⎪⎨
⎪⎩

C
0 Dβt � = α(ĩm −� ) + ϑ ĩnĩm − T̂
C
0 Dβt ĩm = −ĩm −� ĩn + ρ� + ũm
C
0 Dβt ĩn = −ĩn +� ĩm + ũn

(6)

where ϑ = ([(Lm − Ln)PbL2
mκ

2]/JR2
s ), α = (Lmf /JRs),

ρ = −(ϕf /κLm), b = (Lm/Ln), κ = (fR/[LmPϕf ]), ĩn =
(LnPϕf in/fRs), ĩm = (LmPϕf im/fRs), � = (Lmω/Rs),

ũn = (un/Rsκ), ũm = (um/Rsκ), and T̂ = (L2
mT̂L/JR2

s ).

The chaos phenomena of the FOPMSG model with nonsmooth
air gap (6) have been fully studied in [8]. We choose the
system parameters and initial conditions α = 5.45, ρ = 20,
and (�(0), in(0), im(0)) = (7, 2,−1), respectively. Fig. 3
shows the typical characteristic (chaotic motion) and the state
responses for different differential orders (a) β = 0.93 and
(b) β = 1 of the considered system (6) without control. The
FOPMSG model may exhibit chaotic oscillations, which can
seriously affect power quality and stability and even lead to
the collapse of the win farm. The advantageous control meth-
ods eliminate the chaotic oscillations and ensure the stable
operation of the FOPMSG model [8], [9]. The objective of
this study is to develop an AFSMC in the fractional domain
for the MLS problem of FOPMSG-based WTS.

C. Synchronizing of FOPMSG Control System

In the case of the smooth air gap, L = Lm = Ln and the
external inputs vanish, i.e., ũn = 0, ũm = 0, and T̂ = 0. Here,
α and ρ are positive constants. We have � = �1, ĩm = �2,
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Fig. 3. Behavior of the FOPMSG (2) without control input for various
differential-order values. (a) β = 0.93. (b) β = 1.

and ĩn = �3, the system (6) can be expressed as⎧⎪⎨
⎪⎩

C
0 Dβt �1(t) = α(�2 − �1)
C
0 Dβt �2(t) = −�2 − �1�3 + ρ�1
C
0 Dβt �3(t) = −�3 + �1�2.

(7)

By considering parametric uncertainties and external distur-
bances in the system (7), the following drive FOPMSG system
is obtained as:⎧⎪⎨

⎪⎩
C
0 Dβt �1(t) = α(�2 − �1)
C
0 Dβt �2(t) = −�2 − �1�3 + (ρ +ι)�1 + dι
C
0 Dβt �3(t) = −�3 + �1�2 + dσ .

(8)

The considered response FOPMSG system has the similar
form of (8)⎧⎪⎪⎪⎨

⎪⎪⎪⎩

C
0 Dβt �̂1(t) = α(�̂2 − �̂1

) + u<℘>ι

C
0 Dβt �̂2(t) = −�̂2 − �̂1�̂3 + (ρ +κ)�̂1

+dκ + u<σ>ι
C
0 Dβt �̂3(t) = −�̂3 + �̂1�̂2 + dτ + u<λ>ι

(9)

where u<℘>ι , u<σ>ι , u<λ>ι is the control function to be
designed.

For ϕ1 = �̂1 − �1, ϕ2 = �̂2 − �2, and ϕ3 = �̂3 − �3, then
the error dynamic system of the drive FOPMSG system (8)
and response FOPMSG system (9) is obtained as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
0 Dβt ϕ1(t) = α(ϕ2 − ϕ1)+ u<℘>ι

C
0 Dβt ϕ2(t) = −ϕ2 − (�̂1�̂3 − �1�3

) + ρϕ1

+(
κ �̂1 −ι�1

) + dκ − dι + u<σ>ι
C
0 Dβt ϕ3(t) = −ϕ3 + (�̂1�̂2 − �1�2

)
+dτ − dσ + u<λ>ι .

(10)

In accordance with the fact that⎧⎨
⎩

�̂1�̂3 − �1�3 = −ϕ1ϕ3 + ϕ1�̂3 + ϕ3�̂1

κ �̂1 −ι�1 = (κ −ι)�̂1 +ιϕ1

�̂1�̂2 − �1�2 = −ϕ1ϕ2 + ϕ1�̂2 + ϕ2�̂1.

(11)

Fig. 4. Block diagram of the proposed AFSMC scheme, where p = 1, 2, 3;
ς = 1, 2, 3, and j = <℘>,<σ>,<λ>.

System (10) can be rewritten as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C
0 Dβt ϕ1(t) = α(ϕ2 − ϕ1)+ u<℘>ι

C
0 Dβt ϕ2(t) = −ϕ2 − (

ϕ1�̂3 + ϕ3�̂1 − ϕ1ϕ3
) + ρϕ1

+(κ −ι)�̂1 +ιϕ1 + dκ − dι + u<σ>ι
C
0 Dβt ϕ3(t) = −ϕ3 + ϕ1�̂2 + ϕ2�̂1 − ϕ1ϕ2

+dτ − dσ + u<λ>ι .

(12)

Assumption 1: The external disturbance dι, dκ , dσ , dτ , and
uncertainties ι, κ are bounded, i.e., there exist non-negative
constants, respectively, ξdι , ξdκ , ξdσ , ξdτ , and ξι, ξκ such
as |dι| ≤ ξdι , |dκ | ≤ ξdκ , |dσ | ≤ ξdσ , |dτ | ≤ ξdτ , |ι| ≤
ξι, |κ | ≤ ξκ .

Definition 4 [19]: The drive FOPMSG system (8) will
achieve MLS on the response FOPMSG system (9) under
the proposed controller when ‖ϕ(t)‖ ≤ M(ϑ(t))t−θEθ,σ̂ (−η̂t)
in which 0 < θ, σ̂ ≤ 1, ϑ(0) = 0, and M(ϑ(t)) ≥ 0.
Here, M(ϑ(t)) is locally Lipschitz on ϑ ∈ Rn with Lipschitz
constant M0.

Lemma 1 [31]: If f (t) ∈ C1[0,
] for some 
 > 0, then
C
0 Dθt (

C
0 Dσ̂t f (t)) = C

0 Dθ+σ̂t f (t)), t ∈ [0,
], where θ, σ̂ ∈ R+
and θ + σ̂ ≤ 1.

Lemma 2 [30]: If g(t) ∈ C1([0,+∞),R), then for any σ̂ ∈
(0, 1), C

0 Dσ̂t |g(t)| ≤ sign(g(t))C0 Dσ̂t sign(g(t)).

III. MAIN RESULTS

In this section, we study the robust controller design for the
MLS problem of the FOPMSG model using different control
strategies.

A. MLS via Fractional Sliding-Mode Control

The main superiority of FSMC is its robustness in overcom-
ing uncertainties and external disturbances of the system. In
Fig. 4, the block diagram of the proposed control schemes is
shown schematically for the convenience of the readers.

Define a fractional sliding surface as

sς (t) = C
0 Dβ−1

t ϕς(t), ς = 1, 2, 3. (13)

The FSMC scheme is designed in this section to provide
the MLS of the drive FOPMSG system (8) and the response
FOPMSG system (9).

Theorem 1: Given constant μ > 0, control gains γθ > 0,
γτ > 0, and γς > 0, considering the dynamics of drive and
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response FOPMSG system are modeled by Caputo fractional
derivative. Robust MLS between (8) and (9) can be achieved,
if �min < 0 and the control law is chosen as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u<℘>ι = αϕ1 − (αϕ2 + γθ s1),

u<σ>ι = ϕ2 + (
ϕ1�̂3 + ϕ3�̂1 − ϕ1ϕ3

)
−ρϕ1 − ((

ξκ + ξι)|̂�1| + ξι |ϕ1|
+ξdκ + ξdι + γτ s2

)
,

u<λ>ι = ϕ3 − ϕ1�̂2 − ϕ2�̂1 + ϕ1ϕ2

−(
ξdσ + ξdτ + γς s3

)
(14)

where �min = min1≤ς≤3{ψδς }, ψδ1 = μ− 2γθ , ψδ2 = μ− 2γτ ,
and ψδ3 = μ− 2γς .

Proof: Consider the Lyapunov function

V(t) =
3∑
ς=1

V̂ς (t) =
3∑
ς=1

eμtsT
ς (t)sς (t) (15)

where V̂1(t) = eμtsT
1 (t)s1(t), V̂2(t) = eμtsT

2 (t)s2(t), V̂3(t) =
eμtsT

3 (t)s3(t). The time derivative of V̂1 can be calculated using
Lemma 1 and gives that

dV̂1

dt
= eμt

(
μsT

1 (t)s1(t)+ 2sT
1 (t)D

βϕ1(t)
) ≤ ψδ1 V̂1(t). (16)

Based on Assumption 1, we then obtain

dV̂2

dt
≤ (μ− 2γτ )eμtsT

2 s2 ≤ ψδ2 V̂2(t) (17)

dV̂3

dt
≤ (
μ− 2γς

)
eμtsT

3 s3 ≤ ψδ3 V̂3(t). (18)

From (15)–(18), V̇(t) ≤ min1≤ς≤3{ψδς }V(t) ≤ �minV(t)′
Therefore, V(t) ≤ �minV(0), t ≥ 0, which
implies that eμt‖s(t)‖2 ≤ �minV(0). That is,
‖s(t)‖ ≤ (�minV(0))(1/2)e−(μt/2). Combining (13)
with above, ‖C

0 Dβ−1
t ϕ(t)‖ ≤ χεe−(μt/2), where

χε = (�minV(0))(1/2). By the ς element of the vec-
tor ϕ(t), −χεe−(μt/2) ≤ C

0 Dβ−1
t ϕς(t) ≤ χεe−(μt/2).

By the Laplace transformation of both sides, we get
(−χε/s + μ

2 ) ≤ sβ−1ϕς(s) ≤ (χε/s + [μ/2]). Consequently,
based on Laplace inverse transformation, we have the fol-
lowing inequality, that is, |ϕς | ≤ (χε/t1−β)E1,β(−[μt/2]).
So one concludes that ‖ϕ(t)‖ ≤ [M(ϑ)/t1−β ]E1,β(−μt/2),
where M(ϑ) = χε

√
3= (�minV(0))(1/2)

√
3. Thus, the

sliding-mode surface s(t) and error trajectory ϕ(t) converge
exponentially to zero. According to Definition 4, the MLS
between FOPMSG system (8) and (9) is achieved by using
three robust controllers (14), i.e., u<℘>ι , u<σ>ι , and u<λ>ι .

Remark 1: In [6], the observer-based impulsive control
scheme was studied based on chaotic behavior without smooth
air gap in PMSG-based WTS. In [7], the suppression of chaotic
behavior of predictive control problem of PMSG-based WTS
with local stability analysis was studied. In these studies, the
MLS approach was not used for uncertainties and external dis-
turbances of PMSG-based WTS over FSMC. Therefore, in this
study, the fractional domain memory of FSMC is developed
for PMSG-based WTS with uncertainties and external distur-
bances. Therefore, the development of the FSMC approach
based on the fractional domain memory is beneficial from
both theoretical and practical perspectives when compared
with previous studies [6], [7].

B. Adaptive Sliding-Mode Controller Design

We consider the MLS problem of system (8) and (9)
using the AFSMC method. Motivated by, Kao et al. [19]
theoretically designed the adaptive control with MLS crite-
ria for fractional-order system and proved its effectiveness.
The adaptive control strategies designed (19) differ from
existing adaptive control strategies for PMSG-based WTS
(see [9], [23], [24]), there are no reports on the MLS
problem of FOPMSG-based WTS using AFSMC. Therefore,
we investigated AFSMC strategies with MLS to distinguish
the system (8) between system (9) in this section.

We design an adaptive controller as follows:

⎧⎨
⎩
ζ̇ �1 (t) = 2eμt‖s1‖2 − ηθ

(
ζ �1 (t)− �κ1

)
ζ̇ �2 (t) = 2eμt‖s2‖2 − ηι

(
ζ �2 (t)− �κ2

)
ζ̇ �3 (t) = 2eμt‖s3‖2 − ηκ

(
ζ �3 (t)− �κ3

) (19)

where ζ �ς (t) are tunable functions; �κς are tunable constants;
and ηθ , ηι, and ηκ are control gains.

Theorem 2: Given constant μ > 0, control gains ηθ > 0,
ηι > 0, and ηκ > 0. The robust MLS between drive FOPMSG
system (8) and response FOPMSG system (9) can be achieved,
if �<δ>min < 0, for the adaptive law (19) and the designed
control law

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u<℘>ι = αϕ1 − αϕ2 − ζ �1 s1

u<σ>ι = ϕ2 + (
ϕ1�̂3 + ϕ3�̂1 − ϕ1ϕ3

) − ρϕ1

−((
ξκ + ξι)|̂�1|

+ξι |ϕ1| + (
ξdκ + ξdι

) − ζ �2 s2
)

u<λ>ι = ϕ3 − ϕ1�̂2 − ϕ2�̂1 + ϕ1ϕ2

−(
ξdσ + ξdτ + ζ �3 s3

)
(20)

where �<δ>min = min1≤ς≤3{ <δ>ς },  <δ>1 = min{(μ −
2�κ1 ), 2ηθ },  <δ>2 = min{(μ− 2�κ2 ), 2ηι},  <δ>3 = min{(μ−
2�κ3 ), 2ηκ }.

Proof: Consider the Lyapunov function as follows: V(t) =∑3
ς=1 V̂ς (t), where V̂1(t) = eμtsT

1 (t)s1(t) + (1/2)(ζ �1 (t) −
�κ1 )

2, V̂2(t) = eμtsT
2 (t)s2(t) + (1/2)(ζ �2 (t) − �κ2 )

2, V̂3(t) =
eμtsT

3 (t)s3(t) + (1/2)(ζ �3 (t) − �κ3 )2. Time derivative V̂ can be
calculated by

dV̂1

dt
≤  <δ>1 V̂1(t),

dV̂2

dt
≤  <δ>2 V̂2(t),

dV̂3

dt
≤  <δ>3 V̂3(t).

(21)

From (21), we get V̇(t) ≤ min1≤ς≤3{ <δ>ς }V(t) ≤ �<δ>min V(t).
Therefore, V(t) ≤ �<δ>min V(0), t ≥ 0. It means that∑3
ς=1 eμtsT

ς (t)sς (t) ≤ ∑3
ς=1 [eμtsT

ς (t)sς (t) + (1/2)(ζ �ς (t) −
�κς )

2] ≤ �<δ>min V(0), t ≥ 0, that is

eμt‖s(t)‖2 ≤ �<δ>min

3∑
ς=1

(
sT
ς (0)sς (0)+

1

2

(
ζ �ς (0)− �κς

)2
)
.

(22)

In view of ζ �ς (0) − �κς is finite, it is clear that there exists
a positive constant Mι leading to

∑3
ς=1(s

T
ς (0)sς (0) + (1/2)
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(ζ �ς (0)− �κς )2) ≤ Mι. From (22), we obtained the following:

‖s(t)‖ ≤ (
�<δ>min Mι

) 1
2 e−μt

2 . (23)

Combining (13) and (23), we have ‖C
0 Dβ−1

t ϕ(t)‖ ≤ χ̂δe−(μt/2),

where χ̂δ = (�<δ>min Mι)
(1/2). It follows that Theorem 1:

‖ϕ(t)‖ ≤
M

(
ϑ̂

)

t1−β E1,β

(
−μt

2

)
(24)

where M(ϑ̂) = χ̂δ
√

3. From (23), it follows that the sliding-
mode surface s(t) converges exponentially to zero. According
to Definition 4, it follows from (24) that the error system (3)
will be MLS under the proposed adaptive laws (19) and the
robust control laws (20).

Remark 2: Some pioneering studies have focused on inves-
tigating the local stability control problem for FOPMSG-based
WTS. In particular, Karthikeyan et al. [8] studied the dynamic
properties of a variable-speed and current-dependent control
for FOPMSG-based WTS via Lyapunov exponents, bicoher-
ence, bifurcation, and the equilibrium points. The predictive
controller for suppressing chaos in an FOPMSG-based WTS
and its nonlinear dynamical behavior from Hopf bifurcation
to local stability analysis are discussed in [7]. Unlike previous
studies, the MLS criterion analyzed in this study is more prac-
tical than those proposed by [7] and [8], because this study
discusses the AFSMC for FOPMSG-based WTS, which inves-
tigates the characteristics of the unique industrial challenge.
Moreover, the results of robust controller design of MLS for
FOPMSG have not been seen yet, so Theorems 1 and 2 are
new. In this study, not only MLS criteria studies are con-
ducted but also a fractional domain memory-based AFSMC
is improved to achieve the MLS conditions in FOPMSG-
based WTS, which are susceptible to nonlinear disturbances
to external perturbations.

C. Design of Terminal Functions

Following [30], in this article, a novel switching surfaces is
defined as

sς (t) = ϕς(t)− �ς (t), ς = 1, 2, 3 (25)

where �ς (t) are known as terminal functions. It is expected
that we can develop a controller that enforcing the synchro-
nization error to completely follow the terminal function.
Thus, complete robustness is achieved provided that

�ς (t0) = ϕς(t0) (26)

where t0 is the initial time. Synchronization is achieved at a
predetermined time when �ς (
) = 0, where 
 is the syn-
chronization time. For t > 
, the terminal functions must be
zero, and it is assumed without loss of generality that t0 = 0.
We choose the specific information of the terminal functions
�ς (t) (ς = 1, 2, 3) as follows:

�ς (t) =
{

−ϕς (0)

2 (t − 
)2, t ≤ 


0, t ≥ 
. (27)

It is clear that the terminal function (27) satisfies two condi-
tions (25) and (26).

Assumption 2 [31]: The uncertainties ι, κ, and external
disturbances dι, dκ dσ , dτ are bounded, i.e., there exist positive
constants λι, λκ , λdι , λdκ , λdσ , λdτ

|C0 D1−β
t (ι)| ≤ λι, |C0 D1−β

t (κ)| ≤ λκ
|C0 D1−β

t (dι)| ≤ λdι , |C0 D1−β
t (dκ)| ≤ λdκ

|C0 D1−β
t (dσ )| ≤ λdσ , |C0 D1−β

t (dτ )| ≤ λdτ . (28)

Theorem 3: Given constant μ̂ > 0, control gains ψθ > 0,
ψτ > 0 and ψκ > 0. The drive FOPMSG system (8) and
response FOPMSG system (9) can be achieved MLS at a
prespecified time 
 for the designed control law⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u<℘>ι = αϕ1 − αϕ2 + C
0 Dβt �1

−RL
0 D−(1−β)

t (ψθ s1)

u<σ>ι = ϕ2 + (
ϕ1�̂3 + ϕ3�̂1 − ϕ1ϕ3

) − ρϕ1 + C
0 Dβt �2

−RL
0 D−(1−β)

t
((
λκ + λι)|̂�1|

+λι |ϕ1| + λdκ + λdι + ψτ s2
)

u<λ>ι = ϕ3 − ϕ1�̂2 − ϕ2�̂1 + ϕ1ϕ2 + C
0 Dβt �3

−RL
0 D−(1−β)

t
(
λdσ + λdτ + ψς s3

)

(29)

if the following conditions hold: 1) ‖ϕ‖ ≤ ‖ϕ − �‖ and
2) ϒ<δ>min < 0, where ϒ<δ>min = min1≤ς≤3{ϒ<δ>ς }, ϒ<δ>1 =
{μ̂− 2ψθ }, ϒ<δ>2 = {μ̂− 2ψτ }, and ϒ<δ>3 = {μ̂− 2ψς }.

Proof: Select the Lyapunov function as

V(t) = ∑3
ς=1 V̂ς (t) = ∑3

ς=1 eμ̂tsT
ς (t)sς (t). (30)

Then, by calculating the time derivative of V̂1, V̂2, V̂3 and
applying Lemma 1, we obtain

dV̂1

dt
= eμ̂t

(
μ̂sT

1 s1 − 2ψθ sT
1 s1

) ≤ (
μ̂− 2ψθ

)
V̂1(t). (31)

Based on Assumption 2, one has

dV̂2

dt
≤ eμ̂t(μ̂sT

2 s2 − 2ψτ sT
2 s2

) ≤ (
μ̂− 2ψτ

)
V̂2(t). (32)

dV̂3

dt
≤ (
μ̂− 2ψς

)
V̂3(t). (33)

Adding (31)–(33), we can obtain V̇(t) ≤ ϒ<δ>min V(t).
According to Definition 4, the error system (12) is achieved
the robust MLS under designed control laws (29).

Corollary 1: Given constant μ̂ > 0, control gains ηθ > 0,
ηι > 0 and ηκ > 0. The drive FOPMSG system (8) and
response FOPMSG system (9) can be achieve MLS at a
prespecified time 
, for adaptive law (19) and the designed
control law⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u<℘>ι = αϕ1 − αϕ2 + C
0 Dβt �1 − RL

0 D−(1−β)
t

(
ζ �1 s1

)
u<σ>ι = ϕ2 + (

ϕ1�̂3 + ϕ3�̂1 − ϕ1ϕ3
) − ρϕ1

+C
0 Dβt �2 − RL

0 D−(1−β)
t

((
λκ + λι)|̂�1|

+λι |ϕ1| + λdκ + λdι + ζ �2 s2
)

u<λ>ι = ϕ3 − ϕ1�̂2 − ϕ2�̂1 + ϕ1ϕ2 + C
0 Dβt �3

−RL
0 D−(1−β)

t
(
λdσ + λdτ + ζ �3 s3

)
(34)

if the following condition holds: 1) ‖ϕ‖ ≤ ‖ϕ − �‖ and
2) �̂<δ>min < 0, where �̂<δ>min = min1≤ς≤3{�̂<δ>ς }, �̂<δ>1 =
min{(μ̂− 2�κ1 ), 2ηθ }, �̂<δ>2 = min{(μ̂− 2�κ2 ), 2ηι}, �̂<δ>3 =
min{(μ̂− 2�κ3 ), 2ηκ }.
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Theorem 4: Given nonzero positive parameters ψ̂θ , ψ̂τ ,
ψ̂ς , φ̂

δ
1, φ̂

δ
2, φ̂

δ
3. The drive FOPMSG system (8) and the

response FOPMSG system (9) can be achieve synchronization
at a prespecified time 
, for the control law⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u<℘>ι = αϕ1 − αϕ2 +C
0 Dβt �1 − ψ̂θ s1

− RL
0 D−(1−β)

t

(
φ̂δ1sign(s1)

)
,

u<σ>ι = ϕ2 + (
ϕ1�̂3 + ϕ3�̂1 − ϕ1ϕ3

) − ρϕ1 +C
0 Dβt �2

− ψ̂τ s2 − RL
0 D−(1−β)

t
((
λκ + λι)|̂�1|

+ λι |ϕ1| + λdκ + λdι + φ̂δ2sign(s2)
)
,

u<λ>ι = ϕ3 − ϕ1�̂2 − ϕ2�̂1 + ϕ1ϕ2 +C
0 Dβt �3

− ψ̂ς s3 − RL
0 D−(1−β)

t

(
λdσ + λdτ + φ̂δ3sign(s3)

)

(35)

if the following parameter condition holds �θ > 0,
"ι > 0, where �θ = min1≤ς≤3{ψ̂θ , ψ̂τ , ψ̂ς }, "ι =
min1≤ς≤3{φ̂δςκς }, κς = sign(sς )sign(sς ).

Proof: Choose the Lyapunov function as

V(t) =
3∑
ς=1

C
0 D1−β

t
(|sς (t)|).

Taking the Caputo fractional derivative of V(t) and applying
Lemma 2, one has

C
0 Dβt V(t) = ṡ1sign(s1)+ ṡ1sign(s2)+ ṡ3sign(s3). (36)

In particular, we have

ṡ1 = C
0 D1−β

t
(
αϕ2 − αϕ1 + u<℘>ι −C

0 Dβt �
)

≤ −ψ̂θC
0 D1−β

t s1 − φ̂δ1sign(s1). (37)

Based on Assumption 2, we get ṡ2 ≤ −ψ̂τC
0 D1−β

t s2 −
φ̂δ2sign(s2). ṡ3 ≤ −ψ̂ςC

0 D1−β
t s3 − φ̂δ3sign(s3). Combining the

inequalities, we get that

C
0 Dβt V(t) ≤ −ψ̂θC

0 D1−β
t |s1| − φ̂δ1κ1 − ψ̂τC

0 D1−β
t |s2|

− φ̂δ2κ2 − ψ̂ςC
0 D1−β

t |s3| − φ̂δ3κ3 ≤ − min
1≤ς≤3

{
φ̂δς κς

}
≤ −"ι.

There is a positive function g(t) such that C
0 Dβt V(t) +

g(t) = −"ι. The Riemann–Liouville fractional integral on
both sides from 0 to t, one has

V(t)− V(0)+ 1

�(β)

∫ t

0

g(s)

(t − s)1−β ds

= 1

�(β)

∫ t

0

−"ι
(t − s)1−β ds. (38)

Because �(β) > 0, and (t − s)β−1g(s) ≥ 0, for s ∈ [0, t], it
follows that RL

0 Iβt g(t) ≥ 0. In particular

1

�(β)

∫ t

0

−"ι
(t − s)1−β ds = −"ι

�(β)

∫ t

0
(t − s)β−1ds = −"ιtβ

β�(β)
.

(39)

From (38) and (39), we obtain that

− V(0) ≤ V(t)− V(0)+ RL
0 Iβt g(t) = −"ιtβ

β�(β)
. (40)

From (40), it can be seen that t ≤ [(β�(β)V(0))/"ι](1/β).

Remark 3: The terminal function �ς (t)(ς = 1, 2, 3) in (25)
gets and adds to the control law (29). In this study, we
used [30] to derive the fractional derivative of terminal func-
tion �ς (t) and to find the β-order Caputo derivative of the
function tφ as

C
0 Dβt tφ = �(φ + 1)

�(φ − β + 1)
tφ−β, t > 0, φ > −1. (41)

For t ≤ 
, and

C
0 Dβt �ς (t) = ϕς (0)


2

(
2
 �(2)

�(2−β) t
1−β − �(3)

�(3−β) t
2−β

)
. (42)

For t > 
, next we find the Caputo derivative of the function

H(t) as H(t) = { tφ, t ≤ 
,
0, t > 
, . where φ > 0. According to

Definitions 2 and 3, for t > T, we calculated C
0 Dβt �

φ
ς (t) as

C
0 Dβt �ς (t) = ϕς(0)


2

( 2

�(1 − β) t

1−βB
/t(1, 1 − β)

− 2

�(1 − β) t
2−βB
/t(2, 1 − β)

)
. (43)

IV. NUMERICAL EXAMPLE

In this section, two examples have been presented to validate
our proposed theoretical results of this article.

Example 1: We consider the FOPMSG between drive
system (8) and response system (9) as follows. The system
parameters are selected as in [7], α = 5.45, ρ = 20, and
β = 0.93. The initial values of system (8) and (9) are set
as (�1(0),�2(0),�3(0)) = (17, 0.8, 2.7) and (�̂1(0), �̂2(0),
�̂3(0)) = (5.7, 2.3, 1.5), respectively.

Case (i): We chose the following parameters γθ = 0.7,
γτ = 0.9, γς = 1.3, ξκ = 3.7, ξι = 2.9, ξdκ = 2.3,
ξdι = 3.1, ξdσ = 1.5, ξdτ = 2.3, and μ = 1.2, combining
with the proposed criteria in Theorem 1, one obtains the fol-
lowing results: ψδ1 = μ−2γθ = −0.2, ψδ2 = μ−2γτ = −0.6,
ψδ3 = μ−2γς = −1.4, then �min = min1≤ς≤3{ψδς } < 0 holds
and applying the control scheme in the form of (14), then
response FOPMSG system (9) can achieve MLS with drive
FOPMSG system (8). Simulation results are as follows. The
tracking error trajectory for various differential orders is given
in Fig. 5. Fig. 6 shows the control input signals of u<℘>ι ,

u<σ>ι , and u<λ>ι .

Case (ii): We select the parameters ξκ = 1.3, ξι = 3.7,
ξdκ = 3.1, ξdι = 4.3, ξdσ = 2.5, ξdτ = 2.9, �κ1 = 1.3,
�κ2 = 1.5, �κ3 = 1.9, ηθ = 0.9, ηι = 0.7, ηκ = 1.3, and
μ = 1.2. By Theorem 2, we get the results  <δ>1 = min{(μ−
2�κ1 ), 2ηθ } = −1.4,  <δ>2 = min{(μ − 2�κ2 ), 2ηι} = −1.8,
 <δ>3 = min{(μ− 2�κ3 ), 2ηκ } = −2.6, then �<δ>min < 0 holds,
and the synchronization between FOPMSG systems (8) and (9)
is achieved MLS by adaptive law (19) and designed control
scheme (20). The tracking error trajectory performance test
for different orders is depicted in Fig. 7. Fig. 8 shows the
simulated responses of control inputs, the identifications of
uncertain parameters, and tuning parameters. It can be dis-
tinguished from Figs. 5 and 7 that the proposed AFSMC
technique has much better results in comparison with the other
FSMC in the presence of high perturbations. If we use the
error information ζ �1 , ζ

�
2 , and ζ �3 in the identification law, the
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Fig. 5. Tracking error ϕς (ς = 1, 2, 3) for various differential order
considered with β = 0.93 and β = 1.

Fig. 6. Simulated responses of control inputs u<℘>ι , u<σ>ι , u<λ>ι .

Fig. 7. Tracking error ϕς (ς = 1, 2, 3) for various differential order
considered with β = 0.93 and β = 1.

identification of unknown parameters can be as quick as any
speed. And at this situation, the MLS achieves very quickly as
shown in Fig. 7. Comparison results about the SMC problem
of PMSG-based WTS on enhanced exponential reaching law
in [23], it follows from the simulation results that the proposed

(a)

(b) (c)

Fig. 8. (a) Control inputs u<℘>ι , uσ>ι , u<λ>ι . (b) Identifications of the
uncertain parameters ζ �1 , ζ

�
2 , ζ

�
3 . (c) Tuning control gains of ηθ , ηι, and ηκ .

Fig. 9. Tracking error ϕς (ς = 1, 2, 3) for various differential order
considered with β = 0.93 and β = 1.

MLS with in this article could get a faster convergent speed
fractional-order (β = 0.93) tuning than integer order (β = 1).

Example 2: Consider a drive system (8) and response
system (9) with the same initial condition and system param-
eters in Example 1.

Case (i): We choose the control parameters as ψθ = 1.7,
ψτ = 2.3, ψς = 2.7, λκ = 0.7, λι = 0.9, λdκ = 1.5, λdι =
0.9, λdσ = 1.8, λdτ = 2.2, and μ̂ = 2.7. By Theorem 3, we get
the results ϒ<δ>1 = {μ̂−2ψθ } = −0.7, ϒ<δ>2 = {μ̂−2ψτ } =
−1.9, ϒ<δ>3 = {μ̂ − 2ψς } = −2.7, then ϒ<δ>min < 0 holds,
and the drive FOPMSG system (8) and response FOPMSG
system (9) is reached MLS via designed control scheme (29).
The simulations for synchronization errors and control input
are presented in Figs. 9 and 10.

Case (ii): We choose λκ = 2.7, λι = 3.9, λdκ = 4.5,
λdι = 2.9, λdσ = 2.8, λdτ = 1.2, �κ1 = 2.3, �κ2 = 3.5,
�κ3 = 2.9, ηθ = 1.9, ηι = 2.1, ηκ = 2.7, and μ = 2.7, com-
bining with the proposed criteria in Corollary 1, one obtains
the following results: �̂<δ>1 = min{(μ̂ − 2�κ1 ), 2ηθ } = −1.9,
�̂<δ>2 = min{(μ̂ − 2�κ2 ), 2ηι} = −4.3, �̂<δ>3 = min{(μ̂ −
2�κ3 ), 2ηκ } = −3.1, then �̂<δ>min < 0 holds, it is clear that drive
FOPMSG system (8) is reached MLS with response FOPMSG
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Fig. 10. Simulated responses of control inputs u<℘>ι , u<σ>ι , u<λ>ι .

Fig. 11. Tracking error ϕς (ς = 1, 2, 3) for various differential order
considered with β = 0.93 and β = 1.

system (9) under adaptive laws (19) and designed control
scheme (35). Fig. 11 shows the convergence of the tracking
errors ϕς , (α = 1, 2, 3) which demonstrates that synchro-
nization can be achieved for the drive FOPMSG system (8)
and response FOPMSG system (9) under the proposed con-
trol (19) and (35). Fig. 12 shows the simulated responses of
control inputs, the identifications of uncertain parameters, and
tuning parameters.

The simulations were carried out to compare control
schemes: AFSMC and ASMC, with terminal functions. Fig. 7
shows that FOPMSG system (8) can realize synchronization
with response FOPMSG system (9) under AFSMC scheme
reaches at the origin at t = 1 s (β = 0.93). Fig. 11 demon-
strates the time response of the FOPMSG system with the
improved performance of robust controller design with var-
ious differential order. The tracking error has reached the
origin exactly at t = 0.1 s (β = 0.93). Hence, the FOPMSG
system (8) and (9) in ASMC, with fractional terminal func-
tions, is better than AFSMC, more robust and faster transient
performance against uncertainly and disturbances due to elimi-
nating the reaching phase completely, followed by the terminal
functions. The advantages of our method concerning AFSMC
and ASMC with terminal function are shown in various differ-
ential orders. This detailed analysis of the FOPMSG system
proves the effectiveness of the proposed control scheme. Next,
to show the efficiency of the proposed controller, we compare
our observations with the existing research [9] and [22]. Sun

(a)

(b) (c)

Fig. 12. (a) Control inputs u<℘>ι , uσ>ι , u<λ>ι . (b) Identifications of the
uncertain parameters ζ �1 , ζ

�
2 , ζ

�
3 . (c) Tuning control gains of ηθ , ηι, and ηκ .

et al. [22] discussed the tuning parameters, a robust adaptive
finite-time synchronization control problems of the PMSM
with uncertain parameters, and Prakash et al. [9] further
proposed an adaptive fractional fuzzy integral SMC method
for PMSM with exogenous disturbances and estimate the
unknown parameters. To make a fair comparison with these
results, the designed values for tuning factors to be updated
in (19) are chosen as �κ1 = 2.3, �κ2 = 3.5, and �κ3 = 2.9, the
gains of terminal attractors in [22] are chosen as ηθ = 1.9,
η� = 2.1, and ηκ = 2.7, a shorter convergent speed could be
obtained by using Corollary 1. The synchronization error has
reached the origin at t = 2 s (see [22, Fig. 2]), and the system
state can take almost the origin at t = 2.5 s (see [9, Fig. 5]).
But, our designed control law (19) with terminal functions (26)
observed from these simulation results that the synchronization
error has become zero accurately at t = 0.2 s (see Fig. 11).
Comparison results about the convergent speed are discussed
above, it follows from the simulation results that the proposed
MLS with AFSMC scheme in this study could get a faster
convergent speed than those in [9] and [22].

V. CONCLUSION

In this article, the MLS problem for the FOPMSG-based
WTS with uncertainties, and disturbance has been studied via
fractional domain memory-based AFSMC. Novel AFSMC has
been introduced in the fractional domain memory-based suit-
able sliding-mode surface function has been designed for the
concerned FOPMSG model to derive the MLS conditions.
Based on the Lyapunov function and the improved frac-
tional differential inequality, sufficient conditions have been
addressed in the form of algebraic criteria, guaranteeing that
the considered FOPMSG model is MLS under the designed
controller. Moreover, the robust prespecified time achieved
the FOPMSG model with the help of time-varying switching
surfaces ASMC. The simulation results show that the MLS
performances of the FOPMSG-based WTS under fractional
domain memory-based AFSMC and ASMC with terminal
function are better with shorter convergence time, faster
convergence speed, which reveals good transient performance
and outperforms prevailing research [9], [22].
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This research is concerned with the problem of pinning based output synchronization
control for a complex networks with random saturation vulnerable to hybrid cyber-attacks
via an adaptive event-triggered scheme (AETS). The output synchronization error systems
are subject to su�er from deception attacks, replay attacks, and denial-of-service attacks. A
novel hybrid cyber-attack model is �rst constructed to integrate the three kinds of attacks
into a synchronization of complex network. AETSs based on output synchronization errors
with the consideration of hybrid cyber-attacks, have been proposed to reduce the burden of
communication. A pinning control strategy is used to decrease the control signal's input. By
constructing a Lyapunov functional and using the linear matrix inequality technique,
su�cient conditions are provided to ensure the output synchronization error system.
Finally, a numerical simulation results are developed to illustrate the e�cacy of the
proposed theoretical methodology.
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Abstract: This research investigates the synchronization of distributed delayed discrete-time fractional-
order complex-valued neural networks. The necessary conditions have been established for the
stability of the proposed networks using the theory of discrete fractional calculus, the discrete Laplace
transform, and the theory of fractional-order discrete Mittag–Leffler functions. In order to guarantee
the global asymptotic stability, adequate criteria are determined using Lyapunov’s direct technique,
the Lyapunov approach, and some novel analysis techniques of fractional calculation. Thus, some
sufficient conditions are obtained to guarantee the global stability. The validity of the theoretical
results are finally shown using numerical examples.

Keywords: fractional order; synchronization; complex-valued; discrete-time; neural networks

1. Introduction

The 19th century witnessed the majority of the development of fractional calculus the-
ory. More than 300 years ago, in Leibniz’s letter to L’Hospital from 1695, fractional calculus
was first introduced. The distinct advantage of fractional-order systems over traditional
integer-order systems is that they provide an ideal instrument for describing the memory
and hereditary features of diverse materials and processes. Fractional calculus did not
receive much attention for a very long time due to the complexity and lack of application for
the background. Fractional-order differential equations have recently been demonstrated
to be useful modelling tools in a variety of scientific and engineering domains, as shown
in [1–3]. The dynamical characteristics of neural networks have drawn significant attention
during the last few decades. Due to neural networks’ effective application in optimization,
signal processing, associative memory, parallel computing, pattern recognition, artificial
intelligence, etc., their dynamical features have come under intense scrutiny during the past
few decades. As fractional calculus advanced quickly, several researchers astonishingly
found that fractional calculus could be implemented into neural networks [4–10].

Despite the significant progress made by continuous fractional calculus, discrete
fractional calculus research is still in its early stages. In order to explore discrete fractional
calculus, Diaz and Osler introduced an infinite series in 1974. However, continuous-time
and discrete-time systems are two complementary characteristics in real-world applications,
therefore the question of whether discrete-time systems have similar dynamical behaviors
to their continuous-time counterparts has emerged. It is crucial to study the dynamic
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behavior of discrete fractional calculus since not all discrete operators in theoretical research
have the same properties as continuous operators. Researchers often take continuous-time
systems into consideration when simulating and analyzing dynamic behavior on computers.
However, in a digital network, signal reception and operation are based on discrete time
rather than continuous time [11–18].

The networks that process complex-valued input by employing complex-valued pa-
rameters and variables are known as complex-valued neural networks (CVNNs) [19–27].
In comparison to real-valued neural networks, complex-valued neural networks have
a favoured superiority in easier network layout, quicker training times, and increased
power throughout complex signal processing. However, according to Liouville’s theorem,
every bounded and smooth activation function in CVNNs simplifies to a constant. There-
fore, it is more difficult and important to understand the dynamical behaviors of CVNNs.
Additionally, they have better solutions than real-valued neural networks for resolving
several challenging real-life problems, such as the XOR problem. A variety of techniques
have been used to evaluate the stability of CVNNs based on the outcomes so far. Some
scholars provided numerous significant results in recent years to guarantee the dynamics
of complex-valued neural networks with temporal delays [28–38].

Synchronization for time-delayed neural networks has received particular attention
due to their numerous potential applications in the areas of image processing, signal
processing, associative memory, and secure communication. Synchronization has grown in
popularity as a neural network research issue during the past decade. There are several
different types of fractional neural network synchronization issues in use today [39,40].
These synchronization analyses are carried out using a singular Gronwall inequality and
Filippov solution theorem [41–43].

The broad field of science and engineering known as stability theory examines how
dynamical structures affect both linear and nonlinear systems. Most stability studies
conducted in recent decades have focused on stability in the Lyapunov sense, including
asymptotic, exponential, and uniform stability. The well-known methods for time-domain
stability analysis for systems with integer orders, such as the Lyapunov functional method
and those combined with Razumikhin-type techniques, cannot be easily generalised to
FO systems with time delay because it is challenging to calculate the FO derivatives of
Lyapunov functions. The Caputo definition is used. A numerical example is used to
demonstrate the accuracy of the suggested procedure. The novelties of the study are
given below:

(1) We studied the global synchronization of discrete-time fractional-order complex-
valued neural networks with distributed delays.

(2) Unlike the previous literature, this paper explicitly examines the stability for discrete
fractional-order complex-valued neural networks using the stability theory in complex
fields as opposed to breaking down complex-valued systems into real-valued systems.

(3) Using the Lyapunov direct technique, the synchronization condition of FOCVNNs
with temporal delays is determined. In light of the definition of the Caputo fractional
difference, it is simple to calculate the first-order backward difference of the Lyapunov
function that we design, which includes discrete fractional sum terms.

(4) Some conditions regarding the global Mittag-Leffler stability of fractional-order
CVNNs are established using fractional derivative inequalities and fractional-order
appropriate Lyapunov functions.

(5) It is necessary to investigate the essential characteristics of the discrete Mittag–Leffler
function and the Nabla discrete Laplace transform.

(6) Finally, numerical illustrations are provided.

2. Preliminaries

Let ∇$(h̄) := $(h̄)− $(h̄− 1) be a backward difference operator and ∇m$(h̄) := ∇
(∇(m−1)$(h̄)) be the operator, where m ∈ N+.
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Definition 1 ([44]). The Nabla discrete fractional sum of order β > 0 is defined as:

∇−β
a $(h̄) =

1
Γ(β)

h̄

∑
s=a

(h̄− ρ(s))β−1$(s),

where a ∈ R, ρ(s) = s− 1, h̄ ∈ Na = {a, a + 1, a + 2, . . .}.

Definition 2 ([45]). The Riemann–Liouville fractional difference of order β > 0 is defined as

C∇n
a $(h̄) = ∇m(∇−(m−n)

a $(h̄)),

where m− 1 < β ≤ m, m ∈ N+, t ∈ Na+m.

Definition 3 ([46]). (Global Mittag–Leffler stability) The origin of System (1) is Mittag–Leffler
stable if

||x(h̄)|| ≤
{

R(x(h̄0))Eq

(
− δ(h̄− h̄0)

q
)}σ

,

where t0 denotes the initial instant, q ∈ (0, 1), δ > 0, σ > 0, R(0) = 0, R(x) ≥ 0, and R(x) is
locally Lipschiz on x ∈ R with respect to the Lipschitz constant R0.

Lemma 1 ([47]). Let q(h̄) = (q1(h̄), . . . , qm(h̄))T ∈ Rm be a positive definite matrix, which, if
H ∈ Rm×m is a positive definite matrix, implies

C∇β
0 qT(h̄)Hq(h̄) ≤ 2qT(h̄)Hc∇β

0 q(h̄), β ∈ (0, 1).

Lemma 2 ([48]). For 0 < β ≤ 1, h̄ = a + n,

∇β
a $2(h̄) ≤ 2$(h̄)∇β

a $(h̄).

Lemma 3 ([49]). Suppose that V(h̄) ∈ R is a continuous, differentiable, and non-negative func-
tion satisfying

DβV(h̄) ≤ −bV(h̄) + cV(h̄−ω), 0 < β < 1,

V(h̄) = ϕ(h̄) ≥ 0. h̄ ∈ [−ω, 0].

If b >
√

2c and c > 0, then for all ϕ(h̄) ≥ 0, ω > 0, limh̄→+∞ V(h̄) = 0.

Lemma 4 ([50]). Let V(h̄) be a continuous function on [0,+∞) satisfying

DβV(h̄) ≤ δV(h̄), β ∈ (0, 1)

and let δ be a constant. Then,

V(h̄) ≤ V(0)Eβ(δh̄β).

3. Main Results

We consider the following discrete-time fractional-order complex-valued neural net-
works with time-varying delays:

C∇β
0 γψ(h̄) = −cψγψ(h̄) +

m

∑
φ=1

aψφ fφ(γφ(h̄)) +
m

∑
φ=1

bψφ fφ(γφ(h̄−ω))

+
m

∑
φ=1

dψφ

∫ ∞

0
Kψφ(s) fφ(γφ(s))ds + Iψ, t ∈ N1, (1)
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γψ(h̄) = Φψ(h̄), t ∈ N1,

where C∇β
0 denotes the Caputo fractional difference operator with the order β(0 < β <

1). γψ(h̄) = [γψφ(h̄), γψ2(h̄), . . . , γψm(h̄)]T ∈ Rn denotes the state vector, f (γφ(h̄)) =

[ f1(γφ1(h̄)), f2(γφ2(h̄)), .., fψ(γφm(h̄))]T : Cm → Cm are vector-valued activation functions,
cψ, aψφ, bψφ, dψφ are connection weight matrices, and τ, σ(h̄) are time-varying delays.

The response system is designed as

C∇β
0 δψ(h̄) = −cψδψ(h̄) +

m

∑
φ=1

aψφ fφ(δφ(h̄)) +
m

∑
φ=1

bψφ fφ(δφ(h̄−ω))

+
m

∑
φ=1

dψφ

∫ ∞

0
Kψφ(s) fφ(γφ(s))ds + Iψ + uψ(h̄), (2)

δψ(h̄) = Φ̃ψ(h̄), h̄ ∈ N1,

where δ1(h̄) = (δ11(h̄), δ12(h̄), . . . , δ1n(h̄))T ∈ Cn, uψ(h̄) = [uψ1(h̄), uψ2(h̄), . . . , uψm(h̄)]T ∈
Rn is the control input.

Here, we study their solutions using Filippov regularization. Then, System (1) can be
expressed as

C∇β
0 γψ(h̄) = −cψγψ(h̄) +

m

∑
φ=1

aψφF[ fφ(γφ(h̄))] +
m

∑
φ=1

bψφF[ fφ(γφ(h̄−ω))]

+
m

∑
φ=1

dψφ

∫ ∞

0
Kψφ(s)F[ fφ(γφ(s))]ds, (3)

γψ(h̄) = F[Φψ(h̄)], t ∈ N1.

If there exist pl(h̄) ∈ F[ f j(x)], then

C∇β
0 γψ(t) = −cψγψ(h̄) +

m

∑
φ=1

aψφ pφ(γφ(h̄)) +
m

∑
φ=1

bψφ pφ(γφ(h̄−ω))

+
m

∑
φ=1

dψφ

∫ ∞

0
Kψφ(s)pφ(γφ(s))ds, (4)

γψ(h̄) = pψ(t), h̄ ∈ N1.

Similarly, from System (2), we have

C∇β
0 δψ(h̄) = −cψδψ(h̄) +

m

∑
φ=1

aψφ pφ(δφ(h̄)) +
m

∑
φ=1

bψφ pφ(δφ(h̄−ω))

+
m

∑
φ=1

dψφ

∫ ∞

0
Kψφ(s)pφ(δφ(s))ds + uψ(h̄), (5)

δψ(h̄) = p̃ψ(h̄), t ∈ N1.

Assumptions:
(H1): Let γ(h̄) = ξ(h̄) + iχ(h̄) and δ(h̄) = ξ́(h̄) + iχ́(h̄); then, we have

pφ(γj(h̄−ωs) = pR
φ (γj(h̄−ωs), δj(h̄−ωs)) + ipI

φ(γj(h̄−ωs), δj(h̄−ωs)),

(H2) : |φR
i (γj(h̄−ωs)− kR

i (δj(h̄−ωs)| ≤ λRR
i |γj(h̄−ωs)− δj(h̄−ωs)|+ λRI

i |γj(h̄−ωs)− δj(h̄−ωs)|,

|φI
i (γj(h̄−ωs)− kI

i (δj(h̄−ωs)| ≤ λIR
i |γj(h̄−ωs)− δj(h̄−ωs)|+ λI I

i |γj(h̄−ωs)− γj(h̄−ωs)|.

From (H1) and (H2), Systems (4) and (5) can be expressed as
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C∇β
0 ξψ(h̄) = −cψξψ(h̄) +

m

∑
l=1

aR
ψφ pR

φ (ξφ(h̄), χφ(t))−
m

∑
φ=1

aI
ψφ pI

φ(ξφ(h̄), χφ(h̄))

+
m

∑
φ=1

bR
ψφ pR

φ (ξφ(h̄−ω), χφ(h̄−ω))−
m

∑
φ=1

bI
ψφ pI

φ(ξφ(h̄−ω), χφ(h̄−ω)) (6)

+
m

∑
φ=1

dR
ψφ

∫ ∞

0
Kψφ(s)pR

φ (ξφ(s), χφ(s))ds−
m

∑
φ=1

dI
ψφ

∫ ∞

0
Kψφ(s)pI

φ(ξφ(s), χφ(s))ds,

C∇β
0 χψ(h̄) = −cψχψ(h̄) +

m

∑
φ=1

aR
ψφ pI

φ(ξφ(h̄), χφ(h̄)) +
m

∑
φ=1

aI
ψφ pR

φ (ξφ(h̄), χφ(h̄))

+
m

∑
φ=1

bR
ψφ pI

φ(ξφ(h̄−ω), χφ(h̄−ω)) +
m

∑
φ=1

bI
ψφ pR

φ (ξφ(h̄−ω), χφ(h̄−ω)) (7)

+
m

∑
φ=1

dR
ψφ

∫ ∞

0
Kψφ(s)pI

φ(ξφ(s), χφ(s))ds +
m

∑
φ=1

dI
ψφ

∫ ∞

0
Kψφ(s)pR

v (ξφ(s), χφ(s))ds,

C∇β
0 ξ ′ψ(h̄) = −cψξ ′ψ(h̄) +

m

∑
l=1

aR
ψφ pR

φ (ξ
′
φ(h̄), χ′φ(h̄))−

m

∑
φ=1

aI
ψφ pI

φ(ξ
′
φ(t), χ′φ(h̄))

+
m

∑
φ=1

bR
ψφ pR

φ (ξ
′
φ(h̄−ω), χ′φ(t−ω))−

m

∑
φ=1

bI
ψφ pI

φ(ξ
′
φ(h̄−ω), χ′φ(h̄−ω)) (8)

+
m

∑
φ=1

dR
ψφ

∫ ∞

0
Kψφ(s)pR

φ (ξ
′
φ(s), χ′φ(s))ds−

m

∑
φ=1

dI
ψφ

∫ ∞

0
Kψφ(s)pI

φ(ξ
′
φ(s), χ′φ(s))ds,

C∇β
0 χ′ψ(t) = −cψχ′ψ(t) +

m

∑
φ=1

aR
ψφ pI

φ(ξ
′
φ(h̄), χ′φ(t)) +

m

∑
φ=1

aI
ψφ pR

φ (ξ
′
φ(h̄), χ′φ(t))

+
m

∑
φ=1

bR
ψφ pI

φ(ξ
′
φ(h̄−ω), χ′φ(t−ω)) +

m

∑
φ=1

bI
ψφ pR

φ (ξ
′
φ(h̄−ω), χ′φ(t−ω)) (9)

+
m

∑
φ=1

dR
ψφ

∫ ∞

0
Kψφ(s)Kψφ(s)pI

φ(ξ
′
φ(s), χ′φ(s))ds +

m

∑
φ=1

dI
ψφ

∫ ∞

0
Kψφ(s)pR

v (ξ
′
φ(s), χ′φ(s))ds,

We define ℘R(h̄) = ξ ′(h̄)− ξ(h̄),℘I(h̄) = χ′(h̄)− χ(h̄) as the synchronization errors.
Let uψ(h̄) = 0. Then, the system’s error is defined as

C∇β
0 [℘

R
ψ(h̄)] = −cψ℘

R
ψ(h̄) +

m

∑
φ=1

aR
ψφ[p

R
φ (ξ
′
φ(h̄), χ′φ(h̄))− pR

φ (ξφ(h̄), χφ(h̄))]

−
m

∑
φ=1

aI
ψφ[p

I
φ(ξ
′
φ(h̄), χ′φ(h̄))− pI

φ(ξφ(h̄), χφ(h̄))]

+
m

∑
φ=1

bR
ψφ[p

R
φ (ξ
′
φ(h̄−ω), χ′φ(h̄−ω))− pR

φ (ξφ(t−ω), χφ(h̄−ω))] (10)

−
m

∑
φ=1

bI
ψφ[p

I
φ(ξ
′
φ(h̄−ω), χ′φ(h̄−ω))− pI

φ(ξφ(h̄−ω), χφ(h̄−ω))]

+
m

∑
φ=1

dR
ψφ

∫ ∞

0
Kψφ(s)[pR

φ (ξ
′
φ(s), χ′φ(s))− pR

φ (ξφ(s), χφ(s))]ds
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−
m

∑
φ=1

dI
ψφ

∫ ∞

0
Kψφ(s)[pI

φ(ξ
′
φ(s), χ′φ(s))− pI

φ(ξ
R
φ (s), χφ(s))]ds.

C∇β
0 [℘

I
ψ(h̄)] = −cψ℘

I
ψ(h̄) +

m

∑
φ=1

aR
ψφ[p

I
φ(ξ
′
φ(h̄), χ′φ(h̄))− pI

φ(ξφ(h̄), χφ(h̄))]

+
m

∑
φ=1

aI
ψφ[p

R
φ (ξ
′
φ(h̄), χ′φ(h̄))− pR

φ (γφ(h̄), γφ(h̄))]

+
m

∑
φ=1

bR
ψφ[p

I
φ(ξ
′
φ(h̄−ω), χ′φ(h̄−ω))− pI

φ(ξφ(h̄−ω), χφ(h̄−ω))] (11)

+
m

∑
φ=1

bI
ψφ[p

R
φ (ξ
′
φ(t−ω), χ′φ(h̄−ω))− pR

φ (ξφ(h̄−ω), χφ(h̄−ω))]

+
m

∑
φ=1

dR
ψφ

∫ ∞

0
Kψφ(s)[pI

φ(ξ
′
φ(s), χ′φ(s))− pI

φ(ξφ(s), χφ(s))]

+
m

∑
φ=1

dI
ψφ

∫ ∞

0
Kψφ(s)[pR

φ (ξ
′
φ(s), χ′φ(s))− pR

φ (ξφ(s), χφ(s))ds].

Theorem 1. Under Assumptions (H1) and (H2) and Lemma 3, Systems (10) and (11) are globally
asymptotically stable and satisfy θ1 >

√
2θ2, θ2 > 0.

Proof. We construct a Lyapunov functional

V(h̄) =
m

∑
ψ=1

[|℘R
ψ(h̄)|+ |℘I

ψ(h̄)|]. (12)

In the light of Lemma 1, we can calculate the fractional difference of V(h̄),

C∇β
0 V(h̄) ≤

m

∑
ψ=1

c∇β
0 [|℘

R
ψ(t)|+ |℘I

ψ(h̄)|],

C∇β
0 V(h̄) =

m

∑
ψ=1

[sign(℘R
ψ(h̄))

{
− cψ℘

R
ψ(h̄) +

m

∑
φ=1

aR
ψφ[p

R
φ (ξ
′
φ(h̄), χ′φ(h̄))− pR

φ (ξφ(h̄), χφ(h̄))]

−
m

∑
φ=1

aI
ψφ[p

I
φ(ξ
′
φ(h̄), χ′φ(h̄))− pI

φ(ξφ(h̄), χφ(h̄))]

+
m

∑
φ=1

bR
ψφ[p

R
φ (ξ
′
φ(h̄−ω), χ′φ(h̄−ω))− pR

φ (ξφ(h̄−ω), χφ(h̄−ω))]

−
m

∑
φ=1

bI
ψφ[p

I
φ(ξ
′
φ(h̄−ω), χ′φ(h̄−ω))− pI

φ(ξφ(h̄−ω), χφ(h̄−ω))]

+
m

∑
φ=1

dR
ψφ

∫ ∞

0
Kψφ(s)[pR

φ (ξ
′
φ(s), χ′φ(s))− pR

φ (ξφ(s), χφ(s))]ds

−
m

∑
φ=1

dI
ψφ

∫ ∞

0
Kψφ(s)[pI

φ(ξ
′
φ(s), χ′φ(s))− pI

φ(ξ
R
φ (s), χφ(s))]ds

}
(13)

+
m

∑
ψ=1

sign(℘I
ψ(h̄))

{
− cψ℘

I
ψ(h̄) +

m

∑
φ=1

aR
ψφ[p

I
φ(ξ
′
φ(h̄), χ′φ(h̄))− pI

φ(ξφ(t), χφ(h̄))]

+
m

∑
φ=1

aI
ψφ[p

R
φ (ξ
′
φ(h̄), χ′φ(h̄))− pR

φ (γφ(h̄), γφ(h̄))]
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+
m

∑
φ=1

bR
ψφ[p

I
φ(ξ
′
φ(t−ω), χ′φ(h̄−ω))− pI

φ(ξφ(h̄−ω), χφ(h̄−ω))]

+
m

∑
φ=1

bI
ψφ[p

R
φ (ξ
′
φ(h̄−ω), χ′φ(h̄−ω))− pR

φ (ξφ(h̄−ω), χφ(h̄−ω))]

+
m

∑
φ=1

dR
ψφ

∫ ∞

0
Kψφ(s)[pI

φ(ξ
′
φ(s), χ′φ(s))− pI

φ(ξφ(s), χφ(s))]

+
m

∑
φ=1

dI
ψφ

∫ ∞

0
Kψφ(s)[pR

φ (ξ
′
φ(s), χ′φ(s))− pR

φ (ξφ(s), χφ(s))ds]
}

Under Assumptions (H1) and (H2), Systems (10) and (11) can be expressed as:

C∇β
0 V(h̄) ≤

m

∑
ψ=1

{
− cψ|℘R

ψ(h̄)|+
m

∑
φ=1
|aR

ψφ|[λRR
φ |℘R

φ (h̄)|+ λRI
φ |℘I

φ(h̄)|]

+
m

∑
φ=1
|aI

ψφ|[λIR
k |℘

R
φ (h̄)|+ λI I

φ |℘I
φ(h̄)|]

+
m

∑
φ=1
|bR

ψφ|[λRR
φ |℘R

φ (h̄−ω)|+ λRI
φ |℘I

φ(h̄−ω)|]

+
m

∑
φ=1
|bI

ψφ|[λIR
φ |℘R

φ (h̄−ω)|+ λI I
φ |℘I

φ(h̄−ω)|]

+
m

∑
φ=1
|dR

ψφ|
∫ ∞

0
Kψφ(s)[λRR

φ |℘R
φ (s)|+ λRI

φ |℘I
φ(s)|]ds

+
m

∑
φ=1
|dI

ψφ|
∫ ∞

0
Kψφ(s)[λIR

φ |℘R
φ (s)|+ λI I

φ |℘I
φ(s)|]ds

}

+
m

∑
ψ=1

{
− cψ|℘I

ψ(h̄)|+
m

∑
φ=1
|aR

ψφ|[λIR
k |℘

R
φ (h̄)|+ λI I

φ |℘I
φ(h̄)|]

+
m

∑
φ=1
|aI

ψφ|[λRR
k |℘

R
φ (h̄)|+ λRI

φ |℘I
φ(h̄)|]

+
m

∑
φ=1
|bR

ψφ|[λIR
φ |℘R

φ (h̄−ω)|+ λI I
φ |℘I

φ(h̄−ω)|]

+
m

∑
φ=1
|bI

ψφ|[λRR
φ |℘R

φ (h̄−ω)|+ λRI
φ |℘I

φ(h̄−ω)|]

+
m

∑
φ=1
|dR

ψφ|
∫ ∞

0
Kψφ(s)[λIR

φ |℘R
φ (s)|+ λI I

φ |℘I
φ(s)|]ds

+
m

∑
φ=1
|dI

ψφ|
∫ ∞

0
Kψφ(s)[λRR

φ |℘R
φ (s)|+ λRI

φ |℘I
φ(s)|]ds

}

≤
m

∑
ψ=1

{
− cψ|℘R

ψ(h̄)|+
m

∑
φ=1
|aR

ψφ|λRR
φ |℘R

φ (h̄)|+
m

∑
φ=1
|aR

ψφ|λRI
φ |℘I

φ(h̄)|

+
m

∑
φ=1
|aI

ψφ|λIR
φ |℘R

φ (h̄)|+
m

∑
φ=1
|aI

ψφ|λI I
φ |℘I

φ(h̄)|

+
m

∑
φ=1
|bR

ψφ|λRR
φ |℘R

φ (h̄−ω)|+
m

∑
φ=1
|bR

ψφ|λRI
φ |℘I

φ(h̄−ω)|

+
m

∑
φ=1
|bI

ψφ|λIR
φ |℘R

φ (h̄−ω)|+
m

∑
φ=1
|bI

ψφ|λI I
φ |℘I

φ(h̄−ω)|
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+
m

∑
φ=1
|dR

ψφ|
∫ ∞

0
Kψφ(s)λRR

φ |℘R
φ (s)|ds +

m

∑
φ=1
|dR

ψφ|
∫ ∞

0
Kψφ(s)λRI

φ |℘I
φ(s)|ds

+
m

∑
φ=1
|dI

ψφ|
∫ ∞

0
Kψφ(s)λIR

φ |℘R
φ (s)|ds +

m

∑
φ=1
|dI

ψφ|
∫ ∞

0
Kψφ(s)λI I

φ |℘I
φ(s)|ds

}

+
m

∑
ψ=1

{
− cψ|℘I

ψ(h̄)|+
m

∑
φ=1
|aR

ψφ|λIR
φ |℘R

φ (h̄)|+
m

∑
φ=1
|aR

ψφ|λI I
φ |℘I

φ(h̄)|

+
m

∑
φ=1
|aI

ψφ|λRR
φ |℘R

φ (h̄)|+
m

∑
φ=1
|aI

ψφ|λRI
φ |℘I

φ(h̄)|

+
m

∑
φ=1
|bR

ψφ|λIR
φ |℘R

φ (t−ω)|+
m

∑
φ=1
|bR

ψφ|λI I
φ |℘I

φ(h̄−ω)|

+
m

∑
φ=1
|bI

ψφ|λRR
φ |℘R(h̄−ω)|+

m

∑
φ=1
|bI

ψφ|λRI
φ |℘I

φ(h̄−ω)| (14)

+
m

∑
φ=1
|dR

ψφ|
∫ ∞

0
Kψφ(s)λIR

φ |℘R
φ (s)|ds +

m

∑
φ=1
|dR

ψφ|
∫ ∞

0
Kψφ(s)λI I

φ |℘I
φ(s)|ds

+
m

∑
φ=1
|dI

ψφ|
∫ ∞

0
Kψφ(s)λRR

φ |℘R
φ (s)|ds +

m

∑
φ=1
|dI

ψφ|
∫ ∞

0
Kψφ(s)λRI

φ |℘I
φ(s)|

}

≤
m

∑
ψ=1

{
− cψ|℘R

ψ(h̄)|+
m

∑
φ=1
|aR

ψφ|λRR
φ |℘R

φ (h̄)|+
m

∑
φ=1
|aR

ψφ|λRI
φ |℘I

φ(h̄)|

+
m

∑
φ=1
|aI

ψφ|λIR
φ |℘R

φ (h̄)|+
m

∑
φ=1
|aI

ψφ|λI I
φ |℘I

φ(h̄)|

+
m

∑
φ=1
|bR

ψφ|λRR
φ |℘R

φ (h̄−ω)|+
m

∑
φ=1
|bR

ψφ|λRI
φ |℘I

φ(h̄−ω)|

+
m

∑
φ=1
|bI

ψφ|λIR
φ |℘R

φ (h̄−ω)|+
m

∑
φ=1
|bI

ψφ|λI I
φ |℘I

φ(h̄−ω)|

+
m

∑
φ=1
|dR

ψφ|λRR
φ |℘R

φ (h̄)|+
m

∑
φ=1
|dR

ψφ|λRI
φ |℘I

φ(h̄)|

+
m

∑
φ=1
|dI

ψφ|λIR
φ |℘R

φ (h̄)|+
m

∑
φ=1
|dI

ψφ|λI I
φ |℘I

φ(h̄)|
}

+
m

∑
ψ=1

{
− cψ|℘I

ψ(h̄)|+
m

∑
φ=1
|aR

ψφ|λIR
φ |℘R

φ (h̄)|+
m

∑
φ=1
|aR

ψφ|λI I
φ |℘I

φ(h̄)|

+
m

∑
φ=1
|aI

ψφ|λRR
φ |℘R

φ (h̄)|+
m

∑
φ=1
|aI

ψφ|λRI
φ |℘I

φ(h̄)|

+
m

∑
φ=1
|bR

ψφ|λIR
φ |℘R

φ (h̄−ω)|+
m

∑
φ=1
|bR

ψφ|λI I
φ |℘I

φ(h̄−ω)|

+
m

∑
φ=1
|bI

ψφ|λRR
φ |℘R

φ (h̄−ω)|+
m

∑
φ=1
|bI

ψφ|λRI
φ |℘I

φ(h̄−ω)|

+
m

∑
φ=1
|dR

ψφ|λIR
φ |℘R

φ (h̄)|+
m

∑
φ=1
|dR

ψφ|λI I
φ |℘I

φ(h̄)|

+
m

∑
φ=1
|dR

ψφλRR
φ |℘R

φ (h̄)|+
m

∑
φ=1
|dI

ψφ|λRI
φ |℘I

φ(h̄)|
}
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≤ −θ
(1)
min

m

∑
ψ=1
|℘R

φ (h̄)| − θ
(2)
min

m

∑
ψ=1
|℘I

φ(h̄)|+ θ
(1)
max

m

∑
ψ=1
|℘R

φ (h̄−ω)|+ θ
(2)
max

m

∑
ψ=1
|℘I

φ(h̄−ω)|,

= −θ1V(h̄) + θ2V(h̄−ω),

where

θ
(1)
min =

{
cψ −

m

∑
φ

|aR
φψ|λRR

ψ −
m

∑
φ=1
|aI

φψ|λIR
ψ −

m

∑
φ=1
|dR

φψ|λRR
ψ −

m

∑
φ=1
|dI

φψ|λIR
ψ

−
m

∑
φ=1
|aR

φψλIR
ψ −

m

∑
φ=1
|aI

φψ|λRR
ψ −

m

∑
φ=1
|dR

φψ|λIR
ψ −

m

∑
φ=1
|dI

φψ|λRR
ψ

}
,

θ
(2)
min =

{
cψ −

m

∑
φ

|aR
φψ|λRI

ψ −
m

∑
φ=1
|aI

φψ|λI I
ψ −

m

∑
φ=1
|dR

φψ|λRI
ψ −

m

∑
φ=1
|dI

φψ|λI I
ψ

−
m

∑
φ=1
|aR

φψ|λI I
ψ −

m

∑
φ=1
|aI

φψ|λRI
ψ −

m

∑
φ=1
|dR

φψ|λI I
ψ −

m

∑
φ=1
|dI

φψ|λRI
ψ

}
,

θ
(1)
max =

m

∑
ψ=1

{ m

∑
φ=1
|bI

ψφ|λRR
φ +

m

∑
φ=1
|bI

ψφ|λIR
φ +

m

∑
φ=1
|bR

ψφ|λIR
φ +

m

∑
φ=1
|bI

ψφ|λRR
φ

}
,

θ
(2)
max =

m

∑
ψ=1

{ m

∑
φ=1
|bR

ψφ|λIR
φ +

m

∑
φ=1
|bI

ψφ|λI I
φ +

m

∑
φ=1
|bR

ψφ|λI I
φ +

m

∑
φ=1
|bI

ψφ|λRI
φ

}
,

By Lemma 3, θ1 >
√

2θ2, θ2 > 0.
Consequently, Systems (10) and (11) are globally asymptotically stable.

Theorem 2. Under Assumptions (H1) and (H2) and Lemma 3, Systems (10) and (11) are globally
asymptotically stable and satisfy Θ1 >

√
2Θ2, Θ2 > 0.

Proof. Consider the auxiliary function

V(h̄) =
m

∑
ψ=1

1
2
(℘R

ψ(h̄))
2 +

m

∑
ψ=1

1
2
(℘I

ψ(h̄))
2. (15)

In light of Lemma 2, calculating the fractional difference of V(t), we have

C∇β
0 V(h̄) ≤

m

∑
ψ=1

{
− cψ(℘

R
ψ(h̄))

2 +
m

∑
φ=1

aR
ψφ℘

R
ψ(t)[λ

RR
φ ℘R

φ (h̄) + λRI
φ ℘I

φ(t)]

+
m

∑
φ=1

aI
ψφ℘

R
ψ(h̄)[λ

IR
k ℘R

φ (h̄) + λI I
φ ℘I

φ(h̄)]

+
m

∑
φ=1

bR
ψφ℘

R
ψ(h̄)[λ

RR
φ ℘R

φ (h̄−ω) + λRI
φ ℘I

φ(h̄−ω)]

+
m

∑
φ=1

bI
ψφ℘

R
ψ(h̄)[λ

IR
φ ℘R

φ (h̄−ω) + λI I
φ ℘I

φ(h̄−ω)]

+
m

∑
φ=1

dR
ψφ℘

R
ψ(h̄)

∫ ∞

0
Kψφ(s)[λRR

φ ℘R
φ (s) + λRI

φ ℘I
φ(s)]ds

+
m

∑
φ=1

dI
ψφ℘

R
ψ(h̄)

∫ ∞

0
Kψφ(s)[λIR

φ ℘R
φ (s) + λI I

φ ℘I
φ(s)]ds

}

+
m

∑
ψ=1

{
− cψ(℘

I
ψ(h̄))

2 +
m

∑
φ=1

aR
ψφ℘

I
ψ(h̄)[λ

IR
k ℘R

φ (h̄) + λI I
φ ℘I

φ(h̄)]
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+
m

∑
φ=1

aI
ψφ℘

I
ψ(t)[λ

RR
k ℘R

φ (h̄) + λRI
φ ℘I

φ(h̄)]

+
m

∑
φ=1

bR
ψφ℘

I
ψ(h̄)[λ

IR
φ ℘R

φ (h̄−ω) + λI I
φ ℘I

φ(h̄−ω)]

+
m

∑
φ=1

bI
ψφ℘

I
ψ(h̄)[λ

RR
φ ℘R

φ (h̄−ω) + λRI
φ ℘I

φ(h̄−ω)]

+
m

∑
φ=1

dR
ψφ℘

I
ψ(h̄)

∫ ∞

0
Kψφ(s)[λIR

φ ℘R
φ (s) + λI I

φ ℘I
φ(s)]ds

+
m

∑
φ=1

dI
ψφ℘

I
ψ(h̄)

∫ ∞

0
Kψφ(s)[λRR

φ ℘R
φ (s) + λRI

φ ℘I
φ(s)]ds

}

≤
m

∑
ψ=1

{
− cψ(℘

R
ψ(h̄))

2 + [
m

∑
φ=1

aR
ψφ℘

R
ψ(h̄)λ

RR
φ ℘R

φ (h̄) +
m

∑
φ=1

aR
ψφ℘

R
ψ(h̄)λ

RI
φ ℘I

φ(h̄)]

+ [
m

∑
φ=1

aI
ψφ℘

R
ψ(h̄)λ

IR
k ℘R

φ (h̄) +
m

∑
φ=1

aI
ψφ℘

R
ψ(h̄)λ

I I
φ ℘I

φ(h̄)]

+ [
m

∑
φ=1

bR
ψφ℘

R
ψ(h̄)

m

∑
φ=1

bR
ψφ℘

R
ψ(h̄)λ

RR
φ ℘R

φ (t−ω) +
m

∑
φ=1

bR
ψφ℘

R
ψ(h̄)λ

RI
φ ℘I

φ(h̄−ω)]

+ [
m

∑
φ=1

bI
ψφ℘

R
ψ(h̄)λ

IR
φ ℘R

φ (h̄−ω) +
m

∑
φ=1

bI
ψφ℘

R
ψ(h̄)λ

I I
φ ℘I

φ(h̄−ω)]

+ [
m

∑
φ=1

dR
ψφ℘

R
ψ(h̄)

∫ ∞

0
Kψφ(s)λRR

φ ℘R
φ (s) +

m

∑
φ=1

dR
ψφ℘

R
ψ(h̄)

∫ ∞

0
Kψφ(s)λRI

φ ℘I
φ(s)]ds

+ [
m

∑
φ=1

dI
ψφ℘

R
ψ(h̄)

∫ ∞

0
Kψφ(s)λIR

φ ℘R
φ (s) +

m

∑
φ=1

dI
ψφ℘

R
ψ(h̄)

∫ ∞

0
Kψφ(s)λI I

φ ℘I
φ(s)]ds

}

+
m

∑
ψ=1

{
− cψ(℘

I
ψ(h̄))

2 + [
m

∑
φ=1

aR
ψφ℘

I
ψ(h̄)λ

IR
k ℘R

φ (h̄) +
m

∑
φ=1

aR
ψφ℘

I
ψ(h̄)λ

I I
φ ℘I

φ(h̄)]

+
m

∑
φ=1

aI
ψφ℘

I
ψ(h̄)λ

RR
k ℘R

φ (h̄) +
m

∑
φ=1

aI
ψφ℘

I
ψ(h̄)λ

RI
φ ℘I

φ(h̄)]

+ [
m

∑
φ=1

bR
ψφ℘

I
ψ(h̄)λ

IR
φ ℘R

φ (h̄−ω) +
m

∑
φ=1

bR
ψφ℘

I
ψ(h̄)λ

I I
φ ℘I

φ(h̄−ω)]

+ [
m

∑
φ=1

bI
ψφ℘

I
ψ(h̄)λ

RR
φ ℘R(h̄−ω) +

m

∑
φ=1

bI
ψφ℘

I
ψ(h̄)λ

RI
φ ℘I(t−ω)]

+ [
m

∑
φ=1

dR
ψφ℘

I
ψ(t)

∫ ∞

0
Kψφ(s)λIR

φ ℘R
φ (s)ds +

m

∑
φ=1

dR
ψφ℘

I
ψ(h̄)

∫ ∞

0
Kψφ(s)λI I

φ ℘I
φ(s)ds]

+ [
m

∑
φ=1

dI
ψφ℘

I
ψ(h̄)

∫ ∞

0
Kψφ(s)λRR

φ ℘R
φ (s)ds +

m

∑
φ=1

dI
ψφ℘

I
ψ(h̄)

∫ ∞

0
Kψφ(s)λRI

φ ℘I
φ(s)ds]

}

≤
m

∑
ψ=1

{
− cψ(℘

R
ψ(h̄))

2 + [
m

∑
φ=1

aR
ψφ℘

R
ψ(h̄)λ

RR
φ ℘R

φ (h̄) +
m

∑
φ=1

aR
ψφ℘

R
ψ(h̄)λ

RI
φ ℘I

φ(h̄)]

+ [
m

∑
φ=1

aI
ψφ℘

R
ψ(h̄)λ

IR
k ℘R

φ (t) +
m

∑
φ=1

aI
ψφ℘

R
ψ(h̄)λ

I I
φ ℘I

φ(h̄)]

+ [
m

∑
φ=1

bR
ψφ℘

R
ψ(h̄)

m

∑
φ=1

bR
ψφ℘

R
ψ(h̄−ω)λRR

φ ℘R
φ (h̄−ω) +

m

∑
φ=1

bR
ψφ℘

R
ψ(t)λ

RI
φ ℘I

φ(t− τ)]
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+ [
m

∑
φ=1

bI
ψφ℘

R
ψ(h̄)λ

IR
φ ℘R

φ (h̄−ω) +
m

∑
φ=1

bI
ψφ℘

R
ψ(h̄)λ

I I
φ ℘I

φ(h̄−ω)]

+ [
m

∑
φ=1

dR
ψφ℘

R
ψ(h̄)λ

RR
φ ℘R

φ (h̄) +
m

∑
φ=1

dR
ψφ℘

R
ψ(h̄)λ

RI
φ ℘I

φ(t)]

+ [
m

∑
φ=1

dI
ψφ℘

R
ψ(h̄)λ

IR
φ ℘R

φ (h̄) +
m

∑
φ=1

dI
ψφ℘

R
ψ(h̄)λ

I I
φ ℘I

φ(h̄)]
}

+
m

∑
ψ=1

{
− cψ(℘

I
ψ(h̄))

2 + [
m

∑
φ=1

aR
ψφ℘

I
ψ(h̄)λ

IR
k ℘R

φ (h̄) +
m

∑
φ=1

aR
ψφ℘

I
ψ(h̄)λ

I I
φ ℘I

φ(h̄)] (16)

+ [
m

∑
φ=1

aI
ψφ℘

I
ψ(h̄)λ

RR
k ℘R

φ (h̄) +
m

∑
φ=1

aI
ψφ℘

I
ψ(t)λ

RI
φ ℘I

φ(t)]

+ [
m

∑
φ=1

bR
ψφ℘

I
ψ(h̄)λ

IR
φ ℘R

φ (h̄−ω) +
m

∑
φ=1

bR
ψφ℘

I
ψ(h̄)λ

I I
φ ℘I

φ(h̄−ω)]

+ [
m

∑
φ=1

bI
ψφ℘

I
ψ(h̄)λ

RR
φ ℘R

φ (h̄−ω) +
m

∑
φ=1

bI
ψφ℘

I
ψ(h̄)λ

RI
φ ℘I

φ(h̄−ω)]

+ [
m

∑
φ=1

dR
ψφ℘

I
ψ(h̄)λ

IR
φ ℘R

φ (h̄) +
m

∑
φ=1

dR
ψφ℘

I
ψ(t)λ

I I
φ ℘I

φ(h̄)]

+ [
m

∑
φ=1

dI
ψφ℘

I
ψ(h̄)λ

RR
φ ℘R

φ (h̄) +
m

∑
φ=1

dI
ψφ℘

I
ψ(h̄)λ

RI
φ ℘I

φ(t)]
}

≤
m

∑
ψ=1

{
− cψ(℘

R
ψ(h̄))

2 + [
1
2

m

∑
φ=1

aR
ψφλRR

φ [(℘R
ψ(h̄))

2 + (℘R
φ (h̄))

2]

+
1
2

m

∑
φ=1

aR
ψφλRI

φ [(℘R
ψ(t))

2 + (℘I
φ(h̄))

2]] + [
1
2

m

∑
φ=1

aI
ψφλIR

k [(℘R
ψ(h̄))

2 + (℘R
φ (h̄))

2]

+
1
2

m

∑
φ=1

aI
ψφλI I

φ [(℘R
ψ(h̄))

2 + (℘I
φ(h̄))

2] + [
1
2

m

∑
φ=1

bR
ψφλRR

φ [(℘R
ψ(h̄))

2 + (℘R
ψ(h̄−ω))2]

+
1
2

m

∑
φ=1

bR
ψφλRI

φ [(℘R
ψ(h̄))

2 + (℘I
φ(h̄−ω))2]]

+ [
1
2

m

∑
φ=1

bI
ψφλRR

φ [(℘R
ψ(h̄))

2 + (℘R
φ (h̄− τ))2] +

1
2

m

∑
φ=1

bI
ψφλRI

φ [(℘R
ψ(h̄))

2 + (℘I
φ(h̄− τ))2]]

+ [
1
2

m

∑
φ=1

dR
ψφλRR

φ [(℘R
ψ(h̄))

2 + (℘R
φ (h̄))

2] +
1
2

m

∑
φ=1

dR
ψφλRI

φ [(℘R
ψ(h̄))

2 + (℘I
φ(h̄))

2]]

+ [
1
2

m

∑
φ=1

dI
ψφλIR

φ [(℘R
ψ(h̄))

2 + (℘R
φ (h̄))

2] +
1
2

m

∑
φ=1

dI
ψφλI I

φ [(℘R
ψ(h̄))

2 + (℘I
φ(h̄))

2]]

}

+
1
2

m

∑
ψ=1

{
− cψ(℘

I
ψ(h̄))

2 + [
1
2

m

∑
φ=1

aR
ψφλIR

k [(℘I
ψ(h̄))

2 + (℘R
φ (t))

2] +
1
2

m

∑
φ=1

aR
ψφλI I

φ [(℘I
ψ(t))

2 + (℘I
φ(h̄))

2]]

+ [
1
2

m

∑
φ=1

aI
ψφλRR

k [(℘I
ψ(h̄))

2 + (℘R
φ (h̄))

2] +
1
2

m

∑
φ=1

aI
ψφλRI

φ [(℘I
ψ(h̄))

2 + (℘I
φ(h̄))

2]]

+ [
1
2

m

∑
φ=1

bR
ψφλIR

φ [(℘I
ψ(h̄))

2 + (℘R
φ (h̄−ω))2] +

1
2

m

∑
φ=1

bR
ψφλI I

φ [(℘I
ψ(h̄))

2 + (℘I
φ(h̄−ω))2]]

+ [
1
2

m

∑
φ=1

bI
ψφλRR

φ [(℘I
ψ(h̄))

2 + (℘R(h̄−ω))2] +
1
2

m

∑
φ=1

bI
ψφλRI

φ [(℘I
ψ(h̄))

2 + (℘I(h̄−ω))2]]
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+ [
1
2

m

∑
φ=1

dR
ψφλIR

φ [(℘I
ψ(h̄))

2 + (℘R
φ (h̄))

2] +
1
2

m

∑
φ=1

dR
ψφλI I

φ [(℘I
ψ(h̄))

2 + (℘I
φ(h̄))

2]]

+ [
1
2

m

∑
φ=1

dI
ψφλRR

φ [(℘I
ψ(h̄))

2 + (℘R
φ (s))

2] +
1
2

m

∑
φ=1

dI
ψφλRI

φ [(℘I
ψ(h̄))

2 + (℘I
φ(s))

2]]

}

≤ −Θ(1)
min

1
2

m

∑
ψ=1

(℘R
φ (t))

2 −Θ(2)
min

1
2

m

∑
ψ=1

(℘I
φ(t))

2 + Θ(1)
max

1
2

m

∑
ψ=1

(℘R
φ (h̄−ω))2 + Θ(2)

max
1
2

m

∑
ψ=1

(℘I
φ(h̄−ω))2,

= −Θ1V(h̄) + Θ2V(h̄−ω),

where

Θ(1)
min =

{
cψ −

1
2

m

∑
φ=1

aR
ψφλRR

φ −
1
2

m

∑
φ=1

aR
φψλRR

ψ −
1
2

m

∑
φ=1

aR
φψλRI

ψ −
1
2

m

∑
φ=1

aI
ψφλIR

φ

− 1
2

m

∑
φ=1

aI
φψλIR

ψ −
1
2

m

∑
φ=1

aI
φψλI I

φ −
1
2

m

∑
φ=1

bR
ψφλRR

φ −
1
2

m

∑
φ=1

bR
ψφλRI

φ −
1
2

m

∑
φ=1

bI
ψφλRR

φ

− 1
2

m

∑
φ=1

bI
ψφλRI

φ −
1
2

m

∑
φ=1

dR
ψφλRR

φ −
1
2

m

∑
φ=1

dR
φψλRR

ψ −
1
2

m

∑
φ=1

dR
ψφλRI

φ

− 1
2

m

∑
φ=1

dI
φψλIR

φ −
1
2

m

∑
φ=1

dI
φψλIR

ψ −
1
2

m

∑
φ=1

dI
ψφλI I

φ −
1
2

m

∑
φ=1

aR
ψφλIR

φ

− 1
2

m

∑
φ=1

aI
φψλRR

ψ −
1
2

m

∑
φ=1

dR
φψλIR

ψ −
1
2

m

∑
φ=1

dI
φψλRR

ψ

}
,

Θ(2)
min =

{
cψ −

1
2

m

∑
φ=1

aR
ψφλIR

φ
1
2

m

∑
φ=1

aR
ψφλI I

φ −
1
2

m

∑
φ=1

aR
φψλI I

ψ −
1
2

m

∑
φ=1

aI
φψλRR

ψ

− 1
2

m

∑
φ=1

aI
ψφλRI

φ −
1
2

m

∑
φ=1

aI
φψλRI

ψ −
1
2

m

∑
φ=1

bR
ψφλIR

φ −
1
2

m

∑
φ=1

bR
ψφλI I

φ

− 1
2

m

∑
φ=1

bI
ψφλRR

φ −
1
2

m

∑
φ=1

bI
ψφλRI

φ −
1
2

m

∑
φ=1

dR
φψλIR

ψ −
1
2

m

∑
φ=1

dR
ψφλI I

φ

− 1
2

m

∑
φ=1

dR
φψλI I

ψ −
1
2

m

∑
φ=1

dI
ψφλRR

φ −
1
2

m

∑
φ=1

dI
ψφλRI

φ −
1
2

m

∑
φ=1

dI
φψλRI

ψ

− 1
2

m

∑
φ=1

aR
φψλRI

ψ −
1
2

m

∑
φ=1

aI
φψλI I

φ −
1
2

m

∑
φ=1

dI
φψλRI

ψ −−
1
2

m

∑
φ=1

dI
φψλI I

ψ

}
,

Θ(1)
max =

m

∑
ψ=1

{ m

∑
φ=1

bI
ψφλRR

φ +
m

∑
φ=1

bI
ψφλIR

φ +
m

∑
φ=1

bR
ψφλIR

φ +
m

∑
φ=1

bI
ψφλRR

φ

}
,

Θ(2)
max =

m

∑
ψ=1

{ m

∑
φ=1
|bR

ψφλIR
φ +

m

∑
φ=1

bI
ψφλI I

φ +
m

∑
φ=1

bR
ψφλI I

φ +
m

∑
φ=1

bI
ψφλRI

φ

}
,

By Lemma 3, Θ1 >
√

2Θ2, and Θ2 > 0.
Consequently, Systems (10) and (11) are globally asymptotically stable.

Remark 1. Consider the master system

C∇β
0 γψ(h̄) = −cψγψ(h̄) +

m

∑
φ=1

aψφ fφ(γφ(h̄)) +
m

∑
φ=1

bψφ fφ(γφ(h̄−ω)) (17)

+
m

∑
φ=1

dψφ

∫ ∞

0
Kψφ(s) fφ(γφ(s))ds + Iψ, h̄ ∈ N1,
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Consider the slave system

C∇β
0 γ̃ψ(h̄) = −cψγ̃ψ(h̄) +

m

∑
φ=1

aψφ fφ(γ̃φ(h̄)) +
m

∑
φ=1

bψφ fφ(γ̃φ(h̄−ω))

+
m

∑
φ=1

dψφ

∫ ∞

0
Kψφ(s) fφ(γ̃φ(s))ds + Iψ + uψ(h̄), h̄ ∈ N1, (18)

The error system is defined as

C∇β
0℘ψ(h̄) = −cψ℘ψ(h̄) +

m

∑
φ=1

aψφ fφ(℘φ(h̄)) +
m

∑
φ=1

bψφ fφ(℘φ(h̄−ω))

+
m

∑
φ=1

dψφ

∫ ∞

0
Kψφ(s) fφ(℘φ(s))ds + uψ(h̄), h̄ ∈ N1, (19)

Theorem 3. Under Assumptions (H1) and (H2), the system is globally Mittag–Leffler stable if the
activation functions are bounded. Let uψ(h̄) = 0; then,

0 < ρ = ρ1 − ρ2 < 1,

ρ1 = min
1≤ψ≤m

{
cψ −

m

∑
φ=1
|aφψ|Lψ −

m

∑
φ=1
|dI

φψ|Lψ

}
(20)

ρ2 = max
1≤ψ≤m

{ n

∑
φ

|bψφ|Lφ

}
> 0

Proof. Let us consider the Lyapunov functional

V(t, ξ(t)) =
m

∑
ψ=1
|℘ψ(t)|. (21)

By calculating the Nabla–Caputo left-fractional difference of V(t) along the trajectories
of System (1), we obtain

C∇β
0 V(t,℘(h̄)) ≤

m

∑
ψ=1

sign(℘(h̄))
{
− cψ℘ψ(h̄) +

m

∑
φ=1

aψφ fφ(℘φ(h̄)) +
m

∑
φ=1

bψφ fφ(℘φ(h̄− τ))

+
m

∑
φ=1

dψφ

∫ ∞

0
Kψφ(s) fφ(℘φ(s))ds

}

≤
m

∑
ψ=1

{
− cψ|℘ψ(h̄)|+

m

∑
φ=1
|aψφ| fφ(℘φ(h̄)) +

m

∑
φ=1
|bψφ| fφ(℘φ(h̄−ω))

+
m

∑
φ=1
|dψφ|

∫ ∞

0
Kψφ(s) fφ(℘φ(s))ds

}
(22)

≤
m

∑
ψ=1

{
− cψ|℘ψ(h̄)|+

m

∑
φ=1
|aψφ| fφ(℘φ(h̄)) +

m

∑
φ=1
|bψφ| fφ(℘φ(h̄−ω)) +

m

∑
φ=1
|dψφ| fφ(℘φ(h̄))

}

≤
m

∑
ψ=1

{
− cψ|℘ψ(h̄)|+

m

∑
φ=1
|aψφ| fφ(℘φ(h̄)) +

m

∑
φ=1
|dψφ| fφ(℘φ(h̄))

}

+
m

∑
ψ=1

m

∑
φ=1
|bψφ| fφ(℘φ(h̄−ω))

≤ −ρ1V(h̄,℘(h̄)) + ρ2 sup
h̄−τ≤s≤h̄

V(s,℘(s))
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as any solution ℘(t) of Error System (22), which satisfies the Razumikhin condition. Hence,
on the basis of the Razumikhin technique, one has the criteria

sup
h̄−ω≤s≤t

V(s,℘(s)) ≤ V(h̄,℘(h̄)) (23)

Next, based on Systems (22) and (23), assume that there exists a constant ∆ > 0. One
can then obtain

DβV(h̄,℘(h̄)) ≤ −(ρ1 − ρ2)V(h̄,℘(h̄)),

ρ1 − ρ2 ≥ ∆, (24)

and from (24), one observes that

DβV(h̄,℘(h̄)) ≤− ∆V(h̄,℘(h̄)) (25)

Then, from (25) and Lemma 1, one has

V(h̄,℘(h̄)) ≤ V(0)Eβ(−∆h̄α), h̄ ∈ [0, ∞) (26)

Therefore, one concludes that

||℘(h̄)|| = ||γ̃(h̄)− γ(h̄)||,

=
m

∑
ψ=1
|γψ(h̄)− γ(h̄)||, (27)

≤ ||ψ0 − φ0||Eα(−δh̄α)

According to Definition 3, the fractional-order complex-valued neural network (1)
achieves global Mittag–Leffler synchronization with fractional Systems (10) and (11). This
completes the proof of Theorem 3.

4. Numerical Examples

Numerical examples are provided to demonstrate the validity of the results in this
section.

Example 1. Consider the following discrete-time fractional-order complex-valued neural networks:

C∇β
0 γψ(h̄) = −cψγψ(h̄) +

m

∑
φ=1

aψφ fφ(γφ(h̄)) +
m

∑
φ=1

bψφ fφ(γφ(h̄−ω)) +
m

∑
φ=1

dψφ

∫ ∞

0
fφ(γφ(s))ds (28)

Suppose β = 0.95 andω = 0.2 and suppose the parameters and the function are defined by

C =

[
16 8
4 16

]
,

A =

[
−0.4− 0.2i 0.2 + 0i
0.2− 0.5i 0.4 + 0.2i

]
,

B =

[
0.7− 0.7i 0.4 + 0.4i
0.3 + 0.9i −0.4 + 0.1i

]
,

D =

[
0.6− 0.8i 0.3 + 0.4i
0.2 + 0.3i −0.7 + 0.7i

]
.

UR =
[

0.1tan(t) 0.4cot(t)
]
U I =

[
0.3tan(t) 0.7cot(t)

]
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Assumptions H1 and H2 are satisfied for λRI
1 , λI I

l , λRR
l , λIR

l = 1, c1 = 28.95, |aR
11| = 0.75,

|aI
11| = 0.97, |bR

11| = 0.95, |bI
11| = 0.87, |dI

11| = 0.28, |dR
11| = 0.29.

From Theorem 1, θ
(1)
min = 24.3700, θ

(2)
min = 24.3700, θ

(1)
max = 3.56, θ

(2)
max = 3.64. and

θ1 = 48.7400, θ2 = 7.2000
For these conditions, we have 48.7400 < 10.1823. Hence, it follows from Theorem 1 that the

system can achieve global asymptotic synchronization.

Example 2. Consider the following discrete-time fractional-order complex-valued neural networks:

C∇β
0 γψ(h̄) = −cψγψ(h̄) +

m

∑
φ=1

aψφ fφ(γφ(h̄)) +
m

∑
φ=1

bψφ fφ(γφ(h̄−ω)) +
m

∑
φ=1

dψφ

∫ ∞

0
fφ(γφ(s))ds (29)

where β = 0.56, γψ(h̄) = γR
ψ + γI

ψ(h̄)i, γR
ψ(t), γI

ψ(t) ∈ R, fψ(γψ) = 0.3tanh(γR
ψ)+

0.3tanh(γI
ψ)i, gψ(γψ) = 0.65tanh(γR

ψ) + 0.65tanh(γI
ψ)i, τ = 3, and

C =

 0.9 0 0
0 0.9 0
0 0 0.9

,

A =

 0.1 + 0.97i 0.6 + 0.3i 0.5 + 0.2i
0.9 + 0.2i 0.2 + 0.7i 0.6 + 0.5i
0.5 + 0.1i 0.6 + 0.5i 0.6 + 0.7i

,

B =

 0.2 + 0.87i 5.56 + 3.45i 3.56 + 5.45i
0.56 + 2.45i 4.56 + 2.45i 0.56 + 6.45i
1.56 + 0.35i 2.56 + 4.45i 0.56 + 8.45i

,

D =

 0.3 + 0.29i 3.56 + 4.45i 4.56 + 2.45i
0.56 + 2.55i 2.56 + 5.45i 1.56 + 3.45i
3.56 + 0.45i 1.56 + 4.35i 4.56 + 3.45i

.

Assumptions H1 and H2 are satisfied for λRI
l , λI I

l , λRR
l , λIR

l = 1, c1 = 29.1456, |aR
11| = 0.74,

|aI
11| = 0.96, |bR

11| = 0.94, |bI
11| = 0.86, |dI

11| = 0.27, |dR
11| = 0.27.

From Theorem 2, Θ(1)
min = 16.44, Θ(2)

min = 15.2956, Θ(1)
max = 3.52, Θ(2)

max = 3.20, and
Θ1 = 31.7356, Θ2 = 6.72.

For these conditions, we have 31.7356 > 9.5035. Hence, it follows from Theorem 2 that this
system can achieve global asymptotic synchronization. Refer Figures 1 and 2 for the graphical
representation of the obtained result.

Example 3. Consider the following discrete-time fractional order complex-valued neural networks:

C∇β
0 γψ(h̄) = −cψγψ(h̄) +

m

∑
φ=1

aψφ fφ(γφ(h̄)) +
m

∑
φ=1

bψφ fφ(γφ(h̄−ω)) +
m

∑
φ=1

dψφ

∫ ∞

0
fφ(γφ(s))ds (30)

Suppose β = 0.98 and ω = 0.2 and suppose the parameters and the function are defined
by λRI

1 , λI I
l , λRR

l , λIR
l = 1, c1 = 19.95, |aR

11| = 0.72, |aI
11| = 0.77, |bR

11| = 0.94, |bI
11| = 0.27,

|dI
11| = 0.23, |dR

11| = 0.69.

C =

[
16 8
4 16

]
,

A =

[
−0.4− 0.2i 0.2 + 0i
0.2 + 0.5i 0.4 + 0.2i

]
,

B =

[
0.7− 0.7i 0.4 + 0.4i
0.3 + 0.9i −0.4 + 0.1i

]
,
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D =

[
0.6− 0.8i 0.3 + 0.4i
0.2 + 0.3i −0.7 + 0.7i

]
.

UR =
[

0.2tan(t) 0.5cot(t)
]
U I =

[
0.3tan(t) 0.7cot(t)

]
Θ(1)

min = 7.8300, Θ(2)
min = 8.35, Θ(1)

max = 2.75, Θ(2)
max = 2.48. and Θ1 = 16.1800, Θ2 = 5.23.

For these conditions, we have 16.1800 > 7.3963. Hence, it follows from Theorem 2 that this
system can achieve global asymptotic synchronization.

Figure 1. State trajectories of the FOCNNs (29) with fractional-order α = 0.45 in the real axis.

Figure 2. State trajectories of the FOCNNs (29) with fractional-order α = 0.45 in the imaginary axis.

Example 4. Consider the discrete-time fractional-order complex-valued neural network

C∇β
0 γψ(h̄) = −cψγψ(h̄) +

m

∑
φ=1

aψφ fφ(γφ(h̄)) +
m

∑
φ=1

bψφ fφ(γφ(h̄−ω)) +
m

∑
φ=1

dψφ

∫ ∞

0
fφ(γφ(s))ds (31)
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Suppose β = 0.98 and ω = 0.2 and suppose the parameters and the function are defined by

C =

 0.9 0 0
0 0.9 0
0 0 0.9

,

A =

 0.1 + 0.97i 0.6 + 0.3i 0.5 + 0.2i
0.9 + 0.2i 0.2 + 0.7i 0.6 + 0.5i
0.5 + 0.1i 0.6 + 0.5i 0.6 + 0.7i

,

B =

 0.2 + 0.87i 5.56 + 3.45i 3.56 + 5.45i
0.56 + 2.45i 4.56 + 2.45i 0.56 + 6.45i
1.56 + 0.35i 2.56 + 4.45i 0.56 + 8.45i

,

D =

 0.3 + 0.29i 3.56 + 4.45i 4.56 + 2.45i
0.56 + 2.55i 2.56 + 5.45i 1.56 + 3.45i
3.56 + 0.45i 1.56 + 4.35i 4.56 + 3.45i

.

Assumptions H1, H2 are satisfied for c1 = 2.14, a11 = 0.94, d11 = 0.92, b11 = 0.87, L1 = 1.
By Theorem 3, we find thatρ1 = 1.28 > 0, ρ2 = 0.87 > 0.
Hence, 0 < ρ1 − ρ2 = 0.41 < 1, and Theorem 3 holds. Therefore, (31) is globally Mittag–

Leffler stable.

Remark 2. Many scholars have discussed the uniform stability, global asymptotic stability, and
finite-time stability of fractional-order CVNNs with time delays Zhang et al. [30], Rakkiyappan et al.
[21], Wang et al. [19], and Song et al. [22]. Most of these scholars considered that the activation
functions of complex-valued systems can be separated into their real parts and imaginary parts.
Thus, they transformed CVNNs to equivalent RVNNs to analyze their dynamic behavior. However,
this method increases the dimension of systems and brings difficulties upon analysis. Compared with
the existing literature, regardless of the activity, functions are separable, and the provided existence
and finite-time stability criteria for discrete fractional-order CVNNs are valid and feasible in this
paper.

Remark 3. Many authors studied the dynamics prosperities of discrete fractional difference equa-
tions in a real field. However, there are very few results about discrete fractional-order system in
complex fields. Different from the existing literature, we first investigated discrete fractional-order
CVNNs and analyzed their dynamic behavior.

Remark 4. In the aforementioned works, it is noted that only the discrete constant delays are
involved in the network models. In this situation, discrete delays cannot well characterize the neural
networks since the signal propagation is no longer instantaneous. Consequently, the distributed
delays should also be taken into account in the description of neural network models. In recent
decades, many researchers have made great efforts to the dynamics of neural networks with both
discrete and distributed delays, and there have been some excellent results. Notice that these works
were mainly concerned with integer-order neural networks. Research on fractional-order neural
networks with discrete and distributed time delays has received little attention.

5. Conclusions

The synchronization of discrete-time fractional-order complex-valued neural networks
with distributed delays is examined in this research. By building suitable Lyapunov
functions, sufficient conditions are attained. The resulting results are fresh and add to the
global Mittag–Leffler synchronization findings for fractional networks that already exist.
Some adequate requirements are derived from the theory of discrete fractional calculus, the
discrete Laplace transform, the theory of complex functions, and discrete Mittag–Leffler
functions in order to guarantee the global stability and synchronization of the Mittag–
Leffler function for the suggested networks. In future research, we will further study the
dynamical behaviors, such as projective synchronization and finite time stability, of more



Fractal Fract. 2023, 7, 452 18 of 20

sophisticated neural networks, including fractional-order coupled discontinuous neural
networks with time-varying delays.

Author Contributions: Methodology, R.P. and M.H.; Software, T.F.I.; Validation, M.S.A.; Formal
analysis, B.A.A.M.; Investigation, W.M.O. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Deanship of Scientific Research at King Khalid University
under grant number RGP.2/141/44.

Data Availability Statement: There is no data associated with this study.

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research at
King Khalid University for funding this work through large groups (project under grant number
RGP.2/141/44).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ahmeda, E.; Elgazzar, A. On fractional order differential equations model for nonlocal epidemics. Physica A 2007, 379, 607–614.

[CrossRef] [PubMed]
2. Moaddy, K.; Radwan, A.; Salama, K.; Momani, S.; Hashim, I. The fractional-order modeling and synchronization of electrically

coupled neuron systems. Comput. Math. Appl. 2012, 64, 3329–3339. [CrossRef]
3. Bhalekar, S.; Daftardar-Gejji, V. Synchronization of differential fractional-order chaotic systems using active control. Commun.

Nonlinear Sci. Numer. Simul. 2010, 15, 3536–3546. [CrossRef]
4. Narayanan, G.; Ali, M.S.; Karthikeyan, R.; Rajchakit, G.; Jirawattanapanit, A. Impulsive control strategies of mRNA and protein

dynamics on fractional-order genetic regulatory networks with actuator saturation and its oscillations in repressilator model.
Biomed. Process. Control 2023, 82, 104576. [CrossRef]

5. Jmal, A.; Makhlouf, A.B.; Nagy, A.M. Finite-Time Stability for Caputo Katugampola Fractional-Order Time-Delayed Neural
Networks. Neural Process Lett. 2019, 50, 607–621. [CrossRef]

6. Li, H.L.; Jiang, H.; Cao, J. Global synchronization of fractional-order quaternion-valued neural networks with leakage and discrete
delays. Neurocomputing 2020, 385, 211–219. [CrossRef]

7. Chen, S.; An, Q.; Ye, Y.; Su, H. Positive consensus of fractional-order multi-agent systems. Neural Comput. Appl. 2021, 33,
16139–16148. [CrossRef]

8. Chen, S.; An, Q.; Zhou, H.; Su, H. Observer-based consensus for fractional-order multi-agent systems with positive constraint
Author links open overlay panel. Neurocomputing 2022, 501, 489–498. [CrossRef]

9. Li, Z.Y.; Wei, Y.H.; Wang, J.; Li, A.; Wang, J.; Wang, Y. Fractional-order ADRC framework for fractional-order parallel systems. In
Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 1813–1818.

10. Wang, L. Symmetry and conserved quantities of Hamilton system with comfortable fractional derivatives. In Proceedings of the
2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 3430–3436.

11. Castañeda, C.E.; López-Mancilla, D.; Chiu, R.; Villafana-Rauda, E.; Orozco-López, O.; Casillas-Rodríguez, F.; Sevilla-Escoboza, R.
Discrete-time neural synchronization between an arduino microcontroller and a compact development system using multiscroll
chaotic signals. Chaos Solitons Fractals 2019, 119, 269–275. [CrossRef]

12. Atici, F.M.; Eloe, P.W. Gronwalls inequality on discrete fractional calculus. Comput. Math. Appl. 2012, 64, 3193–3200. [CrossRef]
13. Ostalczyk, P. Discrete Fractional Calculus: Applications in Control and Image Processing; World Scientific: Singapore, 2015.
14. Ganji, M.; Gharari, F. The discrete delta and nabla Mittag-Leffler distributions. Commun. Stat. Theory Methods 2018, 47, 4568–4589.

[CrossRef]
15. Wyrwas, M.; Mozyrska, D.; Girejko, E. Stability of discrete fractional-order nonlinear systems with the nabla Caputo difference.

IFAC Proc. Vol. 2013, 46, 167–171. [CrossRef]
16. Gray, H.L.; Zhang, N.F. On a new definition of the fractional difference. Math. Comput. 1988, 50, 513–529. [CrossRef]
17. Wu, G.C.; Baleanu, D.; Luo, W.H. Lyapunov functions for Riemann-Liouville-like fractional difference equations. Appl. Math.

Comput. 2017, 314, 228–236. [CrossRef]
18. Baleanu, D.; Wu, G.C.; Bai, Y.R.; Chen, F.L. Stability analysis of Caputolike discrete fractional systems. Commun. Nonlinear Sci.

Numer. Simul. 2017, 48, 520–530. [CrossRef]
19. Hu, J.; Wang, J. Global stability of complex-valued recurrent neural networks with time-delays. IEEE Trans. Neural Netw. Learn.

Syst. 2012, 23, 853–865. [CrossRef] [PubMed]
20. Ozdemir, N.; Iskender, B.B.; Ozgur, N.Y. Complex valued neural network with Mobius activation function. Commun. Nonlinear

Sci. Numer. Simul. 2011, 16, 4698–4703. [CrossRef]
21. Rakkiyappan, R.; Cao, J.; Velmurugan, G. Existence and uniform stability analysis of fractional-order complex-valued neural

networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 84–97. [CrossRef]

http://doi.org/10.1016/j.physa.2007.01.010
http://www.ncbi.nlm.nih.gov/pubmed/32288079
http://dx.doi.org/10.1016/j.camwa.2012.01.005
http://dx.doi.org/10.1016/j.cnsns.2009.12.016
http://dx.doi.org/10.1016/j.bspc.2023.104576
http://dx.doi.org/10.1007/s11063-019-10060-6
http://dx.doi.org/10.1016/j.neucom.2019.12.018
http://dx.doi.org/10.1007/s00521-021-06213-1
http://dx.doi.org/10.1016/j.neucom.2022.06.038
http://dx.doi.org/10.1016/j.chaos.2018.12.030
http://dx.doi.org/10.1016/j.camwa.2011.11.029
http://dx.doi.org/10.1080/03610926.2017.1377254
http://dx.doi.org/10.3182/20130204-3-FR-4032.00216
http://dx.doi.org/10.1090/S0025-5718-1988-0929549-2
http://dx.doi.org/10.1016/j.amc.2017.06.019
http://dx.doi.org/10.1016/j.cnsns.2017.01.002
http://dx.doi.org/10.1109/TNNLS.2012.2195028
http://www.ncbi.nlm.nih.gov/pubmed/24806758
http://dx.doi.org/10.1016/j.cnsns.2011.03.005
http://dx.doi.org/10.1109/TNNLS.2014.2311099


Fractal Fract. 2023, 7, 452 19 of 20

22. Song, Q.; Zhao, Z.; Liu, Y. Stability analysis of complex-valued neural networks with probabilistic time-varying delays.
Neurocomputing 2015, 159, 96–104. [CrossRef]

23. Pan, J.; Liu, X.; Xie, W. Exponential stability of a class of complex-valued neural networks with time-varying delays.
Neurocomputing 2015, 164, 293–299. [CrossRef]

24. Li, X.; Rakkiyappan, R.; Velmurugan, G. Dissipativity analysis of memristor-based complex-valued neural networks with
time-varying delays. Inf. Sci. 2015, 294, 645–665. [CrossRef]

25. Rakkiyappan, R.; Sivaranjani, K.; Velmurugan, G. Passivity and passification of memristor-based complex-valued recurrent
neural networks with interval time-varying delays. Neurocomputing 2014, 144, 391–407. [CrossRef]

26. Chen, L.P.; Chai, Y.; Wu, R.C.; Ma, T.D.; Zhai, H.Z. Dynamic analysis of a class of fractional-order neural networks with delay.
Neurocomputing 2013, 111, 190–194. [CrossRef]

27. Song, Q.; Yan, H.; Zhao, Z.; Liu, Y. Global exponential stability of complex-valued neural networks with both time-varying delays
and impulsive effects. Neural Netw. 2016, 79, 108–116. [CrossRef]

28. Syed Ali, M.; Yogambigai, J.; Kwon, O.M. Finite-time robust passive control for a class of switched reaction-diffusion stochastic
complex dynamical networks with coupling delays and impulsive control. Int. J. Syst. Sci. 2018, 49, 718–735. [CrossRef]

29. Zhou, B.; Song, Q. Boundedness and complete stability of complex valued neural networks with time delay. IEEE Trans. Neural
Netw. Learn. Syst. 2013, 24, 1227–1238. [CrossRef]

30. Zhang, Z.; Lin, C.; Chen, B. Global stability criterion for delayed complex-valued recurrent neural networks. IEEE Trans. Neural
Netw. Learn. Syst. 2014, 25, 1704–1708. [CrossRef]

31. Song, Q.; Zhao, Z. Stability criterion of complex-valued neural networks with both leakage delay and time-varying delays on
time scales. Neurocomputing 2016, 171, 179–184. [CrossRef]

32. Sakthivel, R.; Sakthivel, R.; Kwon, O.M.; Selvaraj, P.; Anthoni, S.M. Observer-based robust synchronization of fractional-order
multi-weighted complex dynamical networks. Nonlinear Dyn. 2019, 98, 1231–1246. [CrossRef]

33. Chen, X.; Song, Q. Global stability of complex-valued neural networks with both leakage time delay and discrete time delay on
time scales. Neurocomputing 2013, 121, 254–264. [CrossRef]

34. Zhang, Z.; Yu, S. Global asymptotic stability for a class of complex valued Cohen-Grossberg neural networks with time delays.
Neurocomputing 2016, 171, 1158–1166. [CrossRef]

35. Gong, W.; Liang, J.; Cao, J. Matrix measure method for global exponential stability of complex-valued recurrent neural networks
with time-varying delays. Neural Netw. 2015, 70, 81–89. [CrossRef]

36. Syed Ali, M.; Yogambigai, J.; Cao, J. Synchronization of master-slave Markovian switching complex dynamical networks with
time-varying delays in nonlinear function via sliding mode control. Acta Math. Sci. 2017, 37, 368–384.

37. Zhou, J.; Liu, Y.; Xia, J.; Wang, Z.; Arik, S. Resilient fault-tolerant antisynchronization for stochastic delayed reaction-diffusion
neural networks with semi-Markov jump parameters. Neural Netw. 2020, 125, 194–204. [CrossRef] [PubMed]

38. Syed Ali, M.; Yogambigai, J. Finite-time robust stochastic synchronization of uncertain Markovian complex dynamical networks
with mixed time-varying delays and reaction-diffusion terms via impulsive control. J. Frankl. Inst. 2017, 354, 2415–2436.

39. Narayanan, G.; Syed Ali, M.; Karthikeyan, R.; Rajchakit, G.; Jirawattanapanit, A. Novel adaptive strategies for synchronization
mechanism in nonlinear dynamic fuzzy modeling of fractional-order genetic regulatory networks. Chaos Solitons Fractals 2022,
165, 112748. [CrossRef]

40. Yogambigai, J.; Syed Ali, M. Exponential Synchronization of switched complex dynamical networks with time varying delay via
periodically intermittent control. Int. J. Differ. Equ. 2017, 12, 41–53.

41. Yogambigai, J.; Syed Ali, M. Finite-time and Sampled-data Synchronization of Delayed Markovian Jump Complex Dynamical
Networks Based on Passive Theory. In Proceedings of the Third International Conference on Science Technology Engineering and
Management (ICONSTEM), Chennai, India, 23–24 March 2017.

42. Yang, L.X.; Jiang, J. Adaptive synchronization of driveresponse fractional-order complex dynamical networks with uncertain
parameters. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 1496–1506. [CrossRef]

43. Wong, W.K.; Li, H.; Leung, S.Y.S. Robust synchronization of fractional-order complex dynamical networks with parametric
uncertainties. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4877–4890. [CrossRef]

44. Bao, H.; Park, J.H.; Cao, J. Synchronization of fractional order complex-valued neural networks with time delay. Neural Netw.
2016, 81, 16–28. [CrossRef]

45. Qi, D.L.; Liu, M.Q.; Qiu, M.K.; Zhang, S.L. Exponential H∞ synchronization of general discrete-time chaotic neural networks with
or without time delays. IEEE Trans. Neural Netw. Learn. Syst. 2010, 21, 1358–1365.

46. Li, Z.Y.; Liu, H.; Lu, J.A.; Zeng, Z.G.; Lü, J. Synchronization regions of discrete-time dynamical networks with impulsive couplings.
Inf. Sci. 2018, 459, 265–277. [CrossRef]

47. You, X.; Song, Q.; Zhao, Z. Global Mittag-Leffler stability and synchronization of discrete-time fractional-order complex-valued
neural networks with time delay. Neural Netw. 2020, 122, 382–394. [CrossRef]

48. Atici, F.M.; Eloe, P.W. Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. 2009, 3, 1–12.
[CrossRef]

http://dx.doi.org/10.1016/j.neucom.2015.02.015
http://dx.doi.org/10.1016/j.neucom.2015.02.024
http://dx.doi.org/10.1016/j.ins.2014.07.042
http://dx.doi.org/10.1016/j.neucom.2014.04.034
http://dx.doi.org/10.1016/j.neucom.2012.11.034
http://dx.doi.org/10.1016/j.neunet.2016.03.007
http://dx.doi.org/10.1080/00207721.2017.1421723
http://dx.doi.org/10.1109/TNNLS.2013.2247626
http://dx.doi.org/10.1109/TNNLS.2013.2288943
http://dx.doi.org/10.1016/j.neucom.2015.06.032
http://dx.doi.org/10.1007/s11071-019-05258-1
http://dx.doi.org/10.1016/j.neucom.2013.04.040
http://dx.doi.org/10.1016/j.neucom.2015.07.051
http://dx.doi.org/10.1016/j.neunet.2015.07.003
http://dx.doi.org/10.1016/j.neunet.2020.02.015
http://www.ncbi.nlm.nih.gov/pubmed/32146352
http://dx.doi.org/10.1016/j.chaos.2022.112748
http://dx.doi.org/10.1016/j.cnsns.2013.09.021
http://dx.doi.org/10.1016/j.cnsns.2012.05.020
http://dx.doi.org/10.1016/j.neunet.2016.05.003
http://dx.doi.org/10.1016/j.ins.2018.05.027
http://dx.doi.org/10.1016/j.neunet.2019.11.004
http://dx.doi.org/10.14232/ejqtde.2009.4.3


Fractal Fract. 2023, 7, 452 20 of 20

49. Mu, X.X.; Chen, Y.G. Synchronization of delayed discrete-time neural networks subject to saturated time-delay feedback.
Neurocomputing 2016, 175, 293–299. [CrossRef]

50. Liang, S.; Wu, R.C.; Chen, L.P. Comparison principles and stability of nonlinear fractional-order cellular neural networks with
multiple time delays. Neurocomputing 2015, 168, 618–625. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.neucom.2015.10.062
http://dx.doi.org/10.1016/j.neucom.2015.05.063


1/9/24, 12:56 PM Synchronization of T–S Fuzzy Fractional-Order Discrete-Time Complex-Valued Molecular Models of mRNA and Protein in Regulat…

https://link.springer.com/article/10.1007/s11063-022-11010-5 1/14

G. Narayanan, M. Syed Ali , Hamed Alsulami, Tareq Saeed & Bashir Ahmad

213 Accesses 1 Citation 1 Altmetric Explore all metrics 

Abstract

This paper addresses the problem of Mittag-Leffler synchronization of T–S fuzzy fractional-

order discrete-time complex-valued molecular models of mRNA and protein in regulatory

mechanisms with two kinds of regulation functions, respectively. A novel approach is

proposed to effectively deal with the joint effects from leakage delay and time varying delay

for the class of T–S fuzzy fractional-order discrete-time complex-valued genetic regulatory

networks (FDTCVGRNs). By employing Lyapunov stability method and Caputo fractional

difference inequalities, several effective conditions according to algebraic inequality and

Log in

Menu Search Cart

Home Neural Processing Letters Article

Synchronization of T–S Fuzzy Fractional-Order
Discrete-Time Complex-Valued Molecular
Models of mRNA and Protein in Regulatory
Mechanisms with Leakage E�ects
Published: 01 September 2022

Volume 55, pages 3305–3331, (2023) Cite this article

Aims and scope

Submit manuscript

Neural Processing Letters

https://link.springer.com/article/10.1007/s11063-022-11010-5/metrics
https://link.springer.com/article/10.1007/s11063-022-11010-5/metrics
https://link.springer.com/
https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/article/10.1007/s11063-022-11010-5
javascript:;
javascript:;
https://order.springer.com/public/cart
https://link.springer.com/
https://link.springer.com/journal/11063
https://link.springer.com/journal/11063/aims-and-scope
https://submission.nature.com/new-submission/11063/3
https://link.springer.com/journal/11063


See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/367263936

Finite-time guaranteed cost control for stochastic nonlinear switched

systems with time-varying delays and reaction-diffusion

Article  in  International Journal of Computer Mathematics · January 2023

DOI: 10.1080/00207160.2023.2169576

CITATIONS

3
READS

92

3 authors, including:

Gokulakrishnan Veeraragavan

SRM Institute of Science and Technology

8 PUBLICATIONS   17 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Gokulakrishnan Veeraragavan on 07 February 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/367263936_Finite-time_guaranteed_cost_control_for_stochastic_nonlinear_switched_systems_with_time-varying_delays_and_reaction-diffusion?enrichId=rgreq-39de4908a89bb48b84e7139da40ef73b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzI2MzkzNjtBUzoxMTQzMTI4MTExODMyMTQwNkAxNjc1NzQwMTcyNzE5&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/367263936_Finite-time_guaranteed_cost_control_for_stochastic_nonlinear_switched_systems_with_time-varying_delays_and_reaction-diffusion?enrichId=rgreq-39de4908a89bb48b84e7139da40ef73b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzI2MzkzNjtBUzoxMTQzMTI4MTExODMyMTQwNkAxNjc1NzQwMTcyNzE5&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-39de4908a89bb48b84e7139da40ef73b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzI2MzkzNjtBUzoxMTQzMTI4MTExODMyMTQwNkAxNjc1NzQwMTcyNzE5&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gokulakrishnan-Veeraragavan?enrichId=rgreq-39de4908a89bb48b84e7139da40ef73b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzI2MzkzNjtBUzoxMTQzMTI4MTExODMyMTQwNkAxNjc1NzQwMTcyNzE5&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gokulakrishnan-Veeraragavan?enrichId=rgreq-39de4908a89bb48b84e7139da40ef73b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzI2MzkzNjtBUzoxMTQzMTI4MTExODMyMTQwNkAxNjc1NzQwMTcyNzE5&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/SRM-Institute-of-Science-and-Technology?enrichId=rgreq-39de4908a89bb48b84e7139da40ef73b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzI2MzkzNjtBUzoxMTQzMTI4MTExODMyMTQwNkAxNjc1NzQwMTcyNzE5&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gokulakrishnan-Veeraragavan?enrichId=rgreq-39de4908a89bb48b84e7139da40ef73b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzI2MzkzNjtBUzoxMTQzMTI4MTExODMyMTQwNkAxNjc1NzQwMTcyNzE5&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Gokulakrishnan-Veeraragavan?enrichId=rgreq-39de4908a89bb48b84e7139da40ef73b-XXX&enrichSource=Y292ZXJQYWdlOzM2NzI2MzkzNjtBUzoxMTQzMTI4MTExODMyMTQwNkAxNjc1NzQwMTcyNzE5&el=1_x_10&_esc=publicationCoverPdf


Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gcom20

International Journal of Computer Mathematics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gcom20

Finite-time guaranteed cost control for stochastic
nonlinear switched systems with time-varying
delays and reaction-diffusion

V. Gokulakrishnan, R. Srinivasan, M. Syed Ali & Grienggrai Rajchakit

To cite this article: V. Gokulakrishnan, R. Srinivasan, M. Syed Ali & Grienggrai Rajchakit
(2023): Finite-time guaranteed cost control for stochastic nonlinear switched systems with time-
varying delays and reaction-diffusion, International Journal of Computer Mathematics, DOI:
10.1080/00207160.2023.2169576

To link to this article:  https://doi.org/10.1080/00207160.2023.2169576

Published online: 06 Feb 2023.

Submit your article to this journal 

Article views: 17

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gcom20
https://www.tandfonline.com/loi/gcom20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207160.2023.2169576
https://doi.org/10.1080/00207160.2023.2169576
https://www.tandfonline.com/action/authorSubmission?journalCode=gcom20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gcom20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00207160.2023.2169576
https://www.tandfonline.com/doi/mlt/10.1080/00207160.2023.2169576
http://crossmark.crossref.org/dialog/?doi=10.1080/00207160.2023.2169576&domain=pdf&date_stamp=2023-02-06
http://crossmark.crossref.org/dialog/?doi=10.1080/00207160.2023.2169576&domain=pdf&date_stamp=2023-02-06


INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
https://doi.org/10.1080/00207160.2023.2169576

ARTICLE

Finite-time guaranteed cost control for stochastic nonlinear
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ABSTRACT
This study considers the finite-time guaranteed cost control problem for
a class of stochastic nonlinear switched systems (SNSSs) with time-varying
delays, reaction-diffusion and actuator faults. The reliable control strat-
egy is designed to finite-time stabilization for SNSSs. By virtue of the
Lyapunov method, Neumann boundary condition, some famous inequal-
ity techniques and average dwell-time approach, sufficient criterion are
obtained to ensure finite-time stability of proposed controlled systems. We
investigate the finite-time stabilization results bydesigning the control gain
matrices for reliable controller. The sufficient criteria are expressed in terms
of linear matrix inequalities (LMIs) that can be verified byMATLAB LMI tool-
box. Furthermore, a new sufficient criterion is presented to guarantee the
finite-time cost control of proposed controlled systems. Based on this crite-
rion, the effects of control gains, switching signals and time-varying delays
on finite-time stability are also analysed. At last, numerical simulations are
presented to illustrate the efficiency and superiority of designed reliable
controller.
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1. Introduction

In recent decades, switched systems have been used to unify the description of a wide range of prac-
tical applications, including circuit systems [4,13], networked systems [27], aircraft systems [22] and
power systems [24,50]. Switched systems consist of multiple subsystems and a logical rule for switch-
ing that specifies which subsystem is selected at a certain time. The average dwell-time (ADT) scheme
can ensure the stability properties of switched systems [14,21,26,49,52]. Recently an in-depth theo-
retical study on the dynamic theory of switched systems has been launched and some interesting
results have been reported in the literatures [12,25,32,33,43,47,51]. Switched systems are a type of
stochastic systems that consists of a finite family of discrete time or continuous time subsystems with
active subsystems specified at each time instant by a random switching signal. Meanwhile, stochastic
processes have played an essential role and attracted a lot of attention in various domains of scientific
and technical applications over the last few decades [1,3,17,45,53].

In real-world applications such as secure communications [20,31], chemical reaction process [30],
Alzheimer’s diseasemodel [16], virus transmission [23] and food webmodel [40] are well recognized
to be accurately described by partial differential equations. The complete structure and non-linear
dynamical behaviours of nonlinear systems depend not only on the temporal evolution and space
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Table 1. Comparison for switched systems with other works.

Switched systems [14] [26] [11,21,34] [52] [46] [19] [15] [54] This paper

Stochastic inputs × × √ × × √ × × √
Reaction-diffusion

√ √ √ √ √ × × × √
Time-varying delays

√ × × √ × √ × √ √
Actuator faults × × × √ √ √ √ × √
Reliable control × × × √ √ √ √ × √
Cost control × × × × × × √ √ √

position of all variable, but also on its connections stemming from the space-distributed configuration
of entire networks. Therefore, the dynamics behaviours of reaction-diffusion systems create increased
research attention among the researchers [6–8,10,11,34,36–38].

The work on the regulation of switched systems has a critical significance to the advancement
of control theory as well as control engineering. Due to a tough work environment, power supply
stability, inescapable component ageing and so on, the problem of actuator failures is unavoidable
in actual control systems [5,9,29,42,46,48]. A considerable attention have been paid to designing a
reliable control that can operate successfully on admissible failures. Such as the reliable T-S fuzzy
filter design [35,44] and reliable state feedback controller design issue for continuous time systems
[18,19,41]. Over the past decades, the theory of guaranteed cost control (GCC) has been developed
and there have been many important results proposed [2,15,39,54]. The key concept is to stabilize
the systems while maintaining an acceptable degree of efficiency as a quadratic cost function. The
GCC has the advantage of establishing an upper bound on a particular system performance index
and ensuring that system performance is not affected by uncertainty or time delays. To best of our
knowledge, finite-time GCC for SNSSs with reaction-diffusion has been not yet published (Table 1 ).

Inspired by the above discussion, we aim to investigate the finite-time guaranteed cost control for
a class of stochastic nonlinear switched systems (SNSSs) with time-varying delays, reaction-diffusion
and actuator faults. The main contributions of this paper are as follows:

• Areliable controllerwas designed to guarantee finite-time stabilization of SNSSswith time-varying
delays, reaction-diffusion and actuator faults.

• By utilizing suitable Lyapunov–Krasovskii functional, Neumann boundary condition, inequality
techniques, average dwell-time (ADT) approach and linear matrix inequalities (LMIs), sufficient
criteria are derived to guarantee the proposed controlled systems achieve the finite-time stability.

• The effects of control gains, switching signals and time-varying delays on finite-time stability are
reflected from our obtained theoretical results.

• Furthermore, a new sufficient criterion is presented to guarantee the finite-time cost control of
SNSSs with reaction-diffusion.

• Finally, simulation results show the efficiency of the proposed reliable controller.

Notations: Z – set of all integers; R – set of all real numbers; R+ – set of all positive real numbers;
R
n – Euclidean space of n-dimensions; R

m×n – Euclidean space of (m × n)-dimensions; A < 0 –
real symmetric negative definite matrix;A > 0 – real symmetric positive definite matrix;AT – trans-
pose of A; λmin(A) – minimum eigenvalue of A; λmax(A) – maximum eigenvalue of A; ∗ – the
entries are implied by symmetric; He{A} = (A + AT); diag{· · ·} – block diagonal matrix; σ(t) = p
– switching signal; ‖ · ‖ – Euclidean norms; E(X) – mathematical expectation of X;W1,2([0, L];Rn)

– Soblev n-dimensional space of continuous functions;
∫ 1
0 �T(x, t)�(x, t) dx = ‖�(x, t)‖2; √ – this

item is included in that paper; × – this item is not included in that paper.
The remaining section of this paper is organized as follows. In Section 2, system model, reliable

control problem and some preliminaries are introduced. In Section 3, we investigate ourmain results:
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(i) to obtain the finite-time stability for proposed controlled system; (ii) to prove the finite-time stabi-
lization result by designing control gains for reliable controller and (iii) to investigate the finite-time
cost control for SNSSs with time-varying delays, reaction-diffusion and actuator faults. In Section 4,
simulation results show that the proposed reliable controller is effective. Finally, conclusion and our
future works are shown in Section 5.

2. Problem description and preliminaries

Consider the following SNSSs with time-varying delays, reaction-diffusion and actuator faults:

d�(x, t) =
[
Dσ(t)

∂2�(x, t)
∂x2

+ Qσ(t)�(x, t)+ Rσ(t)�(x, t − η(t))

+fσ(t)(t,�(x, t))+ gσ(t)(t,�(x, t − η(t)))+ Sσ(t)uF (x, t)
]
dt

+ hσ(t)(t,�(x, t),�(x, t − η(t))) dω(t), x ∈ (0, 1), t > 0, (1)

with initial and Neumann boundary conditions as follows:

�(x, s) = ψ(x, s), s ∈ [−η, 0], (2)

∂�(x, t)
∂x

∣∣∣∣
x=0

= 0,
∂�(x, t)
∂x

∣∣∣∣
x=1

= 0, (3)

where �(x, t) = [�1(x, t),�2(x, t), . . . ,�n(x, t)]T ∈ R
n is a state vector; t> 0 is a time variable; x

is a space variable. uF (x, t) = [uF1 (x, t), u
F
2 (x, t), . . . , u

F
n (x, t)]T ∈ R

n denotes a control input of
actuator faults to be designed later. ψ(x, s) = [ψ1(x, s),ψ2(x, s), . . . ,ψn(x, s)]T ∈ R

n is the initial
continuous functions. fσ(t), gσ(t) : R+ × R

n → R
n and hσ(t) : R+ × R

n × R
n → R

n×m are the non-
linear continuous functions. η(t) denotes the time-varying delays and satisfying the conditions
0 ≤ η(t) ≤ η and η̇(t) ≤ κ . ω(t) = [ω1(t),ω2(t), . . . ,ωm(t)]T ∈ R

m denotes a Brownian motions.
σ(t) : [0,∞) → N = {1, 2, . . . .,N} denotes the switching piecewise constant function. The switch-
ing instants are expressed by a switching sequence {(p0, t0), . . . ., (p1, t1), . . . .\pk ∈ N , k = 0, 1, . . . .}
whichmeans the pk th subsystems is activated when t ∈ [tk, tk+1).Dσ(t) is a positive definite diffusion
matrix.Qσ(t),Rσ(t) and Sσ(t) are constant matrices with suitable dimensions.

The actuator faults control input uF (x, t) is designed as follows:

uF (x, t) = XHσ(t)u(x, t), H = 0, 1, 2, . . . ., hm, hm ≤ 2l − 1, (4)

where u(x, t) = Kσ(t)�(x, t) and scaling factor XHσ(t) satisfies

XHσ(t) ∈ 	 = {XHσ(t) = diag{XH1σ(t) , . . . .,XHlσ(t)}},
XHασ(t) = 0 or 1, α = 1, 2, . . . , l.

Remark 2.1: The faults model (1) corresponds to the scenario of the αth-actuator outage when
XHασ(t) = 0 for 1 ≤ α ≤ l. When XHασ(t) = 1, there is no faults in the αth -actuator. Suppose that
X0σ(t) = I, H = 0, corresponds to the normal control input uF (x, t) = u(x, t).
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Hence from Equations (1) and (4), we have

d�(x, t) =
[
Dσ(t)

∂2�(x, t)
∂x2

+ (Qσ(t) + Sσ(t)XHσ(t)Kσ(t))�(x, t)

+Rσ(t)�(x, t − η(t))+ fσ(t)(t,�(x, t))+ gσ(t)(t,�(x, t − η(t)))
]
dt

+ hσ(t)(t,�(x, t),�(x, t − η(t))) dω(t), x ∈ (0, 1), t > 0. (5)

Remark 2.2: From system (1), the control input can be ignored. Then, system (1) can be rewritten
as

d�(x, t) =
[
Dσ(t)

∂2�(x, t)
∂x2

+ Qσ(t)�(x, t)+ Rσ(t)�(x, t − η(t))+ fσ(t)(t,�(x, t))

+gσ(t)(t,�(x, t − η(t)))
]
dt + hσ(t)(t,�(x, t),�(x, t − η(t))) dω(t), x ∈ (0, 1), t > 0.

(6)

The cost function of system (1) is given by

J = E

{∫ 1

0

∫ ∞

0
e−γ t

[
�T(x, t)Uσ(t)�(x, t)+ (uF (x, t))TVσ(t)(uF (x, t))

]
dt dx

}
, (7)

where Uσ(t),Vσ(t) are symmetric positive definite matrices and γ > 0 is a real constants.
Assumption (H): The nonlinear continuous functions f (·), g(·) and h(·) are satisfying the global

Lipschitz conditions: there exist positive constants α,β , λ,μ such that

|f (t, y1)− f (t, y2)|2 ≤ α|y1 − y2|2,
|g(t, y1)− g(t, y2)|2 ≤ β|y1 − y2|2,
|h(t, y1, y3)− h(t, y2, y4)|2 ≤ λ|y1 − y2|2 + μ|y3 − y4|2,

where t ∈ R+ and y1, y2, y3, y4 ∈ R
n. Furthermore, f (t, 0) = 0, g(t, 0) = 0 and h(t, 0, 0) = 0.

Lemma 2.3 ([53]): The following matrix inequality applies to any real matrices M, N and a positive
definite matrix:

MTN + NTM ≤ MT−1M + NTN.

Lemma 2.4 ([10]): For a state vector y ∈ W1,2([0, L];Rn) with y(0) = 0 or y(L) = 0 and a matrix
M > 0, we get ∫ L

0
yT(s)My(s) ds ≤ 4L2

π2

∫ L

0

(
dy(s)
ds

)T
M

(
dy(s)
ds

)
ds.

Lemma 2.5 ([37]): The following inequality applies for any symmetric matrix M > 0, any scalars c
and d with c<d, and vector function	(t) : [c, d] → R

n such that the integral is properly defined:

[∫ d

c
	(s) ds

]T

M
[∫ d

c
	(s) ds

]
≤ (d − c)

∫ d

c
	T(s)M	(s) ds.
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Lemma 2.6 ([38]): Let�1,�2,�3 be given matrices such that�T
1 = �1 and�T

2 = �2 > 0, then

�1 +�T
3�

−1
2 �3 < 0 ⇔

[
�1 �T

3
∗ −�2

]
< 0 or

[−�2 �3
∗ �1

]
< 0.

Definition 2.7 ([47]): Let Nσ(Tγ ,Tδ) denote the number of switches of σ(t) across (Tγ , Tδ) for any
Tδ > Tγ ≥ 0.WhenNσ(Tγ ,Tδ) ≤ N0 + (Tδ−Tγ )

τε
holds for τε > 0,N0 ≥ 0, τε is referred to as theADT.

We useN0 = 0 in this paper.

Definition 2.8 ([43]): Given three constants κ1 > 0, κ2 > 0, T > 0 with κ1 < κ2 and symmetric
matrix P > 0, the system (6) is said to be finite-time stable (FTS) with respect to (κ1, κ2,P , T ) if

E

{∫ 1

0
sup

−η≤s≤0
{ψT(x, s)Pψ(x, s)} dx

}
≤ κ1 ⇒ E

{∫ 1

0
�T(x, t)P�(x, t) dx

}
< κ2, ∀ t ∈ [0, T ].

Definition 2.9 ([7]): System (5) is said to be finite-time stabilizable if there exist control gainmatrices
for reliable controller (4) such that system (5) is FTS with respect to given constants (κ1, κ2,P , T ).

Definition 2.10 ([54]): System (1) is taken into account. Assume there is a control law (4) and a real
number J∗ > 0 such that system (5) is FTS and the cost function (7) satisfies J ≤ J∗. Then J∗ is called
a guaranteed cost and (4) is called a guaranteed control law for system (5).

3. Main results

In this section, we use the Lyapunov method and ADT approach to investigate the finite-time stabil-
ity condition of system (6). In addition, we investigate the finite-time stabilization of system (5) by
designing the control matrices for the reliable controller. Furthermore, we obtain the finite-time cost
control of system (5).

For our convenience, we let

�∗
p = P− 1

2�pP− 1
2 , �∗

p = P− 1
2�pP− 1

2 , �∗
p = P− 1

2�pP− 1
2 , ϒ∗

p = P− 1
2ϒpP− 1

2 ,

λ1 = λmin(�
∗
p), λ2 = λmax(�

∗
p), λ3 = λmax(�

∗
p), λ4 = λmax(�

∗
p), λ5 = λmax(ϒ

∗
p ),

� = λ2 + ηeγ ηλ3 + ηeγ ηλ4 + η2eγ ηλ5.

Theorem 3.1: Under Assumption (H), system (6) is said to be FTS with respect to given con-
stants (κ1, κ2,P , T ) if there exist constants γ > 0, � ≥ 1 and symmetric positive definite matrices
�p,�p,�p,ϒp,1p,2p such that the following LMIs holds:

(i) A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15 A16 A17
∗ A22 A23 A24 A25 A26 A27
∗ ∗ A33 A34 A35 A36 A37
∗ ∗ ∗ A44 A45 A46 A47
∗ ∗ ∗ ∗ A55 A56 A57
∗ ∗ ∗ ∗ ∗ A66 A67
∗ ∗ ∗ ∗ ∗ ∗ A77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (8)

(ii) �p ≤ ��q, �p ≤ ��q, �p ≤ ��q, ϒp ≤ �ϒq, (9)

(iii) λ1P ≤ �p ≤ λ2P , �p ≤ λ3P , �p ≤ λ4P , ϒp ≤ λ5P , (10)

(iv) �κ1 − e−γT λ1κ2 < 0, (11)
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and the ADT of σ(t) satisfies

(v) τε > τ ∗
ε = T (ln �)

ln(λ1κ2)− ln(�κ1)− γT , (12)

where

A11 = He(�pQp)+ αp1p + λp�p +�p +�p + ηϒp − 1
2
π2�pDp − γ�p, A12 = 1

2
π2�pDp,

A13 = �pRp, A14 = 0, A15 = 0, A16 = �p, A17 = �p, A22 = −1
2
π2�pDp,

A23 = 0, A24 = 0, A25 = 0, A26 = 0, A27 = 0,

A33 = −(1 − κ) eγ η�p + βp2p + μp�p, A34 = 0, A35 = 0, A36 = 0, A37 = 0,

A44 = −eγ η�p, A45 = 0, A46 = 0, A47 = 0, A55 = −eγ η

η
ϒp, A56 = 0, A57 = 0,

A66 = −1p, A67 = 0, A77 = −2p.

Proof: Let us consider the following Lyapunov–Krasovskii functional (LKF) candidate as

Vσ(t)(�(x, t)) =
4∑

r=1
Vrσ(t)(�(x, t)),

where

V1σ(t)(�(x, t)) =
∫ 1

0
�T(x, t)�σ(t)�(x, t) dx,

V2σ(t)(�(x, t)) =
∫ 1

0

∫ t

t−η(t)
eγ (t−s)�T(x, s)�σ(t)�(x, s) ds dx,

V3σ(t)(�(x, t)) =
∫ 1

0

∫ t

t−η
eγ (t−s)�T(x, s)�σ(t)�(x, s) ds dx,

V4σ(t)(�(x, t)) =
∫ 1

0

∫ 0

−η

∫ t

t+θ
eγ (t−s)�T(x, s)ϒσ(t)�(x, s) ds dθ dx.

Calculating LVp(�(x, t)) along the trajectories of system (6) by using Ito’s formula, we get

LVp(�(x, t)) = LV1p(�(x, t))+ LV2p(�(x, t))+ LV3p(�(x, t))+ LV4p(�(x, t)). (13)

Further, we have

LV1p(�(x, t)) = 2
∫ 1

0
�T(x, t)�p

[
Dp
∂2�(x, t)
∂x2

+ Qp�(x, t)+ Rp�(x, t − η(t))

+fp(t,�(x, t))+ gp(t,�(x, t − η(t)))
]
dx +

∫ 1

0
trace

[
hTp (t)�php(t)

]
dx

− γ

∫ 1

0
�T(x, t)�p�(x, t) dx + γV1p(�(x, t)), (14)



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 7

where hp(t) = hp(t,�(x, t),�(x, t − η(t))).

LV2p(�(x, t)) = γV2p(�(x, t))+
∫ 1

0
�T(x, t)�p�(x, t) dx

− (1 − η̇(t))
∫ 1

0
eγ η(t)�T(x, t − η(t))�p�(x, t − η(t)) dx

≤ γV2p(�(x, t))+
∫ 1

0
�T(x, t)�p�(x, t) dx

− (1 − κ)

∫ 1

0
eγ η�T(x, t − η(t))�p�(x, t − η(t)) dx, (15)

LV3p(�(x, t)) = γV3p(�(x, t))+
∫ 1

0
�T(x, t)�p�(x, t) dx

−
∫ 1

0
eγ η�T(x, t − η)�p�(x, t − η) dx, (16)

LV4p(�(x, t)) = γV4p(�(x, t))+ η

∫ 1

0
�T(x, t)ϒp�(x, t) dx

−
∫ 1

0

∫ t

t−η
eγ η�T(x, s)ϒp�(x, s) ds dx. (17)

According to Lemma 2.3 and Assumption (H), we have

2�T(x, t)�pfp(t,�(x, t)) ≤ �T(x, t)�p
−1
1p �p�(x, t)+ f Tp (t,�(x, t))1pfp(t,�(x, t))

≤ �T(x, t)�p
−1
1p �p�(x, t)+ �T(x, t)αp1p�(x, t), (18)

similarly

2�T(x, t)�pg(t,�(x, t − τ(t))) ≤ �T(x, t)�p
−1
2p �p�(x, t)+ �T(x, t − τ(t))βp2p�(x, t − τ(t)).

(19)
Based on Assumption (H), we obtain

trace[hTp (t)�php(t)] ≤ �T(x, t)λp�p�(x, t)+ �T(x, t − τ(t))μp�p�(x, t − τ(t)). (20)

By virtue of integration by parts and Neumann boundary conditions (3), we obtain that

∫ 1

0
�T(x, t)Dp

∂2�(x, t)
∂x2

dx =
[
�T(x, t)Dp

∂�(x, t)
∂x

]x=1

x=0
−

∫ 1

0

∂�T(x, t)
∂x

Dp
∂�(x, t)
∂x

dx

= −
∫ 1

0

∂�T(x, t)
∂x

Dp
∂�(x, t)
∂x

dx. (21)

To obtain �̄(x, t) = 0, we introduce a new state variable �̄(x, t) = �(x, t)− �(1, t) and satisfy the
following condition:

∂�T(x, t)
∂x

Dp
∂�(x, t)
∂x

= ∂�̄T(x, t)
∂x

Dp
∂�̄(x, t)
∂x

. (22)



8 V. GOKULAKRISHNAN ET AL.

By virtue of Lemma 2.4, we obtain∫ 1

0
�T(x, t)Dp

∂2�(x, t)
∂x2

dx ≤ −1
4
π2

∫ 1

0
�̄T(x, t)Dp�̄(x, t) dx

≤ −1
4
π2

∫ 1

0
�T(x, t)Dp�(x, t) dx + 1

2
π2

∫ 1

0
�T(x, t)Dp�(1, t) dx

− 1
4
π2

∫ 1

0
�T(1, t)Dp�(1, t) dx. (23)

Based on Lemma 2.5, we obtain

−
∫ t

t−η
�T(x, s)ϒp�(x, s) ds ≤ − 1

η

(∫ t

t−η
�(x, s) ds

)T

ϒp

(∫ t

t−η
�(x, s) ds

)
. (24)

Combining the inequalities (13)–(24) and using Lemma 2.6, we have

LVp(�(x, t)) ≤
∫ 1

0
ξT(x, t)Aξ(x, t) dx + γVp(�(x, t)), (25)

where ξ(x, t) = [�T(x, t) �T(1, t) �T(x, t − η(t)) �T(x, t − η) (
∫ t
t−η �(x, s) ds)T]T .

By virtue of inequality (8), we have

LVp(�(x, t)) ≤ γVp(�(x, t)). (26)

Multiplying the inequality (26) by e−γ t , we get

L(e−γ tVσ(t)(�(x, t))) < 0. (27)

Then by taking mathematical expectation and integrating on both sides from tk to t, we obtain that

E{Vσ(t)(�(x, t))} < eγ (t−tk)E{Vσ(tk)(�(x, tk))}, (28)

for any t ∈ [tk, tk+1). Note that �(x, tk) = �(x, t−k ) and applying the inequality (9) in Vσ(t)(�(x, t)),
we obtain that

Vσ(tk)(�(x, tk)) ≤ �Vσ(t−k )(�(x, t
−
k )). (29)

For any t ∈ [0, T ], there exist n ∈ Z such that t ∈ [tn, tn+1). Thus, it follows from the inequality (28)
and (29) that

E{Vσ(t)(�(x, t))} < eγ (t−tn)E{Vσ(tn)(�(x, tn))}
≤ �eγ (t−tn)E{Vσ(t−n )(�(x, t−n ))}
≤ · · · .. ≤ �Nσ (0,t) eγ tE{Vσ(0)(�(x, 0))}. (30)

According to Definition 2.7, we obtain

E{Vσ(t)(�(x, t))} < �
T
τε eγT E{Vσ(0)(�(x, 0))}. (31)

By virtue of inequality (10) and definition of Vσ(t)(�(x, t)), we have

E{Vσ(t)(�(x, t))} ≥ E

{∫ 1

0
�T(x, t)�σ(t)�(x, t) dx

}
≥ λ1E

{∫ 1

0
�T(x, t)P�(x, t) dx

}
, (32)
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and

E{Vσ(0)(�(x, 0))} = E

{∫ 1

0
�T(x, 0)�σ(0)�(x, 0) dx +

∫ 1

0

∫ 0

−η(t)
e−γ s�T(x, s)�σ(0)�(x, s) ds dx

+
∫ 1

0

∫ 0

−η
e−γ s�T(x, s)�σ(0)�(x, s) ds dx

+
∫ 1

0

∫ 0

−η

∫ 0

θ

e−γ s�T(x, s)ϒσ(0)�(x, s) ds dθ dx
}

≤ (λ2 + ηeγ ηλ3 + ηeγ ηλ4 + η2eγ ηλ5)

× E

{∫ 1

0
sup

−η≤s≤0
{ψT(x, s)Pψ(x, s)} dx

}
= �κ1. (33)

From inequalities (31)–(33), we have

E

{∫ 1

0
�T(x, t)P�(x, t) dx

}
≤ �κ1

λ1
�

T
τε eγT . (34)

When � = 1, clearly E{∫ 1
0 �T(x, t)P�(x, t) dx} < κ2e−γT eγT = κ2. When � > 1, from (11)

and (12), we have

ln(λ1κ2)− ln(�κ1)− γT > 0, (35)

T
τε
<

ln(λ1κ2)− ln(�κ1)− γT
ln �

. (36)

Substituting the inequality (36) into (34), we obtain that

E

{∫ 1

0
�T(x, t)P�(x, t) dx

}
≤ �κ1

λ1
eγT eln(λ1κ2)−ln(�κ1)−γT = κ2.

According toDefinition 2.8, system (6) is FTSwith respect to given constants (κ1, κ2,P , T ). The proof
is completed. �

The following theorem states that the control gain matrices Kp for the reliable controller (4) can be
designed to obtain the finite-time stabilization for system (5).

Theorem 3.2: The system (5) is said to be finite-time stabilizable if there exist constants γ > 0, � ≥ 1,
symmetric positive definite matrices Ap, �̃p, �̃p, ϒ̃p, ̃1p, ̃2p and constant matrix Bp such that the
following LMIs (9)–(12) and

(vi) B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

B11 B12 B13 B14 B15 B16 B17
∗ B22 B23 B24 B25 B26 B27
∗ ∗ B33 B34 B35 B36 B37
∗ ∗ ∗ B44 B45 B46 B47
∗ ∗ ∗ ∗ B55 B56 B57
∗ ∗ ∗ ∗ ∗ B66 B67
∗ ∗ ∗ ∗ ∗ ∗ B77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (37)
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where

B11 = He(QpAp + SpXHpBp)+ αp̃1p + Apλp + �̃p + �̃p + ηϒ̃p − 1
2
π2DpAp − γAp,

B12 = 1
2
π2DpAp, B13 = RpAp, B14 = 0, B15 = 0, B16 = Ap, B17 = Ap,

B22 = −1
2
π2DpAp, B23 = 0, B24 = 0, B25 = 0, B26 = 0, B27 = 0,

B33 = −(1 − κ) eγ η�̃p + βp̃2p + Apμp, B34 = 0,

B35 = 0, B36 = 0, B37 = 0, B44 = −eγ η�̃p, B45 = 0, B46 = 0, B47 = 0,

B55 = −eγ η

η
ϒ̃p, B56 = 0, B57 = 0, B66 = −̃1p, B67 = 0, B77 = −̃2p

are satisfied. Furthermore, the control gain matrices are designed by

(vii) Kp = BpA
−1
p . (38)

Proof: Construct the same LKF candidate as in Theorem 3.1 and replacing Qp in (8) by (Qp +
SpXHpKp), we have

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13 A14 A15 A16 A17
∗ A22 A23 A24 A25 A26 A27
∗ ∗ A33 A34 A35 A36 A37
∗ ∗ ∗ A44 A45 A46 A47
∗ ∗ ∗ ∗ A55 A56 A57
∗ ∗ ∗ ∗ ∗ A66 A67
∗ ∗ ∗ ∗ ∗ ∗ A77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (39)

where

A11 = He(�p(Qp + SpXHpKp))+ αp1p + λp�p +�p +�p + ηϒp − 1
2
π2�pDp − γ�p,

A12 = 1
2
π2�pDp, A13 = �pRp, A14 = 0, A15 = 0, A16 = �p, A17 = �p,

A22 = −1
2
π2�pDp, A23 = 0, A24 = 0, A25 = 0, A26 = 0, A27 = 0,

A33 = −(1 − κ) eγ η�p + βp2p + μp�p, A34 = 0, A35 = 0, A36 = 0,

A37 = 0, A44 = −eγ η�p, A45 = 0, A46 = 0, A47 = 0, A55 = −eγ η

η
ϒp, A56 = 0,

A57 = 0, A66 = −1p, A67 = 0, A77 = −2p.

Now, pre and post multiplying (39) by diag{�−1
p ,�−1

p ,�−1
p ,�−1

p ,�−1
p ,�−1

p ,�−1
p } and setting

Ap = �−1
p , Bp = KpAp, �̃p = Ap�pAp, �̃p = Ap�pAp, ϒ̃p = ApϒpAp, ̃1p = Ap1pAp, ̃2p =

Ap2pAp, one can obtainB < 0. By virtue of Theorem 3.1 andDefinition 2.9, system (5) is finite-time
stabilizable. The proof is completed. �

The next theorem is to investigate the finite-time cost control for system (5).
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Theorem 3.3: System (5) is said to be finite-time stabilizable if there exist constants γ > 0, � ≥ 1,
symmetric positive definite matrices Ap, �̃p, �̃p, ϒ̃p, ̃1p, ̃2p and constant matrix Bp such that they
satisfy the following LMIs (9)–(12) and

(viii) � =
⎡
⎣

[
B

]
7×7 �12 �13

∗ �22 �23
∗ ∗ �33

⎤
⎦ < 0, (40)

where

�12 = [
UpAp 0 0 0 0 0 0

]T , �13 = [
VpXHpBp 0 0 0 0 0 0 0

]T ,
�22 = −Up, �23 = 0, �33 = −Vp,

and [B]7×7 is defined in Theorem 3.2. Furthermore, the control gain matrices are designed by (38) and
the GCC value is defined by

(ix) J∗ = �κ1. (41)

Proof: Construct the same LKF candidate as in Theorem 3.1, and introduce the following inequality
from Theorems 3.1, 3.2 and cost function (7):

LVσ(t)(�(x, t))− γVσ(t)(�(x, t)) ≤
∫ 1

0
ξT(x, t)Bξ(x, t) dx +

∫ 1

0

[
�T(x, t)(Uσ(t) − Uσ(t))�(x, t)

+ (uF (x, t))T(Vσ(t) − Vσ(t))(uF (x, t))
]
dx

≤
∫ 1

0
ξT(x, t)Bξ(x, t) dx +

∫ 1

0
�T(x, t)[Up

+ KT
pX T

Hp
VpXHpKp]�(x, t) dx

−
∫ 1

0
�T(x, t)[Up + KT

pX T
Hp

VpXHpKp]�(x, t) dx.

By virtue of Lemma 2.6 and inequality (40), we obtain

LVσ(t)(�(x, t))− γVσ(t)(�(x, t)) ≤ −
∫ 1

0
�T(x, t)[Up + KT

pX T
Hp

VpXHpKp]�(x, t) dx. (42)

From the given symmetric positive definitematricesUp > 0,Vp > 0, Theorems 3.1 and 3.2, system (5)
is finite-time stabilizable.

Furthermore, to obtain the GCC value, for inequality (42) multiplying by e−γ t and integrating
from 0 to ∞, we get

J = E

{ ∫ 1

0

∫ ∞

0
e−γ t

[
�T(x, t)Up�(x, t)+ (uF (x, t))TVp(uF (x, t))

]
dt dx

}
≤ E{Vσ(0)(�(x, 0))} ≤ �κ1 = J∗.

The proof is completed. �

Remark 3.4: We compare it with some existing results in the literature [15,39,54]. In [15], the author
investigated the GCC for switched delta operator systems with actuator faults. In [39], the author
investigated the robust finite-time GCC for positive systems with delays. In [54], robust finite-time
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GCC for switched impulsive systems was investigated. However, diffusion effects and stochastic dis-
turbances are not considered in the above mentioned results. In fact, noise presented a fundamental
issue in the transmission of information impacting all facets of the neuron systems operating within
the neuron systems. Strictly speaking, the diffusion effects are unavoidable in nonlinear systemswhen
electrons flow in nonuniform electromagnetic fields. It is worth noting the introduction of stochastic
disturbances and diffusion systems into the nonlinear switched systems. It is suitable for dealing with
real-life applications such as secure communication, image encryption and Alzheimer’s disease.

Remark 3.5: In [48], the author studied the membership-function-dependent based fuzzy control
for memristive reaction-diffusion neural networks with sensors and actuators faults. In [9,28], the
authors studied the fault-tolerant control for switched systems with actuator faults. In [42], the author
studied a finite-time fuzzy adaptive control for nonlinear systems with actuator faults. In [29], author
studied the finite-time control of switched systems with actuator faults. However, for the finite-time
cost control of SNSSs with time-varying delays, reaction-diffusion and actuator faults related results
have not been studied in previous works. To shorten the gap, this paper studied the finite-time guar-
anteed cost control for SNSSs with time-varying delays, reaction-diffusion and actuator faults via
reliable control.

Remark 3.6: In this paper, Theorem 3.2 presents a sufficient criterion finite-time stabilization for
SNSSs with time-varying delays, reaction-diffusion and actuator faults via reliable control. It should
be pointed out that the control gain matricesKp are more flexible for the feasibility of LMIs (9)–(12)
and (37) than those designed reliable controller in the literature [2]–[44].

Remark 3.7: The obtained results in this paper are extended with improved results in [11]. In [11],
the author discussed the FTS and stabilization for stochastic Markovian switching reaction-diffusion
systems via boundary control. In this paper, we discussed the FTS, stabilization and finite-time cost
control for SNSSs with time-varying delays, reaction-diffusion and actuator faults via reliable control.

Remark 3.8: For system (5), let the reaction-diffusion terms be ignored. Then, system (5) can be
rewritten as

d�(t) =
[
(Qσ(t) + Sσ(t)XHσ(t)Kσ(t))�(t)+ Rσ(t)�(t − η(t))+ fσ(t)(t,�(t))

+ gσ(t)(t,�(t − η(t)))
]
dt + hσ(t)(t,�(t),�(t − η(t))) dω(t). (43)

The following corollary follows from Theorem 3.3.

Corollary 3.9: System (43) is said to be finite-time stabilizable if there exist constants γ > 0, � ≥ 1,
symmetric positive definite matrices Ap, �̃p, �̃p, ϒ̃p, ̃1p, ̃2p, and constant matrix Bp such that the
following LMIs (9)–(12), and

(x) G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G11 G12 G13 G14 G15 G16 G17 G18
∗ G22 G23 G24 G25 G26 G27 G28
∗ ∗ G33 G34 G35 G36 G37 G38
∗ ∗ ∗ G44 G45 G46 G47 G48
∗ ∗ ∗ ∗ G55 G56 G57 G58
∗ ∗ ∗ ∗ ∗ G66 G67 G68
∗ ∗ ∗ ∗ ∗ ∗ G77 G78
∗ ∗ ∗ ∗ ∗ ∗ ∗ G88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (44)
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where

G11 = He(QpAp + SpXHpBp)+ αp̃1p + Apλp + �̃p + �̃p + ηϒ̃p − γAp, G12 = RpAp,

G13 = 0, G14 = 0, G15 = Ap, G16 = Ap, G17 = UpAp, G18 = VpXHpBp,

G22 = −(1 − κ) eγ η�̃p + βp̃2p + Apμp,G23 = 0, G24 = 0, G25 = 0, G26 = 0,

G27 = 0, G28 = 0, G33 = −eγ η�̃p, G34 = 0, G35 = 0, G36 = 0, G37 = 0,

G38 = 0, G44 = −eγ η

η
ϒ̃p, G45 = 0, G46 = 0, G47 = 0, G48 = 0, G55 = −̃1p,

G56 = 0, G57 = 0, G58 = 0, G66 = −̃2p, G67 = 0, G68 = 0, G77 = −Up,

G78 = 0, G88 = −VP,

are satisfied. Furthermore, the control gain matrices are designed by (38) and the GCC value is defined
by (41).

Remark 3.10: In system (5), if the stochastic disturbances hp(t) = 0, then system (5) is turned into
the following nonlinear switched systems (NSSs) with time-varying delays, reaction-diffusion and
actuator faults:

∂�(x, t)
∂t

= Dσ(t)
∂2�(x, t)
∂x2

+ (Qσ(t) + Sσ(t)XHσ(t)Kσ(t))�(x, t)+ Rσ(t)�(x, t − η(t))

+ fσ(t)(t,�(x, t))+ gσ(t)(t,�(x, t − η(t))). (45)

The next corollary is to investigate the finite-time cost control for system (45).

Corollary 3.11: System (45) is said to be finite-time stabilizable if there exist constants γ > 0, � ≥ 1,
symmetric positive definite matrices Ap, �̃p, �̃p, ϒ̃p, ̃1p, ̃2p, and constant matrix Bp such that the
following LMIs (9)–(12) and

(xi) M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14 M15 M16 M17 M18 M19
∗ M22 M23 M24 M25 M26 M27 M28 M29
∗ ∗ M33 M34 M35 M36 M37 M38 M39
∗ ∗ ∗ M44 M45 M46 M47 M48 M49
∗ ∗ ∗ ∗ M55 M56 M57 M58 M59
∗ ∗ ∗ ∗ ∗ M66 M67 M68 M69
∗ ∗ ∗ ∗ ∗ ∗ M77 M78 M79
∗ ∗ ∗ ∗ ∗ ∗ ∗ M88 M89
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ M99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (46)

where

M11 = He(QpAp + SpXHpBp)+ αp̃1p + �̃p + �̃p + ηϒ̃p − 1
2
π2DpAp − γAp,

M12 = 1
2
π2DpAp, M13 = RpAp, M14 = 0, M15 = 0, M16 = Ap, M17 = Ap,

M18 = UpAp, M19 = VpXHpBp, M22 = −1
2
π2DpAp, M23 = 0, M24 = 0, M25 = 0,

M26 = 0, M27 = 0, M28 = 0, M29 = 0, M33 = −(1 − κ) eγ η�̃p + βp̃2p,
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M34 = 0, M35 = 0, M36 = 0, M37 = 0, M38 = 0, M39 = 0, M44 = −eγ η�̃p,

M45 = 0, M46 = 0, M47 = 0, M48 = 0, M49 = 0, M55 = −eγ η

η
ϒ̃p, M56 = 0,

M57 = 0, M58 = 0, M59 = 0, M66 = −̃1p, M67 = 0, M68 = 0, M69 = 0,

M77 = −̃2p, M78 = 0, M79 = 0, M88 = −Up, M89 = 0, M99 = −Vp,

are satisfied. Furthermore, the control gain matrices are designed by (38) and the GCC value is defined
by (41).

4. Numerical example

In this section, one numerical example with two cases are presented to illustrates the effectiveness
and validity of proposed reliable controller.

Consider the following two-mode SNSSswith time-varying delays, reaction-diffusion and actuator
faults:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d�(x, t) =
[
Dσ(t)

∂2�(x, t)
∂x2

+ Qσ(t)�(x, t)+ Rσ(t)�(x, t − (0.3 + 0.2 cos(t)))

+2 sin(�(x, t))+ sin(�(x, t − (0.3 + 0.2 cos(t))))+ Sσ(t)uF (x, t)
]
dt

+ [0.2�(x, t)+ 0.3�(x, t − (0.3 + 0.2 cos(t)))] dω(t),

�(x, s) = φ(x, s), x ∈ (0, 1), s ∈ [−0.5, 0],

∂�(x, t)
∂x

|x=0 = 0,
∂�(x, t)
∂x

∣∣∣∣
x=1

= 0.

(47)

Mode: 1.

D1 =
[
0.5 0
0 0.5

]
, Q1 =

[
0.3 0.2

−0.3 −0.8

]
, R1 =

[−1.01 0.2
0.03 −1.2

]
, S1 =

[−1.3 0.5
0.3 −1.3

]
,

U1 =
[
0.1 0
0 0.3

]
, V1 =

[
0.5 0
0 0.4

]
, X11 =

[
1 0
0 0

]
.

Mode: 2.

D2 =
[
0.5 0
0 0.5

]
, Q2 =

[−0.8 −0.1
0.3 0.1

]
, R2 =

[
0.6 −0.4
0.7 0.2

]
, S2 =

[−0.5 1.0
0.2 −0.3

]
,

U2 =
[
0.1 0
0 0.3

]
, V2 =

[
0.5 0
0 0.4

]
, X12 =

[
1 0
0 0

]
.

The initial values of system (47) are⎧⎨
⎩

�1(x, s) = 0.4 sin(0.4πx)+ 0.4 cos(s), s ∈ [−0.5, 0],
�2(x, s) = 0.3 sin(0.9πx)+ 0.2 cos(s), s ∈ [−0.5, 0],
�3(x, s) = 0.4 sin(0.6πx)+ 0.3 cos(s), s ∈ [−0.5, 0].

Figure 1 illustrates the state responses E�2(x, t) and state norm E‖�(·, t)‖2 of system (47) without
control. It clearly shows that system (47) does not realize the stabilization without control.

Case 1: System (47) with stochastic disturbances.
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Figure 1. State responsesE�2(x, t) and state normE‖�(·, t)‖2 of system (47) without control.

We let, η = 0.7, κ = 0.3, γ = 2.5, � = 1.05, κ1 = 1/2, κ2 = 29/3, T = 0.2 andP = I. Solve the
LMIs in Theorem 3.3 by using the MATLAB LMI toolbox, we obtain the following feasible solutions:

A1 =
[
0.3080 0.0557
0.0557 0.4998

]
, A2 =

[
0.4352 0.0284
0.0284 0.6410

]
, B1 =

[
0.7749 −0.0484

−0.0484 0.0000

]
,

B2 =
[
0.3758 −0.2355

−0.2355 0.0000

]
, �̃1 =

[
0.4518 −0.0161

−0.0161 0.4422

]
, �̃2 =

[
0.4533 −0.0392

−0.0392 0.2659

]
,

�̃1 =
[
0.2985 −0.0200

−0.0200 0.2330

]
, �̃2 =

[
0.2613 −0.0279

−0.0279 0.1691

]
, ϒ̃1 =

[
0.2231 −0.0088

−0.0088 0.1942

]
,
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ϒ̃2 =
[
0.2072 −0.0147

−0.0147 0.1591

]
, ̃11 =

[
2.0458 0.0779
0.0779 2.3221

]
, ̃12 =

[
2.1813 0.1282
0.1282 2.7498

]
,

̃21 =
[
2.0584 0.0867
0.0867 2.3642

]
, ̃22 =

[
2.2100 0.1505
0.1505 2.8530

]
, �1 =

[
3.3130 −0.3690

−0.3690 2.0417

]
,

�2 =
[
2.3043 −0.1022

−0.1022 1.5645

]
, �1 =

[
5.0580 −0.9965

−0.9965 1.9291

]
, �2 =

[
2.4280 −0.2911

−0.2911 0.6682

]
,

�1 =
[
3.3565 −0.6786

−0.6786 1.0421

]
, �2 =

[
1.4026 −0.1896

−0.1896 0.4255

]
, ϒ1 =

[
2.4969 −0.4798

−0.4798 0.8532

]
,

ϒ2 =
[
2.4109 −0.2354

−0.2354 1.0922

]
, 11 =

[
22.5797 −3.7128
−3.7128 9.8415

]
, 12 =

[
11.5508 −0.4902
−0.4902 6.7123

]
,

21 =
[
22.7028 −3.6991
−3.6991 10.0053

]
, 22 =

[
11.6936 −0.4329
−0.4329 6.9581

]
.

Furthermore, the control gains, ADT and GCC are obtained as follows:

K1 =
[
2.5852 −0.3847

−0.1603 0.0179

]
, K2 =

[
0.8901 −0.4068

−0.5426 0.0241

]
, τε∗ = 0.0155, J∗ = 13.4835.

(48)
By virtue of (4) and (48), Figure 2 shows that the reliable controller (4) can guarantee finite-time
stabilization for system (47) with stochastic disturbances. Furthermore, Figure 3 illustrates the effects
of switching signals σ(t) and Figure 4 illustrates the state responses E�2(x, t) of system (47) with
different time-varying delays.

Case 2: System (47) without stochastic disturbances.
Solve the LMIs in Corollary 3.11 by using the MATLAB LMI toolbox, we obtain the following

feasible solutions:

A1 =
[
0.0678 0.0102
0.0102 0.0992

]
, A2 =

[
0.0804 0.0113
0.0113 0.1119

]
, B1 =

[
0.1901 −0.0193

−0.0193 0.0000

]
,

B2 =
[
0.2025 −0.1174

−0.1174 0.0000

]
, �̃1 =

[
0.1149 −0.0035

−0.0035 0.1047

]
, �̃2 =

[
0.1092 −0.0067

−0.0067 0.0880

]
,

�̃1 =
[
0.0788 −0.0020

−0.0020 0.0708

]
, �̃2 =

[
0.0753 −0.0036

−0.0036 0.0708

]
, ϒ̃1 =

[
0.0544 −0.0007

−0.0007 0.0528

]
,

ϒ̃2 =
[
0.0544 −0.0013

−0.0013 0.0507

]
, ̃11 =

[
0.4701 0.0032
0.0032 0.4802

]
, ̃12 =

[
0.4735 0.0047
0.0047 0.4875

]
,

̃21 =
[
0.4705 0.0038
0.0038 0.4828

]
, ̃22 =

[
0.4748 0.0057
0.0057 0.4917

]
, �1 =

[
14.9766 −1.5371
−1.5371 10.2386

]
,

�2 =
[
12.6084 −1.2689
−1.2689 9.0667

]
, �1 =

[
26.1796 −4.8411
−4.8411 11.3586

]
, �2 =

[
17.7094 −3.5406
−3.5406 7.5679

]
,

�1 =
[
17.9264 −3.2452
−3.2452 7.6739

]
, �2 =

[
12.1884 −2.3752
−2.3752 5.5705

]
, ϒ1 =

[
12.6427 −2.2267
−2.2267 5.6894

]
,

ϒ2 =
[
18.5459 −3.4512
−3.4512 8.8736

]
, 11 =

[
106.4272 −17.8779
−17.8779 51.3473

]
,

12 =
[
75.9033 −12.6401

−12.6401 40.7263

]
, 21 =

[
106.4952 −17.8401
−17.8401 51.5999

]
,
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Figure 2. State responsesE�2(x, t) and state normE‖�(·, t)‖2 of system (47) with control and stochastic disturbances.

22 =
[
76.0871 −12.5877

−12.5877 41.0553

]
.

Furthermore, the control gains, ADT and GCC are obtained as follows:

K1 =
[
2.8773 −0.4900

−0.2893 0.0297

]
, K2 =

[
2.7023 −1.3212

−1.4799 0.1489

]
, τε∗ = 0.0666, J∗ = 7.6544.

(49)
By virtue of (4) and (49), Figure 5 shows that the reliable controller (4) cannot guarantee finite-time
stabilization for system (47) without stochastic disturbances.
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Figure 3. Effects of switching signals σ(t).

Figure 4. Effects of time-varying delays η(t).

5. Conclusion

This paper investigated the finite-time guaranteed cost control for a class of stochastic nonlinear
switched systems, where time-varying delays, reaction-diffusion, actuator faults, Neumann boundary
condition and reliable control are considered. Then, the finite-time stability criterion is obtained by
virtue of the Lyapunovmethod, some famous inequality techniques and average dwell-time approach.
It should be pointed out that the finite-time stabilization performance was investigated through the
control gains for reliable controller. Furthermore, we obtained the finite-time cost control for pro-
posed controlled systems. Finally, the numerical simulations show the effectiveness of the designed
reliable controller and obtained theoretical results. Since intermittent boundary control methods



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 19

Figure 5. State responsesE�2(x, t) and state normE‖�(·, t)‖2 of system (47) with control and without stochastic disturbances.

can save control cost of both spatial and temporal domain, future work will focus on the intermit-
tent boundary synchronization and stabilization problems of fractional-order stochastic nonlinear
switched reaction-diffusion systems via intermittent boundary control.
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Abstract

In genetic regulatory networks (GRNs), the control strategies of messenger RNA (mRNA) and protein play a key role in

regulatory mechanisms of gene expression, especially in translation and transcription. However, the influence of

impulsive control strategies on oscillatory gene expression is not well understood. In this article, by considering the

impulsive control strategies of mRNA and protein, a novel fractional-order genetic regulatory networks with actuator

saturation is proposed. By applying polytopic representation technique, the actuator saturation term is first considered

into the design of impulsive controller, and less conservative linear matrix inequalities (LMIs) criteria that guarantee

finite-time Mittag-Leffler stabilization problem for fractional-order genetic regulatory networks are given. The derived

sufficient conditions can easily be verified by designing impulsive control gains and solving simple LMIs. Finally, to

investigate the effectiveness and applicability of the control strategies, an interesting simulation example as a synthetic

oscillatory network of transcriptional regulators in Escherichia coli is illustrated.

Introduction

Genetic regulatory networks (GRNs) are biochemical networks that regulate gene expression and perform complex

biological functions (via direct or indirect interactions between deoxyribonucleic acid (DNA), ribonucleic acid (RNA),

proteins, and small molecules) as shown in Fig. 1. GRNs are a significant topic in bioscience and biomedical engineering,

as they can help many biologists, engineers, and scientists understand a variety of complex challenges in living cells [1],

[2], [3]. Because many traits and diseases are linked to dysfunctional transcriptional regulators or mutations in

regulatory sequences, understanding gene expression regulation has an immediate impact on biology and medicine.

Acquiring precise information about the states of GRNs is particularly useful in biological and biomedical sciences for

applications such as gene identification and medical diagnosis/treatment [4], [5]. One of the key challenges in this area

a b c d e
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